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Abstract--  MMLite is a modular system architecture that is 
suitable for a wide variety of hardware and applications.  The 
system provides a selection of object-based components that are 
statically and/or dynamically assembled into a full application 
system.  The virtual memory manager is optional and is loaded 
on demand.  Communication with remote peers uses 
XML/SOAP and standard web services. Components can be 
easily replaced and reimplemented. Componentization reduced 
the development time and led to a flexible and understandable 
system.  

MMLite emphasizes real-time and provides a selection of 
schedulers, such as a feedback constraint-based scheduler. The 
scheduler is a selectable component and can be replaced so that 
different policies can be implemented. Minimal latency to 
interrupts and preemption provides the scheduler with 
maximum freedom to schedule tasks according to the chosen 
policy. 

MMLite is efficient, portable, and has a very small memory 
footprint.  It runs on several microprocessors, including two 
VLIW processors. It has been used on multimedia and gigabit 
ethernet cards, sensor devices, handheld games, and various 
embedded development boards. 

1 INTRODUCTION 

s semiconductor technology becomes more mature and 
inexpensive it becomes feasible to add computing and/or 

communication capabilities to many devices that used to be 
mechanical or analog, and to come up with new devices 
entirely. Computing that enhances existing everyday devices 
and makes them smarter without requiring extra human 
interaction is called invisible computing.  In this domain the 
computer is not the main focus but rather the device itself or 
the specialized function it performs. 

Invisible computing differs from personal computing mainly 
because the user interface is not screen and keyboard based 
and resources (such as energy, memory, bandwidth, budget) 
are often severely restricted.  While a PC or workstation can 
use a general-purpose operating system (a collection of 
commonly needed features) an invisible computer can seldom 
afford such luxury because of resource constraints. The 
software must instead be tailored to the specific application. 

Invisible computing is also slightly different from traditional 
embedded computing in that the devices are most often 
communicating with each other and/or with general-purpose 
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computers (e.g. via low-power wireless) and have limited 
power supply. 

Limited resource, semi-intelligent devices found in invisible 
computing environments can perform rudimentary tasks 
autonomously. It is  the ability to communicate with other 
invisible devices that gives them added capabilities, such that 
the value of the whole system is greater than the sum of its 
parts.  

When the small devices have the ability to communicate 
with PCs or other “big machines” in addition to other peers, it 
is possible to leverage the advantages of invisible computing 
in desktop computing and vice versa. PCs can provide 
backend processing for small devices, and small devices can 
extend the reach of a traditional PC further into our everyday 
lives.  For example, a small device can access a database on a 
web server; a PC can provide a user interface for examining 
and analyzing sensor data in a home. 
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Figure 1: SOAP messages in a smart tag scenario 
 

Consider the system in Figure 1.  A person carrying an 
active badge approaches the entrance of a secure building, 
which is equipped with a tag reader.  Access can be granted 
based exclusively on information exchanged by the tag and 
the reader: a cryptographic key or a challenge protocol.  
Additional functionality is available if the reader or the tag has  
access to services on the net.  The tag might obtain its key 
from a web authentication service such as  Passport. The 
reader might validate with the use of a database server.  The 
database could also provide a picture or other additional 
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information such as a personalized greeting and other 
preferences to smart devices inside the secure building. 

We have experimented with using generic XML based 
protocols such as SOAP [19] for communication between 
devices and with internet services.  Our preliminary results are 
that this is both feasible and that it provides extra flexibility in 
composing a distributed system.  XML based protocols are a 
good fit for reusable component software. Some performance 
optimizations can be beneficial for XML on small devices. 

Devices of interest to our system work include: 

• Embedded control systems, including consumer devices, 
intelligent sensors and smart home controls. 

• Communication-oriented devices such as digital cell 
phones and networking infrastructure. 

