Authenticity by Typing for Security Protocols

Andrew D. Gordon Alan Jeffrey
Microsoft Research DePaul University

May 2001

Technical Report
MSR-TR-2001-49

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Publication History

A portion of this work will appear in the proceedings of théth IEEE Computer
Security Foundations Workshop (CSFW ,1@ppe Breton, June 11-13, 2001. The
proceedings will be published by the IEEE Computer Society.

Affiliation
Alan Jeffrey is with DePaul University. The two authors cdeted part of this work at
Microsoft Research in Cambridge and part at DePaul UnigeirsiChicago.

Abstract

We propose a new method to check authenticity propertiesyptagraphic
protocols. First, code up the protocol in the spi-calculti®\badi and Gordon.
Second, specify authenticity properties by annotatingctbde with correspon-
dence assertions in the style of Woo and Lam. Third, figureypgs for the keys,
nonces, and messages of the protocol. Fourth, check thapifealculus code is
well-typed according to a novel type and effect system miteskin this paper. Our
main theorem guarantees that any well-typed protocol igstyp safe, that is, its
correspondence assertions are true in the presence of popant expressible in
spi. Itis feasible to apply this method by hand to several-bwn cryptographic
protocols. It requires little human effort per protocoltpuo bound on the size
of the opponent, and requires no state space enumeratiaeoliw, the types for
protocol data provide some intuitive explanation of how phetocol works. This
paper describes our method and gives some simple examplesné&hod has led
us to the independent rediscovery of flaws in existing prtoand to the design
of improved protocols.

Contents

1 Verifying Correspondences by Typing Spi 1
2 Programming Protocols 3
2.1 ReviewoftheSpi-Calculus 4
2.2 ProgramminganExample 6
3 Specifying Protocols 7
3.1 A Spi-Calculus with Correspondence Assertions 7
3.2 Specifyingthe Example 9
3.3 FixingtheExample 10
4 Typing Protocols 11
4.1 TypesforMessages i 11
4.2 EffectsforProcesseso 13
4.3 TypingRules 18
4.4 TypingtheExample 24
5 Further Protocol Examples 25
6 Summary and Conclusion 26
A Protocol Examples 27
A.1 Abadiand Gordon’s Variant of Wide MouthFrog 27
A.2 Woo and Lam’s Authentication Protocol 32
A.3 Otway and Rees’s Key Exchange Protocol 35
A.4 A Secure Message Stream 36
A.5 AbbreviationsUsedinExamples 8 3
B Formal Semantics of our Typed Spi-Calculus 40
B.1 A Trace Semantics for our Spi-Calculus 40
B.2 Correspondence Traces and Safe Processes44
B.3 ProofofSubjectReduction 46
B.4 ProofofSafety 55

References 63

1 Verifying Correspondences by Typing Spi

We propose a new method for analysing authenticity progedf cryptographic pro-
tocols. Our proposal builds on and develops two existingsd&Voo and Lam’s idea
of correspondence assertions for specifying authenticgtioperties of protocols [41],
and Abadi’s idea of checking security properties of crypamipic protocols by type-
checking [1].

Woo and Lam’s idea of correspondence assertions is verylsingtarting from
some description of the sequence of messages exchangethbipais in a protocol,
we annotate it with labelled events marking the progressascheprincipal through
the protocol. Moreover, we divide these events into two &jrzkgin-events and end-
events. Event labels typically indicate the names of theqgipals involved and their
roles in the protocol. For example, before running a prdtazauthenticate its pres-
ence to another princip@, an initiator A asserts a begin-event labelled “initiatér
authenticating itself to respondBft. After satisfactory completion of the protocol, the
principal B asserts an end-event with the same label. A protocol satitfése asser-
tions ifin all protocol runs, and in the presence of a hostiponent, every assertion of
an end-event corresponds to a distinct, earlier asserfiarbegin-event with the same
label. The hostile opponent can capture, modify, and replessages, but cannot forge
assertions.

Woo and Lam’s paper [41] describes a formal semantics farespondence as-
sertions but suggests no verification techniques. Mar@larke, and Jha [30] base
a model-checker for security protocols on correspondessertions. This paper for-
malises correspondence assertions as new commands in-tteapus [3], a concur-
rent programming language equipped with abstract formsygitographic primitives.
We expect it would not be difficult to adapt the techniqueshig paper to other con-
current languages.

There is a variety of different formulations of authentigitroperties of protocaols,
and even a little controversy [6, 16, 27, 13]. Still, we adomtrespondence assertions
because they are simple, precise, and flexible. They ardesiammotations of a pro-
tocol expressed as a program. They have a precise semdrttegare flexible in the
sense that by annotating a protocol in different ways we ganess different authen-
ticity intentions and guarantees. Correspondence asssréllow us to express what
Lowe [27] calls injective agreement between protocol rulmsa formal comparison
of authenticity properties, Focardi, Gorrieri, and Magtin[14] formulate a property
that systematically generalises the equational propgutieved in the original work on
spi [3], and show that this generalisation is strictly weakan agreement. Therefore,
there is some evidence that the authentication propent@sed in this paper are at
least as strong as in the original work.

By verifying suitable correspondence assertions, our atetian rule out problems
such as vulnerability to replay attacks or confusions ohiilg Still, like most other
formal methods for analysing authenticity protocols, o@timod deliberately abstracts
from the details of the underlying encryption algorithmsgd aherefore cannot detect
protocol weaknesses deriving from inadequacies in thegeitims.

Abadi’s idea of type-checking secrecy properties of crgpaphic protocols in the
spi-calculus is part of a surge of interest in types for séguiOther work includes

type systems for checking untrusted mobile code [26, 32, ft®]checking access
control [25, 37], and, most recently, other type systemscfgptographic primitives
[35, 2]. Abadi’s original system establishes secrecy prige and features some un-
usual constructs that allow any opponent to be type-chedigd paper develops some
of the constructs in Abadi’s system, and proposes a new typeffect system [15, 29]
for the spi-calculus. For a well-typed program containingespondence assertions, a
type safety theorem guarantees the program satisfies theiass.

Our new method is the following. First, code up the protoecadihie spi-calculus.
Second, specify authenticity properties expected of tbeoppl by annotating the code
with correspondence assertions. Third, figure out typethfokeys, nonces, and mes-
sages of the protocol. Fourth, check that the spi-calcudds is well-typed. The type
safety theorem guarantees the soundness of the autheptiofierties specified in the
second step. The theorem asserts these properties hokl imebence of an opponent
represented by an arbitrary spi process. Therefore, agliimit of the theorem is that
it does not rule out attacks that cannot be expressed in treakulus. On the other
hand, it does not limit the size of the attacker in any way. \&eshapplied this method
to several protocols by hand, and have re-discovered somerkftaws.

Our method is one of only a few formal analyses that requitie lhuman effort
per protocol, while putting no bound on the size of the protac opponent. Other ex-
amples include Song’s mechanisation [38] of strand spa&%s lHeather and Schnei-
der’s algorithm [24, 22] for computing Schneider’s rank dtians [36], and Cohen'’s
resolution-based theorem prover TAPS [10]. Non-exampielsidle most approaches
based on model-checking [28], which are automatic but recabunds on the size of
the opponent or the protocols, and most approaches basedanmem-proving [8, 34],
which impose no bound on opponent or protocol size, but redangthy and expert
human intervention.

Our method is also one of only a few where analysing a protimeolves no ex-
ploration or enumeration of the possible states or messagbg protocol, and so is
decidable even for protocols with no bound on the size of threjpals. The only other
such methods we know of are those based on proof-checkireg lmgics [9, 17]. Like
constructing a proof in a belief logic, the work of devisilypes for a protocol in our
system amounts to writing down a formal argument explairtiregprotocol. Failing
to find a proof or a typing can suggest possible attacks onriegol. Unlike most
belief logics, our method has a precise computational basis

In this paper, we only consider type checking, not type sssith Type checking
(where the computer checks user-defined typings) is easdliy £0 be decidable, and
provides a straightforward top-down algorithm for protorification. Type synthesis
(where the computer derives the typings itself) would belbar

In summary, our new method enjoys a rare and attractive awatibn of strengths:

It needs little human effort per protocol.

It puts no bound on the size of the principals.
It needs no state space enumeration per protocol.

It has a precise computational foundation.

It is decidable.

On the other hand, the type system on which our method is beelimitations. Like
all type systems, it is incomplete in the sense that pesferedll-behaved code can
fail to type-check. For example, we have found that certaswf nonces cannot be
type-checked. Our system is also limited to symmetric-kgptography. We leave the
study of types for other cryptographic primitives as futwak.

The new technical contribution of this paper is a type andaffystem for prov-
ing correspondence assertions that supports the cryptoigrarimitives of the spi-
calculus. A series of examples supports its usefulnessarieework [18], we pro-
posed a type system for proving correspondence assertmmg aon-cryptographic
communication protocols in thecalculus. The system of the present paper copes
with untrusted opponents, encryption primitives, and syaaisation via nonce hand-
shakes, additional features essential for cryptograpioimpols.

Contents of this Paper

Section 2 presents the spi-calculus, and illustrates progring of security protocols.
Section 3 extends the spi-calculus with correspondeneetasss, and shows how they
can specify authenticity properties. Section 4 descrihgstype and effect system.
Section 5 discusses further examples. Section 6 concludes.

2 Programming Protocols

This section reviews the syntax and informal semanticse$fii-calculus, and explains
how to express a simple protocol example as a spi-calcuagram.

Milner, Parrow, and Walker's-calculus [31] is a parsimonious formalism for con-
currency. It explains many different kinds of computationrieducing them to ex-
changes of names on communication channels. An importastiteent of the calcu-
lus is a name generation operator for generating fresh namigsh identify commu-
nication channels.

Abadi and Gordon'’s spi-calculus [3] is an extension oftihealculus with abstract
forms of encryption and decryption, akin to the idealisesins introduced by Dolev
and Yao [12]. The atomic names of the spi-calculus repretentandom numbers
of cryptographic protocols, such as encryption keys ancesnas well as channels.
The name generation operator abstractly represents #tedemeration of unguessable
random numbers such as keys and nonces. We can describegragtic protocols by
programming them in the spi-calculus.

There are several existing spi-calculus techniques, ssicloions of bisimulation,
for reasoning about authenticity properties. The new dauttion of this paper is a type
system for reasoning about authenticity. Our preliminaqysgience is that establish-
ing authenticity properties by typing is much less labouemsive than constructing
bisimulations.

2.1 Review of the Spi-Calculus

There are in fact several versions of spi. The main diffeedyetween the spi-calculus
presented in this section and the original version [3] isé¢a&h binding occurrence of a
name is annotated with a typE, (We postpone defining the set of types till Section 4.)
Choosing these type annotations is part of our verificatiethod; they are needed for
type-checking processes, but do not affect the runtimevietieof processes.

We assume an infinite set of atomic names or variables, raogedbym, n, X,
y, andz. For the sake of simplicity in presenting our type systeris, #ersion of the
spi-calculus, unlike the original, does not distinguisimea from variables. The set of
messages, which includes the set of names, is given by tinengaain the following
table.

Names and Messages:

m,n,x,y,z name: variable, channel, nonce, key
L,M,N ;= message

X name

(M,N) pair

O empty tuple

inl (M) left injection

inr (M) right injection

{M}n encryption

e A messagé€M,N) is a pair, and) is an empty tuple. With these primitives we
can describe any finite record.

e Messagesnl (M) andinr (M) are tagged unions, differentiated by the distinct
tagsinl andinr. With these primitives we can encode any finite tagged union.

e A messagg M}y is the ciphertext obtained by encrypting the plaintextwith
the symmetric ke\.

We regard messages as abstract representations of thergjs shanipulated by cryp-
tographic protocols. We assume there is enough redundartiog format that we can
tell apart the different kinds of messages.

Free names of a messaga(M):

e > =
=
5S35z
)
T=C
CcC —
>

=2

zZ

=

- —h
>
—
<
4
~
>
—_
>
—~
<
~
—
>
—~
Z
~

We write M{x<N} for the outcome of a capture-avoiding substitution of thesage
N for each free occurrence of the nari@ the messaghl.
The set of processes is defined by the grammar:

Processes:

I

O,PQ,R::= process
out M N output
inpM (xT);P input
split M is (xT,y:U);P pair splitting
case Misinl (xT) Pisinr (y:U) Q union case
decrypt M is {xT }n;P decryption
check M is N; P name-check
new (x:T);P name generation
P|Q composition
repeat P replication
stop inactivity

These processes are:

e Processesut M N andinp M (x:T); P are output and input, respectively, along

an asynchronous, unordered charivielf an outputout X N runs in parallel with
an inputinp X (y); P, the two can interact to leave the residual pro¢&ss—M}.

e Aprocessplit M is (x:T,y:U); P splits the paiM into its two components. ¥

is (N, L), the process behaves@éx«N}{y«L}. Otherwise, it deadlocks, that
is, does nothing.

e Aprocesgase Misinl (xT) Pisinr (y:U) Q checks the tagged unid. If M is

inl (L), the process behavesR&x«L}. If M isinr (N) it behaves a®{y«N}.
Otherwise, it deadlocks.

e Aprocesslecrypt M is {x:T }n;P decryptaM using keyN. If M is {L}n, the pro-

cess behaves #{x+L}. Otherwise, it deadlocks. We assume there is enough
redundancy in the representation of ciphertexts to detaygtion failures.

e A processcheck M is N;P checks the messagét andN are the same name

before executing. If the equality test fails, the process deadlocks.

e Aprocessew (X:T); P generates a new namgwhose scope iB, and then runs

P.

e A processP | Qruns processeBandQ in parallel.
e A processrepeat P replicatesP arbitrarily often. Sorepeat P behaves likeP |

repeat P.

e The processtop is deadlocked.

Each binding occurrence of a name bears a type annotati@seTtiipes play a role in
type-checking but have no role at runtime; they do not atfeebperational behaviour
of processes. In examples, for the sake of brevity, we sonestomit type annotations.

Free names of a procest(P):

fn(out M N = fn(M) Ufn(N)

fn(inp M (xT);P £ fn(M) Ufn(T) U (fn(P) — {x})

fn@MhMisuﬂijXP)éfMM)UﬁKT)UUMU)—{ﬂ)UUMP)—{&yD

fn@%eMiﬂnHKT)Pbim(MU)Q)éfMM)UﬁKT)UUMP)—{ﬂ)U
fn(U) U (fn(Q) — {y})

fn(decrypt M is {x: T}N P) = fn(YUn(T)ufn(N) U (fn(P) — {x})

fn(check M is N; P) = fn(YUfn(N)ufn(P)

f(new (xT);P) £ n(T) U (fn(P) — {x})

fn(P| Q) = fn()ufn(Q)

fn(repeat P) = fn()

n(stop)

We write P{x«N} for the outcome of a capture-avoiding substitution of thessage
N for each free occurrence of the naman the proces®. We identify processes up
to the consistent renaming of bound names, for example whgem(P), we equate
new (XT);P with new (y:T); (P{x«y}). We will often elidestop from the end of
processes, and we will writeut X M; P as shorthand fosut x M | P.

