
IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

Component Based Invisible Computing

 Alessandro Forin, MSR∗, Johannes Helander, MSR, Paul Pham, MIT, Jagadeeswaran Rajendiran, Duke

Abstract-- MMLite is a modular system architecture that is
suitable for a wide variety of hardware and applications. The
system provides a selection of object-based components that are
statically and/or dynamically assembled into a full application
system. The virtual memory manager is optional and is loaded
on demand. Communication with remote peers uses
XML/SOAP and standard web services. Components can be
easily replaced and reimplemented. Componentization reduced
the development time and led to a flexible and understandable
system.

MMLite emphasizes real-time and provides a selection of
schedulers, such as a feedback constraint-based scheduler. The
scheduler is a selectable component and can be replaced so that
different policies can be implemented. Minimal latency to
interrupts and preemption provides the scheduler with
maximum freedom to schedule tasks according to the chosen
policy.

MMLite is efficient, portable, and has a very small memory
footprint. It runs on several microprocessors, including two
VLIW processors. It has been used on multimedia and gigabit
ethernet cards, sensor devices, handheld games, and various
embedded development boards.

1 INTRODUCTION

s semiconductor technology becomes more mature and
inexpensive it becomes feasible to add computing and/or

communication capabilities to many devices that used to be
mechanical or analog, and to come up with new devices
entirely. Computing that enhances existing everyday devices
and makes them smarter without requiring extra human
interaction is called invisible computing. In this domain the
computer is not the main focus but rather the device itself or
the specialized function it performs.

Invisible computing differs from personal computing mainly
because the user interface is not screen and keyboard based
and resources (such as energy, memory, bandwidth, budget)
are often severely restricted. While a PC or workstation can
use a general-purpose operating system (a collection of
commonly needed features) an invisible computer can seldom
afford such luxury because of resource constraints. The
software must instead be tailored to the specific application.

Invisible computing is also slightly different from traditional
embedded computing in that the devices are most often
communicating with each other and/or with general-purpose

∗

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
Email: {sandrof,jvh}@microsoft.com

computers (e.g. via low-power wireless) and have limited
power supply.

Limited resource, semi-intelligent devices found in invisible
computing environments can perform rudimentary tasks
autonomously. It is the ability to communicate with other
invisible devices that gives them added capabilities, such that
the value of the whole system is greater than the sum of its
parts.

When the small devices have the ability to communicate
with PCs or other “big machines” in addition to other peers, it
is possible to leverage the advantages of invisible computing
in desktop computing and vice versa. PCs can provide
backend processing for small devices, and small devices can
extend the reach of a traditional PC further into our everyday
lives. For example, a small device can access a database on a
web server; a PC can provide a user interface for examining
and analyzing sensor data in a home.

Database Server

Radio tower

Smart TAG

Radio tower

Tag READER

Win2K

[1] I'm #2

[3
] #

2
is

 O
'B

ria
n

[4] OK

[2
] W

ho
 is

 #
2?

Recognition action

Figure 1: SOAP messages in a smart tag scenario

Consider the system in Figure 1. A person carrying an
active badge approaches the entrance of a secure building,
which is equipped with a tag reader. Access can be granted
based exclusively on information exchanged by the tag and
the reader: a cryptographic key or a challenge protocol.
Additional functionality is available if the reader or the tag has
access to services on the net. The tag might obtain its key
from a web authentication service such as Passport. The
reader might validate with the use of a database server. The
database could also provide a picture or other additional

A

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

information such as a personalized greeting and other
preferences to smart devices inside the secure building.

We have experimented with using generic XML based
protocols such as SOAP [19] for communication between
devices and with internet services. Our preliminary results are
that this is both feasible and that it provides extra flexibility in
composing a distributed system. XML based protocols are a
good fit for reusable component software. Some performance
optimizations can be beneficial for XML on small devices.

Devices of interest to our system work include:

• Embedded control systems, including consumer devices,
intelligent sensors and smart home controls.

• Communication-oriented devices such as digital cell
phones and networking infrastructure.

• Programmable peripherals and microcontrollers.
In all these cases, the general-purpose platform approach is

either not applicable, or it is prohibitively expensive. The
microprocessor might be a DSP, a VLIW, or a micro-controller;
the memory budget is severely restricted; there might be no
MMU; the network connection might be sporadic; and real-
time is essential.

