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Abstract

We propose a new method to check authenticity properties of cryptographic
protocols. First, code up the protocol in the spi-calculus of Abadi and Gordon.
Second, specify authenticity properties by annotating thecode with correspon-
dence assertions in the style of Woo and Lam. Third, figure outtypes for the keys,
nonces, and messages of the protocol. Fourth, check that thespi-calculus code is
well-typed according to a novel type and effect system presented in this paper. Our
main theorem guarantees that any well-typed protocol is robustly safe, that is, its
correspondence assertions are true in the presence of any opponent expressible in
spi. It is feasible to apply this method by hand to several well-known cryptographic
protocols. It requires little human effort per protocol, puts no bound on the size
of the opponent, and requires no state space enumeration. Moreover, the types for
protocol data provide some intuitive explanation of how theprotocol works. This
paper describes our method and gives some simple examples. Our method has led
us to the independent rediscovery of flaws in existing protocols and to the design
of improved protocols.
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1 Verifying Correspondences by Typing Spi

We propose a new method for analysing authenticity properties of cryptographic pro-
tocols. Our proposal builds on and develops two existing ideas: Woo and Lam’s idea
of correspondence assertions for specifying authentication properties of protocols [41],
and Abadi’s idea of checking security properties of cryptographic protocols by type-
checking [1].

Woo and Lam’s idea of correspondence assertions is very simple. Starting from
some description of the sequence of messages exchanged by principals in a protocol,
we annotate it with labelled events marking the progress of each principal through
the protocol. Moreover, we divide these events into two kinds, begin-events and end-
events. Event labels typically indicate the names of the principals involved and their
roles in the protocol. For example, before running a protocol to authenticate its pres-
ence to another principalB, an initiatorA asserts a begin-event labelled “initiatorA
authenticating itself to responderB”. After satisfactory completion of the protocol, the
principalB asserts an end-event with the same label. A protocol satisfies these asser-
tions if in all protocol runs, and in the presence of a hostileopponent, every assertion of
an end-event corresponds to a distinct, earlier assertion of a begin-event with the same
label. The hostile opponent can capture, modify, and replaymessages, but cannot forge
assertions.

Woo and Lam’s paper [41] describes a formal semantics for correspondence as-
sertions but suggests no verification techniques. Marrero,Clarke, and Jha [30] base
a model-checker for security protocols on correspondence assertions. This paper for-
malises correspondence assertions as new commands in the spi-calculus [3], a concur-
rent programming language equipped with abstract forms of cryptographic primitives.
We expect it would not be difficult to adapt the techniques of this paper to other con-
current languages.

There is a variety of different formulations of authenticity properties of protocols,
and even a little controversy [6, 16, 27, 13]. Still, we adoptcorrespondence assertions
because they are simple, precise, and flexible. They are simple annotations of a pro-
tocol expressed as a program. They have a precise semantics.They are flexible in the
sense that by annotating a protocol in different ways we can express different authen-
ticity intentions and guarantees. Correspondence assertions allow us to express what
Lowe [27] calls injective agreement between protocol runs.In a formal comparison
of authenticity properties, Focardi, Gorrieri, and Martinelli [14] formulate a property
that systematically generalises the equational properties proved in the original work on
spi [3], and show that this generalisation is strictly weaker than agreement. Therefore,
there is some evidence that the authentication properties proved in this paper are at
least as strong as in the original work.

By verifying suitable correspondence assertions, our method can rule out problems
such as vulnerability to replay attacks or confusions of identity. Still, like most other
formal methods for analysing authenticity protocols, our method deliberately abstracts
from the details of the underlying encryption algorithms, and therefore cannot detect
protocol weaknesses deriving from inadequacies in these algorithms.

Abadi’s idea of type-checking secrecy properties of cryptographic protocols in the
spi-calculus is part of a surge of interest in types for security. Other work includes
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type systems for checking untrusted mobile code [26, 32, 19], for checking access
control [25, 37], and, most recently, other type systems forcryptographic primitives
[35, 2]. Abadi’s original system establishes secrecy properties, and features some un-
usual constructs that allow any opponent to be type-checked. This paper develops some
of the constructs in Abadi’s system, and proposes a new type and effect system [15, 29]
for the spi-calculus. For a well-typed program containing correspondence assertions, a
type safety theorem guarantees the program satisfies the assertions.

Our new method is the following. First, code up the protocol in the spi-calculus.
Second, specify authenticity properties expected of the protocol by annotating the code
with correspondence assertions. Third, figure out types forthe keys, nonces, and mes-
sages of the protocol. Fourth, check that the spi-calculus code is well-typed. The type
safety theorem guarantees the soundness of the authenticity properties specified in the
second step. The theorem asserts these properties hold in the presence of an opponent
represented by an arbitrary spi process. Therefore, a limitation of the theorem is that
it does not rule out attacks that cannot be expressed in the spi-calculus. On the other
hand, it does not limit the size of the attacker in any way. We have applied this method
to several protocols by hand, and have re-discovered some known flaws.

Our method is one of only a few formal analyses that require little human effort
per protocol, while putting no bound on the size of the protocol or opponent. Other ex-
amples include Song’s mechanisation [38] of strand spaces [39], Heather and Schnei-
der’s algorithm [24, 22] for computing Schneider’s rank functions [36], and Cohen’s
resolution-based theorem prover TAPS [10]. Non-examples include most approaches
based on model-checking [28], which are automatic but require bounds on the size of
the opponent or the protocols, and most approaches based on theorem-proving [8, 34],
which impose no bound on opponent or protocol size, but require lengthy and expert
human intervention.

Our method is also one of only a few where analysing a protocolinvolves no ex-
ploration or enumeration of the possible states or messagesof the protocol, and so is
decidable even for protocols with no bound on the size of the principals. The only other
such methods we know of are those based on proof-checking belief logics [9, 17]. Like
constructing a proof in a belief logic, the work of devising types for a protocol in our
system amounts to writing down a formal argument explainingthe protocol. Failing
to find a proof or a typing can suggest possible attacks on the protocol. Unlike most
belief logics, our method has a precise computational basis.

In this paper, we only consider type checking, not type synthesis. Type checking
(where the computer checks user-defined typings) is easily seen to be decidable, and
provides a straightforward top-down algorithm for protocol verification. Type synthesis
(where the computer derives the typings itself) would be harder.

In summary, our new method enjoys a rare and attractive combination of strengths:� It needs little human effort per protocol.� It puts no bound on the size of the principals.� It needs no state space enumeration per protocol.� It has a precise computational foundation.� It is decidable.
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On the other hand, the type system on which our method is basedhas limitations. Like
all type systems, it is incomplete in the sense that perfectly well-behaved code can
fail to type-check. For example, we have found that certain uses of nonces cannot be
type-checked. Our system is also limited to symmetric-key cryptography. We leave the
study of types for other cryptographic primitives as futurework.

The new technical contribution of this paper is a type and effect system for prov-
ing correspondence assertions that supports the cryptographic primitives of the spi-
calculus. A series of examples supports its usefulness. In earlier work [18], we pro-
posed a type system for proving correspondence assertions about non-cryptographic
communication protocols in theπ-calculus. The system of the present paper copes
with untrusted opponents, encryption primitives, and synchronisation via nonce hand-
shakes, additional features essential for cryptographic protocols.

Contents of this Paper

Section 2 presents the spi-calculus, and illustrates programming of security protocols.
Section 3 extends the spi-calculus with correspondence assertions, and shows how they
can specify authenticity properties. Section 4 describes our type and effect system.
Section 5 discusses further examples. Section 6 concludes.

2 Programming Protocols

This section reviews the syntax and informal semantics of the spi-calculus, and explains
how to express a simple protocol example as a spi-calculus program.

Milner, Parrow, and Walker’sπ-calculus [31] is a parsimonious formalism for con-
currency. It explains many different kinds of computation by reducing them to ex-
changes of names on communication channels. An important constituent of the calcu-
lus is a name generation operator for generating fresh names, which identify commu-
nication channels.

Abadi and Gordon’s spi-calculus [3] is an extension of theπ-calculus with abstract
forms of encryption and decryption, akin to the idealised versions introduced by Dolev
and Yao [12]. The atomic names of the spi-calculus representthe random numbers
of cryptographic protocols, such as encryption keys and nonces, as well as channels.
The name generation operator abstractly represents the fresh generation of unguessable
random numbers such as keys and nonces. We can describe cryptographic protocols by
programming them in the spi-calculus.

There are several existing spi-calculus techniques, such as notions of bisimulation,
for reasoning about authenticity properties. The new contribution of this paper is a type
system for reasoning about authenticity. Our preliminary experience is that establish-
ing authenticity properties by typing is much less labour intensive than constructing
bisimulations.
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2.1 Review of the Spi-Calculus

There are in fact several versions of spi. The main difference between the spi-calculus
presented in this section and the original version [3] is that each binding occurrence of a
name is annotated with a type,T. (We postpone defining the set of types till Section 4.)
Choosing these type annotations is part of our verification method; they are needed for
type-checking processes, but do not affect the runtime behaviour of processes.

We assume an infinite set of atomic names or variables, rangedover bym, n, x,
y, andz. For the sake of simplicity in presenting our type system, this version of the
spi-calculus, unlike the original, does not distinguish names from variables. The set of
messages, which includes the set of names, is given by the grammar in the following
table.

Names and Messages:

m;n;x;y;z name: variable, channel, nonce, key
L;M;N ::= message

x name(M;N) pair() empty tupleinl (M) left injectioninr (M) right injectionfMgN encryption� A message(M;N) is a pair, and() is an empty tuple. With these primitives we
can describe any finite record.� Messagesinl (M) and inr (M) are tagged unions, differentiated by the distinct
tagsinl andinr. With these primitives we can encode any finite tagged union.� A messagefMgN is the ciphertext obtained by encrypting the plaintextM with
the symmetric keyN.

We regard messages as abstract representations of the bit strings manipulated by cryp-
tographic protocols. We assume there is enough redundancy in the format that we can
tell apart the different kinds of messages.

Free names of a messagefn(M):
fn(x) ∆= fxg
fn(()) ∆=?
fn(M;N) ∆= fn(M)[ fn(N)
fn(inl (M)) ∆= fn(M)
fn(inr (M)) ∆= fn(M)
fn(fMgN) ∆= fn(M)[ fn(N)
We writeMfx Ng for the outcome of a capture-avoiding substitution of the message
N for each free occurrence of the namex in the messageM.

The set of processes is defined by the grammar:
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Processes:

O;P;Q;R ::= processout M N outputinp M (x:T);P inputsplit M is (x:T;y:U);P pair splitting
ase M is inl (x:T) P is inr (y:U) Q union casede
rypt M is fx:TgN;P decryption
he
k M is N;P name-checknew (x:T);P name generation
P jQ compositionrepeat P replicationstop inactivity

These processes are:� Processesout M N andinp M (x:T);P are output and input, respectively, along
an asynchronous, unordered channelM. If an outputout x N runs in parallel with
an inputinp x (y);P, the two can interact to leave the residual processPfy Mg.� A processsplit M is (x:T;y:U);P splits the pairM into its two components. IfM
is (N;L), the process behaves asPfx Ngfy Lg. Otherwise, it deadlocks, that
is, does nothing.� A process
ase M is inl (x:T) P is inr (y:U) Q checks the tagged unionM. If M isinl (L), the process behaves asPfx Lg. If M is inr (N) it behaves asQfy Ng.
Otherwise, it deadlocks.� A processde
rypt M is fx:TgN;P decryptsM using keyN. If M is fLgN, the pro-
cess behaves asPfx Lg. Otherwise, it deadlocks. We assume there is enough
redundancy in the representation of ciphertexts to detect decryption failures.� A process
he
k M is N;P checks the messagesM andN are the same name
before executingP. If the equality test fails, the process deadlocks.� A processnew (x:T);P generates a new namex, whose scope isP, and then runs
P.� A processP jQ runs processesP andQ in parallel.� A processrepeat P replicatesP arbitrarily often. Sorepeat P behaves likeP jrepeat P.� The processstop is deadlocked.

Each binding occurrence of a name bears a type annotation. These types play a role in
type-checking but have no role at runtime; they do not affectthe operational behaviour
of processes. In examples, for the sake of brevity, we sometimes omit type annotations.

Free names of a processfn(P):
fn(out M N

∆= fn(M)[ fn(N)
fn(inp M (x:T);P ∆= fn(M)[ fn(T)[ (fn(P)�fxg)
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fn(split M is (x:T;y:U);P) ∆= fn(M)[ fn(T)[ (fn(U)�fxg)[ (fn(P)�fx;yg)
fn(
ase M is inl (x:T) P is inl (y:U) Q ) ∆= fn(M)[ fn(T)[ (fn(P)�fxg)[

fn(U)[ (fn(Q)�fyg)
fn(de
rypt M is fx:TgN;P) ∆= fn(M)[ fn(T)[ fn(N)[ (fn(P)�fxg)
fn(
he
k M is N;P) ∆= fn(M)[ fn(N)[ fn(P)
fn(new (x:T);P) ∆= fn(T)[ (fn(P)�fxg)
fn(P jQ) ∆= fn(P)[ fn(Q)
fn(repeat P) ∆= fn(P)
fn(stop) ∆=?
We writePfx Ng for the outcome of a capture-avoiding substitution of the message
N for each free occurrence of the namex in the processP. We identify processes up
to the consistent renaming of bound names, for example wheny =2 fn(P), we equatenew (x:T);P with new (y:T);(Pfx yg). We will often elidestop from the end of
processes, and we will writeout x M;P as shorthand forout x M j P.

2.2 Programming an Example

This section shows how to program a simple cryptographic protocol in spi. The proto-
col is intended to allow a fixed principalA to send a series of messages to another fixed
principalB via a public channel, assuming they both share a secret keyK. The idea
is simply thatA encrypts each message. Of course, for many purposes this protocol
is actually far too simple: it is vulnerable to an attacker intercepting and replaying a
message, so thatB may accept the message twice thoughA sent it just once. In the
next section, we introduce correspondence assertions to specify thatB should accept
a messageM no more times thanA sentM, and we discuss a standard guard against
replay attacks, based on nonces.

In a common notation, we can summarise this flawed protocol asfollows:

Message 1 A! B : fMgK
Although standard, this notation leaves implicit details of both protocol behaviour and
security goals. One of the original purposes of the spi-calculus was to make protocol
behaviour explicit in an executable format. We can program the protocol in spi as
follows.

First, we describe the behaviour of the sender and receiver.

FlawedSender(net;key) ∆=repeatnew (msg);out netfmsggkey

FlawedReceiver(net;key) ∆=repeatinp net(ctext);de
rypt ctextis fmsggkey

These are:
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� The processFlawedSender(net;key) is the senderA, parameterized onnet (the
name of the public channel) andkey(the shared secret key). It repeatedly gener-
ates a fresh namemsg, and then sends the ciphertextfmsggkey on the publicnet
channel.

(In passing from the informal notation to the spi-calculus,we have determined
that the plaintexts of the sent messages are freshly generated, rather than say be-
ing predetermined. It is easy to adapt this process to take a list of predetermined
plaintexts as parameter.)� The processFlawedReceiver(net;key) is the receiverB, parameterized onnet
andkey It repeatedly receives a message on the publicnet channel, binds it to
variablectext, and attempts to decrypt it with keykey.