2.2 Programming an Example

This section shows how to program a simple cryptographitopd in spi. The proto-
col is intended to allow a fixed principAlto send a series of messages to another fixed
principal B via a public channel, assuming they both share a secreKkelhe idea
is simply thatA encrypts each message. Of course, for many purposes thecplro
is actually far too simple: it is vulnerable to an attackdemepting and replaying a
message, so th& may accept the message twice thougkent it just once. In the
next section, we introduce correspondence assertionsetofgghatB should accept
a messag®l no more times thai sentM, and we discuss a standard guard against
replay attacks, based on nonces.

In a common notation, we can summarise this flawed protociullsvs:

Messagel A—B: {M}k

Although standard, this notation leaves implicit detaflbath protocol behaviour and
security goals. One of the original purposes of the spitdafwas to make protocol
behaviour explicit in an executable format. We can progrhenfirotocol in spi as
follows.

First, we describe the behaviour of the sender and receiver.

FlawedSendénetkey = FlawedReceivénet key) =

repeat repeat
new (MsQ; inp net(ctexd;
out net{msg ey decrypt ctextis {msg ey

These are:

e The proces$lawedSendénet key) is the sendeA, parameterized onet (the
name of the public channel) afkdy(the shared secret key). It repeatedly gener-
ates a fresh nammasg and then sends the ciphertgxbsg ey 0N the publionet
channel.

(In passing from the informal notation to the spi-calculvs, have determined
that the plaintexts of the sent messages are freshly gederather than say be-
ing predetermined. It is easy to adapt this process to taike af predetermined

plaintexts as parameter.)

e The proces$-lawedReceivénetkey) is the receiveB, parameterized onet
andkey It repeatedly receives a message on the puldichannel, binds it to
variablectext and attempts to decrypt it with kéey.

We specify the behaviour of the whole system running in tleéqmol by generating a
fresh naméey—the shared secret key—and then by placing the sender agigeemn
parallel.
FlawedSystefmet dong =
new (key);
(FlawedSendénet key) | FlawedReceivénet key))

Most protocols analysed with the spi-calculus have beegraromed in this style.

3 Specifying Protocols

Woo and Lam [41] introduce correspondence assertions, laodéor specifying pro-
tocol authenticity properties, such as properties thavinated by replay or man-in-
the-middle attacks. The method depends on principals tasgéabelled begin- and
end-events during the course of a protocol. The idea is #wlt end-event should cor-
respond to a distinct, preceding begin-event with the sanel| Otherwise there is an
error in the protocol.

To formalize these ideas, in Section 3.1, we enrich our afitdus with assertions
of begin- and end-events. Then, in Section 3.2, we illusthatv to specify an authen-
ticity property of our example protocol, and show in facttttiee protocol is flawed. In
Section 3.3 we fix the flaw by adding a standard nonce handshake

3.1 A Spi-Calculus with Correspondence Assertions

First, we introduce the following notation for events, @pinessages as labels.

Events:

I 1
begin L begin-event labelled with message

end L end-event labelled with messalge

L

Second, we add processes to assert begin- and end-events.

Processes:

I

O,PQ,R::= process
as in Section 2.1
begin L;P begin-assertion
end L;P end-assertion

Assertions are autonomous in that they act independentthowi any synchronisation
with other processes.

e The begin-assertiobegin L;P autonomously assertsbagin L event, and then
behaves aB.

e The end-assertioend L;P autonomously asserts and L event, and then be-
haves a®.

Free names of a procest(P):

Ifn(begin M;P) £ fn(M) Ufn(P)
fn(end M) = fn(M)

Given this informal semantics, we give an informal definitiof process safety. (We
formalize these definitions in Appendix B via a trace senuarftr the spi-calculus.)

Safety:
I

A processP is safeif and only if
for every run of the process and for evéry
there is a distincbegin L event for everyend L event.

For example:

e Processegin L;end L is safe.
e Processdegin L;end L;end L is unsafe because of the unmatcleed L.

e Procesdegin L;begin L;end L is safe; the unmatcheskgin L does not affect
safety.

e Processbegin L;begin L;end L;end L is safe; here there are two correspon-
dences, both namedd

e Processegin L;end L;begin L’;end L' is safe.
e Processdegin L;end L';begin L';end L is unsafe.

Safety does not require begin- and end-assertions to bepydpacketed:

e Processbegin L;begin L’;end L";end L is safe.
e Processegin L;begin L’;end L;end L' is safe.

Finally, consider the parallel procebsgin L | end L. This process either asserts a
begin L event followed by arend L event, or it asserts and L event followed by a
begin L event. Because of the latter run, the process is unsafe.

We are mainly concerned not just with safety, but with safetthe presence of
an arbitrary hostile opponent, which we call robust saféfhis use of “robust” to
describe a property invariant under composition with aiitiamty environment follows
Grumberg and Long [20]). In the untyped spi-calculus [3& dtipponentis modelled by
an arbitrary process. In our typed spi-calculus, we do nosicer completely arbitrary
attacker processes, but restrict ourselvesgponentprocesses that satisfy two mild
conditions:

e Opponents cannot assert events: otherwise, no process Wweubbustly safe,
because of the opponentd x.

e Opponents are not required to be well-typed: we model thigyues typeUn for
untyped, untrusted data. This is discucssed further in@edt

Opponents and Robust Safety:

A processP is assertion-freef and only if
it contains no begin- or end-assertions.
A processP is untypedf and only if
the only type occurring i is Un.
An opponent As an assertion-free untyped process.
A processP is robustly saféf and only if
P| Ois safe for every opponefi.

3.2 Specifying the Example

Recall the protocol example of Section 2.2. Two fixed priatsp andB share a kek
with which A sends a sequence of messageB.té/e introduce begin- and end-events
labelledM for each messagel. The sender asserts a begin-event labdifedefore
sendingV, and the receiver asserts an end-event lab#ladter successfully receiving
a messag#l.

We express this idea informally as follows:

Event 1 Abegins M
Messagel A—»B: {M}k
Event 2 Bends M

We express the idea formally by inserting assertion preseisdgo the spi-calculus de-

scriptions of the sender and receiver. We update our defirsitas follows.

CheckedSend@ret key) = CheckedReceivatet key) =

repeat repeat
new (MsQ; inp net(ctexp;
begin msg decrypt ctextis {MSQG key;
out net{msg ey end msg
CheckedSysteimet) =
new (key);

(CheckedSendéret key) | CheckedReceivéret key))

Next, we precisely state the authenticity property we @dgiut that is actually violated
by the protocol).

Authenticity: The proces€heckedSysteimet) is robustly safe. (Breaks.)

If the protocol is safe, eacdnd msghas a distinct correspondibggin msg and there-
fore B accepts each message no more times gsent it. Moreover, if the protocol is
robustly safe, no attacker can violate this property.

Itis easy to prove that this protocol is safe, since the paltisself never duplicates
messages. Still, the protocol is not robustly safe sincetatda attacker can violate
this safety property.

Attacke(net) =
inp net(ctexd; out net(ctexd); out net(ctex

Here is an unsafe run of the proce&3iseckedSystegmet) | Attackefnet). The sender
CheckedSendéret key) generates a nanmasg performs a singléegin msg event,
and sends the ciphertexinsgkey 0N net The attackerAttackenet) receives this
message, and then sends two copies afieinThe receiver then receives one of these
copies, successfully decrypts it, and assertsidmsgevent. So far so good. But now
another iteration of the body @heckedReceivéret key) receives the second copy,
successfully decrypts it, and asserts anotmer msgevent. Because of the second
end-event is unmatched, the run breaks the authenticipeptpdisplayed above.

3.3 Fixing the Example

A standard countermeasure against replay attacks is toda@dnonce a randomly
generated bit-string, in each ciphertext to ensure itsuenigss. The following variant
of our protocol is now initiated by the receiver, who sendsa nonceN to the sender,
to guard against replays of the encrypted form of the medghage

Event 1 Abegins M
Messagel B—+A: N
Message2 A—B: {M,N}k
Event 2 Bends M

10

In the spi-calculus, nonces are represented by names, aatioer of fresh nonces by
name generation. We program the revised protocol as follows

FixedSenddnetkey) = FixedReceivgnet key) =

repeat repeat
inp net(nonce; new (nonce;
new (MsQ; out net nonce
begin msg inp net(ctexy;

out net{msgnonce ey decrypt ctext
is {msgnoncé}yey;
check nonceis noncé;
end msg

The processheck nonceis noncé; P checks thahonceandnoncé are the same name
before executing. For the sake of simplicity, in this example and others inghper
we omit error recovery code: upon receiving a ciphertexta&ioing an unexpected
nonce, an instance of the receiver just terminates. Theadystem and its authenticity
property are now:
FixedSystermet) £

new (key);

(FixedSenddnet key) | FixedReceivenet key))

Authenticity: The proces§ixedSystetmet) is robustly safe.

Given our modifications, this property is true. A direct prapossible, but tricky,
since we must quantify over all possible attackers. Theimalgoaper on the spi-
calculus includes a verification via equational reasonihg protocol similar to that
embodied inFixedSysteifmet). The point of our type system, presented next, is to
provide an efficient way of proving this specification, andess like it.

4 Typing Protocols

This section describes the heart of our method for analyasiniyenticity properties of
protocols: a dependent type and effect system for statiwaliifying correspondence
assertions by type-checking.

Section 4.1 and Section 4.2 explain informally how to typessages and how
to ascribe effects to processes, respectively. We prebkeriype and effect system
formally in Section 4.3. Finally, in Section 4.4 we explaiovhto type the assertions
in the example of the previous section.

4.1 Types for Messages

There is an objection in principle to a security analysiseblasn type-checking pro-
cesses: it may be reasonable to assume that honest princpdbrm to typing rules,
but it is imprudent to assume the same of the opponent. Asqusly discussed, our

11

general model of the opponent is any untyped, assertiangitecess. The objection to
a typed analysis is that we may miss attacks by ruling outge®es that happen not to
conform to our typing rules. On the internet, famously, ndp&nows you're a dog.
Likewise, nobody knows your code failed the type-checker.

To answer this objection, Abadi [1] introduces antrusted typgwhich we call
Un) for public messages, those exposed to the opponent. Evesyage and every op-
ponentis typable if all their free variables are assignediintype. The type represents
the unconstrained messages that an arbitrary processutetef Since any opponent
can be typed in this trivial way we have not limited the poweogponents.

To illustrate this, here are some informal typing rules fassages and processes
(for brevity, we elide some technical requirements on frames). Messages of the
Un type may be output, input, paired, split apart, encrypted, decrypted, with no
constraints.

e If M:UnandN : Unthenout M N is well-typed.

e If M : Un andP is well-typed therinp M (x:Un); P is well-typed.

e If M: UnandN : Un then(M,N) : Un.

e If M : Un andP is well-typed thersplit M is (x:Un,y:Un); P is well-typed.
e If M:UnandN: Unthen{M}y : Un.

e If M: Un andN : Un andP is well-typed therdecrypt M is {x:Un}n;Pis
well-typed.

When modelling protocols, we assume that all the names arsdages exposed to
the opponent—representing public data and channels—attgsofype. Names and
messages not publicly disclosed may be assigned other, typ@sn agrusted types
Messages of the trusted typey(T) are symmetric keys for encrypting messages
of type T. When encrypting with &ey(T), the plaintext must have typke, and the
resulting ciphertext is given untrusted type. Using theswdbove fotn, we can send
and receive ciphertexts on untrusted channels. When déugywith a Key(T), if
we succeed we know the plaintext must have been encryptédiégtsame key, and
therefore our typing rules assign it type

e If M: T andN : Key(T) then{M}n : Un.

e If M: Un andN : Key(T) andP is well-typed therdecrypt M is {x:T }n;P is
well-typed.

The remaining trusted types are more standard. Messagggesth(T) are channels
communicating data of typ€. Messages of typexT,U) are dependent pairs where
the first element has typ€ and the second element has tyype The variablex is
bound, and has scopé. (The need for such dependent types arises later, when we
introduce a type for nonces.) The only message of the emply type() is the empty
tuple(). Messages of typ€ + U are tagged unions. A union of tyfe+ U is either of

the forminl (M) whereM has typeT, or of the forminr (N) whereN has typeJ. As

a technical convenience, to simplify some abbreviatiotr®@duced in Appendix A.5,

we introduce the empty typ®, There are no messages of this type. Other base types

12

such adnt or boolean could easily be added to this language: we expect they would
produce no technical difficulties.

Types:

T,U = type
Un untrusted type
Key(T) shared-key type
Ch(T) channel type
O empty tuple type
(xT,U) dependent pair type
T+U variant type
0 empty type

For example:

e Key(Un): key for encrypting untrusted data
e Ch(Un): channel for communicating untrusted data

e Key(Key(Un) + Ch(Un)): key for encrypting either a key for encrypting un-
trusted data or a channel for communicating untrusted data

4.2 Effects for Processes

Our effect system tracks the unmatched end-assertionsmicg$s. In its most basic
form, our main judgment
P:lend Ly,...,end Ly]

means that the effe¢énd Lj,...,end Ly], is an upper bound on the multiset (or un-
ordered list) of end-events thBtmay assert without asserting a matching begin-event.
Hence, ifP : [] then every end-event if has a matching begin-event, thatfsis safe.

Let e stand for amatomic effect One kind of atomic effect isnd L. The second
kind is check N; we explain later its use to track nonce name-checking.ekstand
for aneffect that is, a multisefey, . . .,e,] of atomic effects. We writes+ es for the
multiset union of the two multisetssandes, that is, their concatenation. We write
es— es for the multiset subtraction afs from es that is, the outcome of deleting an
occurrence of each atomic effectés from es If an atomic effect does not occur in
an effect, then deleting the atomic effect leaves the etfachanged.

Tracking Correspondences in Sequential Code

Given this notation, the typing rules fbegin L; P andend L; P are essentially:

e If P:esthenbeginL;P: (es— [end L]).
e If P:esthenend L;P: (es+ [end L]).

These rules are enough to check correspondences in sexjueule, for example:

e endL:[end L]

13

e beginL;end L:[]

e endL;endL:[end L,end L]

e beginL;end L;end L : [end L]

e begin L;begin L;end L;end L : []

Transferring Effects between Parallel Processes

Our rules for assigning effects to communications and caitipns are similar to those
in previous work on effect systems for thecalculus [11, 18].

e If M:Ch(T)andN : T thenout M N : [].
e If M: Ch(T) andP: estheninp M (x:T);P: es
e If P:epandQ:exthenP | Q: (ep+eg).

When computing the effect of the compositBhQ of two processes, we simply com-
pute the multiset union of the effects of the processes. f&sin itself does not
allow a begin-assertion iR, say, to account for an end-assertionQn For exam-
ple, the parallel compositiobegin L | end L has effecfend L], while in contrast the
sequential compositiohegin L;end L has effec]. In the parallel case, we cannot
assume that the begin-event precedes the end-event so weongsrvatively assign
the effectlend L]. In the sequential case, the syntax guarantees that the-begnt
precedes the end-event so we can assign the éffeGomehow we need to be able
to show that temporal precedences are established betwealtepprocesses. Recall
our FixedSystenexample: we need to show that a distibetin msgprecedes each
end msg even though these assertions are running in parallel.

Typing Nonce Handshakes

A nonce handshake guarantees temporal precedence betwargn | parallel pro-
cesses. In this paper, we consider a particular idiom focadrandshakes, referred to
by Guttman and Thayer &scoming test$21]. Other idioms are possible, for example
Guttman and Thayer'sutgoing testsbut we leave these for future work. Incoming
tests break down into several steps.

