
Modeling Replica Placement in a Distributed

File System: Narrowing the Gap between

Analysis and Simulation

John R. Douceur and Roger P. Wattenhofer

Microsoft Research, Redmond WA 98052, USA
fjohndo,rogerwag@microsoft.com
http://research.microsoft.com ??

Abstract. We examine the replica placement aspect of a distributed
peer-to-peer �le system that replicates and stores �les on ordinary desk-
top computers. It has been shown that some desktop machines are avail-
able for a greater fraction of time than others, and it is crucial not to
place all replicas of any �le on machines with low availability. In this pa-
per we study the eÆcacy of three hill-climbing algorithms for �le replica
placement. Based on large-scale measurements, we assume that the dis-
tribution of machine availabilities be uniform. Among other results we
show that the MinMax algorithm is competitive, and that for growing
replication factor the MinMax and MinRand algorithms have the same
asymptotic worst-case eÆcacy.

1 Introduction

Farsite [10] is a distributed peer-to-peer �le system that replicates and stores
�les on ordinary desktop computers rather than on dedicated storage servers.
Multiple replicas are created so that a user can access a �le if at least one of
the machines holding a replica of that �le is accessible. It has been shown [3]
that some desktop machines are available for a greater fraction of time than
others, and it is crucial not to place all replicas of any �le on machines with low
availability, or the availability of that �le will su�er.

In earlier work [9], we evaluated the eÆcacy and eÆciency of three hill-
climbing algorithms for �le replica placement, using competitive analysis and
simulation. The scenario under consideration was a static problem in which the
availability of each machine was �xed, and each replica stably remained on the
machine to which the placement algorithm assigned it. Our study found that
algorithmic eÆciency and eÆcacy ran counter to each other: The algorithm
with the highest rate of improvement yielded a �nal placement with the poorest
quality relative to an optimal placement.

?? Due to lack of space we omit most of the proofs in this extended abstract. The
complete paper is available as Microsoft Research technical report MSR-TR-2001-
62.

In actual practice, the replica placement problem is not static. The availabil-
ity of each machine (de�ned loosely as the fraction of time it is accessible) varies
over time as user behavior changes. In addition, �le replicas may be evicted
from machines by other processes in the system. The replica placement algo-
rithm does not produce a static �nal placement that thereafter persists; rather,
it continuously operates to correct for dynamic changes in the system. Viewed
from this dynamic perspective, extensive Monte Carlo simulation shows that
the MinMax algorithm consistently out-performs the other two algorithms, even
though it was proven [9] to be non-competitive. Hence, our theoretic worst-case
competitive analysis opposes use of the algorithm that appears best in practice.

We thus face an apparent dilemma: Either we fail to exploit an algorithm
that is demonstrably eÆcient, or we risk the possibility that our system will en-
counter a distribution of machine availabilities that renders our algorithm use-
less. In the present paper, we make stronger assumptions about the algorithm's
input, based on large-scale measurement of machine availability [3]. Given these
assumptions, which { we stress { are a close approximation of the behavior of
actual machines, we show that the MinMax algorithm is competitive for the lev-
els of replication we intend to use in actual deployment. Obtaining these new
results requires completely di�erent analysis methods from those used for our
earlier general-distribution results, which relied on highly unusual availability
distributions utterly dissimilar to those found in real systems.

Furthermore, our earlier studies evaluated competitiveness in terms of the
least available �le, which is a straightforward quantity to analyze. However, from
a systems perspective, a better metric is the e�ective availability of the overall
storage system, which is readily computable in simulation. In the present paper,
we show that all worst-case results for minimum �le availability are also worst-
case results for e�ective system availability, further legitimizing the relevance of
our theoretic analyses.

In our opinion, the signi�cance of this work lies in the fusion of four elements:
an important problem from an emerging area of systems research, simulation
results that demonstrate the practical performance of a suite of algorithms, large-
scale measurements of deployed systems that provide a tractable analytic model,
and rigorous theoretic analysis to provide con�dence in the algorithm selected
for use in the actual system. We consider this an exemplary synergy of systems,
simulation, measurement, and theory.