We specify the behaviour of the whole system running in the protocol by generating a
fresh namekey—the shared secret key—and then by placing the sender and receiver in
parallel.

FlawedSystem(net;done) ∆=new (key);(FlawedSender(net;key) j FlawedReceiver(net;key))
Most protocols analysed with the spi-calculus have been programmed in this style.

3 Specifying Protocols

Woo and Lam [41] introduce correspondence assertions, a method for specifying pro-
tocol authenticity properties, such as properties that areviolated by replay or man-in-
the-middle attacks. The method depends on principals asserting labelled begin- and
end-events during the course of a protocol. The idea is that each end-event should cor-
respond to a distinct, preceding begin-event with the same label. Otherwise there is an
error in the protocol.

To formalize these ideas, in Section 3.1, we enrich our spi-calculus with assertions
of begin- and end-events. Then, in Section 3.2, we illustrate how to specify an authen-
ticity property of our example protocol, and show in fact that the protocol is flawed. In
Section 3.3 we fix the flaw by adding a standard nonce handshake.

3.1 A Spi-Calculus with Correspondence Assertions

First, we introduce the following notation for events, using messages as labels.

Events:begin L begin-event labelled with messageLend L end-event labelled with messageL

Second, we add processes to assert begin- and end-events.
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Processes:

O;P;Q;R ::= process: : : as in Section 2.1begin L;P begin-assertionend L;P end-assertion

Assertions are autonomous in that they act independently without any synchronisation
with other processes.� The begin-assertionbegin L;P autonomously asserts abegin L event, and then

behaves asP.� The end-assertionend L;P autonomously asserts anend L event, and then be-
haves asP.

Free names of a processfn(P):
fn(begin M;P) ∆= fn(M)[ fn(P)
fn(end M) ∆= fn(M)
Given this informal semantics, we give an informal definition of process safety. (We
formalize these definitions in Appendix B via a trace semantics for the spi-calculus.)

Safety:

A processP is safeif and only if
for every run of the process and for everyL,

there is a distinctbegin L event for everyend L event.

For example:� Processbegin L;end L is safe.� Processbegin L;end L;end L is unsafe because of the unmatchedend L.� Processbegin L;begin L;end L is safe; the unmatchedbegin L does not affect
safety.� Processbegin L;begin L;end L;end L is safe; here there are two correspon-
dences, both namedL.� Processbegin L;end L;begin L0;end L0 is safe.� Processbegin L;end L0;begin L0;end L is unsafe.

Safety does not require begin- and end-assertions to be properly bracketed:� Processbegin L;begin L0;end L0;end L is safe.� Processbegin L;begin L0;end L;end L0 is safe.
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Finally, consider the parallel processbegin L j end L. This process either asserts abegin L event followed by anend L event, or it asserts anend L event followed by abegin L event. Because of the latter run, the process is unsafe.
We are mainly concerned not just with safety, but with safetyin the presence of

an arbitrary hostile opponent, which we call robust safety.(This use of “robust” to
describe a property invariant under composition with an arbitrary environment follows
Grumberg and Long [20]). In the untyped spi-calculus [3], the opponent is modelled by
an arbitrary process. In our typed spi-calculus, we do not consider completely arbitrary
attacker processes, but restrict ourselves toopponentprocesses that satisfy two mild
conditions:� Opponents cannot assert events: otherwise, no process would be robustly safe,

because of the opponentend x.� Opponents are not required to be well-typed: we model this using a typeUn for
untyped, untrusted data. This is discucssed further in Section 4

Opponents and Robust Safety:

A processP is assertion-freeif and only if
it contains no begin- or end-assertions.

A processP is untypedif and only if
the only type occurring inP isUn.

An opponent Ois an assertion-free untyped process.
A processP is robustly safeif and only if

P jO is safe for every opponentO.

3.2 Specifying the Example

Recall the protocol example of Section 2.2. Two fixed principalsA andB share a keyK
with whichA sends a sequence of messages toB. We introduce begin- and end-events
labelledM for each messageM. The sender asserts a begin-event labelledM before
sendingM, and the receiver asserts an end-event labelledM after successfully receiving
a messageM.

We express this idea informally as follows:

Event 1 A begins M
Message 1 A! B : fMgK
Event 2 B ends M

We express the idea formally by inserting assertion processes into the spi-calculus de-
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scriptions of the sender and receiver. We update our definitions as follows.

CheckedSender(net;key) ∆=repeatnew (msg);begin msg;out netfmsggkey

CheckedReceiver(net;key) ∆=repeatinp net(ctext);de
rypt ctextis fmsggkey;end msg

CheckedSystem(net) ∆=new (key);(CheckedSender(net;key) j CheckedReceiver(net;key))
Next, we precisely state the authenticity property we desire (but that is actually violated
by the protocol).

Authenticity: The processCheckedSystem(net) is robustly safe. (Breaks.)

If the protocol is safe, eachend msghas a distinct correspondingbegin msg, and there-
foreB accepts each message no more times thanA sent it. Moreover, if the protocol is
robustly safe, no attacker can violate this property.

It is easy to prove that this protocol is safe, since the protocol itself never duplicates
messages. Still, the protocol is not robustly safe since a suitable attacker can violate
this safety property.

Attacker(net) ∆=inp net(ctext);out net(ctext);out net(ctext)
Here is an unsafe run of the processCheckedSystem(net) j Attacker(net). The sender
CheckedSender(net;key) generates a namemsg, performs a singlebegin msg; event,
and sends the ciphertextfmsggkey on net. The attackerAttacker(net) receives this
message, and then sends two copies of onnet. The receiver then receives one of these
copies, successfully decrypts it, and asserts anend msgevent. So far so good. But now
another iteration of the body ofCheckedReceiver(net;key) receives the second copy,
successfully decrypts it, and asserts anotherend msgevent. Because of the second
end-event is unmatched, the run breaks the authenticity property displayed above.

3.3 Fixing the Example

A standard countermeasure against replay attacks is to include anonce, a randomly
generated bit-string, in each ciphertext to ensure its uniqueness. The following variant
of our protocol is now initiated by the receiver, who sends a new nonceN to the sender,
to guard against replays of the encrypted form of the messageM.

Event 1 A begins M
Message 1 B! A : N
Message 2 A! B : fM;NgK
Event 2 B ends M
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In the spi-calculus, nonces are represented by names, and creation of fresh nonces by
name generation. We program the revised protocol as follows:

FixedSender(net;key) ∆=repeatinp net(nonce);new (msg);begin msg;out netfmsg;noncegkey

FixedReceiver(net;key) ∆=repeatnew (nonce);out net nonce;inp net(ctext);de
rypt ctextis fmsg;nonce0gkey;
he
k nonceis nonce0;end msg

The process
he
k nonceis nonce0;P checks thatnonceandnonce0 are the same name
before executingP. For the sake of simplicity, in this example and others in thepaper
we omit error recovery code: upon receiving a ciphertext containing an unexpected
nonce, an instance of the receiver just terminates. The whole system and its authenticity
property are now:

FixedSystem(net) ∆=new (key);(FixedSender(net;key) j FixedReceiver(net;key))
Authenticity: The processFixedSystem(net) is robustly safe.

Given our modifications, this property is true. A direct proof is possible, but tricky,
since we must quantify over all possible attackers. The original paper on the spi-
calculus includes a verification via equational reasoning of a protocol similar to that
embodied inFixedSystem(net). The point of our type system, presented next, is to
provide an efficient way of proving this specification, and others like it.

4 Typing Protocols

This section describes the heart of our method for analysingauthenticity properties of
protocols: a dependent type and effect system for statically verifying correspondence
assertions by type-checking.

Section 4.1 and Section 4.2 explain informally how to type messages and how
to ascribe effects to processes, respectively. We present the type and effect system
formally in Section 4.3. Finally, in Section 4.4 we explain how to type the assertions
in the example of the previous section.

4.1 Types for Messages

There is an objection in principle to a security analysis based on type-checking pro-
cesses: it may be reasonable to assume that honest principals conform to typing rules,
but it is imprudent to assume the same of the opponent. As previously discussed, our
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general model of the opponent is any untyped, assertion-free process. The objection to
a typed analysis is that we may miss attacks by ruling out processes that happen not to
conform to our typing rules. On the internet, famously, nobody knows you’re a dog.
Likewise, nobody knows your code failed the type-checker.

To answer this objection, Abadi [1] introduces anuntrusted type(which we callUn) for public messages, those exposed to the opponent. Every message and every op-
ponent is typable if all their free variables are assigned theUn type. The type represents
the unconstrained messages that an arbitrary process manipulates. Since any opponent
can be typed in this trivial way we have not limited the power of opponents.

To illustrate this, here are some informal typing rules for messages and processes
(for brevity, we elide some technical requirements on free names). Messages of theUn type may be output, input, paired, split apart, encrypted, and decrypted, with no
constraints.� If M : Un andN : Un thenout M N is well-typed.� If M : Un andP is well-typed theninp M (x:Un);P is well-typed.� If M : Un andN : Un then(M;N) : Un.� If M : Un andP is well-typed thensplit M is (x:Un;y:Un);P is well-typed.� If M : Un andN : Un thenfMgN : Un.� If M : Un andN : Un andP is well-typed thende
rypt M is fx:UngN;P is

well-typed.

When modelling protocols, we assume that all the names and messages exposed to
the opponent—representing public data and channels—are ofthis type. Names and
messages not publicly disclosed may be assigned other types, known astrusted types.

Messages of the trusted typeKey(T) are symmetric keys for encrypting messages
of typeT. When encrypting with aKey(T), the plaintext must have typeT, and the
resulting ciphertext is given untrusted type. Using the rules above forUn, we can send
and receive ciphertexts on untrusted channels. When decrypting with a Key(T), if
we succeed we know the plaintext must have been encrypted with the same key, and
therefore our typing rules assign it typeT.� If M : T andN : Key(T) thenfMgN : Un.� If M : Un andN : Key(T) andP is well-typed thende
rypt M is fx:TgN;P is

well-typed.

The remaining trusted types are more standard. Messages of typeCh(T) are channels
communicating data of typeT. Messages of type(x:T;U) are dependent pairs where
the first element has typeT and the second element has typeU . The variablex is
bound, and has scopeU . (The need for such dependent types arises later, when we
introduce a type for nonces.) The only message of the empty tuple type() is the empty
tuple(). Messages of typeT +U are tagged unions. A union of typeT +U is either of
the forminl (M) whereM has typeT, or of the forminr (N) whereN has typeU . As
a technical convenience, to simplify some abbreviations introduced in Appendix A.5,
we introduce the empty type,0. There are no messages of this type. Other base types
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such asint or boolean could easily be added to this language: we expect they would
produce no technical difficulties.

Types:

T;U ::= typeUn untrusted typeKey(T) shared-key typeCh(T) channel type() empty tuple type(x:T;U) dependent pair type
T +U variant type0 empty type

For example:� Key(Un): key for encrypting untrusted data� Ch(Un): channel for communicating untrusted data� Key(Key(Un) +Ch(Un)): key for encrypting either a key for encrypting un-
trusted data or a channel for communicating untrusted data

4.2 Effects for Processes

Our effect system tracks the unmatched end-assertions of a process. In its most basic
form, our main judgment

P : [end L1; : : : ;end Ln℄
means that the effect[end L1; : : : ;end Ln℄, is an upper bound on the multiset (or un-
ordered list) of end-events thatP may assert without asserting a matching begin-event.
Hence, ifP : [℄ then every end-event inP has a matching begin-event, that is,P is safe.

Let e stand for anatomic effect. One kind of atomic effect isend L. The second
kind is 
he
k N; we explain later its use to track nonce name-checking. Letesstand
for aneffect, that is, a multiset[e1; : : : ;en℄ of atomic effects. We writees+es0 for the
multiset union of the two multisetsesandes0, that is, their concatenation. We write
es�es0 for the multiset subtraction ofes0 from es, that is, the outcome of deleting an
occurrence of each atomic effect ines0 from es. If an atomic effect does not occur in
an effect, then deleting the atomic effect leaves the effectunchanged.

Tracking Correspondences in Sequential Code

Given this notation, the typing rules forbegin L;P andend L;P are essentially:� If P : esthenbegin L;P : (es� [end L℄).� If P : esthenend L;P : (es+[end L℄).
These rules are enough to check correspondences in sequential code, for example:� end L : [end L℄
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� begin L;end L : [ ℄� end L;end L : [end L;end L℄� begin L;end L;end L : [end L℄� begin L;begin L;end L;end L : [ ℄
Transferring Effects between Parallel Processes

Our rules for assigning effects to communications and compositions are similar to those
in previous work on effect systems for theπ-calculus [11, 18].� If M : Ch(T) andN : T thenout M N : [ ℄.� If M : Ch(T) andP : estheninp M (x:T);P : es.� If P : esP andQ : esQ thenP jQ : (esP+esQ).
When computing the effect of the compositionP jQ of two processes, we simply com-
pute the multiset union of the effects of the processes. Thisrule in itself does not
allow a begin-assertion inP, say, to account for an end-assertion inQ. For exam-
ple, the parallel compositionbegin L j end L has effect[end L℄, while in contrast the
sequential compositionbegin L;end L has effect[ ℄. In the parallel case, we cannot
assume that the begin-event precedes the end-event so we must conservatively assign
the effect[end L℄. In the sequential case, the syntax guarantees that the begin-event
precedes the end-event so we can assign the effect[ ℄. Somehow we need to be able
to show that temporal precedences are established between parallel processes. Recall
our FixedSystemexample: we need to show that a distinctbegin msgprecedes eachend msg, even though these assertions are running in parallel.

Typing Nonce Handshakes

A nonce handshake guarantees temporal precedence between events in parallel pro-
cesses. In this paper, we consider a particular idiom for nonce handshakes, referred to
by Guttman and Thayer asincoming tests[21]. Other idioms are possible, for example
Guttman and Thayer’soutgoing tests, but we leave these for future work. Incoming
tests break down into several steps.

(1) The receiver creates a fresh nonce and publishes it.

(2) The sender embeds the nonce in a ciphertext.

(3) The receiver looks for the nonce in a received ciphertext. Finding the nonce
encrypted under a shared private key proves the sender recently generated the
ciphertext. If this is the first and only time the nonce is found, there is a one-to-
one correspondence between finding the nonce and the creation of the ciphertext
by the sender.

(4) To avoid vulnerability to replay of messages containingthe nonce, the receiver
subsequently discards the nonce and no longer looks for it.

We type-check these four steps as follows.
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(1) The receiver creates the nonceN in the untrusted typeUn. This allows the nonce
to be sent on an untrusted channel, and reflects that it can be received and copied
by the opponent as well as the sender.

(2) The sender embeds the nonce in a ciphertext as a message ofa new trusted typeNon
e es, whereesis an effect. The sender casts the nonceN : Un to this trusted
type using the new process
ast N is (x:Non
e es);P. At runtime, this process
simply binds the messageN to the variablex of typeNon
e es, and then runsP.
The sender uses the variablex to embed the nonce in the ciphertext.