• Programmable peripherals and microcontrollers. 
In all these cases, the general-purpose platform approach is 

either not applicable, or it is prohibitively expensive.  The 
microprocessor might be a DSP, a VLIW, or a micro-controller; 
the memory budget is severely restricted; there might be no 
MMU; the network connection might be sporadic; and real-
time is essential. 

Current operating systems are either inflexible, big, lack real-
time support, have complex hardware requirements, or are so 
specialized that good development tools are unavailable and 
code reusability is low. 

In this paper we discuss MMLite [8], a system architecture 
that is suitable for a wide range of applications.  Our strategy 
is to build a system out of minimal but flexible components.  
Instead of mandating a fixed set of operating system services 
and hardware requirements, we provide a menu of well-defined 
software components that can be chosen to compose a 
complete system depending on hardware capabilities, security 
needs, and application requirements.  Components can be 
selected at compile time, link time, and run-time.  Components 
can be transparently replaced while in use, via a mechanism we 
call mutation. 

The process of targeting parts of the menu of available 
capabilities and components to a specific application is called 
specialization. Logically it consists in partially evaluating the 
entire software base against all possible executions of the 
application, identifying what is (mostly) a constant and 
eliminating the unused parts.  When something that was 
assumed constant changes, the system must be dynamically 
respecialized. This is done by loading new components and 
creating new objects when possible and by mutating existing 
objects when necessary.  Specialization reduces footprint and 
must be done aggressively in the systems of interest to us. 

Componentization makes it easier to change an 
implementation of a component without affecting the rest of 
the system as long as the interface of that component is 
unaffected.  Minimalism forces the system to be 
understandable and adaptable.  Software components, when 
possible, are not tied to a particular layer of the system, but 
can be reused.  For example, the same component that 

implements the system physical memory heap is used to 
provide application heaps over virtual memory.  We have 
componentized the system more aggressively than any 
previous operating system.  This includes the virtual memory 
system, IPC, and the scheduler in addition to filesystems, 
networking, drivers, and security policies. 

The rest of the paper is organized as follows: Section 2 
describes the system architecture.  Section 3 describes the 
implementation of a few major components. Sections 4 and 5 
give examples of applications where MMLite has been used 
and the status of the system. Related work is presented in 
section 6, and conclusions in section 7. 

2 ARCHITECTURE  

C++ and Java provide objects at a very fine granularity 
level, and they are very successful with application 
programmers.  Unfortunately, both languages confine their 
objects to a single address space.  Object Linking and 
Embedding (OLE) [2], CORBA [14], and other similar systems 
extend objects across address spaces and across machine 
boundaries. OLE seamlessly integrates independently 
developed components.  When editing an Excel spreadsheet 
inside a Word document it is in fact the Excel process that 
operates on objects inside of Word’s address space. 
Unfortunately, OLE only works for user mode applications. 
MMLite takes an “objects everywhere” approach, and extends 
object-orientation both across address spaces and across 
protection levels. 
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Figure 2: A run-time object representation. 

2.1 Component Object Model 
MMLite components contain code and other metadata for 

classes of objects.   When a component is loaded into an 
address space it is instantiated.  The instantiated component 
creates object instances that communicate with other objects, 
potentially in other components.  The objects expose their 
methods through Component Object Model (COM) [2] 
interfaces.  MMLite uses the COM mechanism but does not 
implement the libraries or APIs of regular COM. MMLite 
objects can be made available to other components by 
registering them in a namespace.  Namespaces are similar to 
filesystem directories but are not limited to just files.   

The object model enables late binding, version compatibility 
and checking, transparency through proxies, and cross 
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language support, and it is reasonably lightweight and 
efficient.  As in many object systems  each object has a method 
table pointer and a reference count.  Each call adds one 
indirection for fetching the actual method pointer. 