The remainder of the paper is organized as follows. The next section describes
the Farsite system and provides some motivation for why �le replica placement is
an important problem. Section 3 describes the algorithms. In Section 4 we further
motivate this paper, followed by a summary of results in Section 5. Section 6
presents a simpli�ed model, which is used in Section 7 to analyze the eÆcacy of
the algorithms. Section 8 compares the two measures of eÆcacy. In Section 9 we
conclude the paper by presenting related work.

2 Farsite

Farsite [10] is a distributed peer-to-peer �le system that runs on a networked
collection of desktop computers in a large organization, such as a university or
corporation. It provides a logically centralized storage repository for the �les of
all users in the organization. However, rather than storing these �les on dedi-
cated server machines, Farsite replicates them and distributes them among all
of the client computers sitting on users' desktops. As compared to centralized
storage, this architecture yields great savings in hardware capital, physical plant,
system administration, and operational maintenance, and it eliminates a single
point of failure and single target of attack. The disadvantage of this approach
is that user's desktop machines lack the physical security and continuous sup-
port enjoyed by managed servers, so the system must be designed to resist the
threats to reliability and security that are inherent in a large-scale, distributed,
untrusted infrastructure.

For �les stored in Farsite, the following properties are maintained: privacy,
integrity, persistence, and availability. Data privacy and integrity are ensured by
encryption and digital signatures. File persistence is provided by generating R
replicas of each �le and storing the replicas on di�erent machines. The data will
persist as long as one of the replicas resides on a machine that does not su�er a
destructive failure, such as a disk head crash. Since it is diÆcult to estimate the
remaining lifetime of a particular disk with any accuracy [16], the degree of data
persistence is considered to be determined entirely by the replication factor R
and not by any measurable aspect of the particular machines selected for storing
the replicas.

In this paper we focus on �le availability, meaning the likelihood that the
�le can be accessed by a user at the time it is requested, which is determined
by the likelihood that at least one replica of that �le can be accessed at the
requested time. The fractional downtime of a machine is the mean fraction of
time that the machine is unavailable, because it has crashed, has been turned
o�, has been disconnected from the network, etc. A �ve-week series of hourly
measurements of over 50,000 desktop machines at Microsoft [3] has shown that
the times at which di�erent machines are unavailable are not signi�cantly corre-
lated with each other, so the fractional downtime of a �le is equal to the product
of the fractional downtimes of the machines that store replicas of that �le. For
simplicity, we express machine and �le availability values as the negative loga-
rithm of fractional downtime, so the availability of a �le equals the sum of the
availabilities of the R machines that store replicas of the �le.

The goal of a �le placement algorithm is to produce an assignment of �le
replicas to machines that maximizes an appropriate objective function. We con-
sider two objective functions in this paper: (1) the minimum �le availability over
all �les and (2) the e�ective system availability (ESA), de�ned as the negative
logarithm of the expected fractional downtime of a �le chosen uniformly at ran-
dom. When we evaluate the eÆcacy of a �le placement algorithm, we are gauging
its ability to maximize one of these objective functions. For our theoretic anal-
yses in both our earlier work [9] and the present paper, we focus on the metric

of minimum �le availability, because it is more readily tractable. Our simulation
results, such as those described in Section 4, relate to ESA because it is more
meaningful from a systems perspective. One of our current �ndings (Section 8)
is that all of our theoretic worst-case results for minimum �le availability are
also theoretic worst-case results for e�ective system availability.

Measurements of over 10,000 �le systems on desktop computers at Microsoft
[8] indicate that a replication factor of R = 3 is achievable in a real-world setting
[3]. Thus, we have a special interest in the case R = 3.