(1) The receiver creates a fresh nonce and publishes it.

(2) The sender embeds the nonce in a ciphertext.

(3) The receiver looks for the nonce in a received ciphertéihding the nonce
encrypted under a shared private key proves the sendertlsegenerated the
ciphertext. If this is the first and only time the nonce is fdutiere is a one-to-
one correspondence between finding the nonce and the erehtiee ciphertext
by the sender.

(4) To avoid vulnerability to replay of messages contairtimg nonce, the receiver
subsequently discards the nonce and no longer looks for it.

We type-check these four steps as follows.

14

(1)

()

3)

(4)

The receiver creates the norid¢én the untrusted typ&n. This allows the nonce
to be sent on an untrusted channel, and reflects that it caatb&ed and copied
by the opponent as well as the sender.

The sender embeds the nonce in a ciphertext as a messagewftrusted type
Nonce es whereesis an effect. The sender casts the noNceJn to this trusted
type using the new processst N is (x:Nonce e9;P. At runtime, this process
simply binds the messagd¢to the variablex of type Nonce es and then rung.
The sender uses the variablto embed the nonce in the ciphertext.

After decrypting a ciphertext containing a noite Nonce es the receiver uses

a name-checkheck N is N’;Q to check for the nonc&l : Un which it made
public earlier. Only a cast can populate the tyypence es So the presence
of the messag8l’ : Nonce esproves there was a preceding execution of a cast
process. Our type system ensures that at most one name{otoagss checks
for the presence of each nonide Un. Therefore, if the check succeeds, we are
guaranteed a one-to-one correspondence between the amtkeapreceding
process that cadt into the typeNonce es Note that the safety of this step relies
on global agreement between the trusted participants dettypes of each of
the messages.

To guarantee that each nordeés the subject of no more than one name-check,
we introduce a new atomic effect, writteheck N. In general, our main judg-
ment takes the form,

P:[end L1,...,end Lm,check N, ..., check Ny]

and means the multispind L1, . ..,end Ly] is an upper bound on the end-events
P asserts without previously asserting a correspondingnbegent, and that
the multisetcheck Ny, ...,check Ny] is an upper bound on the multiset of free
nonces name-checked By We includecheck N in the effect of a name-check
check N'is N’; Q on a nonceN. When checking name generatiosw (N:Un); P,

we check thatheck N occurs at most once in the effect®f This guarantees
that each free name is the subject of no more than one nanok-che

In summary, our type and effect system provides a solutidhégroblem of guaran-
teeing temporal precedences between parallel processevefry successful execution
of a processheck N is N’; Q, whereN’ : Nonce es there is a distinct preceding execu-
tion of a processast N is (x:Nonce es); P, even if the name-check and the cast are in
parallel processes.

The following rules for computing the effect of casts and pachecks exploit this
temporal precedence. They allow us to guarantee by typigttiose end-events fol-
lowing the name-check and listed in the effesbf the typeNonce esare matched by
distinct begin-events that precede the cast. This effethissferred from the name-
check to the cast; the effeesis added to the effect of a cast, and is subtracted from

the effect of a name-check.

If N:UnandP: es thencast N is (x:Nonce e9;P: (e +€9.

15

e If N:UnandN’: Nonce esandQ: esy
thencheck N is N’; Q: ((esg — e9 + [check N]).

e If P:esg thennew (N);P: (e — [check N]).

To illustrate these rules, we compute the effect of a nonoel$taake that guarantees
the safety of a correspondence between a begin-eventddibeih one process and an
end-event with the same label in another. We consider fidebajnamesn, n, andc.
We assumen:T for some typd . We assuma:Un is the name of a nonce that somehow
is already shared between the two processes. We agsGh{€Nonce [end m])) is the
name of a trusted channel shared by the processes. (To foaasting and checking
nonces, we communicate the nomcever the trusted channel in realistic examples,
nonces are sent encrypted on untrusted channels.)

The first process

P = beginm;
cast nis (n":Nonce [end m));
outcn

begins the correspondence, casisto the typeNonce [end m], and then sends it om
We havecast nis (n":Nonce [end m]);out ¢ i : [end m] and thereford®: []. The
second process

Q = inpc (x:Nonce [end m]);
check nis X;
end m

receives a name off the channet, checks thah equalsx, and if so ends the corre-
spondence.

We haveend m: [end m|, andcheck nis X;end m: ([end m| — [end m]) + [check n],
and therefore : [check n]. Now, by the rules for name generation and composition,
we get thaR = new (n:Un); (P | Q) : []. SoRis safe.

On the other hand, consider the procBs= new (n:Un);(P' | Q | Q) where we
have duplicate®@ and where the process

PP = beginm;
cast nis (n":Nonce [end m]);
(outcn |outcn)

is a variation ofP’ that duplicates the nonce. NoW is unsafe, because the two
copies ofQ can each receive one of the duplicate nonces sef bifherefore both
can assert an end-event, but only one is accounted for byetj@-assertion by’.
The proces® does not type-check, because it name-checks the nonoare than
once. We can derive : [], but the whole procesR' fails the rule for name gener-
ation, because proce& | Q | Q has effect[check n,check n] so the conditiom ¢
fn([check n,check n] — [check n]) is false.

16

Effects and Atomic Effects

Given these motivations for and examples of assigning &ftecprocesses, here is the
grammar of effects and atomic effects.

Effects:
I 1
efi= atomic effect
end L end-event labelled with message
check N name-check for a nondé
esfs:= effect
[e1,...,en] multiset of atomic effects

Free namesfn(e9, of an effectes
fn(end L) 2 fn(L)

fn(check N) = fn(N)
f(fes,...,en]) = fn(er) U---Ufn(en)

We writees{x«M} for the outcome of a capture-avoiding substitution of thessage
M for each free occurrence of the namim the effectes

Additional Types and Processes

We end this section by completing the grammars of types aockgses with the new
type and new processes we need for typing nonce handshakesadiVa type for
nonces, and we give rules defining thefs¢T) of any typeT.

Types:
I 1
T,U = type

as in Section 4.1

Nonce es nonce type

Free namesfn(T), of atypeT:

fn(Ch(T) £ ()
((xT,U)) 2 in(T)U (In(U) - {x})

17

We write T {x<—M} for the outcome of a capture-avoiding substitution of thessage
M for each free occurrence of the namim the typeT.

As we explained, we add a process to cast untrusted datadnterlype. Moreover,
we add a new process for pattern matching pairs.

Processes:
I 1
O,PQ,R::= process

asin Sections 2.1 and 3.1

cast M is (xT);P cast to nonce type

match M is (N,y:U); P pair pattern matching

In a procesgast M is (x:T); P, the namex is bound; its scope is the proceBsIn a
processnatch M is (N,y:U); P, the namey is bound; its scope of the proce3s

e The processast M is (x:T); P casts the messagdé to the typeT, by binding the
variablex to M, and then runnin@. (This process can only be typed by our type
system ifT is of the formNonce es)

e The processnatch M is (N,y); P is similar tosplit M is (x,y); P except that it
checks that the first componentdfis equal toN before extracting the second
component (which is bound tpin P). If the equality test fails, then the process
deadlocks.

Pair pattern matching is a generalizationte€alculus name equality testing, since
[M = NJ]P can be writtermatch (M, ()) is (N,y); P.

Free names of a procest(P):
I 1

fn(cast M is (x:T); P) = fn(M) Ufn(T) U (fn(P) — {x})
fn(match M is (N,y:U); P) = fn(M) Ufn(N) Ufn(U) U (fn(P) — {y})

Pair pattern matching is used in the protocol examples inefsppx A.

4.3 Typing Rules

In this section, we formally define the judgments of our typd affect system.

These judgments all depend on anvironmentE, that defines the types of all
variables in scope. An environment takes the fairiy, . .., X,: Tn and defines the type
Ti for each variable;. Thedomain dom(E), of an environmert is the set of variables
whose types it defines.

Environments:

I
D,E:= environment

%] empty

E,xT entry
dom(X1:T1,...,%n:Tn) 2 domain of an environment

{X1,...,%n}

18

The following are the five judgments of our type and effectesys They are induc-
tively defined by rules presented in the following tables.

JudgmentsE F 7:

Eto good environment

Etes good effecies

EFT good typeT

EFM:T good messaghl of typeT
E-P:es good procesP with effectes
L

Rules for Environments:

(Enve) (Envx) (wherex ¢ don(E))
EFT

TFo E.XTFo

These standard rules define an environmen,...,x,:Ty to be well-formed just if
each of the names, ..., X, are distinct, and each of the typgds well-formed.

Rules for Effects:

I

(Effectw) (Effect End) (Effect Check)
EFo EFes EFL:T Eres EFN:Un
Eto Et+ es+[end L] E I es+ [check N]

These rules define an effdet, . . ., e)] to be well-formed just if for each atomic effect
e = end L, messagé. has typeT for some typerl, and for each atomic effegt =
check N, messagél has typeUn.

Rules for Types:
(Type Un) (Type Chan) (Type Pair) (Type Unit)
EFo EFT E,xTHFU EFo

EF Un EFCh(T) EF((XXT,U) EF(

(Type Variant) (Type Empty) (Type Key) (Type Nonce)

EFT EFRU EFo EFT EFes
EFT+U EFO EF Key(T) EF Noncees

According to these rules a type is well-formed just if evelfget occurring in the type
is itself well-formed.

Next, we present the rules for deriving the judgmehtM : T that assigns a type
to a messagkl. We split the rules into three tables: first, the rule for ables; second,
rules for manipulating data of trusted type; and third, sute assigning the untrusted
type to arbitrary messages.

19

Rule for Variables:

I
(Msgx)
E' xT,E"Fo

E'xT,E'"Fx:T
L

Rules for Messages of Trusted Type:

I(Msg Pair) (Msg Unit)
EFM:T EFN:U{x~M} Ero
EF (M,N): (xT,U) EF(O:(
(Msg Inl) (Msg Inr)

EFM:T EFU EFT EFN:U
Etinl(M):T+U Ekinr (N):T+U

(Msg Encrypt)
EFM:T EFN:Key(T)

EF{M}y:Un

Rules for Messages of Untrusted Type:
(Msg Pair Un) (Msg Unit Un)
EFM:Un EFN:Un EFo

EF (M,N):Un EF():Un

(Msg Inl Un) (Msg Inr Un)
EFM:Un EFN:Un

EFinl(M):Un EkFinr(N):Un

(Msg Encrypt Un)
EFM:Un EFN:Un

EF{M}y:Un

Recall from Section 4.1 the principle that any message casbigned the untrusted
type Un, provided its free variables are also untrusted. Usingtjustules in the first
and third tables of message typing rules, we can prove:

Lemmal If fn(M) C {Xq,...,%} thenx:Un,... . X:Unt M : Un.
Proof By structural induction on the messalge a

A message may be assigned both a trusted and an untrustedroypxample:

e x:Un,y:Unk (X,¥):(zUn,Un) by (Msg Pair)
e x:Un,y:Unk (x,y):Un by (Msg Pair Un)

20

Finally, we present the rules for assigning effects to psees. To state the rule for
name-generation we introduce the notion gemerative typeA type is generative if it
is untrusted or if it is a key or channel type. A process (x:T); P is only well-typed

if T is generative. This rule prevents the fresh generationmiesaof, for example, the
Nonce estype; it is crucial to our system that the only way of popuigtthis type is
via acast process.

Generative Types:
I

A type isgenerativaf and only if
it takes the formCh(T), Un, or Key(T).

Basic Rules for Processes:

I
(Proc Begin) (Proc End)
EFL:T EFP:es EFL:T EFP:es

EF beginL;P:es—[endL] EtendL;P:es+[endL]

(Proc Par) (Proc Repeat)
EFP:es EFQ:fs EFP:]

EFP|Q:es+fs E I repeat P: []

(Proc Stop) (Proc Res) (wherg ¢ fn(es— [check X]))
Elo E,xTFP:es Tisgenerative

Elstop:[] EkFnew (xT);P:es—[checkX]

(Proc Subsum)
EFP:es Eres

EFP:es+ed

We discussed informal versions of the rules (Proc BeginpdEnd), (Proc Par), and
(Proc Res) previously. The rule (Proc Repeat) requires fleeteof the replicated
processP to be empty. IfP had a non-empty effect, then somehow we might assign
an infinite effect torepeat P but this would not be useful. Assigning an effect to a
whole process is useful because if the effect is empty therpthcess is safe. Any
process enclosing:peat P can only match a finite number of atomic effects arising
from repeat P, and so must have a non-empty effect. So typipgat P is only useful

if P has an empty effect. The rule (Proc Stop) says the inactivegss has empty
effect. The effect of a process is an upper bound on the beteof a process; the rule
(Proc Subsum) allows us to weaken this upper bound by eniathe effect.

The rule (Proc Case), in the following table, uses an opesatiefined as follows.
Let the multiset orderings< es mean there is an effees’ such thaes+ es’ = es.
Then we writeesV es for the least effeces’ in this ordering such that bo#s < ed’
andes < ed'. Note that(esv es) = ((es—es) +€s).

21

Rules for Processes Manipulating Trusted Types:

I
(Proc Output)
EFx:Ch(T) EFM:T
EFoutxM:[]

(Proc Input) (wherg ¢ fn(e9)
EFx:Ch(T) E,yTHP:es
EFinpx(y:T);P:es

(Proc Split) (wherex ¢ fn(es andy ¢ fn(e9)
EFM:(xT,U) ExT,yUFP:es

EFsplitMis (xT,y:U);P:es

(Proc Match) (wherg ¢ fn(e9)
EFM:(xT,U) EFEN:T EyU{xN}FP:es
E F match Mis (N,y:U{x<N});P:es

(Proc Case) (whenre¢ fn(e9 andy ¢ fn(fs))
EFM:T+U ExTHP:es EyURQ:fs

EFcase Misinl (xT) Pisinr (yyU) Q:esv fs

(Proc Decrypt) (wherg ¢ fn(e9)
EFM:Un EFy:Key(T) E,xTHP:es

E I decrypt Mis {xT}y;P:es

(Proc Cast) (wherg ¢ fn(e9)
EFM:Un E,xNonce fs-P:es

E I cast M is (x:Nonce fs);P: es+ fs

(Proc Check)
EFM:Un EFN:Noncefs EFP:es

E F check M is N; P : (es— fs) + [check M]

We discussed informal versions of the rules (Proc Inputip¢®utput), (Proc Cast),
and (Proc Check) previously. Rule (Proc Split) is a standalel to allow a paiM :
(x:T,U) to be split into two components named andy:U, wherex may occur free
in the typeU. The conditionx ¢ fn(es andy ¢ fn(eg prevent the bound variables
x andy from appearing out of scope in the effat In the rule (Proc Match), the
messagé\ : T is meant to match the first component of the pair (x:T,U), and the
variabley:U gets bound to the second component. Again, the condjtigrin(e
preventsy from appearing out of scope s The rule (Proc Case) is a standard rule
for checking inspections of tagged unions. In the rule (BYecrypt), the ciphertextl

is of untrusted typéeJn, the keyy is of typeKey(T), and the plaintext, bound tq has
typeT. The conditionx ¢ fn(eg preventsx from appearing out of scope in the effect
es

22

Rules for Processes Manipulating Untrusted Types:

I
(Proc Output Un)
EFM:Un EFN:Un

EFoutMN:[]

(Proc Input Un) (wherg ¢ fn(e9)
EFM:Un E,y:UnlP:es

EFinpM (y:Un);P:es

(Proc Split Un) (wherex ¢ fn(eg andy ¢ fn(es)
EFM:Un E,xUn,y:UnFP:es

E F split M is (x:Un,y:Un);P:es

(Proc Match Un) (wherg ¢ fn(es)
EFM:Un EFN:Un E,yUnkP:es

E - match M is (N,y:Un);P: es

(Proc Case Un) (where¢ fn(e9 andy ¢ fn(fs))
EFM:Un E,xUnkP:es EyUnkQ:fs

E I case M is inl (x:Un) Pisinr (y:Un) Q:esv fs

(Proc Decrypt Un) (wherg ¢ fn(es)
EFM:Un EFN:Un E,xUnkP:es

E F decrypt Mis {x:Un}n;P: es

(Proc Cast Un) (where ¢ fn(e9)
EFM:Un E,xUnFP:es

EF cast Mis (xUn);P:es

(Proc Check Un)
EFM:Un EFN:Un EFP:es

E check MisN;P:es

These rules are similar to those in the previous table in @y tompute effects of
processes, but differ in that all messages are of untrugped These rules are needed
to type-check opponents.