MMLite component implementations are rarely aware of the 
system layer in which they are intended to run.  The same 
code can be used in different address spaces or contexts and 
can be recursive (e.g. an application heap can depend on a 
system heap that runs the same code).  A filesystem can be 
applied to a file provided by another filesystem as well as to 
one provided by a disk driver.  A heap can be applied to any 
memory: physical memory, memory allocated from another 
heap, or memory provided by a virtual memory manager.  The 
loader loads modules into any address space  

The recently introduced C# language embodies much of the 
same software engineering thinking that went into the MMLite 
design.  In addition to extensive language support for 
componentization this new language dispenses with many 
annoying trivialities like reference counting and metadata 
generation. 

2.2 Namespaces 
Namespaces are used to let applications gain access to 

objects provided by other components.  A namespace is like a 
filesystem directory tree, except it can hold any kind of 
objects, not just files.  Namespaces can themselves be 
implemented by different components, including a filesystem 
that exports its directories as sub-namespaces, and files as 
registered objects.  Namespaces can be registered into other 
namespaces, extending the directory tree.  Location 
transparency of all objects automatically makes namespaces 
distributed.  Namespaces can be filtered for access control or 
for providing different views to different applications.  There is 
no limit as to the number of namespaces.  A component can 
gain access to its root namespace through a call to 
CurrentNamespace().  In a minimal system all applications 
share the same (boot) namespace. 

We implemented a demand-loading namespace that 
supports the following new programming model.  The main() 
entry point for an image is a constructor that returns an object.  
When an application tries to bind to a name that does not 
exist, the namespace invokes the loader, which looks in a 
filesystem namespace for a component with the given name 
and loads and instantiates it .  The loader then invokes the 
component's entry point, registers the resulting object in the 
namespace, and returns it to the application. The returned 
object is often a factory (constructor) for creating other 
objects. When the application releases its last reference to the 
component the namespace can unload the component or 
choose to keep it cached. 

The demand-loading namespace is also used to hide 
configuration details. When a component is configured to be 
statically built into the boot or ROM image, the namespace will 
call the entry point directly without any loading based on a 
built-in table. This way a user of the component does not need 

to know whether a component was built-in to the system or 
where it might get loaded from. 

2.3 Selection of System Components 
What components should be part of a deployed system 

depends on the applications themselves and their interface 
requirements, application memory requirements, security 
requirements, and the target hardware capabilities.  Flexible 
loading of modules was an important design goal for our 
system.  The loading of components can be deferred until they 
are actually used by an application.  Device drivers and run-
time services typically fall into this category.  Others such as 
virtual memory for untrusted applications can be loaded just 
prior to running an application.  Most services will terminate 
themselves when they are no longer needed.  The structure of 
the system might change radically during execution in 
response to external events. 

Drivers and virtual memory cannot be used when the 
hardware to support them is not present.  An application that 
tries to use them will look them up in the demand-loading 
namespace.  An error is returned, because either the driver is 
absent or it returns a NULL pointer instead of a valid object 
during initialization. 
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Figure 3: A minimal system configuration.                    Compo-

nents are loaded at link time (LT). 

Figure 3 shows a minimal system configuration that can be 
used in a watch.  Figure 4 shows a larger system configuration 
that can be used in a card reader. Applications can run within 
the physical address space, within a separate address space, 
and within a virtual machine.  The IPC system uses the 
network and virtual memo ry mappings as its transports. 
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Figure 4: A sample system configuration.                           Link 

time (LT), and run time (RT) loadable components. 

2.4 XML Based Configuration 
Global interface and component information is kept in a set 

of XML data files. The data contains all the interface 
specifications both for programmatic and for human use. A 
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tool processes the data and produces online reference 
manuals, C header files, XML typeinfo for marshaling, code 
skeletons, and other ancillary files. Component descriptions 
are cross-referenced and used for generating configurations 
and for simple analysis. Once all the necessary information is 
present in one place in a machine readable form more 
sophisticated analysis is possible; this is a topic of future 
research. However, having an online manual that is always 
consistent with the code has already proven very useful. 