(3) After decrypting a ciphertext containing a nonceN0 : Non
e es, the receiver uses
a name-check
he
k N is N0;Q to check for the nonceN : Un which it made
public earlier. Only a cast can populate the typeNon
e es. So the presence
of the messageN0 : Non
e esproves there was a preceding execution of a cast
process. Our type system ensures that at most one name-checkprocess checks
for the presence of each nonceN : Un. Therefore, if the check succeeds, we are
guaranteed a one-to-one correspondence between the check and the preceding
process that castN into the typeNon
e es. Note that the safety of this step relies
on global agreement between the trusted participants as to the types of each of
the messages.

(4) To guarantee that each nonceN is the subject of no more than one name-check,
we introduce a new atomic effect, written
he
k N. In general, our main judg-
ment takes the form,

P : [end L1; : : : ;end Lm;
he
k N1; : : : ;
he
k Nn℄
and means the multiset[end L1; : : : ;end Lm℄ is an upper bound on the end-events
P asserts without previously asserting a corresponding begin-event, and that
the multiset[
he
k N1; : : : ;
he
k Nn℄ is an upper bound on the multiset of free
nonces name-checked byP. We include
he
k N in the effect of a name-check
he
k N is N0;Q on a nonceN. When checking name generationnew (N:Un);P,
we check that
he
k N occurs at most once in the effect ofP. This guarantees
that each free name is the subject of no more than one name-check.

In summary, our type and effect system provides a solution tothe problem of guaran-
teeing temporal precedences between parallel processes: for every successful execution
of a process
he
k N is N0;Q, whereN0 : Non
e es, there is a distinct preceding execu-
tion of a process
ast N is (x:Non
e es);P, even if the name-check and the cast are in
parallel processes.

The following rules for computing the effect of casts and name-checks exploit this
temporal precedence. They allow us to guarantee by typing that those end-events fol-
lowing the name-check and listed in the effectesof the typeNon
e esare matched by
distinct begin-events that precede the cast. This effect istransferred from the name-
check to the cast; the effectes is added to the effect of a cast, and is subtracted from
the effect of a name-check.� If N : Un andP : esP then
ast N is (x:Non
e es);P : (esP+es).
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� If N : Un andN0 : Non
e esandQ : esQ
then
he
k N is N0;Q : ((esQ�es)+ [
he
k N℄).� If P : esP thennew (N);P : (esP� [
he
k N℄).

To illustrate these rules, we compute the effect of a nonce handshake that guarantees
the safety of a correspondence between a begin-event labelledm in one process and an
end-event with the same label in another. We consider fixed, global namesm, n, andc.
We assumem:T for some typeT. We assumen:Un is the name of a nonce that somehow
is already shared between the two processes. We assumec:Ch((Non
e [end m℄)) is the
name of a trusted channel shared by the processes. (To focus on casting and checking
nonces, we communicate the noncen over the trusted channelc; in realistic examples,
nonces are sent encrypted on untrusted channels.)

The first process

P = begin m;
ast n is (n0:Non
e [end m℄);out c n0
begins the correspondence, castsn into the typeNon
e [end m℄, and then sends it onc.

We have
ast n is (n0:Non
e [end m℄);out c n0 : [end m℄ and thereforeP : [ ℄. The
second process

Q = inp c (x:Non
e [end m℄);
he
k n is x;end m

receives a namex off the channelc, checks thatn equalsx, and if so ends the corre-
spondence.

We haveend m : [end m℄, and
he
k n is x;end m : ([end m℄� [end m℄)+ [
he
k n℄,
and thereforeQ : [
he
k n℄. Now, by the rules for name generation and composition,
we get thatR= new (n:Un);(P jQ) : [ ℄. SoR is safe.

On the other hand, consider the processR0 = new (n:Un);(P0 j Q j Q) where we
have duplicatedQ and where the process

P0 = begin m;
ast n is (n0:Non
e [end m℄);(out c n0 j out c n0)
is a variation ofP0 that duplicates the nonce. Now,R0 is unsafe, because the two
copies ofQ can each receive one of the duplicate nonces sent byP0. Therefore both
can assert an end-event, but only one is accounted for by the begin-assertion byP0.
The processR0 does not type-check, because it name-checks the noncen more than
once. We can deriveP0 : [ ℄, but the whole processR0 fails the rule for name gener-
ation, because processP0 j Q j Q has effect[
he
k n;
he
k n℄ so the conditionn =2
fn([
he
k n;
he
k n℄� [
he
k n℄) is false.
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Effects and Atomic Effects

Given these motivations for and examples of assigning effects to processes, here is the
grammar of effects and atomic effects.

Effects:

e; f ::= atomic effectend L end-event labelled with messageL
he
k N name-check for a nonceN
es; fs ::= effect[e1; : : : ;en℄ multiset of atomic effects

Free names,fn(es), of an effectes:

fn(end L) ∆= fn(L)
fn(
he
k N) ∆= fn(N)
fn([e1; : : : ;en℄) ∆= fn(e1)[ �� �[ fn(en)
We writeesfx Mg for the outcome of a capture-avoiding substitution of the message
M for each free occurrence of the namex in the effectes.

Additional Types and Processes

We end this section by completing the grammars of types and processes with the new
type and new processes we need for typing nonce handshakes. We add a type for
nonces, and we give rules defining the setfn(T) of any typeT.

Types:

T;U ::= type: : : as in Section 4.1Non
e es nonce type

Free names,fn(T), of a typeT:

fn(Ch(T)) ∆= fn(T)
fn((x:T;U)) ∆= fn(T)[ (fn(U)�fxg)
fn(()) ∆=?
fn(T +U) ∆= fn(T)[ fn(U)
fn(0) ∆=?
fn(Un) ∆=?
fn(Key(T)) ∆= fn(T)
fn(Non
e es) ∆= fn(es)
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We writeTfx Mg for the outcome of a capture-avoiding substitution of the message
M for each free occurrence of the namex in the typeT.

As we explained, we add a process to cast untrusted data into nonce type. Moreover,
we add a new process for pattern matching pairs.

Processes:

O;P;Q;R ::= process::: as in Sections 2.1 and 3.1
ast M is (x:T);P cast to nonce typemat
h M is (N;y:U);P pair pattern matching

In a process
ast M is (x:T);P, the namex is bound; its scope is the processP. In a
processmat
h M is (N;y:U);P, the namey is bound; its scope of the processP.� The process
ast M is (x:T);P casts the messageM to the typeT, by binding the

variablex to M, and then runningP. (This process can only be typed by our type
system ifT is of the formNon
e es.)� The processmat
h M is (N;y);P is similar tosplit M is (x;y);P except that it
checks that the first component ofM is equal toN before extracting the second
component (which is bound toy in P). If the equality test fails, then the process
deadlocks.

Pair pattern matching is a generalization ofπ-calculus name equality testing, since[M = N℄P can be writtenmat
h (M;()) is (N;y);P.

Free names of a processfn(P):
fn(
ast M is (x:T);P) ∆= fn(M)[ fn(T)[ (fn(P)�fxg)
fn(mat
h M is (N;y:U);P) ∆= fn(M)[ fn(N)[ fn(U)[ (fn(P)�fyg)
Pair pattern matching is used in the protocol examples in Appendix A.

4.3 Typing Rules

In this section, we formally define the judgments of our type and effect system.
These judgments all depend on anenvironment, E, that defines the types of all

variables in scope. An environment takes the formx1:T1; : : : ;xn:Tn and defines the type
Ti for each variablexi . Thedomain, dom(E), of an environmentE is the set of variables
whose types it defines.

Environments:

D;E ::= environment? empty
E;x:T entry

dom(x1:T1; : : : ;xn:Tn) ∆=fx1; : : : ;xng domain of an environment
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The following are the five judgments of our type and effect system. They are induc-
tively defined by rules presented in the following tables.

JudgmentsE ` J :
E ` � good environment
E ` es good effectes
E ` T good typeT
E `M : T good messageM of typeT
E ` P : es good processP with effectes

Rules for Environments:

(Env?)? ` � (Envx) (wherex =2 dom(E))
E ` T

E;x:T ` �
These standard rules define an environmentx1:T1; : : : ;xn:Tn to be well-formed just if
each of the namesx1, . . . ,xn are distinct, and each of the typesTi is well-formed.

Rules for Effects:

(Effect?)
E ` �
E `? (Effect End)

E ` es E` L : T

E ` es+[end L℄ (Effect Check)
E ` es E` N : Un
E ` es+[
he
k N℄

These rules define an effect[e1; : : : ;en℄ to be well-formed just if for each atomic effect
ei = end L, messageL has typeT for some typeT, and for each atomic effectei =
he
k N, messageN has typeUn.

Rules for Types:

(Type Un)
E ` �

E ` Un (Type Chan)
E ` T

E ` Ch(T) (Type Pair)
E;x:T `U

E ` (x:T;U) (Type Unit)
E ` �
E ` ()

(Type Variant)
E ` T E `U

E ` T +U

(Type Empty)
E ` �
E ` 0 (Type Key)

E ` T

E ` Key(T) (Type Nonce)
E ` es

E ` Non
e es

According to these rules a type is well-formed just if every effect occurring in the type
is itself well-formed.

Next, we present the rules for deriving the judgmentE `M : T that assigns a typeT
to a messageM. We split the rules into three tables: first, the rule for variables; second,
rules for manipulating data of trusted type; and third, rules for assigning the untrusted
type to arbitrary messages.
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Rule for Variables:

(Msgx)
E0;x:T;E00 ` �

E0;x:T;E00 ` x : T

Rules for Messages of Trusted Type:

(Msg Pair)
E `M : T E` N : Ufx Mg

E ` (M;N) : (x:T;U) (Msg Unit)
E ` �

E ` () : ()
(Msg Inl)

E `M : T E`U

E ` inl (M) : T +U

(Msg Inr)
E ` T E` N : U

E ` inr (N) : T +U

(Msg Encrypt)
E `M : T E` N : Key(T)

E ` fMgN : Un
Rules for Messages of Untrusted Type:

(Msg Pair Un)
E `M : Un E ` N : Un

E ` (M;N) : Un (Msg Unit Un)
E ` �

E ` () : Un
(Msg Inl Un)

E `M : Un
E ` inl (M) : Un (Msg Inr Un)

E ` N : Un
E ` inr (N) : Un

(Msg Encrypt Un)
E `M : Un E ` N : Un

E ` fMgN : Un
Recall from Section 4.1 the principle that any message can beassigned the untrusted
typeUn, provided its free variables are also untrusted. Using justthe rules in the first
and third tables of message typing rules, we can prove:

Lemma 1 If fn(M)� fx1; : : : ;xng then x1:Un; : : : ;xn:Un `M : Un.

Proof By structural induction on the messageM. 2
A message may be assigned both a trusted and an untrusted type. For example:� x:Un;y:Un ` (x;y):(z:Un;Un) by (Msg Pair)� x:Un;y:Un ` (x;y):Un by (Msg Pair Un)
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Finally, we present the rules for assigning effects to processes. To state the rule for
name-generation we introduce the notion of agenerative type. A type is generative if it
is untrusted or if it is a key or channel type. A processnew (x:T);P is only well-typed
if T is generative. This rule prevents the fresh generation of names of, for example, theNon
e estype; it is crucial to our system that the only way of populating this type is
via a
ast process.

Generative Types:

A type isgenerativeif and only if
it takes the formCh(T), Un, orKey(T).

Basic Rules for Processes:

(Proc Begin)
E ` L : T E` P : es

E ` begin L;P : es� [end L℄ (Proc End)
E ` L : T E` P : es

E ` end L;P : es+[end L℄
(Proc Par)
E ` P : es E`Q : fs

E ` P jQ : es+ fs

(Proc Repeat)
E ` P : [ ℄

E ` repeat P : [ ℄
(Proc Stop)

E ` �
E ` stop : [ ℄ (Proc Res) (wherex =2 fn(es� [
he
k x℄))

E;x:T ` P : es T is generative

E ` new (x:T);P : es� [
he
k x℄
(Proc Subsum)
E ` P : es E` es0

E ` P : es+es0
We discussed informal versions of the rules (Proc Begin), (Proc End), (Proc Par), and
(Proc Res) previously. The rule (Proc Repeat) requires the effect of the replicated
processP to be empty. IfP had a non-empty effect, then somehow we might assign
an infinite effect torepeat P but this would not be useful. Assigning an effect to a
whole process is useful because if the effect is empty then the process is safe. Any
process enclosingrepeat P can only match a finite number of atomic effects arising
from repeat P, and so must have a non-empty effect. So typingrepeat P is only useful
if P has an empty effect. The rule (Proc Stop) says the inactive process has empty
effect. The effect of a process is an upper bound on the behaviour of a process; the rule
(Proc Subsum) allows us to weaken this upper bound by enlarging the effect.

The rule (Proc Case), in the following table, uses an operator _ defined as follows.
Let the multiset orderinges� es0 mean there is an effectes00 such thates+es00 = es0.
Then we writees_es0 for the least effectes00 in this ordering such that bothes� es00
andes0 � es00. Note that(es_es0) = ((es�es0)+es0).
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Rules for Processes Manipulating Trusted Types:

(Proc Output)
E ` x : Ch(T) E `M : T

E ` out x M : [ ℄
(Proc Input) (wherey =2 fn(es))
E ` x : Ch(T) E;y:T ` P : es

E ` inp x (y:T);P : es

(Proc Split) (wherex =2 fn(es) andy =2 fn(es))
E `M : (x:T;U) E;x:T;y:U ` P : es

E ` split M is (x:T;y:U);P : es

(Proc Match) (wherey =2 fn(es))
E `M : (x:T;U) E ` N : T E;y:Ufx Ng ` P : es

E `mat
h M is (N;y:Ufx Ng);P : es

(Proc Case) (wherex =2 fn(es) andy =2 fn( fs))
E `M : T +U E;x:T ` P : es E;y:U `Q : fs

E ` 
ase M is inl (x:T) P is inr (y:U) Q : es_ fs

(Proc Decrypt) (wherex =2 fn(es))
E `M : Un E ` y : Key(T) E;x:T ` P : es

E ` de
rypt M is fx:Tgy;P : es

(Proc Cast) (wherex =2 fn(es))
E `M : Un E;x:Non
e fs` P : es

E ` 
ast M is (x:Non
e fs);P : es+ fs

(Proc Check)
E `M : Un E ` N : Non
e fs E` P : es

E ` 
he
k M is N;P : (es� fs)+ [
he
k M℄
We discussed informal versions of the rules (Proc Input), (Proc Output), (Proc Cast),
and (Proc Check) previously. Rule (Proc Split) is a standardrule to allow a pairM :(x:T;U) to be split into two components namedx:T andy:U , wherex may occur free
in the typeU . The conditionsx =2 fn(es) andy =2 fn(es) prevent the bound variables
x andy from appearing out of scope in the effectes. In the rule (Proc Match), the
messageN : T is meant to match the first component of the pairM : (x:T;U), and the
variabley:U gets bound to the second component. Again, the conditiony =2 fn(es)
preventsy from appearing out of scope ines. The rule (Proc Case) is a standard rule
for checking inspections of tagged unions. In the rule (ProcDecrypt), the ciphertextM
is of untrusted type,Un, the keyy is of typeKey(T), and the plaintext, bound tox, has
typeT. The conditionx =2 fn(es) preventsx from appearing out of scope in the effect
es.
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Rules for Processes Manipulating Untrusted Types:

(Proc Output Un)
E `M : Un E ` N : Un

E ` out M N : [ ℄
(Proc Input Un) (wherey =2 fn(es))
E `M : Un E;y:Un ` P : es

E ` inp M (y:Un);P : es

(Proc Split Un) (wherex =2 fn(es) andy =2 fn(es))
E `M : Un E;x:Un;y:Un ` P : es

E ` split M is (x:Un;y:Un);P : es

(Proc Match Un) (wherey =2 fn(es))
E `M : Un E ` N : Un E;y:Un ` P : es

E `mat
h M is (N;y:Un);P : es

(Proc Case Un) (wherex =2 fn(es) andy =2 fn( fs))
E `M : Un E;x:Un ` P : es E;y:Un `Q : fs

E ` 
ase M is inl (x:Un) P is inr (y:Un) Q : es_ fs

(Proc Decrypt Un) (wherex =2 fn(es))
E `M : Un E ` N : Un E;x:Un ` P : es

E ` de
rypt M is fx:UngN;P : es

(Proc Cast Un) (wherex =2 fn(es))
E `M : Un E;x:Un ` P : es

E ` 
ast M is (x:Un);P : es

(Proc Check Un)
E `M : Un E ` N : Un E ` P : es

E ` 
he
k M is N;P : es

These rules are similar to those in the previous table in how they compute effects of
processes, but differ in that all messages are of untrusted type. These rules are needed
to type-check opponents.

