
Typing Correspondene Assertions forCommuniation ProtoolsAndrew D. GordonMirosoft Researh Alan Je�reyDePaul UniversityMay 2001Tehnial ReportMSR{TR{2001{48
Mirosoft ResearhMirosoft CorporationOne Mirosoft WayRedmond, WA 98052

Publiation HistoryA portion of this work will appear in the proeedings of the 17th Conferene onthe Mathematial Foundations of Programming Semantis (MFPS 17), Aarhus,May 24{27, 2001. The proeedings will be published by Elsevier in the seriesEletroni Notes in Theoretial Computer Siene.AÆliationAlan Je�rey is with DePaul University. The two authors ompleted part ofthis work at Mirosoft Researh in Cambridge and part at DePaul Universityin Chiago.

AbstratWoo and Lam propose orrespondene assertions for speifying au-thentiity properties of seurity protools. The only prior work on hek-ing orrespondene assertions depends on model-heking and is limitedto �nite-state systems. We propose a dependent type and e�et systemfor heking orrespondene assertions. Sine it is based on type-heking,our method is not limited to �nite-state systems. This paper presents oursystem in the simple and general setting of the �-alulus. We show howto type-hek orretness properties of example ommuniation protoolsbased on seure hannels. In a related paper, we extend our system tothe more omplex and spei� setting of heking ryptographi protoolsbased on enrypted messages sent over inseure hannels.

Contents1 Introdution 12 Correspondene Assertions, by Example 23 Typing Correspondene Assertions 43.1 Types and E�ets . 43.2 Syntax of our Typed �-Calulus 63.3 Intuitions for the Type and E�et System 73.4 Typing Rules . 84 Appliations 114.1 Transmit-Aknowledge Handshake 114.2 Hostname Lookup . 114.3 Funtions . 135 Formalizing Correspondene Assertions 146 Related Work 187 Conlusions 19A Proofs 20A.1 Basi Fats . 20A.2 Applying Substitutions to Environments 20A.3 Weakening, Exhange, Substitution 23A.4 Proofs of Theorems 1 and 2 . 25Referenes 29

1 IntrodutionCorrespondene Assertions To a �rst approximation, a orrespondene as-sertion about a ommuniation protool is an intention that follows the pattern:If one prinipal ever reahes a ertain point in a protool, then someother prinipal has previously reahed some other mathing point inthe protool.We reord suh intentions by annotating the program representing the pro-tool with labelled assertions of the form begin L or end L. These assertionshave no e�et at runtime, but notionally indiate that a prinipal has reahed aertain point in the protool. The following more aurately states the intentionreorded by these annotations:If the program embodying the protool ever asserts endL, then thereis a distint previous assertion of begin L.Woo and Lam [WL93℄ introdue orrespondene assertions to state intendedproperties of authentiation protools based on ryptography. Consider a proto-ol where a prinipal a generates a new session key k and transmits it to b. Weintend that if a run of b ends a key exhange believing that it has reeived key kfrom a, then a generated k as part of a key exhange intended for b. We reordthis intention by annotating a's generation of k by the label begin ha; b; ki, andb's reeption of k by the label end ha; b; ki.A protool an fail a orrespondene assertion beause of several kinds ofbug. One kind onsists of those bugs that ause the protool to go wrongwithout any external interferene. Other kinds are bugs where an unreliable ormaliious network or partiipant auses the protool to fail. Suh bugs inludevulnerabilities to attaks suh as replay or man-in-the-middle attaks, where anative opponent on the network an ause b to aept a message more timesthan it was sent, or to aept a message as if it ame from a when in fat itame from the opponent.This Paper We show in this paper that orretness properties expressed byorrespondene assertions an be proved by type-heking. We embed orre-spondene assertions in a onurrent programming language (the �-alulus ofMilner, Parrow, and Walker [Mil99℄) and present a new type and e�et systemthat guarantees safety of well-typed assertions. We show several examples ofhow orrespondene assertions an be proved by type-heking.Woo and Lam's paper introdues orrespondene assertions but provides notehniques for proving them. Clarke and Marrero [CM00℄ use orrespondeneassertions to speify properties of e-ommere protools, suh as authorizationsof transations. To the best of our knowledge, the only previous work on hek-ing orrespondene assertions is a projet by Marrero, Clarke, and Jha [MCJ97℄to apply model-heking tehniques to �nite state versions of seurity protools.Sine our work is based on type-heking, it is not limited to �nite state sys-tems. Moreover, type-heking is ompositional: we an verify omponents in1

isolation, and know that their omposition is safe, without having to verify theentire system. Unlike Marrero, Clarke, and Jha's work, however, the system ofthe present paper does not deal with ryptographi primitives, and nor does itdeal with an arbitrary opponent. Still, in another paper [GJ01℄, we adapt ourtype and e�et system to the setting of the spi-alulus [AG99℄, an extensionof the �-alulus with abstrat ryptographi primitives. This adaptation anshow, moreover, that properties hold in the presene of an arbitrary untypedopponent.The rest of this paper is organised as follows. We introdue orrespondeneassertions, by example, in Setion 2. Setion 3 introdues a typed �-alulusin whih orrespondene assertions may be veri�ed by type-heking. Setion 4explains several appliations. Setion 5 explains the soundness proof for ourtype system. Setion 6 disusses related work and Setion 7 onludes.Review of The Untyped �-Calulus Milner, Parrow, and Walker's �-alulus is a onurrent formalism to whih many kinds of onurrent om-putation may be redued. Its simpliity makes it an attrative vehile for devel-oping the ideas of this paper, while its generality suggests they may be widelyappliable. Its basi data type is the name, an unguessable identi�er for aommuniations hannel. Computation is based on the exhange of messages,tuples of names, on named hannels. Programming in the �-alulus is basedon the following onstruts (written, unusually, with keywords, for the sake oflarity). The rest of the paper ontains many examples. An output proessout xhy1; : : : ; yni represents a message hy1; : : : ; yni sent on the hannel x. Aninput proess inp x(z1; : : : ; zn);P bloks till it �nds a message sent on the han-nel x, reads the names in the message into the variables z1; : : : ; zn, and thenruns P . The proess P j Q is the parallel omposition of the two proesses Pand Q; the two may run independently or ommuniate on shared hannels.The name generation proess new(x);P generates a fresh name, alls it x, thenruns P . Unless P reveals x, no other proess an use this fresh name. Therepliation proess repeat P behaves like an unbounded parallel array of repli-as of P . The proess stop represents inativity; it does nothing. Finally, theonditional if x = y then P else Q ompares the names x and y. If they are thesame it runs P ; otherwise it runs Q.2 Correspondene Assertions, by ExampleThis setion introdues the idea of de�ning orrespondene assertions by anno-tating ode with begin- and end-events. We give examples of both safe odeand of unsafe ode, that is, of ode that satis�es the orrespondene assertionsindued by its annotations, and of ode that does not.A transmit-aknowledge handshake is a standard ommuniations idiom,easily expressed in the �-alulus: along with the atual message, the sendertransmits an aknowledgement hannel, upon whih the reeiver sends an a-knowledgement. We intend that: 2