Current operating systems are either inflexible, big, lack real-
time support, have complex hardware requirements, or are so
specialized that good development tools are unavailable and
code reusability is low.

In this paper we discuss MMLite [8], a system architecture
that is suitable for a wide range of applications. Our strategy
is to build a system out of minimal but flexible components.
Instead of mandating a fixed set of operating system services
and hardware requirements, we provide a menu of well-defined
software components that can be chosen to compose a
complete system depending on hardware capabilities, security
needs, and application requirements. Components can be
selected at compile time, link time, and run-time. Components
can be transparently replaced while in use, via a mechanism we
call mutation.

The process of targeting parts of the menu of available
capabilities and components to a specific application is called
specialization. Logically it consists in partially evaluating the
entire software base against all possible executions of the
application, identifying what is (mostly) a constant and
eliminating the unused parts. When something that was
assumed constant changes, the system must be dynamically
respecialized. This is done by loading new components and
creating new objects when possible and by mutating existing
objects when necessary. Specialization reduces footprint and
must be done aggressively in the systems of interest to us.

Componentization makes it easier to change an
implementation of a component without affecting the rest of
the system as long as the interface of that component is
unaffected. Minimalism forces the system to be
understandable and adaptable. Software components, when
possible, are not tied to a particular layer of the system, but
can be reused. For example, the same component that

implements the system physical memory heap is used to
provide application heaps over virtual memory. We have
componentized the system more aggressively than any
previous operating system. This includes the virtual memory
system, IPC, and the scheduler in addition to filesystems,
networking, drivers, and security policies.

The rest of the paper is organized as follows: Section 2
describes the system architecture. Section 3 describes the
implementation of a few major components. Sections 4 and 5
give examples of applications where MMLite has been used
and the status of the system. Related work is presented in
section 6, and conclusions in section 7.

2 ARCHITECTURE

C++ and Java provide objects at a very fine granularity
level, and they are very successful with application
programmers. Unfortunately, both languages confine their
objects to a single address space. Object Linking and
Embedding (OLE) [2], CORBA [14], and other similar systems
extend objects across address spaces and across machine
boundaries. OLE seamlessly integrates independently
developed components. When editing an Excel spreadsheet
inside a Word document it is in fact the Excel process that
operates on objects inside of Word’s address space.
Unfortunately, OLE only works for user mode applications.
MMLite takes an “objects everywhere” approach, and extends
object-orientation both across address spaces and across
protection levels.

Object

Instance
pointer

State

V-table

Interface

Implement-
ation

Method

Figure 2: A run-time object representation.

2.1 Component Object Model
MMLite components contain code and other metadata for

classes of objects. When a component is loaded into an
address space it is instantiated. The instantiated component
creates object instances that communicate with other objects,
potentially in other components. The objects expose their
methods through Component Object Model (COM) [2]
interfaces. MMLite uses the COM mechanism but does not
implement the libraries or APIs of regular COM. MMLite
objects can be made available to other components by
registering them in a namespace. Namespaces are similar to
filesystem directories but are not limited to just files.

The object model enables late binding, version compatibility
and checking, transparency through proxies, and cross

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

language support, and it is reasonably lightweight and
efficient. As in many object systems each object has a method
table pointer and a reference count. Each call adds one
indirection for fetching the actual method pointer.

MMLite component implementations are rarely aware of the
system layer in which they are intended to run. The same
code can be used in different address spaces or contexts and
can be recursive (e.g. an application heap can depend on a
system heap that runs the same code). A filesystem can be
applied to a file provided by another filesystem as well as to
one provided by a disk driver. A heap can be applied to any
memory: physical memory, memory allocated from another
heap, or memory provided by a virtual memory manager. The
loader loads modules into any address space

The recently introduced C# language embodies much of the
same software engineering thinking that went into the MMLite
design. In addition to extensive language support for
componentization this new language dispenses with many
annoying trivialities like reference counting and metadata
generation.

2.2 Namespaces
Namespaces are used to let applications gain access to

objects provided by other components. A namespace is like a
filesystem directory tree, except it can hold any kind of
objects, not just files. Namespaces can themselves be
implemented by different components, including a filesystem
that exports its directories as sub-namespaces, and files as
registered objects. Namespaces can be registered into other
namespaces, extending the directory tree. Location
transparency of all objects automatically makes namespaces
distributed. Namespaces can be filtered for access control or
for providing different views to different applications. There is
no limit as to the number of namespaces. A component can
gain access to its root namespace through a call to
CurrentNamespace(). In a minimal system all applications
share the same (boot) namespace.