Our rules for processes conform to the principle, statedeictiSn 4.1, that any
opponent can be typed if all its free variables are assigmetypeUn.

Lemma 2 (Opponent Typability) If O is an opponent, that is, an untyped, assertion-
free process, and f®) C {x1,...,Xn} thenx:Un,... x;:Un - O: [].

Proof By structural induction o®, with appeal to Lemma 1. |
The following theorem, proved in Appendix B, says a processaife if it can be as-

signed the empty effect.

23

Theorem 1 (Safety) If E - P: [] then P is safe.

Combined, Lemma 2 (Opponent Typability) and Theorem 1 {$aéstablish our main
result, that our type and effect system guarantees robigtysa

Theorem 2 (Robust Safety)If X1:Un,...,X:Un P :[] then P is robustly safe.

Proof For any untyped, assertion-fré® find xnt1,...,X+m such thatfn(O) C
{X1,...,Xn+m}. By Lemma 2 (Opponent Typability), we haxg: Un,... Xpym: Un -
O:[]. By a standard weakening lemma, proved in the full versigiin, ..., X,:Un F
P:[]impliesxi:Un,... . Xp+m:Un = P:[]. So by rule (Proc Par) we haxg: Un, ..., Xn+m:
Unk P|O:[], and so by Theorem 1 (Safetyy] O is safe. ThusP is robustly safel

4.4 Typing the Example

Our exampld-ixedSysteimet) from Section 3.3 uses a nonce handshake over the pub-
lic channelnet to transfer messages from the sender to the receiver. Heshowe
how to prove the example’s correspondence assertions msitwpsuitable types and
adding a cast process.

The sender receives a nongenceoff the public channehet performs a begin-
event to indicate it is sending a messageg embeds the nonce and the message in
a ciphertext encrypted with the shared Keay and returns the ciphertext to the re-
ceiver onnet Any public channel should be accessible to the opponenyesas-
sign net the untrusted typ&n, and sincenonceis sent on these channels, they too
must have the untrusted type. We fix some arbitrary tyjsg and assume eachsg
is of this type. To type-check the correspondence betwegimband end-assertions
made by the sender and receiver, respectively, we add a aastgs to the sender
to cast the nonce into the tyfdonce [end msgd. Therefore, the shared key has type
Key(msgMsg nonceNonce [end msg); the first component of the ciphertext is the
actual message, and the second component is a nonce prbidngafe to assert an
end msgevent.

Therefore, we introduce the types

Msgsome arbitrary type

NetworkZ Un

MyNonce(msg = Nonce [end msg

MyKey2 Key(msgMsg nonceMyNonce(msg)
and we type the sender as follows, where we display the effdfdbracketed subpro-
cesses to the right.

A

TypedSendénetNetwork keyMyKey) : []
repeat
inp net(nonceUn);
new (MsgMsg);
begin msg
cast nonce [
is (noncéMyNonce(msg); p [end msg [
out net{msgnoncé}yey} []

24

Next, we type the receiver. Like the sender, it is effecefithat is, it can be assigned
the empty effect.

TypedReceivénetNetwork keyMyKey) : [] £
repeat
new (nonceUn);
out net nonce
inp net(ctextUn);
decrypt ctext (]
is {msgMsg noncé:MyNonce(msg } key;

check nonceis noncé;
end msg} [end msg

[check noncé

Vs
Since the sender and receiver are both effect-free, theengdystem is also effect-free:

A

TypedSystefmetNetwork : []
new (keyMyKey);
(TypedSendénet key) | TypedReceivénet key))

By Theorem 2 (Robust Safety), it follows thgpedSystefnetNetwork is robustly
safe. This proves the following authenticity property byitg.

Authenticity: The proces3ypedSystenet) is robustly safe.

5 Further Protocol Examples

We have applied our method to several cryptographic prégdomm the literature. We
verified some protocols, found flaws in others, but also foatldast one incomplete-
ness in our method. Details are in an appendix, but we can suwiserour experience
as follows.

e Abadi and Gordon [3] propose a honce-based variation of tltke\Wouth Frog
key-exchange protocol [9]. We can verify authenticity prdjes of Abadi and
Gordon'’s protocol by typing. Abadi and Gordon prove an eiguatly-specified
authenticity property by constructing a bisimulation tiela based on an elabo-
rate invariant; our proof of correspondence assertionyping took consider-
ably less time.

e Woo and Lam [40] propose a nhonce-based authentication gobtdrying to
type-check the protocol exposes known flaws in the protoondl suggests a
known simplification [4, 5].

e Otway and Rees [33] propose another nonce-based key exepaotgpcol. The
nonces used by the protocol to prove freshness are kept;skeree the pro-
tocol does not fit the idiom that can be checked by our typeegystStill, we
can type-check a more efficient version of the protocol satggeby Abadi and
Needham [4]. The typing suggests a further simplification.

In each case, there is a spi-calculus representation ofrtiteqml in which there are
arbitrarily many participant principals and arbitrarilyany sessions.

25

6 Summary and Conclusion

To summarise, we reviewed the spi-calculus, a formalisnpfecisely describing the
behaviour of security protocols based on cryptography. Mveezlded Woo and Lam’s
correspondence assertions in spi as a way of specifyingatitity properties. We
devised a new type and effect system that proves authgnpiciperties, simply by
type-checking.

To conclude, the examples in this paper, together with etiverhave investigated,
suggest that this is a promising technique for checkingomals, since it requires little
human effort to type a protocol, and the types of protocoadsicument how the
protocol works.

Acknowledgements

Thanks to Martin Abadi, Gavin Lowe, Dusko Pavlovic, Simay®®n Jones, Benjamin
Pierce, Corin Pitcher, James Riely, and Andre Scedrov fmudisions about this work.
The anonymous referees for tHEEE Computer Security Foundations Workshoop-
vided invaluable feedback. C.A.R. Hoare suggested seirapgbvements to a draft.
Alan Jeffrey was supported in part by Microsoft Researclindusome of the time we
worked on this paper.

26

A Protocol Examples

In this appendix we describe details of the examples meedian Section 5. Sec-
tion A.1 describes Abadi and Gordon’s version of Wide Moutbd= Section A.2
discusses Woo and Lam’s authentication protocol. Secti@discusses Otway and
Rees’s key-exchange protocol. Finally, we present a newdygpotocol for secure
message streams in Section A.4.

Abbreviations Used in Examples

In these examples, we shall make use of the following synigars

e Dependent record type:Ti,...,%n:Tn), rather than just pairs. These come
with a constructofMy, ...,Mp) and a destructanatch M is (X1:T1, ..., Xn:Tn); P.

e Tagged union type&/1(T1) | --- | €n(Tn)) rather than just binary choicE+ U.
These come with a constructg(M) and a destructanatch M is £ (x:T); P.

e Dependent function typdx:T) — U. These come with an appropriate function
declaration and application syntax.

We show in Section A.5 that these constructs can be deriosd dur base language.

A.1 Abadi and Gordon’s Variant of Wide Mouth Frog

The original paper on the spi-calculus [3] includes a lepgifoof of authenticity and
secrecy properties for a variation of the Wide Mouth Frog disyribution protocol [9]
based on nonce handshakes instead of timestamps. In thisnsege show how to
type-check this protocol.

To begin with we look at an unsafe version of the protocol lltgsirate how at-
tempting to type-check a protocol may expose flaws. Thisdmgkotocol consists of
a sender (Alice), a receiver (Bob) and a server (Sam). Alisb@&s to contact Bob, and
asks Sam to establish her credentials:

Event 1 Abegins ‘A sendingB key Kag”
Messagel A— S A

Message 2 S— A Ns

Message 3 A— S A {B,Kag, Ns}k,s
Message4 S—B ()

Message5 B—+ S Ns

Message 6 S— B {A Kag, NB } Kgs
Event 2 B ends ‘A sendingB key Kag”

(For the sake of readability, we usA sendingB key Kag” as a shorthand for the mes-

sage(A,B,Kag).)
This protocol can be compromised by an intrutdémpersonating Sam, if Alice

27

acts both as a sender and a receiver:

Eventa.l Abegins ‘AsendingB key Kag”
Messaget.l A— | A

Messag.4 | — A 0

Messags.5 A— 1l Na

Message.2 | — A Na

Message1.3 A— | A, {B,Kag,Na}kas
Messag8.6 | — A {B,Kag, Na}Kkas
Eventf.2 Aends BsendingAkeyKag”

At this point, Alice believes that she has been contactedddy, B/hen in fact she has
been contacted by the intruder.

We can easily express this protocol in the spi-calculusmetiegin M andend M
statements to specify the desired correspondence property

We defineFlawedSendénet alice, key) to be the sender, usintetas the insecure
communications medium, acting on behalfadice using secret kekey (in order to
bootstrap the system, we have the sender redmitdis name from the network, so the
attacker can create as many concurrent sessions as they like

FlawedSendér
netNetwork alice:Princ, keyWMFKeyalice)
)&
repeat
inp net(bobPrinc);
new (sKeySKey;
begin “alice sendingoobkey sKey;
out net(alice);
inp net(nonceUn);
cast nonceis (noncé&WMFNoncéalice, boh sKey));
out net(alice, {bob, sKeynoncé}yey);

We defineFlawedReceivénet boh key) to be the receiver, usingetas the insecure

28

communications medium, acting on behalbah using secret kekey.

FlawedReceiver
netNetwork boliPrinc, keyWMFKeybob)
)£
repeat
inp net();
new (nonceUn);
out net(nonce;
inp net(ctextUn);
decrypt ctext
is {alice:Princ,
sKey: SKey
noncé: WMFNoncegalice, bob, sKey) }key;
check nonceis noncé,
end “alice sendingbobkey sKey

We defineFlawedServenet lookup to be the server, usingetas the insecure com-
munications medium, making use of a trusted database lofkgionlookupto ac-
cess the secret keys:

FlawedServeinetNetwork lookupWMFLookup =
repeat
inp net(alice:Princ);
new (nonceAUn);
out net(nonceA;
inp net(alice,ctextUn);
let keyA: WMFKeyalice) = lookup(alice);
decrypt ctext
is {boliPrinc,
sKey: SKey
nonceA: WMFNoncéalice, bob sKey) }reya
check nonceAis nonceA
out net();
inp net(nonceBUn);
cast nonceB
is (nonceBWMFNoncéalice,boh sKey));
let keyB: WMFKey(bob) = lookup(bob);
out net{alice, sKeynonceB}yeys

Then we can try to define the types appropriately. For mosheftypes, it is fairly
routine(for theWMFLookuptype, we need to use an appropriate function type, and for
the SKeytype, we need an appropridisgtype for the payload, but these do not play

29

an important role in the typing) :

Network2 Un
Princ = Un
WMFLookup (princ:Princ) — WMFKey(princ)
SKey= Key(Msg)
WMFNoncéalice,boh sKey =

Nonce [end “alice sendingoobkey sKey |
WMPFKey(princ) £ Key(WMFMsgprinc))

The problem comes when we try to give a definitionéMFMsg which is the type of
the plaintext of messages used in the WMF protocol. In omi¢ypge-check Message
3, we require:

WMFMsdalice) =
(bobPrinc, sKeySKeynonceWMFNoncéalice,boh sKey))

and in order to type-check Message 6, we require:

WMFMsghbob) =
(alice:Princ, skeySKeynonceWMFNoncgalice, bob, sKey))

Unfortunately, these requirements are inconsistent,esihe roles ofalice and bob
have been swapped. This is the root of the attack on this brékelF, which relies
on the fact that the key falice is being used in two incompatible ways, depending on
whetheraliceis acting as the sender or the receiver.

This is an example of a type-flaw attack [23] and may be solwethb standard
solution of adding tag information to messages. This is &kihe use of tagged union
types in type-safe languages like ML or Haskell. In this cage have the type for
Message 3 of the protocol:

WMFMsg(alice) =
(bobPrinc, sKeySKeynonceWMFNoncéalice, boh sKey))

and the type for Message 6:

WMFMsg(bob) =
(alice:Princ, skeySKeynonceWMFNoncgalice, bob, sKey))

and we can defin@/MFMsdprinc) as the tagged union of these two types:

WMFMsgprinc) £
(msg(WMFMsg;(princ)) | msg(WMFMsg;(princ)))

We can then check that the safe versions of the principalefteet-free. The sender,
receiver, and server are given in Figure 1.

The key database has to implementltihakupfunction, and be effect-free. In prac-
tice, an implementation would require access to a secuabdsé, but in this example,

30

we can just hard-wire in the principal names and keys, andbatern-matching to
define the database:

KeyDBlookupWMFLookupprinc,:Princ, key, :WMFKey(princ,), ...,
princ,:Princ, key, WMFKey(princ,)) =
function
lookup(princ,) : WMFKeyprinc;) is return key

lookup(princ,) : WMFKeyprinc,) is return key,
We define aVide Mouth Frog configuratioto be a process of the form:

new
new

lookupWMFLookup;
princ;:Princ); . ..

new (princ,:Princ);

new (key :WMFKeyprinc,));...

new (key,:WMFKey(princ,));
FixedSenddgnet princy,key) | --- |
FixedSenddnet princ,, key,) |
FixedReceivenet princy, key) | -+ - |
FixedReceivenet princ,, key,) |
FixedServemet lookup |
KeyDBlookup princy,key, . .., princ,,key,)

e W

We can then apply the results of this paper to get:
e Any Wide Mouth Frog configuration is effect-free, and henmaustly safe.

Thus, we have shown the Wide Mouth Frog protocol to satisiy plarticular safety
property for an arbitrary number of principals, sessiomg] & the presence of an
arbitrary attacker and well-typed database implementatio

The use of tagged unions to represent the different mesgpags which are sentin
a protocol is a common technique, and corresponds to thegdimake of Principle 10
of Abadi and Needham [4]:

If an encoding is used to present the meaning of a messageit steould
be possible to tell which encoding is being used. In the comoase
where the encoding is protocol dependent, it should be plestsi deduce
that the message belongs to this protocol, and in fact totacpkar run of
the protocol, and to know its number in the protocol.

Many protocols use ad hoc techniques such as incrementirggtamps, or juggling
the order of participant names to encode message numbdisiitppOur type system

makes these ad hoc solutions formal, as an instance of theéssthtechnique of using
tagged union types.