During a transmit-aknowledge handshake, if the sender reeives anaknowledgment, then the reeiver has obtained the message.Correspondene assertions an express this intention formally. Suppose thata and b are the names of the sender and reeiver, respetively. We annotate theode of the reeiver b with a begin-assertion at the point after it has reeived themessagemsg . We annotate the ode of the sender a with an end-assertion at thepoint after it has reeived the aknowledgement. We label both assertions withthe names of the prinipals and the transmitted message, ha; b;msgi. Hene, weassert that if after sending msg to b, the sender a reeives an aknowledgement,then a distint run of b has reeived msg .Suppose that is the name of the hannel on whih prinipal b reeivesmessages from a. Here is the �-alulus ode of the annotated sender andreeiver: Rver(a; b;) �=inp (msg ; ak);begin ha; b;msgi;out akhi Snder(a; b;) �=new(msg); new(ak);out hmsg ; aki; inp ak ();end ha; b;msgiThe sender reates a fresh message msg and a fresh aknowledgement hannelak , sends the two on the hannel , waits for an aknowledgement, and thenasserts an end-event labelled ha; b;msgi.The reeiver gets the message msg and the aknowledgement hannel ako� , asserts a begin-event labelled ha; b;msgi, and sends an aknowledgementon ak .We say a program is safe if it satis�es the intentions indued by the begin-and end-assertions. More preisely, a program is safe just if for every runof the program and for every label L, there is a distint begin-event labelled Lpreeding every end-event labelled L. (We formalize this de�nition in Setion 5.)Here are three ombinations of our examples: two safe, one unsafe.new();Snder(a; b;) jRver(a; b;) (Example 1: safe)Example 1 uses one instane of the sender and one instane of the reeiver torepresent a single instane of the protool. The restrition new(); makes thehannel private to the sender and the reeiver. This assembly is safe; its onlyrun orretly implements the handshake protool.new();Snder(a; b;) jSnder(a; b;) jrepeat Rver(a; b;) (Example 2: safe)Example 2 uses two opies of the sender|representing two attempts by a singleprinipal a to send a message to b|and a repliated opy of the reeiver|representing the prinipal b willing to aept an unbounded number of messages.3

Again, this assembly is safe; any run onsists of an interleaving of two orrethandshakes. new();Snder(a; b;) jSnder(a0; b;) jrepeat Rver(a; b;) (Example 3: unsafe)Example 3 is a variant on Example 2, where we keep the repliated reeiver b, buthange the identity of one of the senders, so that the two senders represent twodi�erent prinipals a and a0. These two prinipals share a single hannel to thereeiver. Sine the identity a of the sender is a parameter of Rver(a; b;) ratherthan being expliitly ommuniated, this assembly is unsafe. There is a run inwhih a0 generates msg and ak , and sends them to b; b asserts a begin-eventlabelled ha; b;msgi and outputs on ak ; then a0 asserts an end-event labelledha0; b;msgi. This end-event has no orresponding begin-event so the assemblyis unsafe, reeting the possibility that the reeiver an be mistaken about theidentity of the sender.3 Typing Correspondene Assertions3.1 Types and E�etsOur type and e�et system is based on the idea of assigning types to namesand e�ets to proesses. A type desribes what operations are allowed on aname, suh as what messages may be ommuniated on a hannel name. Ane�et desribes the olletion of labels of events the proess may end while notitself beginning. We ompute e�ets based on the intuition that end-eventsare aounted for by preeding begin-events; a begin-event is a redit while anend-event is a debit. Aording to this metaphor, the e�et of a proess is anupper bound on the debt a proess may inur. If we an assign a proess theempty e�et, we know all of its end-events are aounted for by begin-events.Therefore, we know that the proess is safe, that is, its orrespondene assertionsare true.An essential ingredient of our typing rules is the idea of attahing a latente�et to eah hannel type. We allow any proess reeiving o� a hannel totreat the latent e�et as a redit towards subsequent end-events. This is soundbeause we require any proess sending on a hannel to treat the latent e�etas a debit that must be aounted for by previous begin-events. Latent e�etsare at the heart of our method for type-heking events begun by one proessand ended by another.The following table desribes the syntax of types and e�ets. As in mostversions of the �-alulus, we make no lexial distintion between names andvariables, ranged over by a; b; ; x; y; z. An event label, L, is simply a tuple ofnames. Event labels identify the events asserted by begin- and end-assertions.An e�et, e, is a multiset, that is, an unordered list, of event labels, written as4

[L1; : : : ; Ln℄. A type, T , takes one of two kinds. The �rst kind, Name, is thetype of pure names, that is, names that only support equality operations, butannot be used as hannels. We use Name as the type of names that identifyprinipals, for instane. The seond kind, Ch(x1:T1; : : : ; xn:Tn)e, is a type ofa hannel ommuniating n-tuples of names, of types T1, . . . , Tn, with latente�et e. The names x1, . . . , xn are bound; the sope of eah xi onsists ofthe types Ti+1, . . . , Tn, and the latent e�et e. We identify types up to theonsistent renaming of bound names.Names, Event Labels, E�ets, and Types:a; b; ; x; y; z names, variablesL ::= hx1; : : : ; xni event label: tuple of namese ::= [L1; : : : ; Ln℄ e�et: multiset of event labelsT ::= typeName pure nameCh(x1:T1; : : : ; xn:Tn)e hannel with latent e�et eFor example:� Ch()[℄, a synhronization hannel (that is, a hannel used only for syn-hronization) with no latent e�et.� Ch(a:Name)[hbi℄, a hannel for ommuniating a pure name, osting [hbi℄to senders and paying [hbi℄ to reeivers, where b is a �xed name.� Ch(a:Name)[hai℄, a hannel for ommuniating a pure name, osting [hai℄to senders and paying [hai℄ to reeivers, where a is the name ommuniatedon the hannel.� Ch(a:Name; b:Ch()[hai℄)[℄, a hannel with no latent e�et for ommuniat-ing pairs of the form a; b, where a is a pure name, and b is the nameof a synhronization hannel, osting [hai℄ to senders and paying [hai℄ toreeivers.The following is a onvenient shorthand for the lists of typed variable delara-tions found in hannel types:Notation for Typed Variables:~x:~T �= x1:T1; : : : ; xn:Tn where ~x = x1; : : : ; xn and ~T = T1; : : : ; Tn� �= () the empty listThe following table de�ne the sets of free names of variable delarations, and ofevent labels, e�ets, and types.Free Names of Typed Variables, Event Labels, E�ets, and Types:fn(�:�) �= ? 5

fn(~x:~T ; x:T) �= fn(~x:~T) [(fn(T)� f~xg)fn(hx1; : : : ; xni) = fx1; : : : ; xngfn([L1; : : : ; L1℄) �= fn(L1) [� � � [fn(Ln)fn(Name) �= ?fn(Ch(~x:~T)e) �= fn(~x:~T) [(fn(e)� f~xg)For any of these forms of syntax, we write �fx yg for the operation of apture-avoiding substitution of the name y for eah free ourrene of the name x.We write �f~x ~yg, where ~x = x1; : : : ; xn and ~y = y1; : : : ; yn for the iteratedsubstitution �fx1 y1g � � � fxn yng.3.2 Syntax of our Typed �-CalulusWe explained the informal semantis of begin- and end-assertions in Setion 2,and of the other onstruts in Setion 1.Proesses:P;Q;R ::= proessout xhy1; : : : ; yni polyadi asynhronous outputinp x(y1:T1; : : : ; yn:Tn);P polyadi inputif x = y then P else Q onditionalnew(x:T);P name generationP j Q ompositionrepeat P repliationstop inativitybegin L;P begin-assertionend L;P end-assertionThere are two name binding onstruts: input and name generation. Inan input proess inp x(y1:T1; : : : ; yn:Tn);P , eah name yi is bound, with sopeonsisting of Ti+1, . . . , Tn, and P . In a name restrition new(x:T);P , the namex is bound; its sope is P . We write Pfx yg for the outome of a apture-avoiding substitution of the name y for eah free ourrene of the name x inthe proess P . We identify proesses up to the onsistent renaming of boundnames. We let fn(P) be the set of free names of a proess P . We sometimeswrite an output as out xh~yi where ~y = y1; : : : ; yn, and an input as inp x(~y:~T);P ,where ~y:~T is a variable delaration written in the notation introdued in theprevious setion. We write out xh~yi;P as a shorthand for out xh~yi j P .Free Names of Proesses:fn(out xh~yi) �= fxg [f~ygfn(inp x(~y:~T);P) �= fxg [fn(~y:~T) [(fn(P)� f~yg)fn(if x = y then P else Q) �= fx; yg [fn(P) [fn(Q)fn(new(x:T);P) �= fn(T) [(fn(P)� fxg)6

