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Abstract querying across different computers. Peer-to-peer applic
tions such as Napster [18], Gnutella[8] and Freenet [3] have
This paper presents the design, implementation and eval-been used for large-scale locating and sharing of MP3 files.
uation ofMingle, a secure distributed search system. Each A serious drawback of such systems is that there is no secu-
participating host runs a Mingle server, which maintainsan rity mechanism to protect data from access by unauthorized
inverted index of the local file system. Users initiate peer- users. In addition, no indexing is provided to quickly lezat
to-peer keyword searches by typing keywords to lightweightinformation.
Mingle clients. Central to Mingle are its access control Thus, it would appear that we need new systems that help
mechanisms and its insistence on user convenience. For acpeople find the data in their personal distributed computing
cess control, we introduce the ideaasfcess-right mapping  environments. These systems should be both efficient, in
which provides a convenient way for file owners to specify the sense that our searches complete quickly, and secure, in
access permissions. Access control is supported through ahe sense that unauthorized users are not allowed to locate
single sign-on mechanism that allows users to convenientlyour data. So how might we build such systems?
establish their identity to Mingle servers, such that sub-  a straightforward solution is to build a global index-
sequent authentication occurs automatically, with midima ing service, where dedicated servers crawl files from ev-
manual involvement. Preliminary performance evaluation ery computer on the Internet and then compute a central-
suggests that Mingle is both feasible and scalable. ized index table. Search engines like Google [9] have used
this kind of scheme very effectively for the Web. How-
ever, the centralized model is inappropriate for searching
1 Introduction personal computing systems for a number of reasons. First,
indexing is an expensive operation requiring large amounts
During the normal course of our work, we have managed of memory and disk space. Even massive search engines
to acquire accounts on dozens of different laptop, desktop,like Google can index only limited number of Web pages.
and remote hosts. Thousands of files are stored on the locaFherefore, centralized indexing servers can not scale with
disks of these hosts. With so many files on so many com-the increasing number of computers and the exploding ca-
puters, it is becoming increasingly difficult and time con- pacities of modern disks. Second, many personal files are
suming for us to find our own data and let other people find private in nature. Users lose control of their files once they
and share our data. are indexed by the server. Even with complicated security
Although there are a number of useful tools for locat- and access control mechanisms, they may be unwilling to
ing data on a single machine, locating data in a distributedrelease their files to the dedicated servers.
environment is still troublesome. Tools lilggep andfind Another approach is to have one or more dedicated in-
are good for searching small directory hierarchies, but aredexing servers for a cluster of computers. For example, dis-
inappropriate for searching entire disks. The GMdate tributed search engines such as Harvest [1] and Oasis [19]
command provides fast keyword search of file names, butset up one or more index servers to search within an intranet.
not the contents of those files. Tools such as Glimpse [16]With this scheme, a significant amount of network traffic
and Windows Indexing Service precompute inverted index is needed to fetch distributed files to the servers for index
tables of local files. Each entry in the index table stores computing. More important, this scheme requires large, ex-
a word and its occurrences in the files, which enables fastpensive, dedicated indexing servers, which are not feasibl
keyword querying. However, these tools do not support in a personal computing environment.



In this paper, we present Mingle, a secure distributed In such systems, search is performed at hierarchical direc-
search system. Mingle is designed to meet the following re- tory servers in large scaled networks consisting of hetero-
guirements, which we consider fundamental to a distributedgeneous hosts. Compared with these systems, Mingle is
search system for personal computing: currently targeted for a cluster of computers, and search

is performed among friendly end hosts without centralized

e Searches should be fagtor fast search, Mingle pre- servers. Because of the architectural level differendes, t

computes an inverted index of local files on each par- security emphases are different. These systems assume ma-
ticipating host. A query can be processed by the local licious attacks and stress data privacy and integrity. Ming
host, or routed through the participating hosts using focuses on access control and has a strong emphasis on user
peer-to-peer communication to locate all of the desired convenience while at the same time preserving file system
data. access control semantics.