We implemented a demand-loading namespace that
supports the following new programming model. The main()
entry point for an image is a constructor that returns an object.
When an application tries to bind to a name that does not
exist, the namespace invokes the loader, which looks in a
filesystem namespace for a component with the given name
and loads and instantiates it . The loader then invokes the
component's entry point, registers the resulting object in the
namespace, and returns it to the application. The returned
object is often a factory (constructor) for creating other
objects. When the application releases its last reference to the
component the namespace can unload the component or
choose to keep it cached.

The demand-loading namespace is also used to hide
configuration details. When a component is configured to be
statically built into the boot or ROM image, the namespace will
call the entry point directly without any loading based on a
built-in table. This way a user of the component does not need

to know whether a component was built-in to the system or
where it might get loaded from.

2.3 Selection of System Components
What components should be part of a deployed system

depends on the applications themselves and their interface
requirements, application memory requirements, security
requirements, and the target hardware capabilities. Flexible
loading of modules was an important design goal for our
system. The loading of components can be deferred until they
are actually used by an application. Device drivers and run-
time services typically fall into this category. Others such as
virtual memory for untrusted applications can be loaded just
prior to running an application. Most services will terminate
themselves when they are no longer needed. The structure of
the system might change radically during execution in
response to external events.

Drivers and virtual memory cannot be used when the
hardware to support them is not present. An application that
tries to use them will look them up in the demand-loading
namespace. An error is returned, because either the driver is
absent or it returns a NULL pointer instead of a valid object
during initialization.

LTLibrary
Startup/Application

Timer/ICU

Null-SchedulerNull-Thread
Mutex/Condition

Figure 3: A minimal system configuration. Compo-

nents are loaded at link time (LT).

Figure 3 shows a minimal system configuration that can be
used in a watch. Figure 4 shows a larger system configuration
that can be used in a card reader. Applications can run within
the physical address space, within a separate address space,
and within a virtual machine. The IPC system uses the
network and virtual memo ry mappings as its transports.

VMem

Network

Drivers

SOAP
 IPC

Virtual
Ma-
chine

Thread
Mutex/Condition

Timer/ICU

Library

Applications

LT

RT

RT-Scheduler

RomFS Startup

Namespace
Loader

Heap

XML

Figure 4: A sample system configuration. Link

time (LT), and run time (RT) loadable components.

2.4 XML Based Configuration
Global interface and component information is kept in a set

of XML data files. The data contains all the interface
specifications both for programmatic and for human use. A

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

tool processes the data and produces online reference
manuals, C header files, XML typeinfo for marshaling, code
skeletons, and other ancillary files. Component descriptions
are cross-referenced and used for generating configurations
and for simple analysis. Once all the necessary information is
present in one place in a machine readable form more
sophisticated analysis is possible; this is a topic of future
research. However, having an online manual that is always
consistent with the code has already proven very useful.

2.5 Virtual Memory
Unlike most existing operating systems, MMLite does not

make the support for virtual memory an integral part of the
system. The system can function with or without it, and it
executes the same binaries. The virtual memory manager is a
component like any other; it can be loaded and unloaded
dynamically on demand, permanently built into the system, or
completely left out.

2.6 XML Based Communication
The emerging lingua franca of programmable web services

is XML. To make invisible computing devices useful as
services to big machines and web services accessible from the
small devices it seems logical to speak the common language.
It might be argued that specialized protocols are more efficient,
but in many cases they turn out to be equally or more complex,
and they mandate complicated and costly proxy or gateway
machines. We implemented SOAP for small devices and
concluded that the resulting code is reasonably small and
efficient and that there is no need for special purpose
protocols. It is actually a great savings in complexity to be able
to communicate directly with the relevant services and peers in
a common protocol. Some optimizations are desirable,
however, and they would not benefit just small devices:

• Unnecessary protocol layers can be eliminated. For
example most SOAP implementations run over HTTP,
which is about as much code as SOAP itself.

• Textual XML representation incurs large parsing and
formatting overhead. A binary representation can save a
lot of CPU and consequently energy.