2.5 Virtual Memory 
Unlike most existing operating systems, MMLite does not 

make the support for virtual memory an integral part of the 
system.  The system can function with or without it, and it 
executes the same binaries. The virtual memory manager is a 
component like any other; it can be loaded and unloaded 
dynamically on demand, permanently built into the system, or 
completely left out. 

2.6 XML Based Communication 
The emerging lingua franca of programmable web services 

is XML. To make invisible computing devices useful as 
services to big machines and web services accessible from the 
small devices it seems logical to speak the common language. 
It might be argued that specialized protocols are more efficient, 
but in many cases they turn out to be equally or more complex, 
and they mandate complicated and costly proxy or gateway 
machines. We implemented SOAP for small devices and 
concluded that the resulting code is reasonably small and 
efficient and that there is no need for special purpose 
protocols. It is actually a great savings in complexity to be able 
to communicate directly with the relevant services and peers in 
a common protocol. Some optimizations are desirable, 
however, and they would not benefit just small devices: 

• Unnecessary protocol layers can be eliminated. For 
example most SOAP implementations run over HTTP, 
which is about as much code as SOAP itself.  

• Textual XML representation incurs large parsing and 
formatting overhead. A binary representation can save a 
lot of CPU and consequently energy.  

• Network layers can be split into further sublayers so that 
some of the sublayers become candidates for elimination.  

• Specialized compaction, such as separating constant parts 
from variable parts of a message can significantly reduce 
message sizes.  

3 SYSTEM COMPONENTS 

The menu of base components includes the following. All 
of them have been implemented and tested.  For sizes, see 
Table 1 in section 5. 

• Heap: Physical memory management. Two regular 
implementations and a temporary heap are provided. 

• Loader: Enables loading new components into the 
system. Several image formats are supported. 

• Support Library, Machine Initialization 

• ISO C Library 
• Timer and Interrupt Objects: A driver for the timer chip is 

used by the scheduler to keep track of time and for thread 
pre-emption. The driver dispatches interrupts to 
registered interrupt service routines, which can be 
implemented by other components. 

• Scheduler: A policy module that determines which thread 
should run at any given time.   

Low-level management of blocking and switching 
between threads is handled by the thread and 
synchronization components, which call into the 
scheduler, possibly passing callback functions as 
arguments. 

Five schedulers have been implemented: the null 
scheduler, a simple round robin scheduler, a constraint 
based real-time scheduler, a simple periodic scheduler, 
and another independently implemented real-time 
scheduler [1].  The null scheduler is for systems that use 
only one thread. Constraint scheduling is for consumer 
real-time applications and is described in [12]. 

• Threads and Synchronization: Basic thread support and 
synchronization primitives. Threads can block on mutexes 
and conditions. They can inform the scheduler of their 
time constraints, but these calls will fail if the scheduler is 
not a constraint scheduler. The constraint scheduler 
performs priority inheritance when threads block on 
mutexes. 

• Namespaces: A simple boot namespace where 
applications register objects.  A namespace that 
cooperates with the loader in demand-loading and 
caching of components.  A namespace, used for 
displaying the status (e.g. running threads) and 
performance parameters (e.g. execution times) of a system 
during development. Filesystems are also loadable 
namespaces.  

• Filesystems: Used to load additional components during 
run-time.  We implemented RomFS for read-only in-
memory images (arbitrary files and the system can be 
merged into one image) and FatFS for reading/writing 
disks.  NetFile is a simple network filesystem client built 
on top of sockets. 

• Network: TCP/IP 
• Startup Program. 
• Atomic Queues and a DMA manager are useful to device 

driver writers. 
• Virtual Memory Implementation: An optional loadable 

and unloadable virtual memory manager. 
• A Minimal Web Browser: A graphical user interface 

component, based on an LCD and push-buttons. The 
browser optionally also implements Visual Basic scripting. 

• Games: Games like Snake or Doom offer another approach 
to user interfaces. 

• Ciphers: Encryption provides the basic building blocks 
for security and authentication. 
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3.1 Web Service Components 
These components make it possible for an MMLite device 

to communicate with web services or to act as one.  They can 
be composed in many ways. 