fn(P j Q) �= fn(P) [fn(Q)fn(repeat P) �= fn(P)fn(stop) �= ?fn(begin h~yi;P) �= f~yg [fn(P)fn(end h~yi;P) �= f~yg [fn(P)3.3 Intuitions for the Type and E�et SystemAs a prelude to our formal typing rules, we present the underlying intuitions.Reall the intuition that end-events are osts to be aounted for by begin-events. When we say a proess P has e�et e, it means that e is an upperbound on the begin-events needed to preede P to make the whole proess safe.In other words, if P has e�et [L1; : : : ; Ln℄ then beginL1; � � � ; beginLn;P is safe.Typing Assertions An assertion begin L;P pays for one end-event labelledL in P ; so if P is a proess with e�et e, then beginL;P is a proess with e�ete�[L℄, that is, the multiset e with one ourrene of L deleted. So we have atyping rule of the form:P : e) begin L;P : e�[L℄If P is a proess with e�et e, then end L;P is a proess with e�et e+[L℄,that is, the onatenation of e and [L℄. We have a rule:P : e) end L;P : e+[L℄Typing Name Generation and Conurreny The e�et of a name gener-ation proess new(x:T);P , is simply the e�et of P . To prevent sope onfusion,we forbid x from ourring in this e�et.P : e; x =2 fn(e)) new(x:T);P : eThe e�et of a onurrent omposition of proesses is the multiset union ofthe onstituent proesses.P : eP ; Q : eQ) P j Q : eP+eQThe inative proess asserts no end-events, so its e�et is empty.stop : [℄The repliation of a proess P behaves like an unbounded array of replias ofP . If P has a non-empty e�et, then its repliation would have an unbounded ef-fet, whih ould not be aounted for by preeding begin-assertions. Therefore,to type repeat P we require P to have an empty e�et.P : [℄) repeat P : [℄ 7

Typing Communiations We begin by presenting the rules for typing om-muniations on monadi hannels with no latent e�et, that is, those with typesof the form Ch(y:T)[℄. The ommuniated name has type T . An output out xhzihas empty e�et. An input inp x(y:T);P has the same e�et as P . Sine theinput variable in the proess and in the type are both bound, we may assumethey are the same variable y.x : Ch(y:T)[℄; z : T) out xhzi : [℄x : Ch(y:T)[℄; P : e; y =2 fn(e)) inp x(y:T);P : eNext, we onsider the type Ch(y:T)e` of monadi hannels with latent e�ete`. The latent e�et is a ost to senders, a bene�t to reeivers, and is the sopeof the variable y. We assign an output out xhzi the e�et e`fy zg, where wehave instantiated the name y bound in the type of the hannel with z, the nameatually sent on the hannel. We assign an input inp x(y:T);P the e�et e� e`,where e is the e�et of P . To avoid sope onfusion, we require that y is notfree in e� e`.x : Ch(y:T)e`; z : T) out xhzi : e`fy zgx : Ch(y:T)e`; P : e; y =2 fn(e� e`)) inp x(y:T);P : e� e`The formal rules for input and output in the next setion generalize theserules to deal with polyadi hannels.Typing Conditionals When typing a onditional if x = y then P else Q,it is useful to exploit the fat that P only runs if the two names x and y areequal. To do so, we hek the e�et of P after substituting one for the other.Suppose then proess Pfx yg has e�et eP fx yg. Suppose also that proessQ has e�et eQ. Let eP _eQ be the least upper bound of any two e�ets eP andeQ. Then eP _ eQ is an upper bound on the begin-events needed to preede theonditional to make it safe, whether P or Q runs. An example in Setion 4.2illustrates this rule.Pfx yg : eP fx yg; Q : eQ) if x = y then P else Q : eP _ eQ3.4 Typing RulesOur typing rules depend on several operations on e�et multisets, most of whihwere introdued informally in the previous setion. Here are the formal de�ni-tions.Operations on e�ets: e+ e0, e � e0, e� e0, L 2 e, e _ e0[L1; : : : ; Lm℄ + [Lm+1; : : : ; Lm+n℄ �= [L1; : : : ; Lm+n℄e � e0 if and only if e0 = e+ e00 for some e00e� e0 �= the smallest e00 suh that e � e0 + e00L 2 e if and only if [L℄ � ee _ e0 �= the smallest e00 suh that e � e00 and e0 � e008

The typing judgments of this setion depend on an environment to assign atype to all the variables in sope.Environments:E ::= ~x:~T environmentdom(~x:~T) �= f~xg domain of an environmentTo equate two names in an environment, needed for typing onditionals,we de�ne a name fusion funtion. We obtain the fusion Efx x0g from E byturning all ourrenes of x and x0 in E into x0.Fusing x with x0 in E: Efx x0g(x1:T1; : : : ; xn:Tn)fx x0g �=(x1fx x0g):(T1fx x0g); : : : ; (xnfx x0g):(Tnfx x0g)where E;x:T �= � E if x 2 dom(E)E; x:T otherwiseThe following table summarizes the �ve judgments of our type system, whihare indutively de�ned by rules in subsequent tables. Judgment E ` � meansenvironment E is well-formed. Judgment E ` T means type T is well-formed.Judgment E ` x : T means name x is in sope with type T . Judgment E `h~xi : h~y:~T i means tuple h~xi mathes the variable delaration ~y:~T . JudgmentE ` P : e means proess P has e�et e.Judgments:E ` � good environmentE ` T good type TE ` x : T good name x of type TE ` h~xi : h~y:~T i good message ~x mathing ~y:~TE ` P : e good proess P with e�et eThe rules de�ning the �rst three judgments are standard.Good environments, types, and names:(Env ?)? ` � (Env x)E ` T x =2 dom(E)E; x:T ` � (Type Name)E ` �E ` Name(Type Chan)E; ~x:~T ` � fn(e) � dom(E) [f~xgE ` Ch(~x:~T)e (Name x)E0; x:T;E00 ` �E0; x:T;E00 ` x : TThe next judgment, E ` h~xi : h~y:~T i, is an auxiliary judgment used for typingoutput proesses; it is used in the rule (Pro Output) to hek that the messageh~xi sent on a hannel of type Ch(~y:~T)e mathes the variable delaration ~y:~T .9