31

A.2 Woo and Lam’s Authentication Protocol

Woo and Lam [40] propose a server-based symmetric-key atithdion protocol. Al-
ice wishes to authenticate herself to Bob, and does so bypméspg to a nonce chal-
lenge with a message which Bob can ask the trusted servectgpie

Event 1 Abegins ‘A authenticates t8”
Messagel A—»B: A

Message2 B—A: Ng

Message 3 A—B: {msg(Ng)}kas

Message 4 B—S: {msg(A,{msg(Ns) }kas) }Kes
Message5 S—B: {msg(Ng)}kgs

Event 2 Bends ‘Aauthenticatest8”

(In the original protocol, the messages were untagged, butave provided tags for
the reasons discussed in the previous section.) Abadi aedi¥éen [4] demonstrate
that this protocol is not robustly safe, because message$ruat mentiom.

The possibility of this attack is made clear when we try tostgimeck the protocol.
We have types:

WLKey(princ) £ Key((WLMsgprinc)))

WLMsgprinc) £ (msg(WLMsg(princ)) |
msg (WLMsg(princ)) |
msg;(WLMsg(princ)))

WLMsg(alice) £ (nonceWLNoncéalice, bob))

WLMsg,(bob) = (alice:Princ, ctextUn)

WLMsg(bob) £ (nonceWLNoncgalice, bob))
WLNoncéalice,bob) = Nonce [end “alice authenticates tboly']
WLLookup2 (princ:Princ) — WLKey(princ)

At this point it becomes clear that the protocol is not wgped, since the types
are not well-formed: WLMsg(alice) contains an unbound occurrence lugb and
WLMsg,(bob) contains an unbound occurrenceatite. Abadi and Needham observe
that Message 5 should be changed to:

Message 5 S—B: {msg(A Ng)}kes

but did not make any similar observation for Message 3. T$teémgthened protocol
allows Bob to know that Alice is talking to somebody, but doesallow Bob to know
that Alice is talking to Bob. For example, one possible rumeve Alice begins a

32

dialogue with Charlie, but is authenticated to Bob is:

Eventa.l Abegins ‘A authenticates t@”
Messaget.1 A—1: A

Messag8.1 | —»B: A

Messag8.2 B—1: Ns

Messager.2 | —+A: Ng

Message.3 A—1: {msg(Ns)}kas

Messagd.3 | —B: {msg(Ns)}kus

Messag.4 B—S: {msg(A, {msg(Ns)}kas) tkes
Messag.5 S—B: {msg(Ns)}kes

Eventp.2 Bends ‘Aauthenticates t8”

This attack is noted by Anderson and Needham [5], and is stbpp a similar change
to the protocol:
Message 3' A—B: {msg(B,Ng)}k,s

Finally, our type system makes clear that the encryptionefsage 4 is unnecessary,
since all the data is of typén, and so can safely be sent in plaintext, as suggested by
Abadi and Needham [4]:

Message4’ B— S: A B,{msg(B,Ng)}k,s
The resulting protocol can be type-checked, using types:

WLMsgprinc) £

(msg(WLMsg(princ)) | msg;,(WLMsg(princ)))
WLMsg(alice) £

(bokxPrinc, nonceWLNoncéalice, bob))
WLMsg(bob) £

(alice:Princ,nonceWLNoncéalice, boby))

To see that the sender is effect-free, we calculate:

FixedSendenetNetwork alice:Princ, keyWLKeyalice)) L
repeat
inp net(bokxPrinc);
begin “alice authenticates tboly’;
out net(alice)
inp net(nonceUn); (]
cast nonceis (noncé&WLNoncéalice,bob)); d
out net{msg(bob nonce) }xey [end -]

33

To see that the receiver is effect-free, we calculate:

FixedReceiveinetNetwork boliPrinc, keyWLKeybob)) =
repeat

inp net(alice:Princ);
new (nonceUn);)
out net(nonce
inp net(ctextUn);
out net(alice, boh ctexy (]
inp net({msg;(alice,noncéWLNoncéalice,bob)) } key);
check nonceis noncé;
end “alice authenticates tbob' } [end ..]

} [check noncé

To see that the server is effect-free, notice that the senades no use of any process
check N'is N’; P, cast N is (N'); P orend M, and so is automatically effect-free:

FixedServeetNetwork lookupWLLookup =
repeat
inp net(alice:Princ, boliPrinc, ctextUn);
let keyAWLKeyalice) = lookup(alice);
let keyBWLKeybob) = lookup(bob);
decrypt ctextis {msg(bob noncé&WLNoncéalice,bob)) }keya
out net{msg(alice,nonce) }xeys

We define aMoo and Lam configuratioto be a process of the form:

new (lookupWLLookup;
new (princ,:Princ); ... new (princ,:Princ);
new (key :WLKey(princ,));...new (key,:WLKeyprinc,));
FixedSenddgnet princy,key,) | - - - | FixedSenddgnet princ,, key,)
| FixedReceivgnet princy, key) | - - - | FixedReceivdnet princ,,key,)
| FixedServefnet lookup | KeyDBlookup princy,key, . .., princ,, key,)

for any effect-fre&KeyDB We can then apply the results of this paper to get:
e Any Woo and Lam configuration is effect-free, and hence rdpsafe.

This example has shown that in our type system, it is impotteat all messages con-
tain the names of the principals involved. Our type systeforeas Principle 3 of
Abadi and Needham [4]:

If the identity of a principal is essential to the meaning ohassage, it is
prudent to mention the principal’s name explicitly in thessage.

This requirement is enforced through the usual requirefioenmariables in a program
to be correctly scoped: violations of Principle 3 may be ¢duzpcause a variable is
used when it is not in scope.

34

A.3 Otway and Rees’s Key Exchange Protocol

Otway and Rees [33] propose a server-based symmetric-kegxtahange protocol.
We cannot verify their protocol using the type system of ghaper, even though (as
far as we are aware) it is correct, since it relies on usingestio stand for principal
names, which are kept secret, as well as for freshness.iStilhy be possible to adapt
our type system to deal with this use of nonces; we leave dhiufure work.

Abadi and Needham [4] propose a simplification of the protaebich we verify

here:
Messagel A—-B AB,Na

Message2 B— S AB,Na,Ns

Event 1 Sbhegins “initiatorA shareKag with B”

Event 2 Sbegins “respondeB shareKag with A”

Message 3 S— B {msg(A,B,Kag,Na) }k,s,
{msg; (A7 B, Kag, NB) }KBS

Event 3 Bends ‘“respondeB shareag with A"

Message4 B—+A {msg(A,B,Kag,Na) }kas

Event 4 Aends “initiatorA shareKag with B”

At the end of this dialogue, Alice and Bob both know tKag was generated by Sam
for their private use. Alice does not know that Bob actuatlgaivedKag, since this
protocol does not ensure that Alice and Bob actually redéjg just that nobody else
does.

We can allocate types to this protocol:

A

ORKeyprinc) =
Key((msg(ORMsg(princ)) | msg,(ORMsg(princ))))
ORMsg(bob) £
(alice:Princ, bol:Princ, sKeySKey
nonceORNonceg(alice, bob sKey)
ORMsg(alice) £
(alice':Princ, bokiPrinc, sKeySKey
nonceORNoncg(alice,bob sKey)
ORNonce(alice, bob, sKey £
Nonce [end “respondebobsharesKeywith alice’|
ORNoncg(alice, boh sKey =
Nonce [end “initiator alice sharesKeywith boly']
ORLookupé
(princ:Princ) — ORKeyprinc)

35

and then type-check Alice:

FixedSendenetNetwork alice:Princ, keyORKeyalice)) =
repeat

inp net(bokPrinc);

new (nonceAUn);

out net(alice,bob,nonceA;

inp net({msg(alice,bob sKeySKey

nonceAORNoncg(alice,bob sKey) }keya); [
check nonceAis nonceA; [check nonceA
end “initiator alice sharesKeywith bold’ } [end ..]

type-check Bob:

FixedReceiveinet: Network bokiPrinc, key ORKeybob)) =
repeat

inp net(alice:Princ,boh nonceAUn);

new (nonceBUn);

out net(alice,bob,nonceAnonceB;

inp net(ctextUn, {msg(alice,boh sKeySKey

nonceBORNonce(alice,boh sKey) }key); [
check nonceBis nonceB;

end “respondebobsharesKeywith alice” } [end]} [check nonces
and type-check Sam:

FixedServefmetNetwork lookupORLookup =
repeat
inp net(alice:Princ,boliPrinc,nonceAUn,nonceBUn);
let key,:ORKeyalice) = lookup(alice);
let keys:ORKeybob) = lookup(bob);
new (sKeySKey;
begin “initiator alice sharesKeywith boly’;
begin “respondebobsharesKeywith alice”;
cast nonceAis (nonceAORNoncg(alice, bob, sKey));
cast nonceBis (nonceBORNonceg(alice,bob sKey); lend ...] [
out net({msg(alice,boh sKey nonceA)}keyA,} i } [end ...]
{msg(alice,bob, sKeynonceB)} ey,)

We can then apply the techniques of this paper to show thantbdified protocol is
robustly safe. This typing makes it clear that Bob’s nameoisraquired in Message

3 and Alice’s name is not required in Message 4, and these sxaméd be dropped
without compromising the correspondence assertions.

A.4 A Secure Message Stream

In Section 4.4 we showed how we can verify a simple two-mesgagtocol to en-
sure the authenticity of messages. The protocol relied aceAb send Bob a nonce

36

challenge for every message Bob sends:

Event1 Abegins AsentM
Messagel B—A: N

Message2 A—B: {M,N}k
Event 2 Bends AsentM

This is rather inefficient, since it requires an acknowledget message for every mes-
sage. Instead, we could usgessage identifiet® ensure the freshness of messages
without Alice having to send constant acknowledgements.l@hguage does not sup-
port message identifiers directly, but they can be coded issages of nonces: each
time Bob sends Alice a message, he semasnonces: the nonce for the current mes-
sage, and the nonce for the next message. This is enoughiéertdlensure freshness
of messages:

Message0 B—+A: N;

Eventla Abegins AsentM;

Message1 A—B: {M1,N2, N1}k

Eventlb Bends AsentM;

Eventna Abegins AsentM,
Messagsn A—B: {Mpn,Nny1,Nn}k
Eventnb Bends AsentM,

In order to check this protocol, we need to make use of latenta effects, since nonce
Ny is being used to ensure the freshness of ndge. The types we use are:

MidKey= Key((msgMsg nonceBUn, nonceAMidNoncémsgnonceB))
MidNoncémsgnonceB = Nonce [end “Sender seninsg , check nonceB

The receiver is type-checked:

FixedReceivdnet Network keyMidKey) £
new (nonceAUn);
out net nonceA]
FixedReceivenet key nonceA} [check nonceA

where we use the recursive function:

FixedReceivdnetNetwork keyMidKey,nonceAUn) £
inp net ({(msgMsg nonceBUn, nonceAMidNoncémsgnonceB) }iey);
check nonceAis nonceA;
end “Sender seninsd;;
FixedReceivdnet key nonceB

The sender is type-checked similarly. This example shoasitlis useful for partici-
pants in a protocol to be able to pass nonces and nonce efisahlowed by our effect
system.

37

A.5 Abbreviations Used in Examples

We shall now show that the abbreviations we used in our exesrqan be defined in
our type system. We made use of types for dependent recagized unions, and
dependent function types:

Syntax sugar for use in types:
I

T,U = type
as in Sections 4.1 and 4.2
(X1:T1,%2: T2, ..., Xn: Tn) dependent record
(Ca(Ta) | +++ | €a(To) tagged union
(xT)—=U dependent function

We allowed the construction of messages of record or taggiech type:

Syntax sugar for use in messages:
I

L,M,N ;= message
as in Section 2.1
(Mq,...,Mp) record
Gi(M) tagged union

In processes, we can make use of function declaration,ifumcall, function return,
and pattern-matching:

Syntax sugar for use in processes:
I

O,PQ,R::= process
asin Sections 2.1, 3.1 and 4.2
function f (X1) : Ty is Py--- f (X,) : Ty is Py function declaration

let xU = f (M);P function call

return M function return

match M is X; P pattern match

out M P; output with residual
inpM (X);P pattern matching input
decrypt M is {X}p; pattern matching decrypt

whereX ranges over a grammar of patterns:

Patterns:
I 1
XY, Z .= patterns

xT variable

M constant

(X1,---,%n) tuple

4i(X) tagged union

{X}m cyphertext

38

We will now give definitions for each of these extensions,ibeigg with types. De-

pendent records and tagged unions are routine, since wadglteve pairs and vari-
ants types. Dependent records use a variant of the tramslatifunctions into the

T-calculus [31]; this is explored in more detail in [18]).

Abbreviations for types:
I 1

(X1, %2 T2, X Tn) = (X Tr, (%2 T2, (o . (0T, ()) -22))
(2(T0) |+ | £a(Tn)) & (To+ (T2 + (... (Ta+0)...)))
(xT) = U £ Ch(xT,Ch(U))

The translations of messages are similarly straightfadwar

Abbreviations for messages:

(M1,Mz,...,Mp) £ (M1, (Mz, (... (Mn, () ...)))
Gi(M) £ inj (M)

in1 (M) 2 inl (M)

inny1 (M) £ inr (inn(M))

We writeout X (M); P as a simple shorthand fout x M | P:

Abbreviations out M N; P:
I
out M N;P £ (out M N) | P
L

We use a variant of Milner’s translation of thecalculus into that-calculus, extended
to deal with pattern-matching.

Abbreviations for functions, where f : (xT) — U:

function f (X1) :Upis Py--- f (%) : Upis Py =
repeat inp f (request(x:T,Ch(U))));
(match requests (Xy, return:Ch(Uy));Py | ---)
match requestis (Xn, return:Ch(Up)); Py
return M =
out return N
let xU = f (M);P 2
new (k:Ch(U));out f (M,K);inp k (xU);P

where we define pattern-matching as:

Abbreviations for pattern matching:

I 1
inp M (X);P £ inp M (x); match xis X; P

decrypt M is {X}n;P = decrypt M is {x}n;match X is X; P

match M is X T;P = P{x«M}

39

match M is ();P £ P
match M is (N,Xl,...,Xn);Pé match M is (N,y); match yis (X1,...,%n); P
match M is (Xo, X1, ..., Xn); P 2 split M is (X, Y);

match X is Xp;match yis (Xg,...,%n);P
match M is in1 (X); P £ case M is inl (X) match Xis X;P s inr (X) stop
match M is inny 1 (X); P 2 case M is inl (X) stop is inr (X) match Xis inp (X); P
match M is {X}nP; 2 decrypt M is {X}n;match X is X; P
match M is N; P £ match (M, ()) is (N,x); P

Thus we have demonstrated that our core language is povegrduigh to describe the
examples in this section.

B Formal Semantics of our Typed Spi-Calculus

This appendix develops a formal operational semantictspi-calculus. Hence, we
make precise the informal definition of process safety dtateésection 3.1, and prove
the type safety result, Theorem 1 (Safety), stated in Sedtid.

We begin in Appendix B.1 by defining a trace semantics for griecalculus, and
use it to define safety in Appendix B.2. In Appendix B.3, wdestnd prove a subject
reduction property (that is, a type preservation propefinally, in Appendix B.4 we
exploit subject reduction to prove Theorem 1 (Safety).