3 Algorithms

Files in Farsite are partitioned into disjoint sets, each of which is managed by a
small, autonomous group of machines. This imposes the requirement that a �le
placement algorithm must be capable of operating in a distributed fashion with
no central coordination. Farsite is also a highly dynamic system in which �les
are created and deleted frequently and in which machine availabilities continu-
ously change. This imposes the requirement that a �le placement algorithm must
be able to incrementally improve an existing placement, rather than require a
complete re-allocation of storage resources. These and other considerations [10]
have led us to a family of iterative, swap-based algorithms: One group of ma-
chines contacts another group (possibly itself), each of which selects a �le from
the set it manages; the groups then decide whether to exchange the machine
locations of one replica from each �le. The groups select �les according to one
of the following algorithms:

{ RandRand swaps a replica between two randomly chosen �les,

{ MinRand swaps a replica between a minimum-availability �le and any other
�le, and

{ MinMax swaps a replica between a minimum-availability �le and a maximum-
availability �le.

(We use the particle \Rand" rather than \Any" because this re
ects the way
�les are selected in the system, even though all that matters for our theoretic
analysis is the absence of a selection restriction.) The groups swap replicas only
if doing so reduces the absolute di�erence between the availabilities of the two
�les, which we call a successful swap. If a pair of �les has more than one success-
ful swap, the algorithm chooses one with minimum absolute di�erence between
the �les' availabilities after the swap (although this does not a�ect theoretical
eÆcacy). Because the algorithms operate in a distributed fashion, their selection
restrictions are weakened, i.e., the MinMax and MinRand algorithms might select
�les whose availability values are not globally minimum or maximum. For our
theoretic analysis, we concentrate on the more restrictive case in which only
extremal �les are selected.

4 Motivation

If, beginning with a random assignment of replicas to machines, we run each
algorithm until it freezes (meaning no more swaps can be found), we �nd that the
three algorithms di�er substantially in both the eÆcacy of their �nal placements
and the eÆciency with which they achieve those placements. Simulations show
that the MinMax algorithm improves the availability of the minimum �le more
quickly than the other two algorithms. On the other hand, MinMax tends to freeze
at a point with lower minimum �le availability, since swaps are only considered
between the minimum-availability �le and the maximum-availability �le.

In earlier work [9], we performed a worst-case analysis to determine each algo-
rithm's competitive ratio � = m=m�, where m is the availability of a minimum-
availability �le when the algorithm freezes, and m� is the availability of a
minimum-availability �le given an optimal placement, for a worst-case availabil-
ity distribution. The results were that MinMax (the most eÆcient algorithm) was
not competitive (� = 0), whereas MinRand and RandRand were 2=3-competitive
for R = 3.

0

1

2

3

4

5

6

0.1 1 10 100

correction ratio (corrective moves / random move)

ef
fe

ct
iv

e
sy

st
em

 a
va

ila
bi

lit
y

(n
in

es
)

MinMax MinRand RandRand

Fig. 1. Steady-state behavior of the algorithms

If we exercise each algorithm in a dynamic scenario that more closely matches
the environment in which the Farsite system operates, the results are even more
disconcerting. Figure 1 shows the result of a steady-state simulation in which
two processes operate concurrently on the placement of replicas. One process
(maliciously) moves random replicas to random machines, simulating the dy-
namic behavior of users and machines. The other process performs one of our

three hill-climbing algorithms, trying to repair the damage caused by the ran-
dom moves. With the exception of unrealistically high correction ratios, MinMax
performs signi�cantly better than the other two algorithms.

We are in the unpleasant situation that a theoretical worst-case result (� = 0
for MinMax) opposes the use of an algorithm that works best for real-world data.
In this paper, we begin to address this discrepancy by noting the distribution
of availability values found in a large-scale study of desktop machines in a com-
mercial environment [3], reproduced here as Figure 2. This �gure shows that,
when expressed logarithmically, machine availabilities follow a distribution that
is nearly uniform. This �nding, coupled with the observation that most of our
worst cases [9] need rather unusual distributions of machine availabilities, sug-
gests that we can improve the bounds of the worst-case analysis by making
stronger assumptions about the input, namely that we have a uniform distribu-
tion of machine availabilities.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

machine availability (nines)