• Tokenizer: Reads text data from a network stream and 
splits it into units of text , based on context. The tokenizer 
is used by the HTTP server and SAX [18] parser. It 
facilitates processing of network data while it is being 
received, meaning that the entire request does not have to 
be present at once.  Footprint is therefore reduced. 

• SAX Parser: Parses XML data as it is being received and 
calls event driven handler functions through a COM 
interface. One implementation of the SAX handler 
interface formats XML for reply messages. 

• BAX Processor: Deals with pre-tokenized XML [BAX 
stands for Binary API for SAX and is work-in-progress]. 
This component is similar to the SAX parser but handles 
binary XML thus saving significant processing that is 
otherwise associated with textual data. A standard 
interface and format has not yet been defined. A standard 
representation will be needed for making binary XML 
useful between machines. 

• HTTP Server: Handles simple HTTP requests such as 
reading and writing files. URLs map easily to MMLite 
namespaces. The HTTP server also allows sending SOAP 
messages embedded into HTML pages, in which case the 
HTTP server delegates the work to the SOAP marshaler 
and SAX parser. 

• SOAP COM Marshaler: Provides automation for 
accessing COM objects through SOAP. Note that SOAP 
messages can be handled directly as messages as well as 
marshaled into COM objects. 

On the server side this is a handler for SAX or BAX. 
Any MMLite object can be accessed through a URL that 
starts with /SOAP as long as the marshaler has access to 
the corresponding typeinfo (XML based metadata).  

On the client side proxy objects are automatically 
generated corresponding to the typeinfo. When a proxy 
method is called, it is marshaled into a SOAP request and 
the reply is then processed using SAX or BAX. 

Aside from timing and potential communication link fail-
ures,  a remote object call through a proxy looks exactly 
the same as a local method call directly to the actual 
object. 

4 APPLICATIONS 

MMLite has been used in various devices, smart I/O cards, 
and several development boards.  This section looks at some 
of those scenarios. 

4.1 Devices 
We built a simple hardware platform for experimenting with 

sensors and devices for invisible computing. We used an 
Atmel AT91FR4081 ARM-based microcontroller, an (optional) 

small LCD, battery charger, buttons, and a piezo-electric buzzer 
on a low power (40mW at 2.8V, full speed) relatively small size 
(5 by 7 cm) processor board. An add-on board provides an 
accelerometer, magnetometer, gyro, and a 40kb/s radio.  The 
add-on board consumes 130mW when transmitting and 
sensing, 70mW in standby.  A two-player game can be played 
between two devices over the radio, using the buttons and the 
accelerometer for input. The entire system runs in the 128KB 
on-chip RAM. 

A prototype “smart tag” and “reader” using XML SOAP 
messaging and web services is running on ARM-based Cerf-
boards using 802.11 wireless [Figure 1]. 

MMLite was used in a personal area network hub, or 
BodyHub, in a joint demo with the Portolano project [5] in 
October 2000. The hub connected instrumented biology 
laboratory equipment to back-end services by bridging 
BodyCom [15] to 802.11 with filtration and augmentation of the 
sensory data. 

4.2 Smart I/O Cards 
MMLite was used in a prototype TCP Winsock Direct Path 

[21] implementation as the operating system on a Gigabit 
Ethernet card, with the host machine running Windows NT. 
The CPU on the card was rather slow and did not have 
interrupts, a cache, or multiplication instructions. Yet MMLite 
was very useful as a base system for writing the data pump 
that controlled packet transmission and reception, as well as 
DMA directly into the host’s user-mode application buffers, in 
collaboration with the Windows NT virtual memory system. 
To optimize execution we used a new loader feature that 
allowed marking code and data hot in a program so that it 
would be put in a special section. The loader then 
automatically loaded this section into the processor’s on-chip 
4KB of fast SRAM. The resulting code was able to sustain 118 
MB/s on a PCI bus that had a capacity of 120 MB/s as 
measured by a PCI analyzer. The round trip time for sending a 
message from a user mode NT application on one machine to a 
user mode application on another machine and receiving a 
reply message back was 18 µs.  