Good message:(Msg hi)E ` �E ` hi : hi (Msg x) (where y =2 f~yg [dom(E))E ` h~xi : h~y:~T i E ` x : (Tf~y ~xg)E ` h~x; xi : h~y:~T ; y:T iFinally, here are the rules for typing proesses. The e�et of a proess is anupper bound; the rule (Pro Subsum) allows us to inrease this upper bound.Intuitions for all the other rules were explained in the previous setion.Good proesses:(Pro Subsum) (where e � e0 and fn(e0) � dom(E))E ` P : eE ` P : e0(Pro Output)E ` x : Ch(~y:~T)e E ` h~xi : h~y:~T iE ` out xh~xi : (ef~y ~xg)(Pro Input) (where fn(e� e0) � dom(E))E ` x : Ch(~y:~T)e0 E; ~y:~T ` P : eE ` inp x(~y:~T);P : e� e0(Pro Cond)E ` x : T E ` y : T Efx yg ` Pfx yg : eP fx yg E ` Q : eQE ` if x = y then P else Q : eP _ eQ(Pro Res) (where x =2 fn(e))E; x:T ` P : eE ` new(x:T);P : e (Pro Par)E ` P : eP E ` Q : eQE ` P j Q : eP + eQ(Pro Repeat)E ` P : [℄E ` repeat P : [℄ (Pro Stop)E ` �E ` stop : [℄(Pro Begin) (where fn(L) � dom(E))E ` P : eE ` begin L;P : e� [L℄ (Pro End) (where fn(L) � dom(E))E ` P : eE ` end L;P : e+ [L℄Setion 5 presents our main type safety result, Theorem 2, that E ` P : [℄implies P is safe. Like most type systems, ours is inomplete. There are safeproesses that are not typeable in our system. For example, we annot assignthe proess if x = x then stop else (end x; stop) the empty e�et, and yet it isperfetly safe. 10

4 AppliationsIn this setion, we present some examples of using orrespondene assertions tovalidate safety properties of ommuniation protools. For more examples, in-luding examples with ryptographi protools whih are seure against externalattakers, see the ompanion paper [GJ01℄.4.1 Transmit-Aknowledge HandshakeReall the untyped sender and reeiver ode from Setion 2. Suppose we makethe type de�nitions:Msg �= Name Ak(a; b;msg) �= Ch()[ha; b;msgi℄Host �= Name Req(a; b) �= Ch(msg :Msg ; ak :Ak(a; b;msg))[℄Suppose also that we annotate the sender and reeiver ode, and the ode ofExample 1 as follows:Snder(a:Host ; b:Host ; :Req(a; b)) �=new(msg :Msg);new(ak :Ak(a; b;msg));out hmsg ; ak i;inp ak ();end ha; b;msgi Rver(a:Host ; b:Host ; :Req(a; b)) �=inp (msg :Msg ; ak :Ak(a; b;msg));begin ha; b;msgi;out ak hiExample1 (a:Host ; b:Host) �=new(:Req(a; b));Snder(a; b;) jRver(a; b;)We an then hek that a:Host ; b:Host ` Example1 (a; b) : [℄. Sine the systemhas the empty e�et, by Theorem 2 it is safe. It is routine to hek that Exam-ple 2 from Setion 2 also has the empty e�et, but that Example 3 annot betype-heked (as to be expeted, sine it is unsafe).4.2 Hostname LookupIn this example, we present a simple hostname lookup system, where a lient bwishing to ping a server a an ontat a name server query , to get a networkaddress ping for a. The lient an then send a ping request to the address ping ,and get an aknowledgement from the server. We shall hek two properties:� When the ping lient b �nishes, it believes that the ping server a has beenpinged.� When the ping server a �nishes, it believes that it was ontated by theping lient b. 11

We write \a was pinged by b" as shorthand for ha; bi, and \b tried to ping a"for hb; a; ai. These examples are well-typed, with types whih we de�ne later inthis setion.We program the ping lient and server as follows.PingClient(a:Hostname; b:Hostname; query :Query) �=new(res : Res(a));out queryha; resi;inp res(ping : Ping(a));new(ak : Ak(a; b));begin \b tried to ping a";out pinghb; aki;inp ak ();end \a was pinged by b"PingServer(a : Hostname; ping : Ping(a)) �=repeatinp ping(b : Hostname; ak : Ak(a; b));begin \a was pinged by b";end \b tried to ping a";out akhiIf these proesses are safe, then any ping request and response must ome asmathing pairs. In pratie, the name server would require some data struturesuh as a hash table or database, but for this simple example we just use a largeif-statement: NameServer (query :Query ;h1:Hostname; : : : ; hn:Hostname;ping1:Ping(h1); : : : ; pingn:Ping(hn)) �=repeatinp query(h; res);if h = h1 then out reshping1i else � � �if h = hn then out reshpingni else stopTo get the system to type-hek, we use the following types:Hostname �= NameAk(a; b) �= Ch()[\a was pinged by b"℄Ping(a) �= Ch(b:Hostname; ak :Ak(a; b))[\b tried to ping a"℄Res(a) �= Ch(ping :Ping(a))[℄Query �= Ch(a:Hostname; res:Res(a))[℄12

The most subtle part of type-heking the system is the onditional in the nameserver. A typial branh is:hi : Hostname ; ping i : Ping(hi); h : Hostname; res : Res(h)` if h = hi then out reshping ii else � � � : [℄When type-heking the then-branh, (Pro Cond) assumes h = hi by applyinga substitution to the environment:(hi : Hostname; ping i : Ping(hi); h : Hostname; res : Res(h))fh hig= (hi : Hostname; ping i : Ping(hi); res : Res(hi))In this environment, we an type-hek the then-branh:hi : Hostname; ping i : Ping(hi); res : Res(hi)` out reshping ii : [℄If (Pro Cond) did not apply the substitution to the environment, this exampleould not be type-heked, sine:hi : Hostname ; ping i : Ping(hi); h : Hostname; res : Res(h)0 out reshping ii : [℄4.3 FuntionsIt is typial to ode the �-alulus into the �-alulus, using a return hannelk as the destination for the result. For instane, the hostname lookup exampleof the previous setion an be rewritten in the style of a remote proedure all.The lient and server are now:PingClient(a:Hostname; b:Hostname; query :Query) �=let (ping : Ping(a)) = query hai;begin \b tried to ping a";let () = ping hbi;end \a was pinged by b"PingServer(a : Hostname; ping : Ping(a)) �=fun ping(b:Hostname) fbegin \a was pinged by b";end \b tried to ping a";return hig
13

The name server is now:NameServer(query :Query ;h1:Hostname; : : : ; hn:Hostname;ping1:Ping(h1); : : : ; pingn:Ping(hn)) �=fun query(h:Hostname) fif h = h1 then return hping1i else � � �if h = hn then return hpingni else stopgIn order to provide types for these examples, we have to provide a funtion typewith latent e�ets. These e�ets are preondition/postondition pairs, whih atlike Hoare triples. In the type (~x:~T)e! (~y:~U)e0 we have a preondition e whihthe allee must satisfy, and a postondition e0 whih the aller must satisfy. Forexample, the types for the hostname lookup example are:Ping(a) �= (b:Hostname)[\b tried to ping a"℄! ()[\a was pinged by b"℄Query �= (a:Hostname)[℄! (ping :Ping(a))[℄whih spei�es that the remote ping all has a preondition \b tried to ping a"and a postondition \a was pinged by b".This an be oded into the �-alulus using a translation [Mil99℄ in ontin-uation passing style.fun f(~x:~T) fPg �= repeat inp f(~x:~T ; k:Ch(~y:~U)e0);Plet (~y:~U) = f h~xi;P �= new(k:Ch(~y:~U)e0); out fh~x; ki; inp k(~y:~U);Preturn h~zi �= out kh~zi(~x:~T)e! (~y:~U)e0 �= Ch(~x:~T ; k:Ch(~y:~U)e0)eThis translation is standard, exept for the typing. It is routine to verify itssoundness.5 Formalizing Correspondene AssertionsIn this setion, we give the formal de�nition of the trae semantis for the �-alulus with orrespondene assertions, whih is used in the de�nition of a safeproess. We then state the main result of this paper, whih is that e�et-freeproesses are safe.We give the trae semantis as a labelled transition system. Following Berryand Boudol [BB92℄ and Milner [Mil99℄ we use a strutural ongruene P � Q,and give our operational semantis up to �.Strutural Congruene: P � QP � P (Strut Re)14

