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ABSTRACT In the statistical approach to automatic speech 
recognition, the mathematical optimal solution dictates 

(MAP) decision rule 
In this paper, we propose a new type of frame-based that the recognizer f o h w s  the maximum a posteriori 

hidden Markov models (HMMs), in which a sequence of 
observations are generated using state-dependent auto- 
regressive feature models. Based on this correlation = dwIo)= dolw )dw) 
model, it can be proved that expressing the probability of 
a sequence of observations as a product of probabilities of 
decorrelated individual observations doesn’t require the 

where W is a word string hypothesis for a given acoustic 
observation 0 .  p(0lw) is the acoustic model, and 

assumption of frame independence. Under the maximum 
likelihood (ML) criteria, we also derived re-estimation 
formulae for the parameters (mean vectors, covariance i=l 

matrix, and diagonal regression matrice) of the new is the N%am language model. When deriving the 
Hh4Ms using an Expectation Maximization (EM) 
algorithm. From the formulae, it’s interesting to see that 
the new HMMs have extended the standard HMMs by 
relaxing the frame independence limitation. Initial 
experiment conducted on WSJ20K task shows an 
encouraging performance improvement with only 117 
additional parameters in all. 

acoustic model score p(O(W), a hidden state sequence 

4;  E r is usually introduced as 

P(olw)= do; 3 4; (w ) 

1. INTRODUTION 
in which it is assumed the hidden process can fully 
account for the conditional probability of the acoustic 
signal. 

The advent of hidden Markov model (HMM) has In the frame-based HMM approach, the state 
brought about a Progress in ‘Peech sequence probability p can be rewritten by 
recognition technology over the last two decades, and 
nowhere has this progress been more evident than in the applying the Markov first Order assumption as 

T area of Large Vocabulary Continuous Speech 
Recognition (LVCSR). However a number of unrealistic 
assumptions with HMMs are still regarded as obstacles 

P ( q : l d =  P(~o)I-IP(qflq*-l~W) 
r=1 

= % a4,41 a4142 * * a4T-14r 
for its potential effectiveness. A major one is the inherent 
assumption that successive observations are independent 
and identically distribution (IID) within a state. It follows q T ,  the joint 
from the mechanics of the speech generation process that observation probability along the state sequence 

Given a hidden state sequence 

p(o:Iqf,W) can be written as a product of in reality the observations are highly dependent and 
correlated. Furthermore, under maximum likelihood (ML) 
criteria, the performance Of a HMM-based System relies probabilities of individual observation vector 0, 
on how well the model can characterize the nature of real 
speech. conditioned on previous observations o: and state partial 

sequence q: , namely 
T 2. FRAME INDEPENDENCE 

ASSUMPTION OF STANDARD HMMS p(o:Iq:)=np(~~Jo: ,q , ,q ,  1-1) 
r=1 
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To make the above equation computationally tractable suggested by Ostendorf and Roukos [lo] in 1989. The 
for standard HMM, it's necessary for us to make the SSM assigns a Gaussian distribution to the entire segment 
frame independence assumption, which implies that all which is resampled to a fixed length. A nonparametric 
observations are statistically dependent on the state that approach to a nonstationary state HMM with an 
generate them, not on the previous observations, i.e., additional step of time wrapping was suggested by Ghitza 

and Sondhi, in which the trajectory of the mean in a given 
state is set equal to that state realization in the training set p(or Io:, qr , q:-')= p(ol Iyr ). According to this frame 

independence assumption, the joint observation 
probability can be rewritten as 

I =1 r =1 

Although the frame independence assumption is 
clearly inappropriate for speech sounds, the standard 
HMM in practice has worked extremely well for various 
types of speech recognition tasks. 

3. REVIEW OF RESEARCH EFFORTS ON 
FRAME CORRELATION MODELING 

Under maximum likelihood (ML) criteria, the 
performance of a HMM-based system relies on how well 
the HMMs can characterize the nature of real speech. For 
this reason, various approaches have been tried to take 
account of frame correlation for more realistic modeling. 
These efforts are generally known by the name of "frame 
correlation modeling". 

The family of segment models tries to directly express 
speech feature trajectories. The basic modeling unit is not 
a frame but a phonetic unit. This family of models relaxes 
both the stationarity and the independence assumptions 
within a standard HMM state. While they seem to be 
successful in extracting dynamic cues for speech 
recognition under a suitable trajectory assumption, they 
are not based on widely availiable HMM technology. 