Equator Technologies independently ported MMLite to its 
proprietary VLIW media processor, and used it to run multiple 
simultaneous multimedia applications, including MPEG2 
Decode, AC3, 3D Graphics (D3D) and telecommunications. 

The MMLite system was used at Microsoft in a prototype 
Talisman [17] 3D graphics and multimedia card.  This involved 
supporting DirectDraw and Direct3D, DirectSound and a 
wavetable based software MIDI synthesizer implementing the 
DLS level 1 specification. On a 90MHz PC we measured in 
excess of 7,800 RPC/second between a user mode Windows 
NT application and an MMLite component, with time 
predominantly spent in NT.  An interactive game (Doom) can 
also run directly on the board, along with a number of other 
demonstration programs , validation tests and regression tests. 

Figure 5 depicts the structure of the MIDI synthesizer 
components in the Talisman card’s audio subsystem.  The 
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SYNTH thread runs periodically and when new MIDI data 
arrives.  It produces an output buffer of 44kHz, 16bit, stereo 
audio samples.  The MIXER thread also runs periodically, and 
expects to find a new buffer available on each of its input 
channels.  If an input buffer is not present, a buffer of silence 
data is used instead.  Buffers contain data in any number of 
formats; the mixer adapts frequencies, stereo/mono, and 
number of bits per sample.  The result of the mixing is given to 
the AUDIO driver, which starts the DMA to the D/A 
converter.  Completed buffers are returned to the mixer directly 
by the interrupt routine. The Atomic Queues component make 
data movement easy as no locking is required between drivers 
and/or the interrupt code. 

D/A
AUDIO
driver

audio data
IN

SYNTH
MIDI

data A/D
MIXER

audio data
OUT

 
Figure 5: MIDI synthesizer components. 

 
All of the audio components use time constraints and can 

without interference run together with DirectDraw and other 
applications. The overall CPU load when running these 
components under MMLite on an 80MHz TriMedia processor 
is 7% for the SYNTH component, and 3% for the remaining 
audio components. 

5 STATUS 

The system currently runs on the i386, ARM (many 
versions), Philips TriMedia and Equator MAP1000 VLIW 
processors, as well as H8, MIPS, and 68k. 

Heap1 2635 Boot NS 1265 

Heap2 3420 Dload NS 512 

PE loader 4661 RomFS 1417 

Library 3799 FatFS 8229 

Machdep 2086 NetFile 6944 

Timer 1205 Startup 118 

ICU 1005 Network 84832 

Null-sched 316 XML/SOAP 16KB 

RR-sched 599 HTTP server 12KB 

RT -sched 1228 AtomicQueue 415 

Thread 426 VMem 17712 

Synchro 1090 Doom 285696 

Table 1: i386 components and their binary sizes in bytes. 
 

The size of the minimal system in Figure 3 is 10KB on i386, 
excluding a boot stack.  The size of the base system (the LT 

box in Figure 4) is 26KB on i386, 20KB on ARM. Table 1 lists 
the sizes of the components of Section 3. 

6 RELATED WORK 

OSKit [7] shows how a base set of system components can 
be composed in different ways to build an operating system 
kernel.   The work is mostly concerned with reusing existing 
device drivers and Unix code and does not attempt to 
componentize the core of the operating system, nor does it 
concern itself with applications. 

Chorus [16] is the only system we know of that can be 
configured to use either a page-based or a segment-based VM 
system.  MMLite is the first one that can run with or without 
VM, and dynamically load and unload it — unless, of course, 
we look at MS-DOS in a very twisted way. 

Rialto [11] shows how the COM model can be implemented 
in the presence of VM, and argues for a unified programming 
model that is independent of the privilege issue (no user 
versus kernel distinction) [4].  We show how those same 
principles are beneficial in scaling down a system to cope with 
resource poor domains. 