Our rules for processes conform to the principle, stated in Section 4.1, that any
opponent can be typed if all its free variables are assigned the typeUn.

Lemma 2 (Opponent Typability) If O is an opponent, that is, an untyped, assertion-
free process, and fn(O)� fx1; : : : ;xng then x1:Un; : : : ;xn:Un `O : [ ℄.
Proof By structural induction onO, with appeal to Lemma 1. 2
The following theorem, proved in Appendix B, says a process is safe if it can be as-
signed the empty effect.
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Theorem 1 (Safety) If E ` P : [ ℄ then P is safe.

Combined, Lemma 2 (Opponent Typability) and Theorem 1 (Safety) establish our main
result, that our type and effect system guarantees robust safety.

Theorem 2 (Robust Safety)If x1:Un; : : : ;xn:Un ` P : [ ℄ then P is robustly safe.

Proof For any untyped, assertion-freeO, find xn+1; : : : ;xn+m such thatfn(O) �fx1; : : : ;xn+mg. By Lemma 2 (Opponent Typability), we havex1 : Un; : : : ;xn+m : Un `
O : [ ℄. By a standard weakening lemma, proved in the full version,x1:Un; : : : ;xn:Un `
P : [ ℄ impliesx1:Un; : : : ;xn+m:Un`P : [ ℄. So by rule (Proc Par) we havex1 :Un; : : : ;xn+m :Un ` P jO : [ ℄, and so by Theorem 1 (Safety),P jO is safe. Thus,P is robustly safe.2
4.4 Typing the Example

Our exampleFixedSystem(net) from Section 3.3 uses a nonce handshake over the pub-
lic channelnet to transfer messages from the sender to the receiver. Here weshow
how to prove the example’s correspondence assertions by choosing suitable types and
adding a cast process.

The sender receives a noncenonceoff the public channelnet, performs a begin-
event to indicate it is sending a messagemsg, embeds the nonce and the message in
a ciphertext encrypted with the shared keykey, and returns the ciphertext to the re-
ceiver onnet. Any public channel should be accessible to the opponent, sowe as-
sign net the untrusted typeUn, and sincenonceis sent on these channels, they too
must have the untrusted type. We fix some arbitrary typeMsg and assume eachmsg
is of this type. To type-check the correspondence between begin- and end-assertions
made by the sender and receiver, respectively, we add a cast process to the sender
to cast the nonce into the typeNon
e [end msg℄. Therefore, the shared key has typeKey(msg:Msg;nonce:Non
e [end msg℄); the first component of the ciphertext is the
actual message, and the second component is a nonce proving it is safe to assert anend msgevent.

Therefore, we introduce the types

Msgsome arbitrary type

Network
∆= Un

MyNonce(msg) ∆= Non
e [end msg℄
MyKey

∆= Key(msg:Msg;nonce:MyNonce(msg))
and we type the sender as follows, where we display the effects of bracketed subpro-
cesses to the right.

TypedSender(net:Network;key:MyKey) : [ ℄ ∆=repeatinp net(nonce:Un);new (msg:Msg);begin msg;
ast nonceis (nonce0:MyNonce(msg));out netfmsg;nonce0gkey
	 [ ℄ 9=; [end msg℄9>>=>>; [ ℄9>>>>>>=>>>>>>; [ ℄
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Next, we type the receiver. Like the sender, it is effect-free, that is, it can be assigned
the empty effect.

TypedReceiver(net:Network;key:MyKey) : [ ℄ ∆=repeatnew (nonce:Un);out net nonce;inp net(ctext:Un);de
rypt ctextis fmsg:Msg;nonce0:MyNonce(msg)gkey;
he
k nonceis nonce0;end msg
	 [end msg℄ � [
he
k nonce℄

9>>>>>>>>=>>>>>>>>; [ ℄
Since the sender and receiver are both effect-free, the whole system is also effect-free:

TypedSystem(net:Network) : [ ℄ ∆=new (key:MyKey);(TypedSender(net;key) j TypedReceiver(net;key))
By Theorem 2 (Robust Safety), it follows thatTypedSystem(net:Network) is robustly
safe. This proves the following authenticity property by typing.

Authenticity: The processTypedSystem(net) is robustly safe.

5 Further Protocol Examples

We have applied our method to several cryptographic protocols from the literature. We
verified some protocols, found flaws in others, but also foundat least one incomplete-
ness in our method. Details are in an appendix, but we can summarise our experience
as follows.� Abadi and Gordon [3] propose a nonce-based variation of the Wide Mouth Frog

key-exchange protocol [9]. We can verify authenticity properties of Abadi and
Gordon’s protocol by typing. Abadi and Gordon prove an equationally-specified
authenticity property by constructing a bisimulation relation based on an elabo-
rate invariant; our proof of correspondence assertions by typing took consider-
ably less time.� Woo and Lam [40] propose a nonce-based authentication protocol. Trying to
type-check the protocol exposes known flaws in the protocol and suggests a
known simplification [4, 5].� Otway and Rees [33] propose another nonce-based key exchange protocol. The
nonces used by the protocol to prove freshness are kept secret; hence the pro-
tocol does not fit the idiom that can be checked by our type system. Still, we
can type-check a more efficient version of the protocol suggested by Abadi and
Needham [4]. The typing suggests a further simplification.

In each case, there is a spi-calculus representation of the protocol in which there are
arbitrarily many participant principals and arbitrarily many sessions.
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6 Summary and Conclusion

To summarise, we reviewed the spi-calculus, a formalism forprecisely describing the
behaviour of security protocols based on cryptography. We embedded Woo and Lam’s
correspondence assertions in spi as a way of specifying authenticity properties. We
devised a new type and effect system that proves authenticity properties, simply by
type-checking.

To conclude, the examples in this paper, together with others we have investigated,
suggest that this is a promising technique for checking protocols, since it requires little
human effort to type a protocol, and the types of protocol data document how the
protocol works.

Acknowledgements

Thanks to Martı́n Abadi, Gavin Lowe, Dusko Pavlovic, Simon Peyton Jones, Benjamin
Pierce, Corin Pitcher, James Riely, and Andre Scedrov for discussions about this work.
The anonymous referees for theIEEE Computer Security Foundations Workshoppro-
vided invaluable feedback. C.A.R. Hoare suggested severalimprovements to a draft.
Alan Jeffrey was supported in part by Microsoft Research during some of the time we
worked on this paper.

26



A Protocol Examples

In this appendix we describe details of the examples mentioned in Section 5. Sec-
tion A.1 describes Abadi and Gordon’s version of Wide Mouth Frog. Section A.2
discusses Woo and Lam’s authentication protocol. Section A.3 discusses Otway and
Rees’s key-exchange protocol. Finally, we present a new typed protocol for secure
message streams in Section A.4.

Abbreviations Used in Examples

In these examples, we shall make use of the following syntax sugar:� Dependent record types(x1:T1; : : : ;xn:Tn), rather than just pairs. These come
with a constructor(M1; : : : ;Mn) and a destructormat
h M is (x1:T1; : : : ;xn:Tn);P.� Tagged union types(`1(T1) j � � � j `n(Tn)) rather than just binary choiceT +U .
These come with a constructor`i(M) and a destructormat
h M is `i(x:T);P.� Dependent function types(x:T)!U . These come with an appropriate function
declaration and application syntax.

We show in Section A.5 that these constructs can be derived from our base language.

A.1 Abadi and Gordon’s Variant of Wide Mouth Frog

The original paper on the spi-calculus [3] includes a lengthy proof of authenticity and
secrecy properties for a variation of the Wide Mouth Frog keydistribution protocol [9]
based on nonce handshakes instead of timestamps. In this section, we show how to
type-check this protocol.

To begin with we look at an unsafe version of the protocol, to illustrate how at-
tempting to type-check a protocol may expose flaws. This broken protocol consists of
a sender (Alice), a receiver (Bob) and a server (Sam). Alice wishes to contact Bob, and
asks Sam to establish her credentials:

Event 1 A begins “A sendingB keyKAB”
Message 1 A! S A
Message 2 S! A NS

Message 3 A! S A;fB;KAB;NSgKAS

Message 4 S! B ()
Message 5 B! S NB

Message 6 S! B fA;KAB;NBgKBS

Event 2 B ends “A sendingB keyKAB”

(For the sake of readability, we use “A sendingB keyKAB” as a shorthand for the mes-
sage(A;B;KAB).)

This protocol can be compromised by an intruderI impersonating Sam, if Alice
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acts both as a sender and a receiver:

Eventα.1 A begins “A sendingB keyKAB”
Messageα.1 A! I A
Messageβ.4 I ! A ()
Messageβ.5 A! I NA

Messageα.2 I ! A NA

Messageα.3 A! I A;fB;KAB;NAgKAS

Messageβ.6 I ! A fB;KAB;NAgKAS

Eventβ.2 A ends “B sendingA keyKAB”

At this point, Alice believes that she has been contacted by Bob, when in fact she has
been contacted by the intruder.

We can easily express this protocol in the spi-calculus, andusebegin M andend M
statements to specify the desired correspondence property.

We defineFlawedSender(net;alice;key) to be the sender, usingnetas the insecure
communications medium, acting on behalf ofalice using secret keykey (in order to
bootstrap the system, we have the sender receivebob’s name from the network, so the
attacker can create as many concurrent sessions as they like):

FlawedSender(
net:Network;alice:Princ;key:WMFKey(alice)) ∆=repeatinp net(bob:Princ);new (sKey:SKey);begin “alicesendingbobkeysKey”;out net(alice);inp net(nonce:Un);
ast nonceis (nonce0:WMFNonce(alice;bob;sKey));out net(alice;fbob;sKey;nonce0gkey);

We defineFlawedReceiver(net;bob;key) to be the receiver, usingnet as the insecure
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communications medium, acting on behalf ofbob, using secret keykey:

FlawedReceiver(
net:Network;bob:Princ;key:WMFKey(bob)) ∆=repeatinp net();new (nonce:Un);out net(nonce);inp net(ctext:Un);de
rypt ctextis falice:Princ;

sKey: SKey;
nonce0 : WMFNonce(alice;bob;sKey)gkey;
he
k nonceis nonce0;end “alicesendingbobkeysKey”

We defineFlawedServer(net; lookup) to be the server, usingnet as the insecure com-
munications medium, making use of a trusted database lookupfunction lookupto ac-
cess the secret keys:

FlawedServer(net:Network; lookup:WMFLookup) ∆=repeatinp net(alice:Princ);new (nonceA:Un);out net(nonceA);inp net(alice;ctext:Un);let keyA: WMFKey(alice) = lookup(alice);de
rypt ctextis fbob:Princ;
sKey: SKey;
nonceA0 : WMFNonce(alice;bob;sKey)gkeyA;
he
k nonceAis nonceA0;out net();inp net(nonceB:Un);
ast nonceBis (nonceB0:WMFNonce(alice;bob;sKey));let keyB: WMFKey(bob) = lookup(bob);out netfalice;sKey;nonceB0gkeyB

Then we can try to define the types appropriately. For most of the types, it is fairly
routine(for theWMFLookuptype, we need to use an appropriate function type, and for
theSKeytype, we need an appropriateMsg type for the payload, but these do not play
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an important role in the typing) :

Network
∆=Un

Princ
∆= Un

WMFLookup
∆= (princ:Princ)!WMFKey(princ)

SKey
∆= Key(Msg)

WMFNonce(alice;bob;sKey) ∆=Non
e [end “alicesendingbobkeysKey” ℄
WMFKey(princ) ∆= Key(WMFMsg(princ))

The problem comes when we try to give a definition forWMFMsg, which is the type of
the plaintext of messages used in the WMF protocol. In order to type-check Message
3, we require:

WMFMsg(alice) =(bob:Princ;sKey:SKey;nonce:WMFNonce(alice;bob;sKey))
and in order to type-check Message 6, we require:

WMFMsg(bob) =(alice:Princ;sKey:SKey;nonce:WMFNonce(alice;bob;sKey))
Unfortunately, these requirements are inconsistent, since the roles ofalice and bob
have been swapped. This is the root of the attack on this broken WMF, which relies
on the fact that the key foralice is being used in two incompatible ways, depending on
whetheralice is acting as the sender or the receiver.

This is an example of a type-flaw attack [23] and may be solved by the standard
solution of adding tag information to messages. This is akinto the use of tagged union
types in type-safe languages like ML or Haskell. In this case, we have the type for
Message 3 of the protocol:

WMFMsg3(alice) ∆=(bob:Princ;sKey:SKey;nonce:WMFNonce(alice;bob;sKey))
and the type for Message 6:

WMFMsg6(bob) ∆=(alice:Princ;sKey:SKey;nonce:WMFNonce(alice;bob;sKey))
and we can defineWMFMsg(princ) as the tagged union of these two types:

WMFMsg(princ) ∆=(msg3(WMFMsg3(princ)) jmsg6(WMFMsg6(princ)))
We can then check that the safe versions of the principals areeffect-free. The sender,
receiver, and server are given in Figure 1.

The key database has to implement thelookupfunction, and be effect-free. In prac-
tice, an implementation would require access to a secure database, but in this example,
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we can just hard-wire in the principal names and keys, and usepattern-matching to
define the database:

KeyDB(lookup:WMFLookup;princ1:Princ;key1:WMFKey(princ1); : : : ;
princn:Princ;keyn:WMFKey(princn)) ∆=fun
tion

lookup(princ1) : WMFKey(princ1) is return key1
...
lookup(princn) : WMFKey(princn) is return keyn

We define aWide Mouth Frog configurationto be a process of the form:new (lookup:WMFLookup);new (princ1:Princ); : : :new (princn:Princ);new (key1:WMFKey(princ1)); : : :new (keyn:WMFKey(princn));
FixedSender(net;princ1;key1) j � � � j
FixedSender(net;princn;keyn) j
FixedReceiver(net;princ1;key1) j � � � j
FixedReceiver(net;princn;keyn) j
FixedServer(net; lookup) j
KeyDB(lookup;princ1;key1; : : : ;princn;keyn)

We can then apply the results of this paper to get:� Any Wide Mouth Frog configuration is effect-free, and hence robustly safe.