Q � P) P � Q (Strut Symm)P � Q;Q � R) P � R (Strut Trans)P � Q) inp x(~y:~T);P � inp x(~y:~T);Q (Strut Input)P � Q) new(x:T);P � new(x:T);Q (Strut Res)P � Q) P j R � Q j R (Strut Par)P � Q) repeat P � repeat Q (Strut Repl)P j stop � P (Strut Par Zero)P j Q � Q j P (Strut Par Comm)(P j Q) j R � P j (Q j R) (Strut Par Asso)repeat P � P j repeat P (Strut Repl Par)new(x:T); (P j Q) � P j new(x:T);Q (Strut Res Par) (where x =2 fn(P))new(x1:T1); new(x2:T2);P �new(x2:T2); new(x1:T1);P (Strut Res Res)(where x1 6= x2; x1 =2 fn(T2); x2 =2 fn(T1))There are four ations in this labelled transition system:� P begin L����! P 0 when P reahes a beginL assertion.� P end L���! P 0 when P reahes an end L assertion.� P gen hxi����! P 0 when P generates a new name x.� P ��! P 0 when P an perform an internal ation.For example:(new(x:Name); begin hxi; end hxi; stop) gen hxi����! (begin hxi; end hxi; stop)begin hxi�����! (end hxi; stop)end hxi����! (stop)Next, we give the syntax of ations �, and their free and generated names.Ations:�; � ::= ationsbegin L begin-eventend L end-eventgen hxi name generation� internal
15

Free names, fn(�), and generated names, gn(�), of an ation �:fn(�) �= ? gn(�) �= ?fn(begin L) �= fn(L) gn(begin L) �= ?fn(end L) �= fn(L) gn(end L) �= ?fn(gen hxi) �= fxg gn(gen hxi �= fxgThe labelled transition system P ��! P 0 is de�ned here.Transitions: P ��! P 0out xh~xi j inp x(~y);P ��! Pf~y ~xg (Trans Comm)if x = x then P else Q ��! P (Trans Math)if x = y then P else Q ��! Q (Trans Mismath) (if x 6= y)begin L;P begin L����! P (Trans Begin)end L;P end L���! P (Trans End)new(x:T);P gen hxi����! P (Trans Gen)P ��! P 0) P j Q ��! P 0 j Q (Trans Par) (if gn(�) \ fn(Q) = ?)P ��! P 0) new(x:T);P ��! new(x:T);P 0 (Trans Res) (if x =2 fn(�))P � P 0; P 0 ��! Q0; Q0 � Q) P ��! Q (Trans �)From this operational semantis, we an de�ne the traes of a proess, withredutions P s�! P 0 where s is a sequene of ations.Traes:s; t ::= �1; : : : ; �n traeFree names, fn(s), and generated names, gn(s), of a trae s:fn(�1; : : : ; �n) �= fn(�1) [� � � [fn(�n)gn(�1; : : : ; �n) �= gn(�1) [� � � [gn(�n)Traed transitions: P s�! P 0P � P 0) P "�! P 0 (Trae �)P ��! P 00; P 00 s�! P 0) P �;s��! P 0 (Trae Ation) (where fn(�) \ gn(s) = ?)We require a side-ondition on (Trae Ation) to ensure that generatednames are unique, otherwise we ould observe traes suh as(new(x); new(y); stop) gen hxi;gen hxi���������! (stop)16

Having formally de�ned the trae semantis of our �-alulus, we an de�newhen a trae is a orrespondene: this is when every end L has a distint,mathing begin L. For example:begin L; endL is a orrespondenebegin L; end L; endL is not a orrespondenebegin L; beginL; end L; endL is a orrespondeneWe formalize this by ounting the number of begin L and end L ations thereare in a trae.Beginnings, begins (�), and endings, ends (�), of an ation �:begins (begin L) �= [L℄ ends (begin L) �= [℄begins (end L) �= [℄ ends (end L) �= [L℄begins (gen hxi) �= [℄ ends (gen hxi) �= [℄begins (�) �= [℄ ends (�) �= [℄Beginnings, begins (s), and endings, ends (s), of a trae s:begins (�1; : : : ; �n) �= begins (�1) + � � �+ begins (�n)ends (�1; : : : ; �n) �= ends (�1) + � � �+ ends (�n)Correspondene:A trae s is a orrespondene if and only if ends (s) � begins (s).A proess is safe if every trae is a orrespondene.Safety:A proess P is safe if and only if for all traes s and proesses P 0if P s�! P 0 then s is a orrespondene.A subtlety of this de�nition of safety is that although we want eah end-eventof a safe proess to be preeded by a distint, mathing begin-event, a trae stmay be a orrespondene by virtue of a later begin-event in t mathing an earlierend-event in s. For example, a trae like end L; beginL is a orrespondene.To see why our de�nition implies that a mathing begin-event must preedeeah end-event in eah trae of a safe proess, suppose a safe proess has a traes; endL; t. By de�nition of traes, the proess also has the shorter trae s; endL,whih must be a orrespondene, sine it is a trae of a safe proess. Therefore,the end-event end L is preeded by a mathing begin-event in s.We an now state the formal result of the paper, Theorem 2, that everye�et-free proess is safe. This gives us a ompositional tehnique for verifyingthe safety of ommuniations protools. It follows from a subjet redution17

result, Theorem 1. The most diÆult parts of the formal development to hekin detail are the parts assoiated with the (Pro Cond) rule, beause of its useof a substitution applied to an environment.Theorem 1 (Subjet Redution) Suppose E ` P : e.(1) If P ��! P 0 then E ` P 0 : e.(2) If P begin L����! P 0 then E ` P 0 : e+ [L℄.(3) If P end L���! P 0 then E ` P 0 : e� [L℄, and L 2 e.(4) If P gen hxi����! P 0 and x =2 dom(E) then E; x:T ` P 0 : e for some type T .Theorem 2 (Safety) If E ` P : [℄ then P is safe.6 Related WorkCorrespondene assertions are not new; we have already disussed prior workon orrespondene assertions for ryptographi protools [WL93, MCJ97℄. Aontribution of our work is the idea of diretly expressing orrespondene asser-tions by adding annotations to a general onurrent language, in our ase the�-alulus.Gi�ord and Luassen introdued type and e�et systems [GL86, Lu87℄ tomanage side-e�ets in funtional programming. There is a substantial liter-ature; reent appliations inlude memory management for high-level [TT97℄and low-level [CWM99℄ languages, rae-ondition avoidane [FA99℄, and aessontrol [SS00℄.Early type systems for the �-alulus [Mil99, PS96℄ fous on regulating thedata sent on hannels. Subsequent type systems also regulate proess behaviour;for example, session types [THK94, HVK98℄ regulate pairwise interations andlinear types [Kob98℄ help avoid deadloks. A reent paper [DG00℄ expliitlyproposes a type and e�et system for the �-alulus, and the idea of latente�ets on hannel types. This idea an also be represented in a reent generalframework for onurrent type systems [IK01℄. Still, the types of our systemare dependent in the sense that they may inlude the names of hannels; to thebest of our knowledge, this is the �rst dependent type system for the �-alulus.Another system of dependent types for a onurrent language is Flanagan andAbadi's system [FA99℄ for avoiding rae onditions in the onurrent objetalulus of Gordon and Hankin [GH98℄.The rule (Pro Cond) for typing name equality if x = y then P else Q heksP under the assumption that the names x and y are the same; we formalizethis by substituting y for x in the type environment and the proess P . Giventhat names are the only kind of value, this tehnique is simpler than the stan-dard tehnique from dependent type theory [NPS90, Bar92℄ of de�ning typing18