B.1 A Trace Semantics for our Spi-Calculus

We use a trace semantics based on the Chemical Abstractgahi First, we define

a structural equivalend@= Q on processes, and then we define the trace semantics in
terms of structural equivalence. This is the same techragudilner [31] uses in the
presentation of the-calculus, and Abadi and Gordon [3] use in the presentatitimeo
spi-calculus.

Structural Equivalence: P=Q

I

P=P (Struct Refl)
Q=P=P=Q (Struct Symm)
P=QQ=R=P=R (Struct Trans)
P=Q= new (XT);P=new (xT);Q (Struct Res)
P=Q=P|R=QJR (Struct Par)
P|stop=P (Struct Par Zero)
PIQ=QJP (Struct Par Comm)
(PIQ |R=P[(Q[R) (Struct Par Assoc)
repeat P = P | repeat P (Struct Repl Par)

x¢ f(P) = P|new (xT);Q=new (xT);(P| Q) (Struct Par Res)

40

xZy,x¢mU),y¢in(T)= (Struct Res Res)
new (X:T);new (y:U);P = new (y:U);new (xT);P

A trace of a process is a finite sequence of events. The setssilpe events
includes the begin- and end-events defined in Section 3\ekhss other events rep-
resenting various actions of processes.

Each process is given a trace semantics, where a trace isuansegof events
performed by the process. Events take the following forms.

Events:
I 1
a,p:= events
begin L begin-event labelled with message
end L end-event labelled with messalge
cast xT cast-event of nameto typeT
check x check-event for nonce
gen X:T fresh-event for name
T internal-event

Events may contain free names. For examfuignd (Sender sennsg) = {msg.

Free namesfn(a), of an eventa
I

fn(1) £ o

fn(cast xT) = {x} Ufn(T)
fn(check x) = {x}
fn(begin M) = fn(M)
fn(end M) = fn(M)
fn(gen xT) = {x} Ufn(T)

Events may also contain generated names. For exagigiesn msgMsg) = {msg.

Generated namesgn(a), of an eventa

gn(a) 2 { 0} if a=genxT

%] otherwise

We interpret events as follows:
e An eventbegin L arises from a procedsegin L; P, and represents the beginning
of a correspondence.

e Aneventend L arises from a processad L; P, and represents the end of a corre-
spondence.

e An eventcast N:T arises from a processist N is (x:T); P, and represents the
cast of an untrusted message into the typavhich the type system requires to
be of the specific fornNonce es

41

e An eventcheck N arises from a processheck N is N; P, and represents a suc-

cessful check for the presence of a nonce.

An eventgen x:T arises from a procesew (x:T); P, and represents the genera-
tion of a fresh name.

An eventt arises from an internal computational step of a process.

For example, in th&ixedSysteimet) example from Section 3.3, one possible sequence
of events is:

gen nonceUn: the receiver generates a fresh untrusted naomee
gen msgMsg the sender generates a new messagg
begin (Sender sennsg: the sender begins a correspondence.

cast nonceMyNonce(msg: the sender casts the untrusted messageeto the
typeMyNonce.

check nonce the receiver checks that the received nona®isce
end (Sender sennsg: the receiver ends a correspondence.

On the other hand, in the compromised systdawedSystefmet) | Attackefnet) one
possible sequence of eventsiis:

gen msgMsg the sender generates a new messasg
begin (Sender sermnsg: the sender begins a correspondence.
end (Sender sennsg: the receiver ends a correspondence.

end (Sender seninsg: the receiver mistakenly ends the same correspondence
twice.

Next, we give a formal definition of the events a process isablpof, using a

labelled transition systersemantics® % P, meaning P can perform eventt and
becomeP™.

Labelled transitions: P % P’

out X M |inp X (y:T); P 5 P{y«M} (Trans Comm)
split (M,N) is (xT,y:U);P 5 P{x<M}{y«<N} (Trans Split)
match (M,N) is (M,y:U);P 5 P{y«<N} (Trans Match)
case inl (M) is inl (xT) Pis inr (y:U) Q = P{x«M} (Trans Case Inl)
case inr (M) is inl (xT) Pisinr (y:U) Q = Q{y«M} (Trans Case Inr)
decrypt {M}n is {xT}n;P = P{x<M} (Trans Decrypt)
cast Xis (y:T); P <X, prye x} (Trans Cast)
check xis x;P <<%, p (Trans Check)
begin M; P begin M, (Trans Begin)
end M;P M p (Trans End)

42

new (xT);P £25% p (Trans Gen)

gn(@)Nfn(Q =2 =PLP =P|QSP|Q (Trans Par)
x¢fna) =P % P = new (xT);P % new (xT); P (Trans Res)
P=QQ3Q,Q=P=>PS P (Trans=)

A trace is a sequence of events which the process may perform.

Traces:

I
sti=dj,...,0n trace (writtere if n=0)
L

We extend the definition of free and generated names to traces

Free namesfn(s), and generated namesgn(s), of trace s
I

fn(ay,...,an) = fn(ay) U---Ufn(an)
Ign(ab v ;an) = gn(al) u---u gn(an)

The traces of a proce$sare defined using a trace-labelled transition sysﬁeﬁa P’
meaning P performs traces and becomeB’.

Traced transitions: P > P’

I
P=P=>P5P (Trace=)
PLP PSP =p2Sp (Trace Event) (wherén(a) Ngn(s) = @)

For example one trace &ixedSysteifmey) is (ignoringt actions):

gen nonceUn,

gen msgMsg,

begin (Sender sensg,
cast nonceMyNonce(msg,
check nonce

end (Sender sennsg

One trace oflawedSyste(met) | Attacke(net) is:
gen msgMsg,
begin (Sender sennsg,

end (Sender sennsg,
end (Sender sennsg

43

B.2 Correspondence Traces and Safe Processes

We now define our notion of safety, through correspondensertisns. To do so, we
need to recall some standard notation for unordered cmlecbf data, omultisets If

X ranges over elements of some given set, wgdeange over multisets of elements of
that set.

Multiset of elements

XS:i= multiset
[X1, ..., Xn] unordered collection of elements

We identify multisets up to permuting elements[sg] = [y,X] but not up to copying
elements, sX] # [x,X]. We define some standard operations on multisets.

Multiset algebra xs+ xS, Xs< X§, XS— XS, X € X§ XSV XS
I

[X17 (RN 7Xm] + [y17 (RN aYn] = [X17 e Xmy Y1, aYn]
xs< xs if and only if xs+ xs’ = xs for somexs’
xs—x< = the smallesks’ such thaks< xg' + xg
x € xsif and only if [x] < xs

xsvxd = the smallesks’ such thaks< xg’ andxs < x<’

For example:

o XY+, 4 =[xy

o [xy] <[xy,Z butx,y,y] £ [x,y,Z.
* [xy,y.2 - WXyl =[y,7.

e X€[XY] butz¢ [xy].

e XYIV,Z=[xY,2Z.

For example, we usis to range over multisets of messages.

Multisets of messaged/s:.

I

Ms::= multiset of messages

[M4,...,Mnp] unordered collection of messages
1

We define thdeginningsandendingsof a traces as the multiset of event labels begun
and ended, respectively, &

Beginnings,begings), and endings,endss), of a traces
I

begingay,...,a) = begingas) + - - - + begingan)

. M] if a=begin M
wherebegms(a)é{ h | otherwﬁsge;n

44

endgay,...,a,) = endgay) + --- + endga,)

M] ifa=endM

Next, we say that a trace is a correspondence if its begisrdoginate its endings;
that is, for each end-event labelledthere is a corresponding begin-event labelled

Correspondence:

IA tracesis acorrespondenci and only if endss) < begings).

For the example trace ¢lixedSystefmet) we have:

beginggen nonceUn, gen msgMsg, begin (Sender sennsg,
cast nonceMyNonce(msg, check nonceend (Sender seninsg)
= [Sender seninsg
endggen nonceUn, gen msgMsg, begin (Sender sennsg,
cast nonceMyNonce(msg, check nonceend (Sender seninsg)
= [Sender seninsg

Therefore, since this tracesatisfiesendss) < begings), it is a correspondence.
For the example trace ¢lawedSyste(met) | Attackefnet) we have:

beginggen msgMsg begin (Sender sennsg,
end (Sender sennsg,end (Sender sennsg)
= [Sender seninsg
endggen msgMsg, begin (Sender sennsg,
end (Sender senhsg,end (Sender seninsg)
= [Sender sentnsg Sender seninsg

Since this trace haandqs) £ begings), it is not a correspondence.
We can now restate, precisely, the notions of safety andstadafety introduced
informally in Section 3.1.

Safety and Robust Safety:

A proces<P is safeif and only if for all tracess and processe®,

if P> P’ thensis a correspondence.
A proces<P is robustly safef and only if for all opponent processés P | O is safe
L

For example, sincElawedSystefmet) | Attackeknet) has a trace that is not a cor-
respondence, it follows th&tlawedSystefmet) | Attackefnet) is not safe. Since the
procesdttackernet) is an opponent process, it follows thidawedSyste(met) is not
robustly safe.

45

B.3 Proof of Subject Reduction

In this section, we prove a subject reduction property fed#éelled transition system,
that transitions preserve typings. To do so, however, wd teeextend the type system
to accommodate the fact that cast-processes can changgpthefta name after a
transition.

We can illustrate some of the subtleties introduced by g4ty considering three
processes that are well-typed with respect to the typingr@mment defined b =
x:Un,y:Un,zCh(Nonce [end V]).

Firstly, the following example illustrates that a well-ggbprocess can cast the name
X, originally of typeUn, into the distinct typélonce [end V).

Py £ cast X is (X:Nonce [end y]);out z X
EFPy:[endy]

cast X:Nonce [end Y]
py Serxtonce lend) o4 7 x

Secondly, the following example illustrates that the ngmeriginally of typeUn,
can be cast into the tyddonce [end Y], that depends on the naméself.

P, £ cast yis (Y:Nonce [end y]);out z Y
EFP:[endy]

cast y:Nonce |end
P, oSt yonee e, fend outzy

Thirdly, the following example illustrates that the narean be cast to two distinct
types,Nonce [end X] andNonce [end Y].

P3 2 cast X is (X:Nonce [end X]); cast X is (X":Nonce [end Y]);out z X'
E Ps:[end x,end Y]

cast X:Nonce [end y| cast X:Nonce [end X]
Ps fend 1, []> out z X

Moreover, the possibility that a name can come to inhabitiplal distinct types
arises in the setting of our running example. Recall frontiBe@.3 that we have:

netUn |- FixedSystetfmet) : []
Now, consider the attacker:
Attackefnet) = inp net(nonceUn);out net(nonce; out net(nonce

We can derive
netUn - FixedSysteifmet) | Attackefnet) : []

but FixedSysteimet) | Attackeknet) has the trace:

e gen (nonce: receiver generates a nonce
(initially nonceUn).

e gen (Msq): sender generates a messatgg :Msg

46

e begin (Sender sennsg): sender begins correspondence 1.

e cast nonceNonce [begin (Sender seninsg)]: sender castsonce
(so nownonceNonce [begin (Sender sennsg)]).

e gen (Ms@): sender generates a messagsy:Msg
e begin (Sender sennsg): sender begins correspondence 2.

e cast nonceNonce [begin (Sender sennsg)]: sender castsonceagain
(so nownonceNonce [begin (Sender sennsg)]).

At the end of this tracenoncehas been given three incompatible types:

e Of an untrusted messagenceUn.
e Of a nonce for correspondencenbnceNonce [begin (Sender seninsg)].
e Of a nonce for correspondencer®nceNonce [begin (Sender sennsg)].

If we are going to allow names to have more than one type, wd tteextend the
definition of an environment to allow this.

To accommodate the possibility that a name of tYsecan be cast to additional
types of the formNonce es we allow additional entries of the formx:Nonce esto be
added to environments.

Extended environments:
I 1

E:= environment
. as before
E,+xT extended entryT always takes the forNonce e9

For example, we now allow the environment:

nonceUn,
msg :Msg,
+nonceNonce [begin (Sender sernnsg)],
msg:Msg,
+nonceNonce [begin (Sender senmnsg)]

which records thamhonceoriginally had typeUn, but has since been cast to two other
nonce types.
We extend the definitions afomE) andfn(E):

Free namesfin(E) of an extended environment:
I

fn(E,+xT) = fn(E) U {x} Ufn(T)

Domain domE) of an extended environment:
I

dom(E, +xT) = dom(E) U {x}

a7

We also extend the rules for typing with extended envirorisiefhe rule rule (Env
+x) allows the formation of an extended environmEn#-x:T only whenx originally
had typeUn, and now also has nonce type. This matches the type rule Gsiy. The
rule (Msg+x) extracts type information from such extended environsment

Typing with extended environments:

I
(Env +x) (Msg +x)
EFx:Un Etes E,+xT,E'Fo

E,+x:Nonceesko E,+xT,E'Fx:T

We now show some standard properties about our extendeditypeffect system.
Lemma 3 (Environment) If E F 7 then EF- ¢.

Proof Show by induction on the derivation & E’ - 7 that if E,E’ I 7 thenE - o.
O

Lemma 4 (Weakening) If E,E”" 7 and EE’,E" - othen EE',E" I 7.
Proof Aninduction on the derivation d&,E" - 7. m|

Lemma 5 (Substitutivity) If E,x:T,E'F 7 and E- M : T and x¢ dom(E’) then we
have E (E'{x+M}) - 7 {xM}.

Proof First show by case analysis thatlf- M : T andT is Ch(U), Key(U) or
Nonce esthenM is a name. The result then follows by induction on the deigvedf
E,xT,E'} 7. O

Lemma 6 (Subsumption Elimination) If E - P : es then B- P : fs can be derived
without rule (Proc Subsum), where {ses.

Proof First show that ifE - esandE - fsthenE - es+ fs, E - es— fsandE +
esV fs. Then show by induction on derivation thatf- P : esthenE - es The result
then follows by induction on the derivation Bf- P : es |

Next, we show a standard property of our labelled transisigstem, that we can
move every use of structural equivalence up to top level.tateghis lemma, we use
the shorthandew (D); P where:

new (X1:T1,...,%n:Tn); P 2 hew (x1:T1); ... new (Xn:Tp); P
This construct enjoys the derived type rule:
Derived type rule for new (D);P:

(Proc RedD) (wheredom(D) Nfn(es— checkgD)) = &)
E,DFP:es Disgenerative

E F new (D); P : es—checkgD)

wherecheckgxq:T1,...,Xn:Tn) = [check Xq,. .., check Xp]
andxy:Ty, ..., X, Ty is generativef and only if T, ..., T,, are all generative.
L

48

Lemma 7 (= Elimination) If P % P’ then:

P=new (D);(Q|R) P =new (D); (Q' | R) fn(a) NdomD) = &
and Q% Q' can be derived without rules (Trans Par) (Trans Res) or ($rai.
Proof An induction on the derivation d@® = P'. O

We now show that the effect judgment for processes is preddsy structural equiva-
lence.

Proposition 8 (Subject Equivalence)lf E - P: es and P= Q then E- Q: es.

Proof Prove by induction on the derivation ef that if P = Q or Q = P then if
E-P:esthenEFQ:es O

Next, we state the main result of this section, a subjectatalu property for our
labelled transition system.