Thus, we have shown the Wide Mouth Frog protocol to satisfy this particular safety
property for an arbitrary number of principals, sessions, and in the presence of an
arbitrary attacker and well-typed database implementation.

The use of tagged unions to represent the different message types which are sent in
a protocol is a common technique, and corresponds to the finalphrase of Principle 10
of Abadi and Needham [4]:

If an encoding is used to present the meaning of a message, then it should
be possible to tell which encoding is being used. In the common case
where the encoding is protocol dependent, it should be possible to deduce
that the message belongs to this protocol, and in fact to a particular run of
the protocol, and to know its number in the protocol.

Many protocols use ad hoc techniques such as incrementing timestamps, or juggling
the order of participant names to encode message numbers implicitly. Our type system
makes these ad hoc solutions formal, as an instance of the standard technique of using
tagged union types.
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A.2 Woo and Lam’s Authentication Protocol

Woo and Lam [40] propose a server-based symmetric-key authentication protocol. Al-
ice wishes to authenticate herself to Bob, and does so by responding to a nonce chal-
lenge with a message which Bob can ask the trusted server to decrypt:

Event 1 A begins “A authenticates toB”
Message 1 A! B : A
Message 2 B! A : NB

Message 3 A! B : fmsg3(NB)gKAS

Message 4 B! S: fmsg4(A;fmsg3(NB)gKAS)gKBS

Message 5 S! B : fmsg5(NB)gKBS

Event 2 B ends “A authenticates toB”

(In the original protocol, the messages were untagged, but we have provided tags for
the reasons discussed in the previous section.) Abadi and Needham [4] demonstrate
that this protocol is not robustly safe, because message 5 does not mentionA.

The possibility of this attack is made clear when we try to type-check the protocol.
We have types:

WLKey(princ) ∆= Key((WLMsg(princ)))
WLMsg(princ) ∆= (msg3(WLMsg3(princ)) j

msg4(WLMsg4(princ)) j
msg5(WLMsg5(princ)))

WLMsg3(alice) ∆= (nonce:WLNonce(alice;bob))
WLMsg4(bob) ∆= (alice:Princ;ctext:Un)
WLMsg5(bob) ∆= (nonce:WLNonce(alice;bob))
WLNonce(alice;bob) ∆= Non
e [end “aliceauthenticates tobob” ℄
WLLookup

∆= (princ:Princ)!WLKey(princ)
At this point it becomes clear that the protocol is not well-typed, since the types
are not well-formed:WLMsg3(alice) contains an unbound occurrence ofbob and
WLMsg5(bob) contains an unbound occurrence ofalice. Abadi and Needham observe
that Message 5 should be changed to:

Message 5’ S! B : fmsg5(A;NB)gKBS

but did not make any similar observation for Message 3. Theirstrengthened protocol
allows Bob to know that Alice is talking to somebody, but doesnot allow Bob to know
that Alice is talking to Bob. For example, one possible run, where Alice begins a
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dialogue with Charlie, but is authenticated to Bob is:

Eventα.1 A begins “A authenticates toC”
Messageα.1 A! I : A
Messageβ.1 I ! B : A
Messageβ.2 B! I : NB

Messageα.2 I ! A : NB

Messageα.3 A! I : fmsg3(NB)gKAS

Messageβ.3 I ! B : fmsg3(NB)gKAS

Messageβ.4 B! S: fmsg4(A;fmsg3(NB)gKAS)gKBS

Messageβ.5 S! B : fmsg5(NB)gKBS

Eventβ.2 B ends “A authenticates toB”

This attack is noted by Anderson and Needham [5], and is stopped by a similar change
to the protocol:

Message 3’ A! B : fmsg3(B;NB)gKAS

Finally, our type system makes clear that the encryption of message 4 is unnecessary,
since all the data is of typeUn, and so can safely be sent in plaintext, as suggested by
Abadi and Needham [4]:

Message 4’ B! S: A;B;fmsg3(B;NB)gKAS

The resulting protocol can be type-checked, using types:

WLMsg(princ) ∆=(msg3(WLMsg3(princ)) jmsg5(WLMsg5(princ)))
WLMsg3(alice) ∆=(bob:Princ;nonce:WLNonce(alice;bob))
WLMsg5(bob) ∆=(alice:Princ;nonce:WLNonce(alice;bob))

To see that the sender is effect-free, we calculate:

FixedSender(net:Network;alice:Princ;key:WLKey(alice)) ∆=repeatinp net(bob:Princ);begin “aliceauthenticates tobob”;out net(alice)inp net(nonce:Un);
ast nonceis (nonce0:WLNonce(alice;bob));out netfmsg3(bob;nonce0)gkey

� [end : : :℄9>>>>=>>>>; [ ℄
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To see that the receiver is effect-free, we calculate:

FixedReceiver(net:Network;bob:Princ;key:WLKey(bob)) ∆=repeatinp net(alice:Princ);new (nonce:Un);out net(nonce)inp net(ctext:Un);out net(alice;bob;ctext)inp net(fmsg5(alice;nonce0:WLNonce(alice;bob))gkey);
he
k nonceis nonce0;end “aliceauthenticates tobob”
	 [end : : :℄� [
he
k nonce℄

9>>>>>>>>=>>>>>>>>; [ ℄
To see that the server is effect-free, notice that the servermakes no use of any process
he
k N is N0;P, 
ast N is (N0);P or end M, and so is automatically effect-free:

FixedServer(net:Network; lookup:WLLookup) ∆=repeatinp net(alice:Princ;bob:Princ;ctext:Un);let keyA:WLKey(alice) = lookup(alice);let keyB:WLKey(bob) = lookup(bob);de
rypt ctextis fmsg3(bob;nonce0:WLNonce(alice;bob))gkeyA;out netfmsg5(alice;nonce0)gkeyB

We define aWoo and Lam configurationto be a process of the form:new (lookup:WLLookup);new (princ1:Princ); : : :new (princn:Princ);new (key1:WLKey(princ1)); : : :new (keyn:WLKey(princn));
FixedSender(net;princ1;key1) j � � � j FixedSender(net;princn;keyn)j FixedReceiver(net;princ1;key1) j � � � j FixedReceiver(net;princn;keyn)j FixedServer(net; lookup) j KeyDB(lookup;princ1;key1; : : : ;princn;keyn)

for any effect-freeKeyDB. We can then apply the results of this paper to get:� Any Woo and Lam configuration is effect-free, and hence robustly safe.

This example has shown that in our type system, it is important that all messages con-
tain the names of the principals involved. Our type system enforces Principle 3 of
Abadi and Needham [4]:

If the identity of a principal is essential to the meaning of amessage, it is
prudent to mention the principal’s name explicitly in the message.

This requirement is enforced through the usual requirementfor variables in a program
to be correctly scoped: violations of Principle 3 may be caught because a variable is
used when it is not in scope.
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A.3 Otway and Rees’s Key Exchange Protocol

Otway and Rees [33] propose a server-based symmetric-key key exchange protocol.
We cannot verify their protocol using the type system of thispaper, even though (as
far as we are aware) it is correct, since it relies on using nonces to stand for principal
names, which are kept secret, as well as for freshness. Still, it may be possible to adapt
our type system to deal with this use of nonces; we leave this for future work.

Abadi and Needham [4] propose a simplification of the protocol, which we verify
here:

Message 1 A! B A;B;NA

Message 2 B! S A;B;NA;NB

Event 1 Sbegins “initiatorA sharesKAB with B”
Event 2 Sbegins “responderB sharesKAB with A”
Message 3 S! B fmsg4(A;B;KAB;NA)gKAS;fmsg3(A;B;KAB;NB)gKBS

Event 3 B ends “responderB sharesKAB with A”
Message 4 B! A fmsg4(A;B;KAB;NA)gKAS

Event 4 A ends “initiatorA sharesKAB with B”

At the end of this dialogue, Alice and Bob both know thatKAB was generated by Sam
for their private use. Alice does not know that Bob actually receivedKAB, since this
protocol does not ensure that Alice and Bob actually receiveKAB, just that nobody else
does.

We can allocate types to this protocol:

ORKey(princ) ∆=Key((msg3(ORMsg3(princ)) jmsg4(ORMsg4(princ))))
ORMsg3(bob) ∆=(alice:Princ;bob0:Princ;sKey:SKey;

nonce:ORNonce3(alice;bob;sKey))
ORMsg4(alice) ∆=(alice0:Princ;bob:Princ;sKey:SKey;

nonce:ORNonce3(alice;bob;sKey))
ORNonce3(alice;bob;sKey) ∆=Non
e [end “responderbobsharessKeywith alice” ℄
ORNonce4(alice;bob;sKey) ∆=Non
e [end “initiator alicesharessKeywith bob” ℄
ORLookup

∆=(princ:Princ)!ORKey(princ)
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and then type-check Alice:

FixedSender(net:Network;alice:Princ;key:ORKey(alice)) ∆=repeatinp net(bob:Princ);new (nonceA:Un);out net(alice;bob;nonceA);inp net(fmsg4(alice;bob;sKey:SKey;
nonceA0:ORNonce4(alice;bob;sKey))gkeyA);
he
k nonceAis nonceA0;end “initiator alicesharessKeywith bob”

	 [end : : :℄� [
he
k nonceA℄
9>>>>>>=>>>>>>; [ ℄

type-check Bob:

FixedReceiver(net: Network;bob:Princ;key:ORKey(bob)) ∆=repeatinp net(alice:Princ;bob;nonceA:Un);new (nonceB:Un);out net(alice;bob;nonceA;nonceB);inp net(ctext:Un;fmsg3(alice;bob;sKey:SKey;
nonceB:ORNonce3(alice;bob;sKey))gkey);
he
k nonceBis nonceB0;end “responderbobsharessKeywith alice”

	 [end : : :℄� [
he
k nonceB℄
9>>>>>>=>>>>>>; [ ℄

and type-check Sam:

FixedServer(net:Network; lookup:ORLookup) ∆=repeatinp net(alice:Princ;bob:Princ;nonceA:Un;nonceB:Un);let keyA:ORKey(alice) = lookup(alice);let keyB:ORKey(bob) = lookup(bob);new (sKey:SKey);begin “initiator alice sharessKeywith bob”;begin “responderbobsharessKeywith alice”;
ast nonceAis (nonceA0:ORNonce4(alice;bob;sKey));
ast nonceBis (nonceB0:ORNonce3(alice;bob;sKey));out net(fmsg4(alice;bob;sKey;nonceA0)gkeyA;fmsg3(alice;bob;sKey;nonceB0)gkeyB) � [ ℄ 9=; [end : : :℄9>>>>=>>>>; [end : : :℄9>>>>>>=>>>>>>; [ ℄
We can then apply the techniques of this paper to show that this modified protocol is
robustly safe. This typing makes it clear that Bob’s name is not required in Message
3 and Alice’s name is not required in Message 4, and these names could be dropped
without compromising the correspondence assertions.

A.4 A Secure Message Stream

In Section 4.4 we showed how we can verify a simple two-message protocol to en-
sure the authenticity of messages. The protocol relied on Alice to send Bob a nonce
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challenge for every message Bob sends:

Event 1 A begins A sentM
Message 1 B! A : N
Message 2 A! B : fM;NgK
Event 2 B ends A sentM

This is rather inefficient, since it requires an acknowledgement message for every mes-
sage. Instead, we could usemessage identifiersto ensure the freshness of messages
without Alice having to send constant acknowledgements. Our language does not sup-
port message identifiers directly, but they can be coded in messages of nonces: each
time Bob sends Alice a message, he sendstwo nonces: the nonce for the current mes-
sage, and the nonce for the next message. This is enough for Alice to ensure freshness
of messages:

Message 0 B! A : N1

Event 1a A begins A sentM1

Message 1 A! B : fM1;N2;N1gK
Event 1b B ends A sentM1� � �
Eventna A begins A sentMn

Messagen A! B : fMn;Nn+1;NngK
Eventnb B ends A sentMn

In order to check this protocol, we need to make use of latent nonce effects, since nonce
Nn is being used to ensure the freshness of nonceNn+1. The types we use are:

MidKey
∆= Key((msg:Msg;nonceB:Un;nonceA:MidNonce(msg;nonceB)))

MidNonce(msg;nonceB) ∆= Non
e [end “Sender sentmsg” ;
he
k nonceB℄
The receiver is type-checked:

FixedReceiver(net:Network;key:MidKey) ∆=new (nonceA:Un);out net nonceA
FixedReceiver(net;key;nonceA)	 [
he
k nonceA℄9=; [ ℄

where we use the recursive function:

FixedReceiver(net:Network;key:MidKey;nonceA:Un) ∆=inp net(f(msg:Msg;nonceB:Un;nonceA0:MidNonce(msg;nonceB))gkey);
he
k nonceAis nonceA0;end “Sender sentmsg”;
FixedReceiver(net;key;nonceB)

The sender is type-checked similarly. This example shows that it is useful for partici-
pants in a protocol to be able to pass nonces and nonce effects, as allowed by our effect
system.
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A.5 Abbreviations Used in Examples

We shall now show that the abbreviations we used in our examples can be defined in
our type system. We made use of types for dependent records, tagged unions, and
dependent function types:

Syntax sugar for use in types:

T;U ::= type: : : as in Sections 4.1 and 4.2(x1:T1;x2:T2; : : : ;xn:Tn) dependent record(`1(T1) j � � � j `n(Tn)) tagged union(x:T)!U dependent function

We allowed the construction of messages of record or tagged union type:

Syntax sugar for use in messages:

L;M;N ::= message::: as in Section 2.1(M1; : : : ;Mn) record`i(M) tagged union

In processes, we can make use of function declaration, function call, function return,
and pattern-matching:

Syntax sugar for use in processes:

O;P;Q;R ::= process::: as in Sections 2.1, 3.1 and 4.2fun
tion f (X1) : T1 is P1 � � � f (Xn) : Tn is Pn function declarationlet x:U = f (M);P function callreturn M function returnmat
h M is X;P pattern matchout M P; output with residualinp M (X);P pattern matching inputde
rypt M is fXgP; pattern matching decrypt

whereX ranges over a grammar of patterns:

Patterns:

X;Y;Z ::= patterns
x:T variable
M constant(X1; : : : ;Xn) tuple`i(X) tagged unionfXgM cyphertext
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We will now give definitions for each of these extensions, beginning with types. De-
pendent records and tagged unions are routine, since we already have pairs and vari-
ants types. Dependent records use a variant of the translation of functions into the
π-calculus [31]; this is explored in more detail in [18]).

Abbreviations for types:(x1:T1;x2:T2; : : : ;xn:Tn) ∆= (x1:T1;(x2:T2;(: : : (xn:Tn;()) : : :)))(`1(T1) j � � � j `n(Tn)) ∆= (T1+(T2+(: : :(Tn+0) : : :)))(x:T)!U
∆= Ch(x:T;Ch(U))

The translations of messages are similarly straightforward.