judgments with respet to an equivalene relation on values. Honda, Vason-elos, and Yoshida [HVY00℄ also use the tehnique of applying substitutions toenvironments while type-heking.7 ConlusionsThe long term objetive of this work is to hek serey and authentiity prop-erties of seurity protools by typing. This paper introdues several key ideasin the minimal yet general setting of the �-alulus: the idea of expressing or-respondenes by begin- and end-annotations, the idea of a dependent type ande�et system for proving orrespondenes, and the idea of using latent e�etsto type orrespondenes begun by one proess and ended by another. Severalexamples demonstrate the promise of this system. Unlike a previous approahbased on model-heking, type-heking orrespondene assertions is not limitedto �nite-state systems.A ompanion paper [GJ01℄ begins the work of applying these ideas to ryp-tographi protools as formalized in Abadi and Gordon's spi-alulus [AG99℄,and has already proved useful in identifying known issues in published proto-ols. Our �rst type system for spi is spei� to ryptographi protools basedon symmetri key ryptography. Instead of attahing latent e�ets to hanneltypes, as in this paper, we attah them to a new type for nones, to formalizea spei� idiom for preventing replay attaks. Another avenue for future workis type inferene algorithms.The type system of the present paper has independent interest. It intro-dues the ideas in a more general setting than the spi-alulus, and shows inpriniple that orrespondene assertions an be type-heked in any of the manyprogramming languages that may be redued to the �-alulus.Aknowledgements We had useful disussions with Andrew Kennedy andNaoki Kobayashi. Tony Hoare ommented on a draft of this paper. Alan Je�reywas supported in part by Mirosoft Researh during some of the time we workedon this paper.

19

A ProofsThis appendix develops proofs of the two theorems stated in the main body ofthe paper. We begin in Setion A.1 with some basi fats about the type system.Setion A.2 proves properties of the unusual operation|found in the rule (ProCond) for typing onditionals|of applying a substitution to an environment.Setion A.3 proves standard weakening, exhange, and substitution lemmas forthe type system. Finally, Setion A.4 proves Theorems 1 and 2.A.1 Basi FatsFree names, fn(J) of a judgment J :fn(�) �= ?fn(x:T) �= fxg [fn(T)fn(h~xi : h~y:~T i) �= f~xg [fn(h~y:~T i)fn(P : e) �= fn(P) [fn(e)Lemma 1 (Free Names) If E ` J then fn(J) � dom(E).Proof An indution on the proof of E ` J . 2Lemma 2 (Implied Judgment) If E;E0 ` J then E ` �.Proof An indution on the proof of E;E0 ` J . 2Lemma 3 (Unique Types) If E ` x : T and E ` x : T 0 then T = T 0.Proof An indution on the proof of E ` x : T . 2A.2 Applying Substitutions to EnvironmentsReall the de�nition from Setion 3.4 of the auxiliary notation E;x:T used inthe de�nition of applying a substitution to an environment. It adds a singletonlist x:T to E provided x is not already delared in E. As a onveniene, weextend this notation to arbitrary lists.Environment addition: E;E0E;E0 �= E; (E0 � dom(E))This de�nition makes use of an operator to delete entries from an environment.Deletion of Names Y from Environment E: E � Y?� Y �= ?(E; x:T)� Y �= � E � Y if x 2 Y(E � Y); x:T otherwise20

Lemma 4 Environment addition is assoiative, that isE; (E0;E00) = (E;E0);E00.Proof First show the following equivalenes:dom(E � Y) = dom(E)� Y dom(E;E0) = dom(E) [dom(E0)(E;E0)� Y = (E � Y); (E0 � Y) E � (Y [Y 0) = (E � Y)� Y 0The result then follows diretly. 2We reall the de�nition of applying a substitution to an environment.Fusing x with x0 in E: Efx x0g(x1:T1; : : : ; xn:Tn)fx x0g �=(x1fx x0g):(T1fx x0g); : : : ; (xnfx x0g):(Tnfx x0g)For example, (x:T; x0:T)fx x0g = x0:T . Notie that applying a substitution toan environment that ontains multiple delarations of the same variable deletesdupliate entries: (x:T; x:T)fx x0g = x0:T .The following equation is useful for analysing the outome of applying asubstitution to the well-formed onatenation of two environments.Lemma 5 (E;E0)fy y0g = (Efy y0g); (E0fy y0g).Proof An indution on E0. The base ase, when E0 = ?, is trivial. For theindutive step, suppose that E0 = (E00; x:T). Then, by indution and Lemma 4:(E;E0)fy y0g = (E;E00; x:T)fy y0g= (E;E00)fy y0g; (xfy y0g:Tfy y0g)= (Efy y0g); (E00fy y0g); (xfy y0g:Tfy y0g)= (Efy y0g); ((E00; x:T)fy y0g)= (Efy y0g); (E0fy y0g)as required. 2We end this setion by showing that all judgments of the type system arepreserved by substituting one variable for another, provided the types of thevariables are ompatible.Variable ompatibility:Let x and y be E-ompatible if and only if fx; yg � dom(E) impliesthere is T suh that both E ` x : T and E ` y : T .Lemma 6 (Fusion) If y and y0 are E-ompatible and E ` Jthen Efy y0g ` J fy y0g. 21

Proof By indution on the proof of E ` J .(Env ?) ? ` �Trivial.(Env x) E ` T x =2 dom(E)E; x:T ` �By de�nition, sine y and y0 are (E; x:T)-ompatible, they are also E-ompatible. By indution hypothesis, this and E ` T imply Efy y0g `Tfy y0g.Case xfy y0g 2 dom(Efy y0g) By Lemma 2 Efy y0g ` �. By de�ni-tion, (E; x:T)fy y0g = Efy y0g, and so we have (E; x:T)fy y0g `�.Case xfy y0g 62 dom(Efy y0g) Sine we have Efy y0g ` Tfy y0gand xfy y0g 62 dom(Efy y0g) we an apply Rule (Env x) to getthe required result: (E; x:T)fy y0g ` �.(Type Name)E ` �E ` NameBy indution hypothesis, Efy y0g ` �. By (Type Name), we have thatEfy y0g ` Name.(Type Chan)E; x1:T1; : : : ; xn:Tn ` � fn(e) � dom(E) [f~xgE ` Ch(x1:T1; : : : ; xn:Tn)eSine the names x1, . . . , xn are bound, we may assume that fy; y0g \fx1; : : : ; xng = ?. By de�nition, sine y and y0 are E-ompatible andfy; y0g\fx1; : : : ; xng = ? it follows that y and y0 are (E; x1:T1; : : : ; xn:Tn)-ompatible. By indution hypothesis, this and E; x1:T1; : : : ; xn:Tn ` �imply (E; x1:T1; : : : ; xn:Tn)fy y0g ` �. From fn(e) � dom(E) [f~xg it22