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

measured uniform

Fig. 2. Distribution of machine availabilities

5 Results

In this paper we will take for granted that the distribution of machine availabil-
ities be uniform. With this assumption we show that the MinMax algorithm is
competitive. More surprisingly, when the replication factor R grows the MinRand
and MinMax algorithms have the same asymptotic worst-case eÆcacy. This is
counterintuitive when looking at our earlier results [9]. We study the case R = 3

with special care, since the real Farsite system is expected to be deployed with
R = 3. We also give detailed results for R = 2 since they are considerably
di�erent from R > 2. Here is a detailed summary of our results:

Algorithm general R R = 2 R = 3

MinMax � = 1��(1=R) (1) � = 0 (5) � = 1=2 (4)
MinRand � = 1��(1=R) (1) � = 1 [9] & (2) � = 22=27 (2)
RandRand � = 1��(1=R2) (3) � = 1 [9] & (2) � = 8=9 (3)

6 Model

We are given a set of N unit-size �les, each of which has R replicas. We are
also given a set of M = N � R machines, each of which has the capacity to
store a single �le replica. Throughout this paper we assume that machines have
(uniformly distributed) availabilities 0
; 1
; 2
; : : : ; (M � 1)
, for an arbitrary
constant
.

Let the R replicas of �le f be stored on machines with availabilities a1; : : : ; aR.
To avoid notational clutter, we overload a variable to name a �le and to give the
availability value of the �le. Thus, the availability of �le f is f = a1 + � � �+ aR.

As in our earlier study [9], we examine the point at which the algorithms
freeze. Let m be a �le with minimum availability when the algorithm has ex-
hausted all possible improvements. Let m� be a �le with minimum availability
given an optimal placement for the same values of N and R. We compute the
ratio � = minm=m� as N ! 1. We say that the algorithm is �-competitive.
Note that the scale
 of the machine availabilities does not a�ect �; throughout
this paper we therefore assume
 = 1.

If two or more �les have minimum availability, or if two or more �les have
maximum availability, we allow an adversary to choose which of the �les will be
considered for a potential swap.

7 Analysis

We start this section with a number of undemanding observations which will
help us simplify the analysis.

MinMax searches for swap candidates in a subset of MinRand, and similarly
MinRand � RandRand, thus

Lemma 1. �MinMax � �MinRand � �RandRand:

In this paper we study a restricted case (we assume uniform availability) of
the general problem that was investigated in [9]. We have immediately:

Lemma 2. For the same algorithm, we have �general � �uniform.

The next Lemma shows a simple observation: There always is an optimal
assignment. This simpli�es calculating the competitive ratio �.

Lemma 3. For any R > 1 and uniform distribution there is an optimal assign-
ment, where all the �les have the same availability R(M � 1)=2.

Lemma 4. �MinRandR � 1� c=R, where c is a positive constant. If R = 3 then
c = 5=9.

Theorem 1. �MinRandR = �RandRandR = 1��(1=R).

Theorem 2. �MinRand3 = 22=27.

Proof. (We include this proof in the extended abstract as a representative for the
proof techniques in this paper.) With Lemma 4 we have that �MinRand3 � 22=27.
For proving the Theorem it is therefore suÆcient to show that �MinRand3 �
22=27.

The intuition of the proof: We partition the set of machines into �ve regions.
With a detailed case study we show which combinations of regions do not allow
successful swaps with the minimum �le. Then we classify the valid combinations
of regions, and give a combinatorial proof about their quantity which ultimately
leads to a lower bound for the availability of the minimum �le. For simplicity
we omit insigni�cant constants throughout this proof (i.e. we write M instead
of M � 1).