• Network layers can be split into further sublayers so that
some of the sublayers become candidates for elimination.

• Specialized compaction, such as separating constant parts
from variable parts of a message can significantly reduce
message sizes.

3 SYSTEM COMPONENTS

The menu of base components includes the following. All
of them have been implemented and tested. For sizes, see
Table 1 in section 5.

• Heap: Physical memory management. Two regular
implementations and a temporary heap are provided.

• Loader: Enables loading new components into the
system. Several image formats are supported.

• Support Library, Machine Initialization

• ISO C Library
• Timer and Interrupt Objects: A driver for the timer chip is

used by the scheduler to keep track of time and for thread
pre-emption. The driver dispatches interrupts to
registered interrupt service routines, which can be
implemented by other components.

• Scheduler: A policy module that determines which thread
should run at any given time.

Low-level management of blocking and switching
between threads is handled by the thread and
synchronization components, which call into the
scheduler, possibly passing callback functions as
arguments.

Five schedulers have been implemented: the null
scheduler, a simple round robin scheduler, a constraint
based real-time scheduler, a simple periodic scheduler,
and another independently implemented real-time
scheduler [1]. The null scheduler is for systems that use
only one thread. Constraint scheduling is for consumer
real-time applications and is described in [12].

• Threads and Synchronization: Basic thread support and
synchronization primitives. Threads can block on mutexes
and conditions. They can inform the scheduler of their
time constraints, but these calls will fail if the scheduler is
not a constraint scheduler. The constraint scheduler
performs priority inheritance when threads block on
mutexes.

• Namespaces: A simple boot namespace where
applications register objects. A namespace that
cooperates with the loader in demand-loading and
caching of components. A namespace, used for
displaying the status (e.g. running threads) and
performance parameters (e.g. execution times) of a system
during development. Filesystems are also loadable
namespaces.

• Filesystems: Used to load additional components during
run-time. We implemented RomFS for read-only in-
memory images (arbitrary files and the system can be
merged into one image) and FatFS for reading/writing
disks. NetFile is a simple network filesystem client built
on top of sockets.

• Network: TCP/IP
• Startup Program.
• Atomic Queues and a DMA manager are useful to device

driver writers.
• Virtual Memory Implementation: An optional loadable

and unloadable virtual memory manager.
• A Minimal Web Browser: A graphical user interface

component, based on an LCD and push-buttons. The
browser optionally also implements Visual Basic scripting.

• Games: Games like Snake or Doom offer another approach
to user interfaces.

• Ciphers: Encryption provides the basic building blocks
for security and authentication.

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

3.1 Web Service Components
These components make it possible for an MMLite device

to communicate with web services or to act as one. They can
be composed in many ways.

• Tokenizer: Reads text data from a network stream and
splits it into units of text , based on context. The tokenizer
is used by the HTTP server and SAX [18] parser. It
facilitates processing of network data while it is being
received, meaning that the entire request does not have to
be present at once. Footprint is therefore reduced.

• SAX Parser: Parses XML data as it is being received and
calls event driven handler functions through a COM
interface. One implementation of the SAX handler
interface formats XML for reply messages.

• BAX Processor: Deals with pre-tokenized XML [BAX
stands for Binary API for SAX and is work-in-progress].
This component is similar to the SAX parser but handles
binary XML thus saving significant processing that is
otherwise associated with textual data. A standard
interface and format has not yet been defined. A standard
representation will be needed for making binary XML
useful between machines.

• HTTP Server: Handles simple HTTP requests such as
reading and writing files. URLs map easily to MMLite
namespaces. The HTTP server also allows sending SOAP
messages embedded into HTML pages, in which case the
HTTP server delegates the work to the SOAP marshaler
and SAX parser.

• SOAP COM Marshaler: Provides automation for
accessing COM objects through SOAP. Note that SOAP
messages can be handled directly as messages as well as
marshaled into COM objects.

On the server side this is a handler for SAX or BAX.
Any MMLite object can be accessed through a URL that
starts with /SOAP as long as the marshaler has access to
the corresponding typeinfo (XML based metadata).

On the client side proxy objects are automatically
generated corresponding to the typeinfo. When a proxy
method is called, it is marshaled into a SOAP request and
the reply is then processed using SAX or BAX.

Aside from timing and potential communication link fail-
ures, a remote object call through a proxy looks exactly
the same as a local method call directly to the actual
object.