follows that fn(efy y0g) � dom(Efy y0g) [f~xg. By (Type Chan), thisand Efy y0g; x1:T1fy y0g; : : : ; xn:Tnfy y0g ` � implyEfy y0g ` Ch(x1:T1fy y0g; : : : ; xn:Tnfy y0g)(efy y0g);that is, Efy y0g ` (Ch(x1:T1; : : : ; xn:Tn)e)fy y0g.The arguments for the other rules are similar. 2A.3 Weakening, Exhange, SubstitutionWe prove three standard properties of the type system.Lemma 7 (Weakening) If E;E0 ` J , E ` T and x =2 dom(E;E0) thenE; x:T;E0 ` J .Proof An indution on the proof of E;E0 ` J .(Pro Cond)E;E0 ` y : U E;E0 ` y0 : U(E;E0)fy y0g ` Pfy y0g : eP fy y0g E;E0 ` Q : eQE;E0 ` if y = y0 then P else Q : eP _ eQDe�ne:D = Efy y0g D0 = E0fy y0g � dom(D) S = Tfy y0gThen sine x 62 dom(E;E0) we an use Lemma 5 to get that:(E;E0)fy y0g = (D;D0) (E; x:T;E0)fy y0g = (D; x:S;D0)By Lemma 6 we have that D ` S, so we an use indution to get:E; x:T;E0 ` y : UE; x:T;E0 ` y0 : UE; x:T;E0 ` Q : eQD; x:S;D0 ` Pfy y0g : eP fy y0gand so by Rule (Pro Cond) we have:E; x:T;E0 ` if y = y0 then P else Q : eP _ eQas required.The arguments for the other rules are standard. 2Lemma 8 (Exhange) If E; x:T; x0:T 0; E0 ` J and E ` T 0then E; x0:T 0; x:T;E0 ` J . 23

Proof By indution on the proof of E; x:T; x0:T 0; E0 ` J .(Pro Cond)E; x:T; x0:T 0; E0 ` y : U E; x:T; x0:T 0; E0 ` y0 : U(E; x:T; x0:T 0; E0)fy y0g ` Pfy y0g : eP fy y0gE; x:T; x0:T 0; E0 ` Q : eQE; x:T; x0:T 0; E0 ` if y = y0 then P else Q : eP _ eQDe�ne:D = Efy y0g D0 = E0fy y0g � dom(D; z:S; z0:S0)z = xfy y0g z0 = x0fy y0gS = Tfy y0g S0 = T 0fy y0gThen we an use Lemma 5 to get that:(E; x:T; x0:T 0; E0)fy y0g = (D; z:S; z0:S0); D0(E; x0:T 0; x:T;E0)fy y0g = (D; z0:S0; z:S); D0and we an use indution to get:E; x0:T 0; x:T;E0 ` y : UE; x0:T 0; x:T;E0 ` y0 : UE; x0:T 0; x:T;E0 ` Q : eQand Lemma 6 to get: D ` S0We have that: (D; z:S; z0:S0); D0 ` Pfy y0g : eP fy y0gIf we an show that:(D; z0:S0; z:S); D0 ` Pfy y0g : eP fy y0gthen we an use Rule (Pro Cond) to omplete. We onsider three ases:(1) z 2 dom(D) or z0 2 dom(D): In this ase, we have thatD; z:S; z0:S0 =D; z0:S0; z:S, so the result is immediate.(2) z = z0 =2 dom(D): This an only happen when x = y and x0 =y0, or when x = y0 and x0 = y. In either ase, by the hypoth-esis of Rule (Pro Cond), and the fat that z; z0 =2 dom(D), sox; x0 =2 dom(E), we have that T = T 0 = U , and so S = S0. Thus,D; z:S; z0:S0 = D; z0:S0; z:S, so the result is immediate.24

(3) z; z0 =2 dom(D) and z 6= z0: So (D; z:S; z0:S0) = (D; z:S; z0:S0) and(D; z0:S0; z:S) = (D; z0:S0; z:S), so we an use indution to get therequired result.The arguments for the other rules are standard. 2Lemma 9 (Substitution) If E; ~y:~T ;E0 ` J and E ` h~xi : h~y:~T i then we haveE; (E0f~y ~xg) ` (J f~y ~xg).Proof First show the result in the ase where ~x and ~y are of length 1, byappeal to Lemma 6 (Fusion). The result then follows by indution on the lengthof ~x and ~y. 2A.4 Proofs of Theorems 1 and 2This �nal appendix ontains proofs of the two theorems stated in the main bodyof the paper: subjet redution, Theorem 1, and safety, Theorem 2.We begin the development with two tehnial lemmas.Lemma 10 (Subsumption Elimination) If E ` P : e then for some e0 � e,E ` P : e0 is derivable without using the rule (Pro Subsum).Proof An indution on the proof of E ` P : e. 2Lemma 11 (� Elimination) If P ��! P 0 then for some Q � P and Q0 � P 0,Q ��! Q0 is derivable without using the rule (Trans �).Proof An indution on the derivation of P ��! P 0. 2Next, we show that strutural ongruene preserves typings.Proposition 1 (Subjet Congruene) If E ` P : e and P � Q then E `Q : e.Proof Prove by indution on the derivation of � that if P � Q then:(1) If E ` P : e then E ` Q : e.(2) If E ` Q : e then E ` P : e.This indution uses Lemmas 7 (Weakening), 1 (Free Names), 9 (Substitution),and 10 (Subsumption Elimination). 2We an now prove subjet redution.Proof of Theorem 1 Suppose E ` P : e.(1) If P ��! P 0 then E ` P 0 : e.(2) If P begin h~xi�����! P 0 then E ` P 0 : e+ [h~xi℄.25

(3) If P end h~xi����! P 0 then E ` P 0 : e� [h~xi℄, and h~xi 2 e.(4) If P gen hxi����! P 0 and x =2 dom(E) then E; x:T ` P 0 : e for some type T .Proof(1) If P ��! P 0 then by Lemma 11 (� Elimination):P � out xh~xi j inp x(~y:~T);Q j R P 0 � Qf~y ~xg j Rso by Proposition 1 (Subjet Congruene), Lemma 10 (Subsumption Elim-ination) and the type rules (Pro Par), (Pro Input) and (Pro Output),we have: E ` x : Ch(~y:~T)eC E ` h~xi : h~y:~T iE; ~y:~T ` Q : eQ E ` R : eR(eCf~y ~xg+ (eQ � eC) + eR) � e fn(eQ � eC) � dom(E)then by Lemma 9 (Substitution) and type rule (Pro Par) we have:E ` (Qf~y ~xg j R) : (eQf~y ~xg+ eR)so some multiset algebra and the ondition that fn(eQ � eC) � dom(E)gives: (eQf~y ~xg+ eR) � ((eC + (eQ � eC))f~y ~xg+ eR)= (eCf~y ~xg+ ((eQ � eC)f~y ~xg) + eR)= (eCf~y ~xg+ (eQ � eC) + eR)� eso by type rule (Pro Subsum) and Proposition 1 (Subjet Congruene):E ` P 0 : eas required.(2) If P begin h~xi�����! P 0 then by Lemma 11 (� Elimination):P � begin h~xi;Q j R P 0 � Q j Rso by Proposition 1 (Subjet Congruene), Lemma 10 (Subsumption Elim-ination) and the type rules (Pro Par) and (Pro Begin), we have:E ` Q : eQ E ` R : eRf~xg � dom(E) ((eQ � [h~xi℄) + eR) � eso by (Pro Par) we have:E ` (Q j R) : (eQ + eR)26