Here are the details: Let the minimum �le be m = a1 + a2 + a3 with a1 >
a2 > a3. Assume for the sake of contradiction that m < 11=9 �M . We de�ne
the following sets of machines (see Figure 3): Machines in A have availability
less than a3, machines in B between a3 and a2, machines in C between a2 and
(a1+a2)=2, machines in D between (a1+a2)=2 and a1, and machines in E more
than a1. With this partitioning the availability of the minimum �le m translates
into m = 2jAj+ jBj+M � jEj, and with m < 11=9 �M we get

2jAj+ jBj � jEj < 2=9 �M = 2=3 �N:

A B

a3 a2 a1

C D E

(a1+a2)/2

Fig. 3. Partition of the machines

Case 1: We consider all the �les f = b1 + b2 + b3 with b1 2 E, and b2 > b3.
If b2 + b3 > a2 + a3, then we swap the machines b1 and a1 and get m0 =
b1+ a2+ a3 > a1+ a2+ a3 = m and f 0 = a1+ b2+ b3 > a1+ a2+ a3 = m. Thus
b2+b3 � a2+a3, and therefore (with b2 > b3) b3 < (a2+a3)=2. Since each b1 2 E
needs a b3, we know that jEj < (a2+a3)=2. Since jAj+ jBj=2 = (a2+a3)=2 and
2jAj + jBj � jEj < 2=9 �M we get (a2 + a3)=2 < 2=9 �M . On the other hand
jEj < (a2 + a3)=2 shows that (a1 + a2)=2 > 1=2 �M . Since b2 + b3 � a2 + a3 <

4=9 �M < 1=2 �M < (a1 + a2)=2, we know that b2 2 A [B [C. If b2 > a2
then we have b3 < a3, in other words, if b2 2 C then b3 2 A. If b2 2 A [B then
b3 2 A [B. Since we have used all machines in set E in this case, there are no
machines in E in the following cases.

Case 2: We identify all remaining �les f = b1 + b2 + b3 with b1 2 C, and
b2 > b3. If b3 2 D, then we swap machines b1 and a2, getting m

0 = a1+b1+a3 >
a1 + a2 + a3 = m and f 0 = a2 + b2 + b3 > a2 + b3 + b3 � a2 +2(a1+ a2)=2 > m.
Therefore b3 =2 D. Thus for each b1 2 C we have b2 2 A [B [C [D and
b3 2 A [B [C. We have used all machines in C; henceforth the sets C and E
are taboo.

Case 3: We identify all the remaining �les f = b1 + b2 + b3 with b1 2 B, and
b2 > b3. If b3 2 D, then we swap machines b1 and a3, getting m

0 = a1+a2+b1 >
a1 + a2 + a3 = m and f 0 = a3 + b2 + b3 > a3 + b3 + b3 � a3 +2(a1+ a2)=2 = m.
Therefore b3 =2 D. Thus for each b1 2 B we have b2 2 A[B [D and b3 2 A[B.
Henceforth the sets B;C;E are taboo.

Case 4: Finally we identify all the remaining �les f = b1 + b2 + b3 with
b1 2 D, and b2 > b3. If b3 2 D, then we swap machines b1 and a2, getting
m0 = a1 + b1 + a3 > a1 + a2 + a3 = m and f 0 = a2 + b2 + b3 > a2 + b3 + b3 �
a2 + 2(a1 + a2)=2 > m. Thus for each b1 2 D we have b2 2 A [D and b3 2 A.

From above analysis we have seen that a �le f can only consist of the these
combinations of regions: (Case 1) E +C +A or E + (A[B) + (A[B) or (Case
2) C + (A [B [C [D) + (A [B [C) or (Case 3) B + (A [B [D) + (A [B)
or (Case 4) D +A+A or D +D +A. We de�ne the two functions g1, g2:

g1(f) = jCj � jDj

g2(f) = 2jAj+ jBj � jEj

Figure 4 shows all possible �les f with respect to the functions g1(f) and g2(f).

Note that for all possible �les f we have g2(f) � 0. We put the �les into three
classes. Class X are the �les f with g1(f) < 0 (the black circles); class Y are the
�les with g1(f) = 0 (the white circles); class Z are the �les with g1(f) > 0 (the
grey circles). Note that for �les f 2 X we have g1(f) � �2 and g2(f) � 2, and
that for �les f 2 Y we have g2(f) � 1.