Deng et al. [6] used a regression polynomial function 
of time to model the trajectory of the mean in each state. 
A similar model was suggested by Gish and Ng [7] for a 
keyword spotting task. Russell and Holmes, and Gales 
and Young [8] extended the model suggested by Deng, by 
assuming a parametric segmental model with random 
coefficients, that are sampled once per segment 
realization. Therefore, the mean trajectory is a stochastic 
process instead of a fixed parameter. Digalakis [9] 
proposed a dynamical system model which generalizes 
the Gauss-Markov model to a Kalman filter framework, 
by assuming noisy observations. 

Several authors have proposed nonparameteric 
segment models. A major advantage of nonparametric 
models is that they are not sensitive to the shape of the 
feature trajectory that needs to be approximated. 

whose dynamic time warping (DTW) distance from all 
other sequences in the ensemble is minimal. More 
recently, Kimball et al. [lo] suggested a nonparametric 
approach that models each segment by a discrete mixture 
of nonparametric mean trajectors. 

The most recent progress was made by Hsiao-Wuen 
Hon [5] .  In his method the segment-based and frame- 
based HMM are combined together by a unreliable 
conditional probability decomposition assumption. 

In the case of continuous HMM's, a Gaussian 
probability density function (PDF) assumption is made 
between adjacent feature vectors in C.J.Wellekens [l]. In 
P. Kenny [2], a linear prediction technigue is used to 
parameterize frame correlation. Paliwal [3] incorporated 
temporal correlation into discrete HMMs by conditioning 
the probability of the current observation on the current 
state as well as on the previous observation. S. Takahashi 
[4] propose a bigram-constrained (BC) HMM in which 
the probability of the current observation dependents on 
the current state as well as on the previous observation. 
But a BC HMM is obtained by combining a VQ-code 
bigram and the traditional HMM. So the number of 
parameters to be estimated in BC HMM is less than the 
number of the full parameterization method proposed by 
Paliwal. A remarkable point of BC HMM is that it has 
provided a method to combine the joint conditional PD by 
two separate conditional PD. All these efforts have been 
devoted to a decomposition of the probability 

4. STATE DEPENDENT AUTO- 
REGRESSIVE FEATURE MODEL 

Here we use a state dependent auto-regressive (AR) 
model to characterize the frame correlation between 
successive observation vectors, i.e., the observation 
vectors within a state are generated according to 

0, = C a p r - ,  + e, + n, 

where ai are diagonal matrices, so that a auto-regressive 

model applies to each component of the vector 0, . e, is a 

N 

i=l 

models might require more data to train the- model on, signal between the actual observation 0, and the 
since they are less constrained that parametric models. 
The first nonparametric approach to a nonstationary state 
HMM was the stochastic segment model (SSM) 

predicted observation GI with zero mean. 
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The reasons for us to use state dependent auto- 
regressive model to characterize frame correlation stem 
from the speech generation model and its application in 
speech coding. In the time domain, the speech waveforms 
are generated directly by the excitation source and vocal 
tract, and the vocal tract can be reasonably well 
parameterized by time-varying auto-regressive filter 
models. Based on this modeling framework, which is 
known as linear predictive coding, speech coding has 
made a great progress from a 32 kpbs to 4.8kbps. In the 
cepstral domain, the rationality comes from the fact that 
each cepstral frame is extracted from a window of speech 
samples. 

5. RELAX THE LIMITATION OF FRAME 
INDEPENDENCE ASSUMPTION 

Based on the above state dependent auto-regressive 
feature models, we can see that given current state qr 

and previous N frames or+, - - *o, -~ , 0, has the same 

distribution with n, . Namely 

P(., 14-l 7 4t ) = P(., [ .;I; 7 41 ) 
So the likelihood of a state sequence hypothesis can be 
written as 

t=l 

Therefore without frame independence assumption, we 
can also express the joint probability of the observations 
or as a product of probabilities of noisy individual 

observations n, . 