Proposition 9 (Subject Reduction) Suppose E P: es.

(1) If P 5 P then EF P : es.
2) 1f P X1 P then either:

(@) EFP :es,or
(b) E,+xT P : es— fs where T= Nonce fs and fs< es.

check X

(3) If P ——= P’ then either:
(@) EFP :es,or
(b) EF x: Nonce fs, EF P’ : (es+ fs) — [check X] andcheck x € es.

@) 1fP 28" M, b/ then EF P’ : es+ [end M.
(5) If P 2™, P’ then EF P’ : es— [end M], andend M € es.
(6) If P T, P’ then (up to appropriate-conversion of x) either:

(@) E,xT P :esandT is generative, or
(b) E,xT P :es+[checkx] and T isUn.

Proof

(1) If P 5 P’ then such that E P’ : es.

A case analysis on the derivationRfs P'.

49

Case (Trans Comm): By Lemma 6 (Subsumption Elimination) and Lemma 7
(= Elimination); and Rules (Proc Par), (Proc R&s (Proc Output), (Proc
Input), (Proc Output Un) and (Proc Input Un), we have:

P

PI

E,D
E,D
E,D,y:T
E,D

)

es

v T T T T |l

new (D); (out XM | inp X (y:T); Q| R)
new (D); (Qfy+M} | R)

x:U

M:T

Qegp

R:ex

(esg+ex) — checkgD)

whereT = Un andU = Un, or U = Ch(T); D is generativedomD) N
fn((esgp + ex) — checkgD)) = @; andy ¢ fn(eg). Then by Lemma 5
(Substitutivity), and Rules (Proc Par), (Proc BBsand (Proc Subsum) we

have:

as required.

E - P:es

Case (Trans Split): By Lemma 6 (Subsumption Elimination) and Lemma=/ (
Elimination); and Rules (Proc Par), (Proc R&s (Msg Pair), (Proc Split),
(Msg Pair Un), (Proc Split Un) we have:

P

Pl

E,D

E,D
E,D,xT,y:U
E,D

es

v T T T T |l

new (D); (split (M,N) is (xT,y:U);Q| R)
new (D); (Q{x<M}{y<N} [R)

M:T

N:U{x<M}

Q:exg

R:ex

(esg +ex) — checkgD)

whereD is generativedom D) Nfn((esg + ex) — checkgD)) = @; x ¢
fn(esy); andy ¢ fn(esp). Then by Lemma 5 (Substitutivity), and Rules (Proc
Par), (Proc ReB) and (Proc Subsum) we have:

as required.

E - P:es

Case (Trans Match): By Lemma 6 (Subsumption Elimination) and Lemma 7
(= Elimination); and Rules (Proc Par), (Proc Res (Msg Pair), (Proc

50

Match), (Msg Pair Un), (Proc Match Un) we have:

P
Pl
E,D
E,D
E,D,y:U{xM}
E.D
es

new (D); (match (M,N) is (M,y:U {x<M});Q| R)
new (D); (Q{y«N}[R)

M:T

N:U{x<M}

Q:exg

R:ex

(eso+ex) — checkgD)

v T T T T |l

whereD is generativedom(D) Nfn((esy + exk) — checkgD)) = @; and
y ¢ fn(esy). Then by Lemma 5 (Substitutivity), and Rules (Proc Par)o¢Pr
ResD) and (Proc Subsum) we have:

as required.

(= Elimination);

E - P:es

Case (Trans Case Inl): By Lemma 6 (Subsumption Elimination) and Lemma 7

and Rules (Proc Par), (Proc RB} (Msg Inl), (Proc

Case), (Msg Inl Un), (Proc Case Un), we have:

P

PI

E.D
E,D,xT
E,D,y:.U
E,D

es

v T T™ T T |l

(caseinl (M) isinl (xT) Qisinr (yU) R|S)
(Q{x=M}[9)

new

)i

(D
D);

new
M:T

Q:eg

R:ex

S:esg
(egVex)+es

whereD is generativedom(D) Nfn(((esp V exk) + ess) — checkgD)) =
&; x ¢ fn(esy); andy ¢ fn(exk). Then by Lemma 5 (Substitutivity), and
Rules (Proc Par), (Proc R&) and (Proc Subsum) we have:

as required.

E F P:es

Case (Trans Case Inr): As for Case (Trans Case Inl).
Case (Trans Decrypt): By Lemma 6 (Subsumption Elimination) and Lemma 7

(= Elimination); and Rules (Proc Par), (Proc R®s (Msg Encrypt), (Proc

51

Decrypt), (Msg Encrypt Un), (Proc Decrypt Un), we have:

P = new (D);(decrypt {M}nis {XT}n:Q|R)
P' = new (D);(Q{xM}|R)
ED F M:T
E,D,xT F Q:eg
E.D + R:ex
es > (egp+exk)—checkgD)

whereD is generativedomD) Nfn((es + exk) — checkgD)) = &; and
x ¢ fn(eg). Then by Lemma 5 (Substitutivity), and Rules (Proc Par)o¢Pr
ResD) and (Proc Subsum) we have:

E - P:es
as required.

() If P 5T, P then either:

(@) EFP :es,or
(b) E,+xT + P : es— fs where T= Nonce fs and fs< es.

By Lemmas 6 (Subsumption Elimination) and= Elimination); and Rules (Proc
Par), (Proc Cast) and (Proc Cast Un) we have:

P = new (D);(castxis (Y:T);Q|R)
P' = new (D);(Q{y+x} |R)
E F x:Un
E,D,yT F Q:eg
E.D F R:ex
es > (egp+ fs+ex)—checksD)

whereD is generativedom D) Nfn(cast xT) = @; domD) Nnfn((esp + fs+
ex) — checkgD)) = @; y ¢ fn(es); and eitherT =Un andfs=[] or T =
Nonce fs.

Case [=Unand fs=[]): By Lemma5 (Substitutivity), and Rules (Proc Par),
(Proc Red) and (Proc Subsum) we have:

E - P:es

as required.

Case [= Nonce fs): SinceE,D,y:T - Q: esp, by Lemma 3 (Environment)
and Rules (Enx) we haveE,D - T. Sincefn(T) ndom(D) = @, andx ¢
dom(D), by repeated use of Lemma 5 (Substitutivity) we hBve T and

52

E F x: Un. Then we use Rule (En¥x) to getE, +x:T | ¢, so we can apply
Lemma 4 (Weakening) to gé&t,+x:T,D,y:T - Q: es. By Rule (Msg+X)
we haveE, +x:T,D - x: T and so we can apply Lemma 5 (Substitutivity),
and Rules (Proc Par), (Proc Reyand (Proc Subsum) to get:

E,+xT + P:es—fs

and fs < esas required.

check X

(3) If P ——= P’ then either:
(@) EFP :es,or
(b) EF x: Nonce fs, EF P’ : (es+ fs) — [check X] andcheck x € es.

By Lemmas 6 (Subsumption Elimination) and= Elimination); and rules (Proc
Par), (Proc ReB), (Proc Check), and (Proc Check Un) we have:

P = new (D);(checkXisX;Q|R)
P = new (D);(Q|R)
E.D + x:T
E.D F Q:exg
E.D F R:ex
es > ((exp— fs)+ fs +ewx)—checkgD)

whereD is generativedom D) Nfn(check xT) = @; dom D) Nfn(((esg — fs) +
fs + ex) — checkgD)) = @; and eitherT = Un andfs=fs =[] or T =
Nonce fsandfs = [check X].

Case [=Un and fs= fs = []) By Lemma 5 (Substitutivity), and Rules (Proc
Par), (Proc ReB) and (Proc Subsum) we have:

E - P:es

as required.

Case T = Nonce fsand fs' = [check X]) By Lemma 5 (Substitutivity), and Rules
(Proc Par), (Proc ReB) and (Proc Subsum) we have:

E F x:Noncefs
E + P:(est+ fs)—[checkX]

andcheck x € esas required.

@) 1f P 2" b/ then EF P : es+ [end M].

53

(%)

(6)

By Lemmas 6 (Subsumption Elimination) and= Elimination); and Rules (Trans
Begin), (Proc Par), (Proc R&), and (Proc Begin) we have:

P = new (D);(begin M;Q|R)

P = new (D);(Q|R)
E.D F M:T
E.D F Q:eg
E.D F R:ex
es > ((es—[end M])+ewx)—checkgD)

whereD is generativedom D) N fn(begin M) = @; anddom(D) Nfn(((esp —
[end M]) + ex) — checkgD)) = @. Then by Lemma 5 (Substitutivity), and
Rules (Proc Par), (Proc R& and (Proc Subsum) we have:

E + P :est[endM]

as required.

1P =M B then EF P’ : es— [end M], andend M € es.

By Lemmas 6 (Subsumption Elimination) and= Elimination); and Rules (Trans
End), (Proc Par), (Proc R&) and (Proc End) we have:

P = new(D);(end M |Q)

P = new (D);Q

E.D F M:T

E,.D F Q:ex

es > (egp+[end M])—checkgD)

whereD is generativedom(D) Nfn(end M) = &; anddomD) Nfn((esg +[end M]) —
checkgD)) = @. Then by Lemma 5 (Substitutivity), and Rules (Proc Par)o¢Pr
ResD) and (Proc Subsum) we have:

E + P:es—[endM]
andend M € esas required.
If P ET, P then (up to appropriate-conversion of x) either:

(@) E,xTFP :esandT is generative, or
(b) E,xT P :es+[check x] and T isUn.

By Lemmas 6 (Subsumption Elimination) and= Elimination); and Rules (Trans
Gen), (Proc Par),(Proc R&9 and (Proc Res) we have:

P = new (D);(new (xT);Q|R)
P = new (D);(Q|R)
E,D,xT F Q:eg
E.D F R:ex
es > ((es—|[checkX])+ex)—checkgD)

54

whereD is generativegom(D) Nfn(gen x:T) = &; dom(D) Nfn((esg + [end M]) —
checkgD)) = @; x ¢ fn(esp); andT is generative.

Case (T = Un) By Lemma 5 (Substitutivity), Lemma 4 (Weakening), and Rules
(Proc Par), (Proc ReB) and (Proc Subsum) we have:

E,xUn F P':es+ [check X

as required.

Case [# Un) SinceE,D,xT - Q: e, we have by Lemma 3 (Environment)
E,D,xT I esp and so (sinc&,D,x:T I/ [check X]) we havecheck X ¢ esg.
By Lemma 5 (Substitutivity), Lemma 4 (Weakening), and Ryf®c Par)
(Proc Red) and (Proc Subsum) we have:

E.xT F P:es

as required.]

B.4 Proof of Safety

The purpose of this appendix is to prove the type safety teBakorem 1 (Safety). It
asserts that a process assigned the empty effect is safe tHBairem is a key fact in
the proof of the main result of the paper, Theorem 2 (RobugtPain Section 4.3.

To prove Theorem 1 (Safety), we actually prove a strongerriant, Proposition 18
(Transition Safety), about processes with non-empty &ffefo state the invariant we
introduce a functiorends(E - e which computes the multiset of end-events repre-
sented by an effe@s With this notation, we can roughly state the invariant dleves:

e If EFP:esandP > P’ then we can findE’ ande< such thaE’ - P’ : e< where
endgE F es + begings) > endgE’ |- es) + endqs).

From this, we deduce that every procéss P: [] is safe.

However, we have some work ahead of us, in particular in defittie function
endges. A naive definition would just be to count all of tked M effects ines but
this ignores the latent effect of nonces. Consider theiiig typing:

X:Un, +x:Nonce [end M] I- (check X is X;end M) : [check X]

The process has tracteck x,end M, which has an unbalancedd M, even though
the effect of the process only containshack x effect. So, in addition to counting the
end-events, we need also to compute the end-events that enaryidashed by nonce
effects.

Another problem is that we have to make sure that nonces atdinsarly, that is,
at most once. For example we need to ban processes such as:

x:Un, +x:Nonce [end M] - (check Xis X; check X is X;end M;end M) : [check X, check X]

55

which use a nonce more than once, or even worse:

x:Un, +x:Nonce [end M, check X] -
(check x is x;end M; check xis X;end M;...) : [check X]

where we have a self-certifying nonce with gyelictypex: Nonce [end M, check X],
which allows an unbounded number of unbalanced assertions.

We first define thdatent effectsof a well-typed messagé - M : Un. If M is
anything other than a name, then the latent effects are e@gherwise iftM = x, we
find all the occurrences ofNonce esin E, and sum them. For example:

effectgx:Un, +x:Nonce [end M], +x:Nonce [check N] - x: Un)
= [end M, check N]

Effectseffect§E - M : Un) of a typed messag& - M : Un:

effect{E,x.T F x: Un) =[]

effectdE, +x:Nonce es- x : Un) = effectdE F x: Un) +es
effectdE,xT Fy: Un) éeffects(E Fy:Un) (whenx #£vy)
effect{E,+xT Fy: Un) 2 effect{EFy:Un) (whenx#£y)
effectdE + M : Un) =[] (whenM is not a name)

As discussed above, we maintain an invariant for well-typedems, which is that they
arenonce lineay so they only only allow each nonce to be checked once. Wealefin
this in terms of a predicatiéls < checkgE I eg which can be read adfsis a lower
bound on the nonce checks allowedby es. For example:

[x] < checkgx:UnF [check X])
[x,y] < checkgx:Un,y:Un F [check X, check y])
[x,y] < checkgx:Un,y:Un,+x:Nonce [check Y] |- [check X])
[x,X] < checkgx:Un I [check X, check X])
[x,x] < checkgx:Un,+x:Nonce [check X] I- [check X])

When we calculate the lower bound on the nonces alloweH byes we include the
latent effects oks In particular, the last example shows that we have to befdare
about cyclic uses of nonces.

Lower bound Ms < checkgE F eg of the nonces of a typed effecE - es

I(Nonce‘s[]) (Noncescheck M)
Ms— [M] < checkgE |- es+ effect§E - M : Un))
[] < checkgE I- ey Ms < checkgE I- es+ [check M])

Having definedVis < checkgE - e9, we can define the nonce linear and nonce acyclic
effects:

56

Nonce linear typed effectsE F es

A typed effectE I esis nonce lineaif and only if
there is ndvl such tha{M,M] < checkgE es).

Nonce acyclic typed effect& + es

A typed effectE + esis nonce acyclidéf and only if
there is ndM] < checkgE F es such thafM, M] < checksE - [check M]).

For example:

x:Un | [check X] is linear and acyclic
x:Un,y:Un | [check X,check y] is linear and acyclic
x:Un,y:Un,+x:Nonce check y I [check X] is linear and acyclic
x:Un F [check x,check X] is acyclic but not linear
x:Un, +x:Nonce check x} [check X] is neither linear nor acyclic

We can now show some properties about nonce linear effextsi@nce acyclic effects,
in particular that every nonce linear effect is nonce acycli

Lemma 10 (Nonce monotonicity)If Ms < checkqE + eg and E+ fs then Msd
checkgE I- es+ fs).

Proof Aninduction on the proof oMs < checksE es). |

Lemma 11 (Nonce transitivity) If we haveglM] < checkg4E F eg and also that Msd
checkgE I [check M]) then Ms<I checkgE es).