Abbreviations for messages:(M1;M2; : : : ;Mn) ∆= (M1;(M2;(: : : (Mn;()) : : :)))`i(M) ∆= ini (M)in1 (M) ∆= inl (M)inn+1 (M) ∆= inr (inn (M))
We writeout x (M);P as a simple shorthand forout x M j P:

Abbreviations out M N;P:out M N;P
∆= (out M N) j P

We use a variant of Milner’s translation of theλ-calculus into theπ-calculus, extended
to deal with pattern-matching.

Abbreviations for functions, where f : (x:T)!U :fun
tion f (X1) : U1 is P1 � � � f (Xn) : Un is Pn
∆=repeat inp f (request:(x:T;Ch(U))));(mat
h requestis (X1; return:Ch(U1));P1 j � � � jmat
h requestis (Xn; return:Ch(Un));Pn

)return M
∆=out return Nlet x:U = f (M);P ∆=new (k:Ch(U));out f (M;k); inp k (x:U);P

where we define pattern-matching as:

Abbreviations for pattern matching:inp M (X);P ∆= inp M (x);mat
h x is X;Pde
rypt M is fXgN;P
∆= de
rypt M is fxgN;mat
h x is X;Pmat
h M is x:T;P

∆= Pfx Mg
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mat
h M is ();P ∆= Pmat
h M is (N;X1; : : : ;Xn);P ∆=mat
h M is (N;y);mat
h y is (X1; : : : ;Xn);Pmat
h M is (X0;X1; : : : ;Xn);P ∆= split M is (x;y);mat
h x is X0;mat
h y is (X1; : : : ;Xn);Pmat
h M is in1 (X);P ∆= 
ase M is inl (x) mat
h x is X;P is inr (x) stopmat
h M is inn+1 (X);P ∆= 
ase M is inl (x) stop is inr (x) mat
h x is inn (X);Pmat
h M is fXgNP;
∆= de
rypt M is fxgN;mat
h x is X;Pmat
h M is N;P

∆=mat
h (M;()) is (N;x);P
Thus we have demonstrated that our core language is powerfulenough to describe the
examples in this section.

B Formal Semantics of our Typed Spi-Calculus

This appendix develops a formal operational semantics for the spi-calculus. Hence, we
make precise the informal definition of process safety stated in Section 3.1, and prove
the type safety result, Theorem 1 (Safety), stated in Section 4.3.

We begin in Appendix B.1 by defining a trace semantics for the spi-calculus, and
use it to define safety in Appendix B.2. In Appendix B.3, we state and prove a subject
reduction property (that is, a type preservation property). Finally, in Appendix B.4 we
exploit subject reduction to prove Theorem 1 (Safety).

B.1 A Trace Semantics for our Spi-Calculus

We use a trace semantics based on the Chemical Abstract Machine [7]. First, we define
a structural equivalenceP�Q on processes, and then we define the trace semantics in
terms of structural equivalence. This is the same techniqueas Milner [31] uses in the
presentation of theπ-calculus, and Abadi and Gordon [3] use in the presentation of the
spi-calculus.

Structural Equivalence: P�Q

P� P (Struct Refl)
Q� P) P�Q (Struct Symm)
P�Q;Q� R) P� R (Struct Trans)

P�Q) new (x:T);P� new (x:T);Q (Struct Res)
P�Q) P j R�Q j R (Struct Par)

P j stop� P (Struct Par Zero)
P jQ�Q j P (Struct Par Comm)(P jQ) j R� P j (Q j R) (Struct Par Assoc)repeat P� P j repeat P (Struct Repl Par)

x =2 fn(P)) P j new (x:T);Q� new (x:T);(P jQ) (Struct Par Res)
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x 6= y;x =2 fn(U);y =2 fn(T))new (x:T);new (y:U);P� new (y:U);new (x:T);P (Struct Res Res)

A trace of a process is a finite sequence of events. The set of possible events
includes the begin- and end-events defined in Section 3.1, aswell as other events rep-
resenting various actions of processes.

Each process is given a trace semantics, where a trace is a sequence of events
performed by the process. Events take the following forms.

Events:

α;β ::= eventsbegin L begin-event labelled with messageLend L end-event labelled with messageL
ast x:T cast-event of namex to typeT
he
k x check-event for noncexgen x:T fresh-event for namex
τ internal-event

Events may contain free names. For example,fn(end (Sender sentmsg)) = fmsgg.
Free names,fn(α), of an eventα

fn(τ) ∆=?
fn(
ast x:T) ∆= fxg[ fn(T)
fn(
he
k x) ∆= fxg
fn(begin M) ∆= fn(M)
fn(end M) ∆= fn(M)
fn(gen x:T) ∆= fxg[ fn(T)
Events may also contain generated names. For example,gn(gen msg:Msg) = fmsgg.
Generated names,gn(α), of an eventα

gn(α) ∆=� fxg if α = gen x:T? otherwise

We interpret events as follows:� An eventbegin L arises from a processbegin L;P, and represents the beginning
of a correspondence.� An eventend L arises from a processend L;P, and represents the end of a corre-
spondence.� An event
ast N:T arises from a process
ast N is (x:T);P, and represents the
cast of an untrusted message into the typeT, which the type system requires to
be of the specific formNon
e es.
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� An event
he
k N arises from a process
he
k N is N;P, and represents a suc-
cessful check for the presence of a nonce.� An eventgen x:T arises from a processnew (x:T);P, and represents the genera-
tion of a fresh namex.� An eventτ arises from an internal computational step of a process.

For example, in theFixedSystem(net) example from Section 3.3, one possible sequence
of events is:� gen nonce:Un: the receiver generates a fresh untrusted namenonce.� gen msg:Msg: the sender generates a new messagemsg.� begin (Sender sentmsg): the sender begins a correspondence.� 
ast nonce:MyNonce(msg): the sender casts the untrusted messagenonceto the

typeMyNonce.� 
he
k nonce: the receiver checks that the received nonce isnonce.� end (Sender sentmsg): the receiver ends a correspondence.

On the other hand, in the compromised systemFlawedSystem(net) j Attacker(net) one
possible sequence of events is:� gen msg:Msg: the sender generates a new messagemsg.� begin (Sender sentmsg): the sender begins a correspondence.� end (Sender sentmsg): the receiver ends a correspondence.� end (Sender sentmsg): the receiver mistakenly ends the same correspondence

twice.

Next, we give a formal definition of the events a process is capable of, using a
labelled transition systemsemanticsP

α�! P0, meaning “P can perform eventα and
becomeP0”.
Labelled transitions: P

α�! P0out x M j inp x (y:T);P τ�! Pfy Mg (Trans Comm)split (M;N) is (x:T;y:U);P τ�! Pfx Mgfy Ng (Trans Split)mat
h (M;N) is (M;y:U);P τ�! Pfy Ng (Trans Match)
ase inl (M) is inl (x:T) P is inr (y:U) Q
τ�! Pfx Mg (Trans Case Inl)
ase inr (M) is inl (x:T) P is inr (y:U) Q
τ�!Qfy Mg (Trans Case Inr)de
rypt fMgN is fx:TgN;P

τ�! Pfx Mg (Trans Decrypt)
ast x is (y:T);P 
ast x:T����! Pfy xg (Trans Cast)
he
k x is x;P

he
k x����! P (Trans Check)begin M;P

begin M����! P (Trans Begin)end M;P
end M���! P (Trans End)
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new (x:T);P gen x���! P (Trans Gen)

gn(α)\ fn(Q) =?) P
α�! P0) P jQ α�! P0 jQ (Trans Par)

x =2 fn(α)) P
α�! P0) new (x:T);P α�! new (x:T);P0 (Trans Res)

P�Q;Q α�!Q0;Q0 � P0) P
α�! P0 (Trans�)

A trace is a sequence of events which the process may perform.

Traces:

s; t ::= α1; : : : ;αn trace (writtenε if n= 0)

We extend the definition of free and generated names to traces:

Free names,fn(s), and generated names,gn(s), of trace s

fn(a1; : : : ;an) ∆= fn(a1)[ �� �[ fn(an)
gn(a1; : : : ;an) ∆= gn(a1)[ �� �[gn(an)
The traces of a processP are defined using a trace-labelled transition systemP

s�! P0
meaning ‘P performs tracesand becomesP0.’
Traced transitions: P

s�! P0
P� P0) P

ε�! P0 (Trace�)

P
α�! P00;P00 s�! P0) P

a;s�! P00 (Trace Event) (wherefn(a)\gn(s) =?)

For example one trace ofFixedSystem(net) is (ignoringτ actions):gen nonce:Un;gen msg:Msg;begin (Sender sentmsg);
ast nonce:MyNonce(msg);
he
k nonce;end (Sender sentmsg)
One trace ofFlawedSystem(net) j Attacker(net) is:gen msg:Msg;begin (Sender sentmsg);end (Sender sentmsg);end (Sender sentmsg)
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B.2 Correspondence Traces and Safe Processes

We now define our notion of safety, through correspondence assertions. To do so, we
need to recall some standard notation for unordered collections of data, ormultisets. If
x ranges over elements of some given set, we letxsrange over multisets of elements of
that set.

Multiset of elements

xs::= multiset[x1; : : : ;xn℄ unordered collection of elements

We identify multisets up to permuting elements, so[x;y℄ = [y;x℄ but not up to copying
elements, so[x℄ 6= [x;x℄. We define some standard operations on multisets.

Multiset algebra xs+xs0, xs� xs0, xs�xs0, x2 xs, xs_xs0[x1; : : : ;xm℄+ [y1; : : : ;yn℄ ∆= [x1; : : : ;xm;y1; : : : ;yn℄
xs� xs0 if and only if xs+xs00 = xs0 for somexs00
xs�xs0 ∆= the smallestxs00 such thatxs� xs00+xs0
x2 xs if and only if [x℄� xs

xs_xs0 ∆= the smallestxs00 such thatxs� xs00 andxs0 � xs00
For example:� [x;y℄+ [y;z℄ = [x;y;y;z℄.� [x;y℄� [x;y;z℄ but [x;y;y℄ 6� [x;y;z℄.� [x;y;y;z℄� [w;x;y℄ = [y;z℄.� x2 [x;y℄ butz =2 [x;y℄.� [x;y℄_ [y;z℄ = [x;y;z℄.
For example, we useMs to range over multisets of messages.

Multisets of messagesMs:

Ms ::= multiset of messages[M1; : : : ;Mn℄ unordered collection of messages

We define thebeginningsandendingsof a tracesas the multiset of event labels begun
and ended, respectively, ins.

Beginnings,begins(s), and endings,ends(s), of a traces

begins(a1; : : : ;an) ∆= begins(a1)+ � � �+begins(an)
wherebegins(a) ∆=� [M℄ if a= begin M[ ℄ otherwise
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ends(a1; : : : ;an) ∆= ends(a1)+ � � �+ends(an)
whereends(a) ∆=� [M℄ if a= end M[ ℄ otherwise

Next, we say that a trace is a correspondence if its beginnings dominate its endings;
that is, for each end-event labelledL, there is a corresponding begin-event labelledL.

Correspondence:

A traces is acorrespondenceif and only if ends(s)� begins(s).
For the example trace ofFixedSystem(net) we have:

begins(gen nonce:Un;gen msg:Msg;begin (Sender sentmsg);
ast nonce:MyNonce(msg);
he
k nonce;end (Sender sentmsg))= [Sender sentmsg℄
ends(gen nonce:Un;gen msg:Msg;begin (Sender sentmsg);
ast nonce:MyNonce(msg);
he
k nonce;end (Sender sentmsg))= [Sender sentmsg℄

Therefore, since this tracessatisfiesends(s)� begins(s), it is a correspondence.
For the example trace ofFlawedSystem(net) j Attacker(net) we have:

begins(gen msg:Msg;begin (Sender sentmsg);end (Sender sentmsg);end (Sender sentmsg))= [Sender sentmsg℄
ends(gen msg:Msg;begin (Sender sentmsg);end (Sender sentmsg);end (Sender sentmsg))= [Sender sentmsg;Sender sentmsg℄

Since this trace hasends(s) 6� begins(s), it is not a correspondence.
We can now restate, precisely, the notions of safety and robust safety introduced

informally in Section 3.1.

Safety and Robust Safety:

A processP is safeif and only if for all tracessand processesP0,
if P

s�! P0 thens is a correspondence.
A processP is robustly safeif and only if for all opponent processesO, P jO is safe

For example, sinceFlawedSystem(net) j Attacker(net) has a trace that is not a cor-
respondence, it follows thatFlawedSystem(net) j Attacker(net) is not safe. Since the
processAttacker(net) is an opponent process, it follows thatFlawedSystem(net) is not
robustly safe.

45



B.3 Proof of Subject Reduction

In this section, we prove a subject reduction property for the labelled transition system,
that transitions preserve typings. To do so, however, we need to extend the type system
to accommodate the fact that cast-processes can change the type of a name after a
transition.

We can illustrate some of the subtleties introduced by casting by considering three
processes that are well-typed with respect to the typing environment defined byE =
x:Un;y:Un;z:Ch(Non
e [end y℄).

Firstly, the following example illustrates that a well-typed process can cast the name
x, originally of typeUn, into the distinct typeNon
e [end y℄.

P1
∆= 
ast x is (x0:Non
e [end y℄);out z x0

E ` P1 : [end y℄
P1


ast x:Non
e [end y℄�����������! out z x

Secondly, the following example illustrates that the namey, originally of typeUn,
can be cast into the typeNon
e [end y℄, that depends on the namey itself.

P2
∆= 
ast y is (y0:Non
e [end y℄);out z y0

E ` P2 : [end y℄
P2


ast y:Non
e [end y℄�����������! out z y

Thirdly, the following example illustrates that the namex can be cast to two distinct
types,Non
e [end x℄ andNon
e [end y℄.

P3
∆= 
ast x is (x0:Non
e [end x℄);
ast x is (x00:Non
e [end y℄);out z x00

E ` P3 : [end x;end y℄
P3


ast x:Non
e [end y℄�����������! 
ast x:Non
e [end x℄�����������! out z x

Moreover, the possibility that a name can come to inhabit multiple distinct types
arises in the setting of our running example. Recall from Section 3.3 that we have:

net:Un ` FixedSystem(net) : [ ℄
Now, consider the attacker:

Attacker(net) ∆= inp net(nonce:Un);out net(nonce);out net(nonce)
We can derive

net:Un ` FixedSystem(net) j Attacker(net) : [ ℄
butFixedSystem(net) j Attacker(net) has the trace:� gen (nonce): receiver generates a nonce

(initially nonce:Un).� gen (msg1): sender generates a messagemsg1:Msg.
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� begin (Sender sentmsg1): sender begins correspondence 1.� 
ast nonce:Non
e [begin (Sender sentmsg1)℄: sender castsnonce
(so nownonce:Non
e [begin (Sender sentmsg1)℄).� gen (msg2): sender generates a messagemsg2:Msg.� begin (Sender sentmsg2): sender begins correspondence 2.� 
ast nonce:Non
e [begin (Sender sentmsg2)℄: sender castsnonceagain
(so nownonce:Non
e [begin (Sender sentmsg2)℄).

At the end of this trace,noncehas been given three incompatible types:� Of an untrusted message,nonce:Un.� Of a nonce for correspondence 1,nonce:Non
e [begin (Sender sentmsg1)℄.� Of a nonce for correspondence 2,nonce:Non
e [begin (Sender sentmsg2)℄.
If we are going to allow names to have more than one type, we need to extend the

definition of an environment to allow this.
To accommodate the possibility that a name of typeUn can be cast to additional

types of the formNon
e es, we allow additional entries of the form+x:Non
e esto be
added to environments.