4 APPLICATIONS

MMLite has been used in various devices, smart I/O cards,
and several development boards. This section looks at some
of those scenarios.

4.1 Devices
We built a simple hardware platform for experimenting with

sensors and devices for invisible computing. We used an
Atmel AT91FR4081 ARM-based microcontroller, an (optional)

small LCD, battery charger, buttons, and a piezo-electric buzzer
on a low power (40mW at 2.8V, full speed) relatively small size
(5 by 7 cm) processor board. An add-on board provides an
accelerometer, magnetometer, gyro, and a 40kb/s radio. The
add-on board consumes 130mW when transmitting and
sensing, 70mW in standby. A two-player game can be played
between two devices over the radio, using the buttons and the
accelerometer for input. The entire system runs in the 128KB
on-chip RAM.

A prototype “smart tag” and “reader” using XML SOAP
messaging and web services is running on ARM-based Cerf-
boards using 802.11 wireless [Figure 1].

MMLite was used in a personal area network hub, or
BodyHub, in a joint demo with the Portolano project [5] in
October 2000. The hub connected instrumented biology
laboratory equipment to back-end services by bridging
BodyCom [15] to 802.11 with filtration and augmentation of the
sensory data.

4.2 Smart I/O Cards
MMLite was used in a prototype TCP Winsock Direct Path

[21] implementation as the operating system on a Gigabit
Ethernet card, with the host machine running Windows NT.
The CPU on the card was rather slow and did not have
interrupts, a cache, or multiplication instructions. Yet MMLite
was very useful as a base system for writing the data pump
that controlled packet transmission and reception, as well as
DMA directly into the host’s user-mode application buffers, in
collaboration with the Windows NT virtual memory system.
To optimize execution we used a new loader feature that
allowed marking code and data hot in a program so that it
would be put in a special section. The loader then
automatically loaded this section into the processor’s on-chip
4KB of fast SRAM. The resulting code was able to sustain 118
MB/s on a PCI bus that had a capacity of 120 MB/s as
measured by a PCI analyzer. The round trip time for sending a
message from a user mode NT application on one machine to a
user mode application on another machine and receiving a
reply message back was 18 µs.

Equator Technologies independently ported MMLite to its
proprietary VLIW media processor, and used it to run multiple
simultaneous multimedia applications, including MPEG2
Decode, AC3, 3D Graphics (D3D) and telecommunications.

The MMLite system was used at Microsoft in a prototype
Talisman [17] 3D graphics and multimedia card. This involved
supporting DirectDraw and Direct3D, DirectSound and a
wavetable based software MIDI synthesizer implementing the
DLS level 1 specification. On a 90MHz PC we measured in
excess of 7,800 RPC/second between a user mode Windows
NT application and an MMLite component, with time
predominantly spent in NT. An interactive game (Doom) can
also run directly on the board, along with a number of other
demonstration programs , validation tests and regression tests.

Figure 5 depicts the structure of the MIDI synthesizer
components in the Talisman card’s audio subsystem. The

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

SYNTH thread runs periodically and when new MIDI data
arrives. It produces an output buffer of 44kHz, 16bit, stereo
audio samples. The MIXER thread also runs periodically, and
expects to find a new buffer available on each of its input
channels. If an input buffer is not present, a buffer of silence
data is used instead. Buffers contain data in any number of
formats; the mixer adapts frequencies, stereo/mono, and
number of bits per sample. The result of the mixing is given to
the AUDIO driver, which starts the DMA to the D/A
converter. Completed buffers are returned to the mixer directly
by the interrupt routine. The Atomic Queues component make
data movement easy as no locking is required between drivers
and/or the interrupt code.

D/A
AUDIO
driver

audio data
IN

SYNTH
MIDI

data A/D
MIXER

audio data
OUT

Figure 5: MIDI synthesizer components.

All of the audio components use time constraints and can

without interference run together with DirectDraw and other
applications. The overall CPU load when running these
components under MMLite on an 80MHz TriMedia processor
is 7% for the SYNTH component, and 3% for the remaining
audio components.

5 STATUS

The system currently runs on the i386, ARM (many
versions), Philips TriMedia and Equator MAP1000 VLIW
processors, as well as H8, MIPS, and 68k.