We haveM machines, thus (ignoring the single mimimum �le m) jAj+ jBj+
jCj+ jDj+ jEj =M = 3N . This translates into jX j+ jY j+ jZj = N for the three
classes X;Y; Z. The sets C and D were de�ned such that they exactly split the
region of machines between the a2 and a1, hence jCj = jDj. Using g1(f) � �2
for f 2 X , and g1(f) � 1 for f 2 Z, the constraint jCj = jDj translates into
2jX j � jZj. Both constraints together, we get 3jX j+ jY j � jX j+ jY j+ jZj = N .
We multiply with 2=3: 2jX j + jY j � 2jX j + 2=3 � jY j � 2=3 � N: We use this
inequality to get:

2jAj+ jBj � jEj =
X
f2X

g2(f) +
X
f2Y

g2(f) +
X
f2Z

g2(f) � 2jX j+ jY j � 2=3 �N:

4

6

-3

g2(f)

g1(f)

Fig. 4. Possible locations for a �le f .

(The �rst equality is the de�nition of g2; the middle inequality is because �les
f 2 X have g2(f) � 2, �les f 2 Y have g2(f) � 1, and �les f 2 Z have
g2(f) � 0.)

This contradicts our assumption that 2jAj+ jBj�jEj < 2=3 �N and therefore
the assumption that m < 11=9 �M . Thus m � 11=9 �M . With Lemma 3 we know
that m� = 3(M � 1)=2. Thus � = m=m� � 22=27, as M goes to in�nity.

Theorem 3. �RandRandR = 1 � c=R2, where c is a positive constant. If R is
odd then c = 1.

Theorem 4. �MinMax3 = 1=2.

Theorem 5. �MinMaxR = 1� 2=R, for R even.

8 Measures of EÆcacy

We can show that any worst-case result for minimum �le availability is also
a worst-case result for e�ective system availability. We show that the e�ective
system availability can be as low as the minimum �le availability, and it cannot
be lower.

Theorem 6. Let b be the base for converting downtime d into availability a,
that is a = � logb d: As b ! 1, the e�ective system availability (ESA) equals
the availability of the minimum �le.

Proof. Let b = ec. Then a = � logb d = �1=c � ln d, where ln = loge. If b ! 1
then c ! 1. Let m be the availability of the minimum �le. Assume that there

are X > 0 �les with availability m and N � X �les with availability fi with
fi > m, for i = 1; : : : ; N �X . Then, applying the de�nition of ESA,

lim
c!1

ESA = lim
c!1

�
1

c
ln

1

N

Xb�m +

N�XX
i=1

b�fi

!!

= lim
c!1

�
1

c
ln

e�cm

N

X +

N�XX
i=1

ec(m�fi)

!!

= lim
c!1

�
1

c
ln

�
X

N
e�cm

�
= lim

c!1

�
m�

1

c
ln
X

N

�
= m:

Similarly,

Theorem 7. Let b be the positive base for converting uptime into availability.
Then, ESA � m.

9 Related Work

Other than Farsite, serverless distributed �le systems include xFS [2] and Frangi-
pani [17], both of which provide high availability and reliability through dis-
tributed RAID semantics, rather than through replication. Archival Intermem-
ory [5] and OceanStore [14] both use erasure codes and widespread data distri-
bution to avoid data loss. The Eternity Service [1] uses full replication to prevent
loss even under organized attack, but does not address automated placement of
data replicas. A number of peer-to-peer �le sharing applications have been re-
leased recently: Napster [15] and Gnutella [11] provide services for �nding �les,
but they do not explicitly replicate �les nor determine the locations where �les
will be stored. Freenet [6] performs �le migration to generate or relocate replicas
near their points of usage.

To the best of our knowledge [9] is the �rst study of the availability of repli-
cated �les, and also the �rst competitive analysis of the eÆcacy of a hill-climbing
algorithm.