Extended environments:

E ::= environment� � � as before
E;+x:T extended entry (T always takes the formNon
e es)

For example, we now allow the environment:

nonce:Un;
msg1:Msg;+nonce:Non
e [begin (Sender sentmsg1)℄;
msg2:Msg;+nonce:Non
e [begin (Sender sentmsg2)℄

which records thatnonceoriginally had typeUn, but has since been cast to two other
nonce types.

We extend the definitions ofdom(E) andfn(E):
Free namesfn(E) of an extended environment:

fn(E;+x:T) ∆= fn(E)[fxg[ fn(T)
Domain dom(E) of an extended environment:

dom(E;+x:T) ∆= dom(E)[fxg
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We also extend the rules for typing with extended environments. The rule rule (Env+x) allows the formation of an extended environmentE;+x:T only whenx originally
had typeUn, and now also has nonce type. This matches the type rule (ProcCast). The
rule (Msg+x) extracts type information from such extended environments.

Typing with extended environments:

(Env+x)
E ` x : Un E ` es

E;+x:Non
e es` � (Msg+x)
E;+x:T;E0 ` �

E;+x:T;E0 ` x : T

We now show some standard properties about our extended typeand effect system.

Lemma 3 (Environment) If E ` J then E` �.
Proof Show by induction on the derivation ofE;E0 ` J that if E;E0 ` J thenE ` �.2
Lemma 4 (Weakening) If E;E00 ` J and E;E0;E00 ` � then E;E0;E00 ` J .
Proof An induction on the derivation ofE;E00 ` J . 2
Lemma 5 (Substitutivity) If E;x:T;E0 ` J and E` M : T and x=2 dom(E0) then we
have E;(E0fx Mg) ` J fx Mg.
Proof First show by case analysis that ifE ` M : T andT is Ch(U), Key(U) orNon
e esthenM is a name. The result then follows by induction on the derivation of
E;x:T;E0 ` J . 2
Lemma 6 (Subsumption Elimination) If E ` P : es then È P : fs can be derived
without rule (Proc Subsum), where fs� es.

Proof First show that ifE ` esandE ` fs thenE ` es+ fs, E ` es� fs andE `
es_ fs. Then show by induction on derivation that ifE ` P : esthenE ` es. The result
then follows by induction on the derivation ofE ` P : es. 2

Next, we show a standard property of our labelled transitionsystem, that we can
move every use of structural equivalence up to top level. To state this lemma, we use
the shorthandnew (D);P where:new (x1:T1; : : : ;xn:Tn);P ∆= new (x1:T1); : : :new (xn:Tn);P
This construct enjoys the derived type rule:

Derived type rule for new (D);P:

(Proc ResD) (wheredom(D)\ fn(es�checks(D)) =?)
E;D ` P : es Dis generative

E ` new (D);P : es�checks(D)
wherechecks(x1:T1; : : : ;xn:Tn) = [
he
k x1; : : : ;
he
k xn℄
andx1:T1; : : : ;xn:Tn is generativeif and only if T1; : : : ;Tn are all generative.
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Lemma 7 (� Elimination) If P
α�! P0 then:

P� new (D);(Q j R) P0 � new (D);(Q0 j R) fn(α)\dom(D) =?
and Q

α�!Q0 can be derived without rules (Trans Par) (Trans Res) or (Trans�).

Proof An induction on the derivation ofP
α�! P0. 2

We now show that the effect judgment for processes is preserved by structural equiva-
lence.

Proposition 8 (Subject Equivalence)If E ` P : es and P�Q then E`Q : es.

Proof Prove by induction on the derivation of� that if P� Q or Q� P then if
E ` P : esthenE `Q : es. 2
Next, we state the main result of this section, a subject reduction property for our
labelled transition system.

Proposition 9 (Subject Reduction) Suppose È P : es.

(1) If P
τ�! P0 then E` P0 : es.

(2) If P

ast x:T����! P0 then either:

(a) E` P0 : es, or

(b) E;+x:T ` P0 : es� fs where T= Non
e fs and fs� es.

(3) If P

he
k x����! P0 then either:

(a) E` P0 : es, or

(b) E` x : Non
e fs, E` P0 : (es+ fs)� [
he
k x℄ and
he
k x2 es.

(4) If P
begin M����! P0 then E` P0 : es+[end M℄.

(5) If P
end M���! P0 then E` P0 : es� [end M℄, andend M 2 es.

(6) If P
gen x:T����! P0 then (up to appropriateα-conversion of x) either:

(a) E;x:T ` P0 : es and T is generative, or

(b) E;x:T ` P0 : es+[
he
k x℄ and T isUn.

Proof

(1) If P
τ�! P0 then such that È P0 : es.

A case analysis on the derivation ofP
τ�! P0.
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Case (Trans Comm): By Lemma 6 (Subsumption Elimination) and Lemma 7
(� Elimination); and Rules (Proc Par), (Proc ResD), (Proc Output), (Proc
Input), (Proc Output Un) and (Proc Input Un), we have:

P � new (D);(out x M j inp x (y:T);Q j R)
P0 � new (D);(Qfy Mg j R)

E;D ` x : U

E;D ` M : T

E;D;y:T ` Q : esQ
E;D ` R : esR

es � (esQ+esR)�checks(D)
whereT = Un andU = Un, or U = Ch(T); D is generative;dom(D)\
fn((esQ + esR)� checks(D)) = ?; and y =2 fn(esQ). Then by Lemma 5
(Substitutivity), and Rules (Proc Par), (Proc ResD) and (Proc Subsum) we
have:

E ` P0 : es

as required.

Case (Trans Split): By Lemma 6 (Subsumption Elimination) and Lemma 7 (�
Elimination); and Rules (Proc Par), (Proc ResD), (Msg Pair), (Proc Split),
(Msg Pair Un), (Proc Split Un) we have:

P � new (D);(split (M;N) is (x:T;y:U);Q j R)
P0 � new (D);(Qfx Mgfy Ng j R)

E;D ` M : T

E;D ` N : Ufx Mg
E;D;x:T;y:U ` Q : esQ

E;D ` R : esR
es � (esQ+esR)�checks(D)

whereD is generative;dom(D)\ fn((esQ + esR)� checks(D)) = ?; x =2
fn(esQ); andy =2 fn(esQ). Then by Lemma 5 (Substitutivity), and Rules (Proc
Par), (Proc ResD) and (Proc Subsum) we have:

E ` P0 : es

as required.

Case (Trans Match): By Lemma 6 (Subsumption Elimination) and Lemma 7
(� Elimination); and Rules (Proc Par), (Proc ResD), (Msg Pair), (Proc
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Match), (Msg Pair Un), (Proc Match Un) we have:

P � new (D);(mat
h (M;N) is (M;y:Ufx Mg);Q j R)
P0 � new (D);(Qfy Ng j R)

E;D ` M : T

E;D ` N : Ufx Mg
E;D;y:Ufx Mg ` Q : esQ

E;D ` R : esR
es � (esQ+esR)�checks(D)

whereD is generative;dom(D)\ fn((esQ + esR)� checks(D)) = ?; and
y =2 fn(esQ). Then by Lemma 5 (Substitutivity), and Rules (Proc Par), (Proc
ResD) and (Proc Subsum) we have:

E ` P0 : es

as required.

Case (Trans Case Inl): By Lemma 6 (Subsumption Elimination) and Lemma 7
(� Elimination); and Rules (Proc Par), (Proc ResD), (Msg Inl), (Proc
Case), (Msg Inl Un), (Proc Case Un), we have:

P � new (D);(
ase inl (M) is inl (x:T) Q is inr (y:U) R j S)
P0 � new (D);(Qfx Mg j S)

E;D ` M : T

E;D;x:T ` Q : esQ
E;D;y:U ` R : esR

E;D ` S: esS
es � (esQ_esR)+esS

whereD is generative;dom(D)\ fn(((esQ_ esR) + esS)� checks(D)) =?; x =2 fn(esQ); andy =2 fn(esR). Then by Lemma 5 (Substitutivity), and
Rules (Proc Par), (Proc ResD) and (Proc Subsum) we have:

E ` P0 : es

as required.

Case (Trans Case Inr): As for Case (Trans Case Inl).

Case (Trans Decrypt): By Lemma 6 (Subsumption Elimination) and Lemma 7
(� Elimination); and Rules (Proc Par), (Proc ResD), (Msg Encrypt), (Proc

51



Decrypt), (Msg Encrypt Un), (Proc Decrypt Un), we have:

P � new (D);(de
rypt fMgN is fx:TgN;Q j R)
P0 � new (D);(Qfx Mg j R)

E;D ` M : T

E;D;x:T ` Q : esQ
E;D ` R : esR

es � (esQ+esR)�checks(D)
whereD is generative;dom(D)\ fn((esQ + esR)� checks(D)) = ?; and
x =2 fn(esQ). Then by Lemma 5 (Substitutivity), and Rules (Proc Par), (Proc
ResD) and (Proc Subsum) we have:

E ` P0 : es

as required.

(2) If P

ast x:T����! P0 then either:

(a) E` P0 : es, or

(b) E;+x:T ` P0 : es� fs where T= Non
e fs and fs� es.

By Lemmas 6 (Subsumption Elimination) and 7 (�Elimination); and Rules (Proc
Par), (Proc Cast) and (Proc Cast Un) we have:

P � new (D);(
ast x is (y:T);Q j R)
P0 � new (D);(Qfy xg j R)
E ` x : Un

E;D;y:T ` Q : esQ
E;D ` R : esR

es � (esQ+ fs+esR)�checks(D)
whereD is generative;dom(D)\ fn(
ast x:T) = ?; dom(D)\ fn((esQ + fs+
esR)� checks(D)) = ?; y =2 fn(esQ); and eitherT = Un and fs= [℄ or T =Non
e fs.

Case (T = Un and fs= [℄): By Lemma 5 (Substitutivity), and Rules (Proc Par),
(Proc ResD) and (Proc Subsum) we have:

E ` P0 : es

as required.

Case (T = Non
e fs): SinceE;D;y:T ` Q : esQ, by Lemma 3 (Environment)
and Rules (Envx) we haveE;D ` T. Sincefn(T)\dom(D) =?, andx =2
dom(D), by repeated use of Lemma 5 (Substitutivity) we haveE ` T and
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E ` x : Un. Then we use Rule (Env+x) to getE;+x:T ` �, so we can apply
Lemma 4 (Weakening) to getE;+x:T;D;y:T `Q : esQ. By Rule (Msg+x)
we haveE;+x:T;D ` x : T and so we can apply Lemma 5 (Substitutivity),
and Rules (Proc Par), (Proc ResD) and (Proc Subsum) to get:

E;+x:T ` P0 : es� fs

and fs� esas required.

(3) If P

he
k x����! P0 then either:

(a) E` P0 : es, or

(b) E` x : Non
e fs, E` P0 : (es+ fs)� [
he
k x℄ and
he
k x2 es.

By Lemmas 6 (Subsumption Elimination) and 7 (� Elimination); and rules (Proc
Par), (Proc ResD), (Proc Check), and (Proc Check Un) we have:

P � new (D);(
he
k x is x;Q j R)
P0 � new (D);(Q j R)

E;D ` x : T

E;D ` Q : esQ
E;D ` R : esR

es � ((esQ� fs)+ fs0+esR)�checks(D)
whereD is generative;dom(D)\ fn(
he
k x:T) =?; dom(D)\ fn(((esQ� fs)+
fs0 + esR)� checks(D)) = ?; and eitherT = Un and fs = fs0 = [℄ or T =Non
e fs and fs0 = [
he
k x℄.
Case (T = Un and fs= fs0 = [℄) By Lemma 5 (Substitutivity), and Rules (Proc

Par), (Proc ResD) and (Proc Subsum) we have:

E ` P0 : es

as required.

Case (T = Non
e fs and fs0 = [
he
k x℄) By Lemma 5 (Substitutivity), and Rules
(Proc Par), (Proc ResD) and (Proc Subsum) we have:

E ` x : Non
e fs

E ` P0 : (es+ fs)� [
he
k x℄
and
he
k x2 esas required.

(4) If P
begin M����! P0 then E` P0 : es+[end M℄.
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By Lemmas 6 (Subsumption Elimination) and 7 (�Elimination); and Rules (Trans
Begin), (Proc Par), (Proc ResD), and (Proc Begin) we have:

P � new (D);(begin M;Q j R)
P0 � new (D);(Q j R)

E;D ` M : T

E;D ` Q : esQ
E;D ` R : esR

es � ((esQ� [end M℄)+esR)�checks(D)
whereD is generative;dom(D)\ fn(begin M) = ?; anddom(D)\ fn(((esQ�[end M℄) + esR)� checks(D)) = ?. Then by Lemma 5 (Substitutivity), and
Rules (Proc Par), (Proc ResD) and (Proc Subsum) we have:

E ` P0 : es+[end M℄
as required.

(5) If P
end M���! P0 then E` P0 : es� [end M℄, andend M 2 es.

By Lemmas 6 (Subsumption Elimination) and 7 (�Elimination); and Rules (Trans
End), (Proc Par), (Proc ResD) and (Proc End) we have:

P � new (D);(end M jQ)
P0 � new (D);Q

E;D ` M : T

E;D ` Q : esQ
es � (esQ+[end M℄)�checks(D)

whereD is generative;dom(D)\ fn(endM)=?; anddom(D)\ fn((esQ+[endM℄)�
checks(D)) =?. Then by Lemma 5 (Substitutivity), and Rules (Proc Par), (Proc
ResD) and (Proc Subsum) we have:

E ` P0 : es� [end M℄
andend M 2 esas required.

(6) If P
gen x:T����! P0 then (up to appropriateα-conversion of x) either:

(a) E;x:T ` P0 : es and T is generative, or

(b) E;x:T ` P0 : es+[
he
k x℄ and T isUn.

By Lemmas 6 (Subsumption Elimination) and 7 (�Elimination); and Rules (Trans
Gen), (Proc Par),(Proc ResD) and (Proc Res) we have:

P � new (D);(new (x:T);Q j R)
P0 � new (D);(Q j R)

E;D;x:T ` Q : esQ
E;D ` R : esR

es � ((esQ� [
he
k x℄)+esR)�checks(D)
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whereD is generative;dom(D)\ fn(gen x:T)=?; dom(D)\ fn((esQ+[endM℄)�
checks(D)) =?; x =2 fn(esQ); andT is generative.

Case (T = Un) By Lemma 5 (Substitutivity), Lemma 4 (Weakening), and Rules
(Proc Par), (Proc ResD) and (Proc Subsum) we have:

E;x:Un ` P0 : es+[
he
k x℄
as required.

Case (T 6= Un) SinceE;D;x:T `Q : esQ, we have by Lemma 3 (Environment)
E;D;x:T ` esQ and so (sinceE;D;x:T 6` [
he
k x℄) we have
he
k x =2 esQ.
By Lemma 5 (Substitutivity), Lemma 4 (Weakening), and Rules(Proc Par)
(Proc ResD) and (Proc Subsum) we have:

E;x:T ` P0 : es

as required. 2
B.4 Proof of Safety

The purpose of this appendix is to prove the type safety result, Theorem 1 (Safety). It
asserts that a process assigned the empty effect is safe. This theorem is a key fact in
the proof of the main result of the paper, Theorem 2 (Robust Safety), in Section 4.3.