and some multiset algebra gives (eQ+eR) � (e+[h~xi℄) so by (Pro Subsum)and Proposition 1 (Subjet Congruene):E ` P 0 : e+ [h~xi℄as required.(3) If P end h~xi����! P 0 then by Lemma 11 (� Elimination):P � end h~xiQ j R P 0 � Q j Rso by Proposition 1 (Subjet Congruene), Lemma 10 (Subsumption Elim-ination) and the type rules (Pro Par) and (Pro End), we have:E ` Q : eQ E ` R : eRf~xg � dom(E) (eQ + [h~xi℄ + eR) � eby (Pro Par) we have: E ` (Q j R) : (eQ + eR)and some multiset algebra gives (eQ+eR) � (e�[h~xi℄) so by (Pro Subsum)and Proposition 1 (Subjet Congruene):E ` P 0 : e� [h~xi℄and h~xi 2 e as required.(4) If P gen hxi����! P 0 and x =2 dom(E) then by Lemma 11 (� Elimination):P � new(x:T);Q P 0 � Qso by Proposition 1 (Subjet Congruene), Lemma 10 (Subsumption Elim-ination) and the type rule (Pro Res), we have:E; x:T ` Q : eQ eQ � eso by (Pro Subsum) and Proposition 1 (Subjet Congruene):E; x:T ` P 0 : eas required. 2The next lemma is the entral fat needed in the proof of safety.Lemma 12 If E ` P : e and P s�! P 0 and gn(s) \ dom(E) = ? then ends (s) �begins (s) + e.Proof By indution on the derivation of P s�! P 0.27

(1) If P ��! P 00 t�! P 0 then by Theorem 1 (Subjet Redution), E ` P 00 : e, soby indution: ends (t) � begins (t) + eas required.(2) If P begin h~xi�����! P 00 t�! P 0 and f~xg \ gn(t) = ? then by Theorem 1 (SubjetRedution), E ` P 00 : e+ [h~xi℄, so by indution:ends (t) � begins (t) + e+ [h~xi℄so: ends (s) = ends (t)� begins (t) + e+ [h~xi℄= begins (s) + eas required.(3) If P end h~xi����! P 00 t�! P 0 and f~xg \ gn(t) = ? then by Theorem 1 (SubjetRedution), E ` P 00 : e� [h~xi℄ and h~xi 2 e, so by indution:ends (t) � begins (t) + e� [h~xi℄so: ends (s) = ends (t) + [h~xi℄� begins (t) + e� [h~xi℄ + [h~xi℄= begins (t) + e= begins (s) + eas required.(4) If P gen hxi����! P 00 t�! P 0 and fxg \ gn(t) = ? then by Theorem 1 (SubjetRedution), we have that E; x:T ` P 00 : e for some type T , so by indution:ends (t) � begins (t) + eso: ends (s) � begins (s) + eas required.(5) If P � P 0 then s = ", and so ends (s) = [℄ � e = begins (s) + e. 2Proof of Theorem 2 If E ` P : [℄ then P is safe.Proof For a ontradition, suppose P is not safe, that is, there is a traes and proess P 0 suh that P s�! P 0 but not ends (s) � begins (s). Withoutloss of generality, we may assume that gn(s) \ dom(E) = ? (we an alwayssuitably rename the freshly generated names). By Lemma 12, we have ends(s) �begins(s)+[℄, that is, ends(s) � begins(s), ontraditing the supposition. Hene,P is safe. 228

Referenes[AG99℄ M. Abadi and A.D. Gordon. A alulus for ryptographi protools:The spi alulus. Information and Computation, 148:1{70, 1999.[Bar92℄ H. Barendregt. Lambda aluli with types. In S. Abramsky, D.M.Gabbay, and T.S.E. Maibaum, editors, Handbook of Logi in Com-puter Siene, Volume II. Oxford University Press, 1992.[BB92℄ G. Berry and G. Boudol. The hemial abstrat mahine. TheoretialComputer Siene, 96(1):217{248, April 1992.[CM00℄ E. Clarke and W. Marrero. Using formal methods for analyzing se-urity. Available at http://www.s.mu.edu/�marrero/abstrat.html,2000.[CWM99℄ K. Crary, D. Walker, and G. Morrisett. Typed memory managementin a alulus of apabilities. In 26th ACM Symposium on Priniplesof Programming Languages, pages 262{275, 1999.[DG00℄ S. Dal Zilio and A.D. Gordon. Region analysis and a �-aluluswith groups. InMathematial Foundations of Computer Siene 2000(MFCS2000), volume 1893 of Letures Notes in Computer Siene,pages 1{21. Springer, 2000.[FA99℄ C. Flanagan and M. Abadi. Objet types against raes. In J.C.M.Baeten and S. Mauw, editors, CONCUR'99: Conurreny Theory,volume 1664 of Letures Notes in Computer Siene, pages 288{303.Springer, 1999.[GH98℄ A.D. Gordon and P.D. Hankin. A onurrent objet alulus: Redu-tion and typing. In Proeedings HLCL'98, ENTCS. Elsevier, 1998.[GJ01℄ A.D. Gordon and A. Je�rey. Authentiity by typing for seurityprotools. In 14th IEEE Computer Seurity Foundations Workshop.IEEE Computer Soiety Press, 2001. To appear.[GL86℄ D.K. Gi�ord and J.M. Luassen. Integrating funtional and imper-ative programming. In ACM Conferene on Lisp and FuntionalProgramming, pages 28{38, 1986.[HVK98℄ K. Honda, V. Vasonelos, and M. Kubo. Language primitives andtype disipline for strutured ommuniation-based programming.In European Symposium on Programming, volume 1381 of LeturesNotes in Computer Siene, pages 122{128. Springer, 1998.[HVY00℄ K. Honda, V. Vasonelos, and N. Yoshida. Seure information owas typed proess behaviour. In European Symposium on Program-ming, Letures Notes in Computer Siene. Springer, 2000.29

[IK01℄ A. Igarashi and N. Kobayashi. A generi type system for the pialulus. In 28th ACM Symposium on Priniples of ProgrammingLanguages, pages 128{141, 2001.[Kob98℄ N. Kobayashi. A partially deadlok-free typed proess alulus. ACMTransations on Programming Languages and Systems, 20:436{482,1998.[Lu87℄ J.M. Luassen. Types and e�ets, towards the integration of fun-tional and imperative programming. PhD thesis, MIT, 1987. Avail-able as Tehnial Report MIT/LCS/TR{408, MIT Laboratory forComputer Siene.[MCJ97℄ W. Marrero, E.M. Clarke, and S. Jha. Model heking for seurityprotools. In DIMACS Workshop on Design and Formal Veri�ationof Seurity Protools, 1997. Preliminary version appears as Tehni-al Report TR{CMU{CS{97{139, Carnegie Mellon University, May1997.[Mil99℄ R. Milner. Communiating and Mobile Systems: the �-Calulus.Cambridge University Press, 1999.[NPS90℄ B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of 's Type Theory: An Introdution. Oxford University Press, 1990.[PS96℄ B. Piere and D. Sangiorgi. Typing and subtyping for mobile pro-esses. Mathematial Strutures in Computer Siene, 6(5):409{454,1996.[SS00℄ C. Skalka and S. Smith. Stati enforement of seurity with types. InP. Wadler, editor, 2000 ACM International Conferene on FuntionalProgramming, pages 34{45, 2000.[THK94℄ K. Takeuhi, K. Honda, and M. Kubo. An interation-based languageand its typing system. In Proeedings 6th European Conferene onParallel Languages and Arhiteture, volume 817 of Letures Notesin Computer Siene, pages 398{413. Springer, 1994.[TT97℄ M. Tofte and J.-P. Talpin. Region-based memory management. In-formation and Computation, 132(2):109{176, 1997.[WL93℄ T.Y.C. Woo and S.S. Lam. A semanti model for authentiationprotools. In IEEE Symposium on Seurity and Privay, pages 178{194, 1993.
30