Windows for Smart Cards [20] implements an event driven 
programming model, including the messaging standard ISO 
7816. It can be used in a subset of the MMLite application 
space, but the programming model and other limitations are 
probably not well suited for most applications outside the 
smart card domain. Similar models  are also implemented by 
TinyOS [9], which requires a special-purpose network 
protocol, and by SPINE [6]. A special-purpose network 
protocol necessitates proxy computers for communication with 
the rest of the world, departing from the goal of ubiquitous 
communication. SPINE offers extensibility through Modula3. 
Windows for Smart Cards, like MMLite, has Visual Basic 
scripting. 

CORBA [14] forces all calls to go through the object request 
broker, thus penalizing the local case.  Real-time support in 
CORBA is still at the research stage [22]. 

Componentization and location independence has also been 
studied in the context of file systems and network protocols 
[13] and in a number of existing embedded systems, such as 
pSOS [10].  In a typical embedded system there is no loader; 
components can only be chosen at static link time when the 
load image is built.  Services are extremely limited, sometimes 
just to the scheduling component. The number and priority of 
threads might have to be specified statically as well. 

Modularity has always been an important paradigm in 
software design.  By breaking a complex system into pieces, 
the complexity becomes more manageable.  Address spaces 
provide security by installing firewalls between applications.  
These two issues are orthogonal, but the distinction has been 
lost in systems research that has been concentrating on 
“microkernels ” [23]. 
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7 CONCLUSIONS 

Building an operating system for emerging computing 
platforms out of components pays off in terms of flexibility, 
minimalism, and adaptability.  It naturally leads to good 
software design, rapid implementation, and good portability. 
Because not all components have to be functional at once, 
porting and development can be incremental.  The TriMedia 
port was functional in one week, of which five days were spent 
on learning the new architecture and the development tools. 
The VLIW architecture of this microprocessor was brand new 
and different from the ones that MMLite supported at the time. 
Adding new tools, processors or platforms is easy. Making a 
device fully functional is still a substantial chore as drivers are 
often hard to write due to lacking hardware documentation. 
COM is a good way of adding transparency both to location 
and privilege level without too much overhead. 

The MMLite system is efficient, portable, and has a very 
small memory footprint that makes it suitable for embedded 
use.  It has successfully been used in several smart I/O cards, 
sensor boards, and wirelessly connected gadgets. The ability 
to easily communicate with web services brings the invisible 
computing platforms into the generic programmable internet 
cloud. 

8 ACKNOWLEDGEMENTS 

Thanks to Stefan Sigurdsson who worked on the XML 
support for MMLite, Adam MacBeth who worked on wireless 
connectivity, Ray Bittner, Andy Wilson, and Mike Sinclair for 
building the sensor experimentation hardware. 

9 REFERENCES 

[1] Miche Baker-Harvey. ETI Resource Distributor: Guaranteed 
Resource Allocation and Scheduling in Multimedia Systems. In 
Proceedings of the Third Symposium on Operating Systems 
Design and Implementation, February 1999, New Orleans, 
USA. 

[2] K. Brockshmidt. Inside OLE, Second ed.  Microsoft Press, 
Redmond WA, 1995. 

[3] Crispin Cowan, Tito Autrey, Charles Krasic, Calton Pu, and 
Jonathan Walpole.  Fast Concurrent Dynamic Linking for an 
Adaptive Operating System.  In the proceedings of the 
International Conference on Configurable Distributed Systems 
(ICCDS'96), Annapolis MD, 1996. 

[4] Richard Draves, Scott Cutshall.  Unifying the User and Kernel 
Environments.  Microsoft Research Technical Report MSR-TR-
97-10, 16 pages, March 1997.  Available from 
ftp://ftp.research.microsoft.com/pub/tr/tr-97-10.ps. 