To prove Theorem 1 (Safety), we actually prove a stronger invariant, Proposition 18
(Transition Safety), about processes with non-empty effects. To state the invariant we
introduce a functionends(E ` es) which computes the multiset of end-events repre-
sented by an effectes. With this notation, we can roughly state the invariant as follows:� If E ` P : esandP

s�! P0 then we can findE0 andes0 such thatE0 ` P0 : es0 where
ends(E ` es)+begins(s)� ends(E0 ` es0)+ends(s).

From this, we deduce that every processE ` P : [ ℄ is safe.
However, we have some work ahead of us, in particular in defining the function

ends(es). A naı̈ve definition would just be to count all of theend M effects ines, but
this ignores the latent effect of nonces. Consider the following typing:

x:Un;+x:Non
e [end M℄ ` (
he
k x is x;end M) : [
he
k x℄
The process has trace
he
k x;end M, which has an unbalancedend M, even though
the effect of the process only contains a
he
k x effect. So, in addition to counting the
end-events, we need also to compute the end-events that may be unleashed by nonce
effects.

Another problem is that we have to make sure that nonces are usedlinearly, that is,
at most once. For example we need to ban processes such as:

x:Un;+x:Non
e [end M℄ ` (
he
k x is x;
he
k x is x;end M;end M) : [
he
k x;
he
k x℄
55



which use a nonce more than once, or even worse:

x:Un;+x:Non
e [end M;
he
k x℄ `(
he
k x is x;end M;
he
k x is x;end M; : : :) : [
he
k x℄
where we have a self-certifying nonce with thecyclic typex : Non
e [end M;
he
k x℄,
which allows an unbounded number of unbalanced assertions.

We first define thelatent effectsof a well-typed messageE ` M : Un. If M is
anything other than a name, then the latent effects are emtpy. Otherwise ifM = x, we
find all the occurrences ofx:Non
e esin E, and sum them. For example:

effects(x:Un;+x:Non
e [end M℄;+x:Non
e [
he
k N℄ ` x : Un)= [end M;
he
k N℄
Effectseffects(E `M : Un) of a typed messageE `M : Un:

effects(E;x:T ` x : Un) ∆= [℄
effects(E;+x:Non
e es` x : Un) ∆= effects(E ` x : Un)+es

effects(E;x:T ` y : Un) ∆= effects(E ` y : Un) (whenx 6= y)

effects(E;+x:T ` y : Un) ∆= effects(E ` y : Un) (whenx 6= y)

effects(E `M : Un) ∆= [℄ (whenM is not a name)

As discussed above, we maintain an invariant for well-typedsystems, which is that they
arenonce linear, so they only only allow each nonce to be checked once. We define
this in terms of a predicateMsE checks(E ` es) which can be read as ‘Ms is a lower
bound on the nonce checks allowed byE ` es’. For example:[x℄ E checks(x:Un ` [
he
k x℄)[x;y℄ E checks(x:Un;y:Un ` [
he
k x;
he
k y℄)[x;y℄ E checks(x:Un;y:Un;+x:Non
e [
he
k y℄ ` [
he
k x℄)[x;x℄ E checks(x:Un ` [
he
k x;
he
k x℄)[x;x℄ E checks(x:Un;+x:Non
e [
he
k x℄ ` [
he
k x℄)
When we calculate the lower bound on the nonces allowed byE ` es, we include the
latent effects ofes. In particular, the last example shows that we have to be careful
about cyclic uses of nonces.

Lower bound MsE checks(E ` es) of the nonces of a typed effectE ` es:

(Nonces[ ℄)[ ℄E checks(E ` es) (Nonces
he
k M)
Ms� [M℄E checks(E ` es+effects(E `M : Un))

MsE checks(E ` es+[
he
k M℄)
Having definedMsE checks(E ` es), we can define the nonce linear and nonce acyclic
effects:
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Nonce linear typed effectsE ` es

A typed effectE ` esis nonce linearif and only if
there is noM such that[M;M℄E checks(E ` es).

Nonce acyclic typed effectsE ` es

A typed effectE ` esis nonce acyclicif and only if
there is no[M℄E checks(E ` es) such that[M;M℄ E checks(E ` [
he
k M℄).

For example:

x:Un ` [
he
k x℄ is linear and acyclic
x:Un;y:Un ` [
he
k x;
he
k y℄ is linear and acyclic

x:Un;y:Un;+x:Non
e 
he
k y` [
he
k x℄ is linear and acyclic
x:Un ` [
he
k x;
he
k x℄ is acyclic but not linear

x:Un;+x:Non
e 
he
k x` [
he
k x℄ is neither linear nor acyclic

We can now show some properties about nonce linear effects, and nonce acyclic effects,
in particular that every nonce linear effect is nonce acyclic.

Lemma 10 (Nonce monotonicity)If Ms E checks(E ` es) and E` fs then MsE
checks(E ` es+ fs).
Proof An induction on the proof ofMsE checks(E ` es). 2
Lemma 11 (Nonce transitivity) If we have[M℄E checks(E ` es) and also that MsE
checks(E ` [
he
k M℄) then MsE checks(E ` es).
Proof An induction on the proof of[M℄E checks(E ` es). To get[M℄E checks(E `
es) we must have used Rule (Nonces
he
k M) and so either:� 
he
k M 2 es, so by Lemma 10 (Nonce monotonicity) we haveMsE checks(E `

es), or� es= fs+ [
he
k N℄ and [M℄ E checks(E ` fs+ effects(E ` N : Un)), so by
inductionMsE checks(E ` fs+effects(E ` N : Un)), and so by Rule (Nonces
he
k M) MsE checks(E ` es).

The result follows. 2
Lemma 12 (Linear implies acyclic) If E ` es is nonce linear then È es is nonce
acyclic.

Proof Follows from Lemma 11 (Nonce transitivity). 2
We can now defineends(E ` es) for a nonce acyclic effectE ` es. This is used to set
up the invariant for our type safety result.
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Endingsends(E ` es) of a nonce acyclic effectE ` es:

ends(E ` [ ℄) ∆= [℄
ends(E ` es+[end M℄) ∆= ends(E ` es)+ [M℄
ends(E ` es+[
he
k M℄) ∆= ends(E ` es)+ends(E ` effects(E `M : Un))
Note thatends(E ` es) is not well-defined for nonce cyclic effects, for example if:

E = x:Un;+x:Non
e [
he
k x;end M℄
then:

ends(E ` [
he
k x℄)= ends(E ` [
he
k x;end M℄)= ends(E ` [
he
k x;end M;end M℄)= � � �
However, they are well-defined for nonce acyclic effects, which is enough for our pur-
poses.

Lemma 13 (End Definedness)If E ` es is nonce acyclic then ends(E ` es) is well-
defined.

Proof For any finite set of namesX, let ends(E ` es)X be defined:

ends(E ` [ ℄)X= [℄
ends(E ` es+[end M℄)X= ends(E ` es)X +[M℄
ends(E ` es+[
he
k M℄)X= �

ends(E ` es)X +ends(E ` effects(E `M : Un))X�fMg if M 2 X
ends(E ` es)X otherwise

It is routine to see thatends(E ` es)X is well-defined, by induction first onX then on
es. We then show by induction on the definition ofends(E ` es)X that:

if 8[x℄E checks(E ` es) :x2 X thenends(E ` es)X = ends(E ` es)
In particular, we have thatends(E ` es)dom(E) = ends(E ` es), and soends(E ` es) is
well-defined. 2
We can now prove some lemmas, leading up to the type safety results we need to show
that effect-free processes are safe.

Lemma 14 (End Homomorphism) ends(E ` es+ fs) = ends(E ` es) + ends(E `
fs).
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Proof An induction ones. 2
Lemma 15 (End+x) If [x℄ 6E checks(E ` es) then ends(E;+x:T ` es) = ends(E ` es).
Proof An induction ones. 2
Lemma 16 (End Nonce) If E ` x :Non
e es and È x :Un then ends(E ` [
he
k x℄)�
ends(E ` es).
Proof Show by induction onE thates� effects(E ` x : Un). The result then follows
by Lemma 14 (End Homomorphism). 2
Lemma 17 (End Add Nonce) If E ` es+ fs is nonce linear then ends(E ` es+ fs)�
ends(E;+x:Non
e fs` es)
Proof An induction ones. The only interesting case is when:

es = es0+[
he
k x℄
SinceE ` es+ fs is nonce linear, we have[x℄ 6E checks(E ` es0) and[x℄ 6E checks(E `
effects(E;+x:Non
e fs` x :Un)) and so by Lemmas 14 (End Homomorphism) and 15
(End+x):

ends(E ` es+ fs)= ends(E ` es0+[
he
k x℄+ fs)= ends(E ` es0+[
he
k x℄)+ends(E ` fs)= ends(E ` es0)+ends(E ` effects(E ` x : Un))+ends(E ` fs)= ends(E ` es0)+ends(E ` effects(E ` x : Un)+ fs)= ends(E;+x:Non
e fs` es0)+
ends(E;+x:Non
e fs` effects(E;+x:Non
e fs` x : Un))= ends(E;+x:Non
e fs` es0+[
he
k x℄)= ends(E;+x:Non
e fs` es)

as required.

Proposition 18 (Transition Safety) If E ` es is nonce linear, È P : es and P
α�! P0

then E0 ` P0 : es0 for some nonce linear E0 ` es0 such that ends(E ` es)+begins(α)�
ends(E0 ` es0)+ends(α).
Proof A case analysis onα:

Case (α = 
ast x:T) By Proposition 9 (Subject Reduction), we have one of the follow-
ing cases:

Subcase (E ` P0 : es) Immediate.
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Subcase (E;+x:T ` P0 : es� fswhereT = Non
e fsand fs� es) Then, using
Lemma 17 (End Add Nonce) we have:

ends(E ` es)+begins(α)= ends(E ` es)� ends(E;+x:T ` es� fs)= ends(E;+x:T ` es� fs)+ends(α)
andE;+x:T ` es� fs is nonce linear as required.

Case (α = 
he
k x) By Proposition 9 (Subject Reduction), we have one of the follow-
ing cases:

Subcase (E ` P0 : es) Immediate.

Subcase (E ` x : Non
e f s, E ` P0 : (es+ fs)� [
he
k x℄, 
he
k x2 es) Given
Lemmas 16 (End Nonce) and 14 (End Homomorphism) we have:

ends(E ` es)+begins(α)= ends(E ` es)= ends(E ` (es� [
he
k x℄)+ [
he
k x℄)= ends(E ` (es� [
he
k x℄))+ends(E ` [
he
k x℄)� ends(E ` (es� [
he
k x℄))+ends(E ` fs)= ends(E ` (es+ fs)� [
he
k x℄)= ends(E ` (es+ fs)� [
he
k x℄)+ends(α)
andE ` (es+ fs)� [
he
k x℄ is nonce linear as required.

Case (α = begin M) Follows directly from Proposition 9 (Subject Reduction).

Case (α = end M) Follows directly from Proposition 9 (Subject Reduction).

Case (α = gen x:T) Follows directly from Proposition 9 (Subject Reduction).

Case (α = τ) Follows directly from Proposition 9 (Subject Reduction). 2
Proposition 19 ( s�! Safety) If E ` es is nonce linear, È P : es and P

s�! P0 then E0 `
P0 : es0 for some nonce linear E0 ` es0 such that ends(E ` es)+begins(s)� ends(E0 `
es0)+ends(s).
Proof An induction on the derivation ofP

s�! P0.
Case (Trace�) We have:

s = ε
P � P0

By Proposition 8 (Subject Equivalence):

E ` P0 : es
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and so (sincebegins(ε) = ends(ε) = [ ℄ we have:

ends(E ` es)+begins(s) � ends(E ` es)+ends(s)
as required.

Case (Trace Event)We have:

P
α�! P00

P00 t�! P0
s = α; t

By Proposition 18 (Transition Safety) we can find nonce linear E00 ` es00 such
that:

E00 ` P00 : es00
ends(E ` es)+begins(α) � ends(E00 ` es00)+ends(α)

By induction, we can find nonce linearE0 ` es0 such that:

E0 ` P0 : es0
ends(E00 ` es00)+begins(t) � ends(E0 ` es0)+ends(t)

and so:

ends(E ` es)+begins(s)= ends(E ` es)+begins(α)+begins(t)� ends(E00 ` es00)+ends(α)+begins(t)� ends(E0 ` es0)+ends(α)+ends(t)= ends(E0 ` es0)+ends(s)
as required. 2

We have now done all the work required to show our main theorem: any effect-free
process is safe.

Proof of Theorem 1 (Safety) If E ` P : [ ℄ then P is safe.

Proof If P
s�! P0 then we use Proposition 19 (

s�! Safety) to get:

begins(s)= ends(E ` [ ℄)+begins(s)� ends(E0 ` es0)+ends(s)� ends(s)
Thus,P is safe. 2
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FixedSender(net:Network;alice:Princ;key:WMFKey(alice)) ∆=repeatinp net(bob:Princ);new (sKey:SKey);begin “alicesendingbobkeysKey”;out net(alice);inp net(nonceA:Un);
ast nonceAis (nonceA0:WMFNonce(alice;bob;sKey));out net(alice;fmsg3(bob;sKey;nonceA0)gkey);	 [ ℄ � [end : : :℄9>>>>=>>>>; [ ℄
FixedReceiver(net:Network;bob:Princ;key:WMFKey(bob)) ∆=repeatinp net();new (nonceB:Un);out net(nonceB);inp net(ctext:Un);de
rypt ctextis fmsg6(alice;sKey;nonceB0)gkey;
he
k nonceBis nonceB0;end “alicesendingbobkeysKey”

	 [end : : :℄� [
he
k nonceB℄
9>>>>>>=>>>>>>; [ ℄

FixedServer(net:Network; lookup:WMFLookup) ∆=repeatinp net(alice:Princ);new (nonceA:Un);out net(nonceA);inp net(alice;ctext:Un);let keyA: WMFKey(alice) = lookup(alice);de
rypt ctextis fmsg3(bob;sKey;nonceA0)gkeyA;
he
k nonceAis nonceA0;out net();inp net(nonceB:Un);
ast nonceBis (nonceB0:WMFNonce(alice;bob;sKey));let keyB: WMFKey(bob) = lookup(bob);out netfmsg6(alice;sKey;nonceB0)gkeyB
	 [ ℄ 9=; [end : : :℄9>>>>>>=>>>>>>; [
he
k : : :℄

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>; [ ℄
Figure 1: Type checked participants in the Wide Mouth Frog protocol
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[39] F.J. Thayer Fábrega, J.C. Herzog, and J.D. Guttman. Strand spaces: Why is
a security protocol correct? In1998 IEEE Computer Society Symposium on
Research in Security and Privacy, 1998.

[40] T.Y.C. Woo and S.S. Lam. Authentication for distributed systems.Computer,
25(1):39–52, 1992.

[41] T.Y.C. Woo and S.S. Lam. A semantic model for authentication protocols. In
IEEE Symposium on Security and Privacy, pages 178–194, 1993.

65