6. EM-BASED REESTIMATION 
FORMULAE FOR HMM PARAMETERS 

For HMM states modeled by Gaussian mixture, it has 
been proved that maximization of the likelihood 

~ ( o I w )  equals to maximizing Q 

r= l  m=l 
Applying the state dependent auto-regressive feature 
model, the above Q-function can be rewritten as 

= 2 t Y , , , ( t j l n 2 n I W , " l +  1 1 1  " , = I  [ o , - x a  ,,,, 9 - , - e i n  7 W,;' ( o , - z % , , o , - , - e , m  ,:, 
To maximize the Q-function with respect to mixture 

parameters, an EM algorithm can be applied. For each 
utterance, the mixture occupancy is the missing data. So 
the following iterative EM algorithm can be derived. 

Expectation Step: Given mean e,,, , variance Wm, 
and Correlation matrices am,,, the expected alignment 

y m  ( t )  can be given using forward-backward algorithm 
as 

~ m ( t ) =  P ( q s , m l e m , r  7 ~ m . ~ m , ~ ~ . : ~ $ ) = a m ( ' ) ~ m ( t )  

Maximization Step: Given expectation of the 
missing data, differentiating Q with respect to mixture 
parameters (mean, variance and correlation matrix) and 
setting them to zero gives the following estimation 
formulas. 

,=I  I 
For diagonal matrix (1 5 i 5 N ), the vector formed 
by N k-th diagonal elements from diagonal matrices can 
be estimated as 

J 
Therefore the N diagonal correlation matrices can be 
simultaneously estimated using the above formula in an 
element by element fashion. 

From the above formulae, we see that the standard 
HMM is a special case of the new HMM if we assume the 
observations are independent from each other, i.e. 
correlation matrixes are zero matrix. 

7. EXPERIMENT RESULTS 
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An initial investigation of the use of new models was 
carried out on a large-vocabulary speaker independent 
continuous speech recognition task. Experiments were 
conducted on Wall Street Journal 20k English task. The 
baseline system was a gender-independent within-word- 
triphone mixture-Gaussian tied state HMM system. In 
this model set, all the speech models had a three emitting 
state, left-to-right topology. Two silence models were 
used. The first silence model, a short pause model, had a 
single emitting state which may be skipped. The other 
silence model was a fully connected tree emitting state 
model used to represent longer period of silence. The 
speech was parameterized into 12 MFCC's, along with 
normalized log-energy and the first and second 
differentials of these parameters. This yielded a 39- 
dimensional feature vector, to which cepstral mean 
normalization was applied. The acoustic training data 
consisted of 36696 utterances from the SI-284 WSJO and 
WSJl sets. The ICRC LVCSR system was trained using 
decision-tree-based state clustering to define 6617 
triphone states. A 24k word list and dictionary was used 
with the trigram language model. All decoding used a 
dynamic-network decoder. 

For the particular implementation of the new models 
considered here, all states of all context-dependent phones 
associated with all monophone were assigned to the same 
set of diagonal correlation matrices. The order of the 
auto-regressive feature model is 3. Therefore this resulted 
in only 117 additional parameters. The process of 
building the correlation matrices was first to mix-up the 
final number of components. A conversion from standard 
models to new HMMs were made by setting the 117 
additional correlation parameters to zero. Finally 5 
iterations of embeded forward-backward reestimation 
were performed. 

The experiment results were compared in table 1. It's 
really encouraging to see that the additional 117 
parameters drop the word error rate from 11.8 (baseline) 
to 11.4. It should be emphasized that the WER for most 
speakers were cut down. 

Table 1: Performance of a standard system (S) and a 
frame correlated system (N) on 333 testing utterances. 

8. CONCLUSIONS 

We have extended the standard HMMs to a new type 
of HMMs by removing the frame independence 
assumption. In our new models, mean, variance, and a set 

of diagonal correlation matrices are parameters of each 
Gaussian component. These parameters can be re- 
estimated using the formulae derived from an EM 
algorithm. Actually the standard HMM is a special case 
of the new model when we assume the frames are 
independent. Without frame independence assumption, it 
has been proved that we can also express the probability 
of a sequence of observations as a product of probabilities 
of noisy individual observations if a reasonable state 
dependent auto-regressive feature model is used. Initial 
experiment conducted on WSJ20K task shows an 
encouraging performance improvement with only 1 17 
additional parameters in all. Therefore the new models 
convince us of some interesting research directions 
opened to follow. 
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