[5] M. Esler, J. Hightower, T. Anderson, and G. Borriello.  Next 
Century Challenges: Data-Centric Networking for Invisible 
Computing: The Portolano Project at the University of 
Washington.  In Mobicom 99, August 1999, Seattle, USA. 

[6] Mark Fiuczynski, Richard Martin, Tsutomu Owa, Brian 
Bershad. SPINE: A Safe Programmable and Integrated Network 
Environment. Eight ACM SIGOPS European Workshop, 
September 1998, Sintra, Portugal. 

[7] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert 
Lin, Olin Shivers.  The Flux OSKit: A Substrate for Kernel and 
Language Research.  In Proceedings of the 16th ACM 
Symposium on Operating Systems Principles, pages 38-51.  
ACM SIGOPS, Saint-Malo, France, October 1997. 

[8] Johannes Helander, Alessandro Forin. MMLite: A Highly 
Componentized System Architecture. Eight ACM SIGOPS 
European Workshop, September 1998, Sintra, Portugal. 

[9] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David 
Culler, Kristofer Pister. System architecture directions for 
network sensors. ASPLOS 2000. 

[10] Integrated Systems Inc.  pSOSystem System Concepts. Part No. 
COL0011, May 1995, ISI, Sunnyvale CA.  

[11] Michael B. Jones, Joseph S. Barrera, III, Richard P. Draves, 
Alessandro Forin, Paul J. Leach, Gilad Odinak.  An Overview of 
the Rialto Real Time Architecture.  In Proceedings of the 7th 
ACM SIGOPS European Workshop, pages 249-256, September 
1996. 

[12] Michael B. Jones, Daniela Rosu, Marcel-Catalin Rosu.  CPU 
Reservations and Time Constraints: Efficient, Predictable 
Scheduling of Independent Activities.  In Proceedings of the 16th 
ACM Symposium on Operating Systems Principles, pages 198-
211.  ACM SIGOPS, Saint-Malo, France, October 1997. 

[13] Chris Maeda and Brian Bershad.  Protocol Service 
Decomposition for High-Performance Networking. In 14th ACM 
Symposium on Operating System Principles, pages 244-255, 
1993. 

[14] CORBA/IIOP 2.2 Specification.  Available from 
http://www.omg.org/corba/corbiiop.htm. 

[15] K. Partridge, L. Arnstein, G. Borriello,  and T. Whitted.  Fast 
Intrabody Signaling.  Demonstration at Wireless and Mobile 
Computer Systems and Applications, Monterey, CA, 
December 2000. 

[16] M. Rozier, A. Abrassimov, F. Armand, I. Boule, M. Gien, M. 
Guillemont, F. Hermann, C. Kaiser, S. Langlois, P. Leonard, W. 
Neuhauser.  CHORUS distributed operating system .  In 
Computing Systems, pages 305-370, Vol. 1-4, 1988. 

[17] Jay Torborg and Jim Kajiya.  Talisman: Commodity Real Time 
3d Graphics for the PC.  In Proceedings of SIGGRAPH 96, 
August 1996. 

[18] SAX – Simple API for XML. http://sax.sourceforge.net/  
[19] SOAP Version 1.2,  http://www.w3.org/TR/soap12/, W3C 

Working Draft, July 2001. 
[20] Windows for Smart Cards. http://www.microsoft.com/smartcard 
[21] Winsock Direct: fast system area networking for Windows 2000 

http://www.microsoft.com/windows2000/en/datacenter/help/ws
d_top_overview.htm?id=2129  

[22] Zhonghua Yang and Chengzheng Sun.  CORBA for Hard Real 
Time Applications: Some Critical Issues.  In Operating Systems 
Review, pages 64-71, Vol. 32-3, 1998. 

[23] Michael Wayne Young.  Exporting a User Interface to Memory 
Management from a Communication-Oriented Operating 
System.  Ph.D. Thesis CMU-CS-89-202, Carnegie Mellon 
University, November 1989. 