Heap1 2635 Boot NS 1265

Heap2 3420 Dload NS 512

PE loader 4661 RomFS 1417

Library 3799 FatFS 8229

Machdep 2086 NetFile 6944

Timer 1205 Startup 118

ICU 1005 Network 84832

Null-sched 316 XML/SOAP 16KB

RR-sched 599 HTTP server 12KB

RT -sched 1228 AtomicQueue 415

Thread 426 VMem 17712

Synchro 1090 Doom 285696

Table 1: i386 components and their binary sizes in bytes.

The size of the minimal system in Figure 3 is 10KB on i386,
excluding a boot stack. The size of the base system (the LT

box in Figure 4) is 26KB on i386, 20KB on ARM. Table 1 lists
the sizes of the components of Section 3.

6 RELATED WORK

OSKit [7] shows how a base set of system components can
be composed in different ways to build an operating system
kernel. The work is mostly concerned with reusing existing
device drivers and Unix code and does not attempt to
componentize the core of the operating system, nor does it
concern itself with applications.

Chorus [16] is the only system we know of that can be
configured to use either a page-based or a segment-based VM
system. MMLite is the first one that can run with or without
VM, and dynamically load and unload it — unless, of course,
we look at MS-DOS in a very twisted way.

Rialto [11] shows how the COM model can be implemented
in the presence of VM, and argues for a unified programming
model that is independent of the privilege issue (no user
versus kernel distinction) [4]. We show how those same
principles are beneficial in scaling down a system to cope with
resource poor domains.

Windows for Smart Cards [20] implements an event driven
programming model, including the messaging standard ISO
7816. It can be used in a subset of the MMLite application
space, but the programming model and other limitations are
probably not well suited for most applications outside the
smart card domain. Similar models are also implemented by
TinyOS [9], which requires a special-purpose network
protocol, and by SPINE [6]. A special-purpose network
protocol necessitates proxy computers for communication with
the rest of the world, departing from the goal of ubiquitous
communication. SPINE offers extensibility through Modula3.
Windows for Smart Cards, like MMLite, has Visual Basic
scripting.

CORBA [14] forces all calls to go through the object request
broker, thus penalizing the local case. Real-time support in
CORBA is still at the research stage [22].

Componentization and location independence has also been
studied in the context of file systems and network protocols
[13] and in a number of existing embedded systems, such as
pSOS [10]. In a typical embedded system there is no loader;
components can only be chosen at static link time when the
load image is built. Services are extremely limited, sometimes
just to the scheduling component. The number and priority of
threads might have to be specified statically as well.

Modularity has always been an important paradigm in
software design. By breaking a complex system into pieces,
the complexity becomes more manageable. Address spaces
provide security by installing firewalls between applications.
These two issues are orthogonal, but the distinction has been
lost in systems research that has been concentrating on
“microkernels ” [23].

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

7 CONCLUSIONS

Building an operating system for emerging computing
platforms out of components pays off in terms of flexibility,
minimalism, and adaptability. It naturally leads to good
software design, rapid implementation, and good portability.
Because not all components have to be functional at once,
porting and development can be incremental. The TriMedia
port was functional in one week, of which five days were spent
on learning the new architecture and the development tools.
The VLIW architecture of this microprocessor was brand new
and different from the ones that MMLite supported at the time.
Adding new tools, processors or platforms is easy. Making a
device fully functional is still a substantial chore as drivers are
often hard to write due to lacking hardware documentation.
COM is a good way of adding transparency both to location
and privilege level without too much overhead.

The MMLite system is efficient, portable, and has a very
small memory footprint that makes it suitable for embedded
use. It has successfully been used in several smart I/O cards,
sensor boards, and wirelessly connected gadgets. The ability
to easily communicate with web services brings the invisible
computing platforms into the generic programmable internet
cloud.

8 ACKNOWLEDGEMENTS

Thanks to Stefan Sigurdsson who worked on the XML
support for MMLite, Adam MacBeth who worked on wireless
connectivity, Ray Bittner, Andy Wilson, and Mike Sinclair for
building the sensor experimentation hardware.

9 REFERENCES

[1] Miche Baker-Harvey. ETI Resource Distributor: Guaranteed
Resource Allocation and Scheduling in Multimedia Systems. In
Proceedings of the Third Symposium on Operating Systems
Design and Implementation, February 1999, New Orleans,
USA.