There is a common denominator of our work and the research area of approx-
imation algorithms; especially in the domain of online approximation algorithms
[13, 4] such as scheduling [12]. In online computing, an algorithm must decide
how to act on incoming items without knowledge of the future. This seems to
be related our work, in the sense that a distributed hill-climbing algorithm also
makes decisions locally, without the knowledge of the whole system. Also, online
algorithms research naturally focuses on giving bounds for the eÆcacy of an
algorithm rather than for the eÆciency.

Competitive analysis has been criticized as being too crude and unrealistic [4].
In this paper, we have narrowed the gap between theoretical worst-case analysis
and real-world simulations, which has emerged because of unusual worst case,
by making stronger and more realistic assumptions about the input. This is an
approach that is well-known in the area of online algorithms; for an overview,
see Chapter 5 in [4] for paging algorithms, and Section 2.3 in [7] for bin packing
algorithms.

References

1. Ross Anderson. The eternity service. Proceedings of Pragocrypt, 1996.
2. Thomas E. Anderson, Michael Dahlin, Jeanna M. Neefe, David A. Patterson,

Drew S. Roselli, and Randolph Wang. Serverless network �le systems. ACM
Transactions on Computer Systems, 14(1):41{79, February 1996.

3. William J. Bolosky, John R. Douceur, David Ely, and Marvin Theimer. Feasibility
of a serverless distributed �le system deployed on an existing set of desktop PCs. In
Proceedings of the ACM SIGMETRICS International Conference on Measurement
and Modeling of Computing Systems, 2000.

4. Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

5. Yuan Chen, Jan Edler, Andrew Goldberg, Allan Gottlieb, Sumeet Sobti, and Peter
Yianilos. A prototype implementation of archival intermemory. In Proceedings of
the Fourth ACM International Conference on Digital Libraries, 1999.

6. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A
distributed anonymous information storage and retrieval system, 2000.

7. Edward G. Co�man, M.R. Garey, and David S. Johnson. Appromxiation algo-
rithms for bin packing: A survey. In Dorit S. Hochbaum, editor, Approximation
Algorithms for NP-Hard Problems. PWS Publishing Company, 1995.

8. John Douceur and William Bolosky. A large-scale study of �le-system contents. In
Proceedings of the ACM SIGMETRICS International Conference on Measurement
and Modeling of Computing Systems, pages 59{70, New York, May 1{4 1999.

9. John Douceur and Roger Wattenhofer. Competitive hill-climbing strategies for
replica placement in a distributed �le system. In Proceedings of the 15th Interna-
tional Symposium on Distributed Computing, 2001.

10. John Douceur and Roger Wattenhofer. Optimizing �le availability in a server-
less distributed �le system. In Proceedings of the 20th Symposium on Reliable
Distributed Systems, 2001. Also see http://research.microsoft.com/sn/farsite/.

11. Gnutella. See http://gnutelladev.wego.com.
12. Leslie A. Hall. Approximation algorithms for scheduling. In Dorit S. Hochbaum,

editor, Approximation Algorithms for NP-Hard Problems. PWS Publishing Com-
pany, 1995.

13. Sandy Irani and Anna R. Karlin. Online computation. In Dorit S. Hochbaum, edi-
tor, Approximation Algorithms for NP-Hard Problems. PWS Publishing Company,
1995.

14. John Kubiatowicz, David Bindel, Patrick Eaton, Yan Chen, Dennis Geels, Ramakr-
ishna Gummadi, Sean Rhea, Westley Weimer, Chris Wells, Hakim Weatherspoon,
and Ben Zhao. OceanStore: An architecture for global-scale persistent storage.
ACM SIGPLAN Notices, 35(11):190{201, November 2000.

15. Napster. See http://www.napster.com.
16. Roger T. Reich and Doyle Albee. S.M.A.R.T. phase-II. White paper WP-9803-001,

Maxtor Corporation, February 1998.
17. Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: A

scalable distributed �le system. In Proceedings of the 16th Symposium on Operating
Systems Principles (SOSP-97), volume 31,5 of Operating Systems Review, pages
224{237, New York, October 5{8 1997.