Proof Aninduction on the proof ofM] < checkgE F eg. To get[M] < checkgE +-
e we must have used Rule (Nonagmck M) and so either:

e check M € es so by Lemma 10 (Nonce monotonicity) we hawe< checkgE +-
es), or

e es= fs+ [check N] and [M] < checksE I fs+ effectE - N : Un)), so by
inductionMs < checkgE - fs+ effect§E - N : Un)), and so by Rule (Nonces
check M) Ms < checkgE - es).

The result follows. O

Lemma 12 (Linear implies acyclic) If E + es is nonce linear then E es is nonce
acyclic.

Proof Follows from Lemma 11 (Nonce transitivity). |

We can now definendgE - e9 for a nonce acyclic effedt - es This is used to set
up the invariant for our type safety result.

57

EndingsendgE F e9 of a nonce acyclic effecE - es

endgE F[]) £]
endgE + es+ [end M]) £ endSE + e9 + [M]
endgE I es+ [check M]) = endSE I es + endgE effect{E - M : Un))

Note thatendSE F eg is not well-defined for nonce cyclic effects, for example if:
E = xUn,+x:Nonce [check X,end M]
then:

endgE + [check X])
= endqE F [check X,end M])
= endgE F [check X,end M,end M])

However, they are well-defined for nonce acyclic effectsicilis enough for our pur-
poses.

Lemma 13 (End Definedness)f E F es is nonce acyclic then ends+ eg is well-
defined.

Proof For any finite set of names, letendgE I egx be defined:

endgE I [])x

= [l
endsE +- es+ [end M])x

= endYEF egx + [M]
endgE I es+ [check M])x

_ endsE I- egx +endgE - effect§E - M : Un))x_qvy if M eX
B endqE I egx otherwise

It is routine to see thagand<(E I egx is well-defined, by induction first oKX then on
es We then show by induction on the definitioneridg E - egx that:

if V[X] < checkqdE |- eg.x e X thenendE I egx =endsE I eg

In particular, we have tha&nds(E - e94ome) = endSE |- e9, and scendyE - eg is
well-defined. U

We can now prove some lemmas, leading up to the type safetifgese need to show
that effect-free processes are safe.

Lemma 14 (End Homomorphism) ends(E + es+ fs) = ends(E I es + ends(E +
fs).

58

Proof Aninduction ones O
Lemma 15 (End+x) If [X] £ check4E I e9 then end$E,+xT Feg =endgEFe9.
Proof Aninduction ones O

Lemma 16 (End Nonce)If E |- x: Nonce es and B- x: Un then end$E |- [check X]) >
endgE I es).

Proof Show by induction of thates< effect{E I- x: Un). The result then follows
by Lemma 14 (End Homomorphism).]

Lemma 17 (End Add Nonce) If E | es+ fs is nonce linear then endE I es+ fs) >
endgE, +x:Nonce fsi-es

Proof Aninduction ones The only interesting case is when:
es = es+[checkX]

SinceE F es+ fsis nonce linear, we havg] € checkgE F es) and[x] 4 checkgE F
effect§E, +x:Nonce fst x: Un)) and so by Lemmas 14 (End Homomorphism) and 15
(End+x):

endqE I es+ fs)
= endgE F es+ [check X] + fs)
= endgE F es + [check X]) + endSE - fs)
= endgE F es) +endgE - effect{E - x: Un)) + endgE fs)
= endgE | es) +endqE - effect{E - x: Un) + fs)

= endgE,+x:Nonce fstes)+
endsE, +x:Nonce fst effectE, +x:Nonce fstx: Un))

= endgE,+x:Nonce fst es + [check X])
= endgE,+x:Nonce fstes

as required.

Proposition 18 (Transition Safety) If E F es is nonce linear, E P : es and PL P/
then E - P’ : es for some nonce linear B es such that end&E + es + beginga) >
endsE’' I- es) + endqa).

Proof A case analysis oa:

Case (t = cast xXT) By Proposition 9 (Subject Reduction), we have one of thetal|
ing cases:

Subcase E - P : e9 Immediate.

59

Subcase E, +xT - P': es— fswhere T = Nonce fsand fs< eg Then, using
Lemma 17 (End Add Nonce) we have:

endgE I- es + beginga)
= endyEFe9
> endyE,+xT I es— fs)
endqE, +xT F es— fs) + endqa)

andE,+xT F es— fsis nonce linear as required.

Case (0 = check X) By Proposition 9 (Subject Reduction), we have one of theval|
ing cases:

Subcase E - P': e9 Immediate.

Subcase E - x: Nonce fs, E - P': (es+ fs) — [check X], check x € e§ Given
Lemmas 16 (End Nonce) and 14 (End Homomorphism) we have:

endgE F e + beginga)
= endyEF e9
= endgEF (es— [check X]) + [check X])
= endgEF (es— [check X])) 4+ endE F [check X])
> endqE | (es—|[check X])) + endgE - fs)
= endgEF (es+ fs) —[check X])
endsE I- (es+ fs) — [check X]) + endg)

andE F (es+ fs) — [check X] is nhonce linear as required.

Case @ = begin M) Follows directly from Proposition 9 (Subject Reduction).
Case @ = end M) Follows directly from Proposition 9 (Subject Reduction).
Case @ = gen x:T) Follows directly from Proposition 9 (Subject Reduction).
Case (0 = 1) Follows directly from Proposition 9 (Subject Reduction). |

Proposition 19 (> Safety) If E es is nonce linear, E P: es and P> P’ then E +
P’ : e< for some nonce linear & e such that endéE + eg + begings) > endgE’ -
es) +endqs).

Proof An induction on the derivation @@ = P'.
Case (Trace=) We have:

s = ¢
P = P

By Proposition 8 (Subject Equivalence):
E F P:es

60

and so (sinckeginge) = endge) = [] we have:

endsE + es +begings) > endgE e9+endys)

as required.
Case (Trace Event) We have:

P/l
P// P/
s = at

_U
1= 1=

By Proposition 18 (Transition Safety) we can find nonce line4at es’ such
that:

E" + P':ed
endSE - es +beginga) > endgE"Fes')+endqa)
By induction, we can find nonce line&f + es such that:
E' - P:es
endsE" I ed') + begingt) > endgE’' I es)+endgt)

and so:
endqE + es + begings)
= endgE | es + beginga) + begingt)
> endgE" - ed’) + endga) + begingt)
> endgE'F es)+endqa) + endgt)
= endgE’' I esd)+endgs)
as required.]

We have now done all the work required to show our main theormmy effect-free
process is safe.

Proof of Theorem 1 (Safety) If E+ P:[]then P is safe.

Proof If P> P then we use Proposition 1@)(Safety) to get:
begings)
= endgEF []) + begings)
endsE’ - es) +endgs)

2
> endqs)

Thus,P is safe. O

61

FixedSendenetNetwork alice:Princ, keyWMFKeyalice)) =
repeat

inp net(bokxPrinc);

new (sKeySKey;

begin “alice sendingoobkey sKey;
out net(alice);

inp net(nonceAUn);

cast nonceAis (nonceAWMFNoncéalice, boh sKey)); fend
out net(alice, {msg(boh sKeynonceA) }ie,); } [] en

FixedReceiveinetNetwork bobiPrinc, key WMFKeybob)) £
repeat

inp net();

new (nonceBUn);

out net(nonceB;

inp net(ctextUn);

decrypt ctextis {msg(alice, sKeynonceB) } ey; [
check nonceBis nonceB; heck

end “alice sendingbobkey sKey } [end ..] [check noncef

FixedServefmetNetwork lookupWMFLookup =
repeat

inp net(alice:Princ);

new (nonceAUn);

out net(nonceA;

inp net(alice,ctextUn);

let keyA: WMFKeyalice) = lookup(alice);

decrypt ctextis {msg(boh sKeynonceA) }xeya
check nonceAis nonceA
out net();

inp net(nonceBUn);

let keyB: WMFKeybob) = lookup(bob);
out net{msg(alice, skeynonceB) }ieys} []

cast nonceBis (nonceBWMFNoncéalice, boh, sKe)));} [check ...
lend ...]

Figure 1: Type checked participants in the Wide Mouth Fragquol

62

References

[1] M. Abadi. Secrecy by typing in security protocolsJournal of the ACM
46(5):749-786, September 1999.

[2] M. Abadi and B. Blanchet. Secrecy types for asymmetrimpwnication. In
Foundations of Software Science and Computation Strust{f@SSaCS 2001)
volume 2030 ofLectures Notes in Computer Sciengages 25-41. Springer,
2001.

[3] M. Abadi and A.D. Gordon. A calculus for cryptographicopocols: The spi
calculus.Information and Computatiqri48:1-70, 1999.

[4] M. Abadi and R. Needham. Prudent engineering practicefgptographic pro-
tocols. IEEE Transactions on Software Engineerj2g(1):6—-15, 1996.

[5] R. Anderson and R. Needham. Programming Satan’s compute J. van
Leeuwen, editorComputer Science Today: Recent Trends and Developments
volume 1000 ofectures Notes in Computer Scienpages 426—-440. Springer,
1995.

[6] M. Bellare and P. Rogaway. Entity authentication and Hestribution. InAd-
vances in Cryptology: CRYPTO’'98olume 773 ofLectures Notes in Computer
Sciencepages 232—-249. Springer, 1994.

[7] G. Berry and G. Boudol. The chemical abstract machifeeoretical Computer
Science96(1):217-248, April 1992.

[8] D. Bolignano. An approach to the formal verification ofptographic protocols.
In Third ACM Conference on Computer and Communications Sgcyrages
106-118, 1996.

[9] M. Burrows, M. Abadi, and R.M. Needham. A logic of authieation. Proceed-
ings of the Royal Society of London4¥6:233-271, 1989.

[10] E. Cohen. TAPS: A first-order verifier for cryptograppiotocols. In13th Com-
puter Security Foundations Workshqgages 144-158. IEEE Computer Society
Press, 2000.

[11] S. Dal Zilio and A.D. Gordon. Region analysis andt&alculus with groups.
In Mathematical Foundations of Computer Science 2000 (MFOSR®@olume
1893 ofLectures Notes in Computer Scienpages 1-21. Springer, 2000.

[12] D. Dolev and A.C. Yao. On the security of public key protts. IEEE Transac-
tions on Information TheoryT-29(2):198-208, 1983.

[13] A. Durante, R. Focardi, and R. Gorrieri. A compiler faradysing cryptographic
protocols.ACM Transactions on Software Engineering and Methodql2990.
To appear.

[14] R. Focardi, R. Gorrieri, and F. Martinelli. Messagehantication through non-
interference. Irinternational Conference on Algebraic Methodology Andt-Sof
ware Technology (AMAST20Q0)olume 1816 ofLectures Notes in Computer
Sciencepages 258-272. Springer, 2000.

63

[15] D.K. Gifford and J.M. Lucassen. Integrating functibaad imperative program-
ming. In ACM Conference on Lisp and Functional Programmipgges 28-38,
1986.

[16] D. Gollmann. What do we mean by entity authenticatiom?1.995 IEEE Com-
puter Society Symposium on Research in Security and Priyaanes 46-54,
1995.

[17] L. Gong, R. Needham, and R. Yahalom. Reasoning aboigfbé@h cryptographic
protocols. In1990 IEEE Computer Society Symposium on Research in Securit
and Privacy 1990.

[18] A.D. Gordon and A. Jeffrey. Typing correspondence di&ses for communi-
cation protocols. IrMathematical Foundations of Programming Semantics 17
Electronic Notes in Theoretical Computer Science. Elsefi@g01. To appear.

[19] A.D. Gordon and D. Syme. Typing a multi-language intediate code. 1128th
ACM Symposium on Principles of Programming Languages (P@PLpages
248-260, 2001.

[20] O. Grumberg and D.E. Long. Model checking and modulaifieation. ACM
Transactions on Programming Languages and Syst&6(8):843—-871, 1994.

[21] J.D. Guttman and F.J. Thayer Fabrega. Authenticagsts. In2000 IEEE Com-
puter Society Symposium on Research in Security and Pri286{.

[22] J. HeatherOh! ...lIsitreallyyou?’ Using rank functions to verify authentication
protocols PhD thesis, Royal Holloway, University of London, 2000.

[23] J. Heather, G. Lowe, and S. Schneider. How to preverg figw attacks on
security protocols. 143th Computer Security Foundations Workshmgges 255—
268. IEEE Computer Society Press, 2000.

[24] J. Heather and S. Schneider. Towards automatic veiditaf authentication
protocols on an unbounded network. 18th Computer Security Foundations
Workshoppages 132-143. IEEE Computer Society Press, 2000.

[25] M. Hennessy and J. Riely. Resource access control tesgsof mobile agents. In
3rd International Workshop on High-Level Concurrent Langas volume 16(3)
of Electronic Notes in Theoretical Computer Scierelsevier, 1998.

[26] T. Lindholm and F. Yellin.The JavaM Virtual Machine SpecificatianAddison-
Wesley, 1997.

[27] G.Lowe. A hierarchy of authentication specificatiohs10th Computer Security
Foundations Workshqages 31-43. IEEE Computer Society Press, 1995.

[28] G. Lowe. Breaking and fixing the Needham-Schroederiptkdy protocol using
CSP and FDR. In T. Margaria and B. Steffen, editdi®ls and Algorithms for
the Construction and Analysis of Systems (TACAS\88ume 1055 ot ectures
Notes in Computer Sciengeages 147-166. Springer, 1996.

[29] J.M. LucassenTypes and effects, towards the integration of functional iam-
perative programming PhD thesis, MIT, 1987. Available as Technical Report
MIT/LCS/TR-408, MIT Laboratory for Computer Science.

64

[30] W. Marrero, E.M. Clarke, and S. Jha. Model checking fecigity protocols.
In DIMACS Workshop on Design and Formal Verification of SegWRiotocols
1997. Preliminary version appears as Technical Report TRFIECS—97-139,
Carnegie Mellon University, May 1997.

[31] R. Milner. Communicating and Mobile Systems: theCalculus Cambridge
University Press, 1999.

[32] G. Necula. Proof-carrying code. B#th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languaggsages 106-119. ACM Press, 1997.

[33] D. Otway and O. Rees. Efficient and timely “mutual autfieation”. Operating
Systems Revie®1(1):8-10, 1987.

[34] L.C. Paulson. The inductive approach to verifying angraphic protocolsJour-
nal of Computer Securitys:85-128, 1998.

[35] B. Pierce and E. Sumii. Relating cryptography and palyphism. Available
from the authors, 2000.

[36] S.A. Schneider. Verifying authentication protocaisGSP. IEEE Transactions
on Software Engineerin@4(9), September 1998.

[37] C. Skalka and S. Smith. Static enforcement of securiti1 types. In P. Wadler,
editor,2000 ACM International Conference on Functional Programgnipages
34-45, 2000.

[38] D.X. Song. Athena: a new efficient automatic checkersieurity protocol anal-
ysis. In12th Computer Security Foundations Workshi&gEE Computer Society
Press, 1999.

[39] F.J. Thayer Fabrega, J.C. Herzog, and J.D. Guttmaman&tspaces: Why is
a security protocol correct? 10998 IEEE Computer Society Symposium on
Research in Security and PrivacyQ98.

[40] T.Y.C. Woo and S.S. Lam. Authentication for distribditeystems.Computer
25(1):39-52, 1992.

[41] T.Y.C. Woo and S.S. Lam. A semantic model for authetiticaprotocols. In
IEEE Symposium on Security and Privapgges 178-194, 1993.

65