[2] K. Brockshmidt. Inside OLE, Second ed. Microsoft Press,
Redmond WA, 1995.

[3] Crispin Cowan, Tito Autrey, Charles Krasic, Calton Pu, and
Jonathan Walpole. Fast Concurrent Dynamic Linking for an
Adaptive Operating System. In the proceedings of the
International Conference on Configurable Distributed Systems
(ICCDS'96), Annapolis MD, 1996.

[4] Richard Draves, Scott Cutshall. Unifying the User and Kernel
Environments. Microsoft Research Technical Report MSR-TR-
97-10, 16 pages, March 1997. Available from
ftp://ftp.research.microsoft.com/pub/tr/tr-97-10.ps.

[5] M. Esler, J. Hightower, T. Anderson, and G. Borriello. Next
Century Challenges: Data-Centric Networking for Invisible
Computing: The Portolano Project at the University of
Washington. In Mobicom 99, August 1999, Seattle, USA.

[6] Mark Fiuczynski, Richard Martin, Tsutomu Owa, Brian
Bershad. SPINE: A Safe Programmable and Integrated Network
Environment. Eight ACM SIGOPS European Workshop,
September 1998, Sintra, Portugal.

[7] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert
Lin, Olin Shivers. The Flux OSKit: A Substrate for Kernel and
Language Research. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles, pages 38-51.
ACM SIGOPS, Saint-Malo, France, October 1997.

[8] Johannes Helander, Alessandro Forin. MMLite: A Highly
Componentized System Architecture. Eight ACM SIGOPS
European Workshop, September 1998, Sintra, Portugal.

[9] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David
Culler, Kristofer Pister. System architecture directions for
network sensors. ASPLOS 2000.

[10] Integrated Systems Inc. pSOSystem System Concepts. Part No.
COL0011, May 1995, ISI, Sunnyvale CA.

[11] Michael B. Jones, Joseph S. Barrera, III, Richard P. Draves,
Alessandro Forin, Paul J. Leach, Gilad Odinak. An Overview of
the Rialto Real Time Architecture. In Proceedings of the 7th
ACM SIGOPS European Workshop, pages 249-256, September
1996.

[12] Michael B. Jones, Daniela Rosu, Marcel-Catalin Rosu. CPU
Reservations and Time Constraints: Efficient, Predictable
Scheduling of Independent Activities. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles, pages 198-
211. ACM SIGOPS, Saint-Malo, France, October 1997.

[13] Chris Maeda and Brian Bershad. Protocol Service
Decomposition for High-Performance Networking. In 14th ACM
Symposium on Operating System Principles, pages 244-255,
1993.

[14] CORBA/IIOP 2.2 Specification. Available from
http://www.omg.org/corba/corbiiop.htm.

[15] K. Partridge, L. Arnstein, G. Borriello, and T. Whitted. Fast
Intrabody Signaling. Demonstration at Wireless and Mobile
Computer Systems and Applications, Monterey, CA,
December 2000.

[16] M. Rozier, A. Abrassimov, F. Armand, I. Boule, M. Gien, M.
Guillemont, F. Hermann, C. Kaiser, S. Langlois, P. Leonard, W.
Neuhauser. CHORUS distributed operating system . In
Computing Systems, pages 305-370, Vol. 1-4, 1988.

[17] Jay Torborg and Jim Kajiya. Talisman: Commodity Real Time
3d Graphics for the PC. In Proceedings of SIGGRAPH 96,
August 1996.

[18] SAX – Simple API for XML. http://sax.sourceforge.net/
[19] SOAP Version 1.2, http://www.w3.org/TR/soap12/, W3C

Working Draft, July 2001.
[20] Windows for Smart Cards. http://www.microsoft.com/smartcard
[21] Winsock Direct: fast system area networking for Windows 2000

http://www.microsoft.com/windows2000/en/datacenter/help/ws
d_top_overview.htm?id=2129

[22] Zhonghua Yang and Chengzheng Sun. CORBA for Hard Real
Time Applications: Some Critical Issues. In Operating Systems
Review, pages 64-71, Vol. 32-3, 1998.

[23] Michael Wayne Young. Exporting a User Interface to Memory
Management from a Communication-Oriented Operating
System. Ph.D. Thesis CMU-CS-89-202, Carnegie Mellon
University, November 1989.