Peer-to-peer systems [21, 25, 24, 29] have been designed

» The system should scalgince each participating host  to locate objects in self-organizing overlay networks. ISuc

devotes computing resources for indexing, the Mingle systems use hash based distributed indexing schemes to lo-
scheme should scale well with the number of comput- cate objects. The location of each object is stored at one
ers. Participating hosts communicate with each other or more nodes selected by a distributed hash function. Al-
only when there is a search request, greatly reducingthough hash functions can deterministically locate object
network traffic. they do not support keyword searching, a desirable opera-

) ) tion to search information among personal data.
¢ The system should be secuféhe Mingle security ar-

chitecture focuses on preventing unauthorized release . .
of information while allowing files to be maximally 3 Overview of the Mingle System
shared. Since search is a frequent operation, we insist
that the Security mechanism be as convenient as possi- Figure 1 shows the overall architecture of a Mlngle clus-
ble for users. Access control policy is expressed usingter. On each host, there is a Mingle server running as a
an access-right mapping novel mechanism that ex- daemon. Communication among servers is peer-to-peer. A
tends a local file system’s access control primitives to User may issue a request from any host to any of the servers
Mingle users in a uniform and convenient way. This Dy launching a lightweight client program, which simply
mechanism builds upon a single sign-on mechanism sends the request to the local server and waits for repfies. |
implemented in Mingle, which allows a user to per- only alocal reply is required, then the local server handles
form authenticated search requests across many Minihe request and sends back the reply. Otherwise, the server
gle servers seamlessly. forwards the request to remote servers for further process-
ing.

The remainder of the paper is organized as follows. Sec- Mingle clients issue separate requests for indexing and
tion 2 summarizes related work. Section 3, 4, 5 are the coresearching. Only the owners of files can issue requests to
of the paper, describing the Mingle prototype, including th index those files. Any Mingle user can issue a search re-
novel security architecture based on access-right mappingduest to any Mingle server, but they only receive informa-
Ming|e is Current|y targeted for persona| Computing envi- tion about files that they are authorized to see, as described
ronments with tens of hosts. Preliminary performance eval- in the next section.

uation of the Mingle prototype in Section 6 suggests thatthe ~ When a Mingle server daemon is started on a host for the
System is feasible and scalable in such an environment. first time, none of the files on that host are indexed. Users

must make explicit requests to the Mingle server to index
directory trees that they own. Thus Mingle is “opt-in”, in
the sense that users on Mingle hosts must issue explicit re-
guests before their data is indexed and made available to
Distributed search has been studied in the area of infor-Mingle clients.
mation retrieval [2, 7, 12, 27], with emphasis on algorithms  Each Mingle server computes an inverted index of local
for server selection and result merging. Mingle is différen files that have been indexed. The inverted index consists
from these works in that our focus is on the system archi- of: (1) a lexicon containing all of the words that appear in
tecture and the security mechanisms to prevent data fromthe files; and (2) an inverted file entry for each word, which
access by unauthorized users. stores a list of pointers to the occurrences of that word in
Distributed service and resource discovery [4, 10, 26] the files. To locate a given word, only its inverted file entry
is a special type of distributed search, where queries con-needs to be traversed, allowing fast queries. The detailed
sist of resource or service attributes instead of keywords.design and data structures of the inverted index in Mingle

2 Related Work
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Figure 1. Architecture of a Mingle cluster.

are discussed in Section 5.1 chine. In this case, file system access controls on the Min-
In many cases, a user may wish to search all hosts in agle hosts are not flexible enough to separate remote visitors

Mingle cluster without specifying host identities. To eleab  into different classes of trustworthiness. Further, desa

this, we establish master servemwhich is a normal Mingle  stateless request involving one simple command. Supplying

server that maintains the list of host names inside the clus-passwords with each request is not acceptable.

ter. As shown in Figure 1, upon reception of a user request The design of the Mingle security architecture is guided

that needs to be routed through the cluster, the local serveby the following three principles:

first fetches the host list from the master server, and then

forwards the request to each remote host in the list individ- ¢ File owners decide whom to trustVe cannot expect
ually. every Mingle user to trust the same set of people. We

must let file owners decide who is allowed to access

While the server is implemented as a daemon, the client St
their files.

program is a lightweight program that is launched only
when needed. An alternative design is for each user to
run their own stand-alone server that they interact with via
the command line. This approach would lead to multiple
server processes running simultaneously on the same com-
puter, leading to a large overhead. By implementing a sep-
arate lightweight client program, we build one index table
and enable multiple users on the same host to share a single ¢ Authentication has small overhea8lince “search” is a
Mingle server. stateless operation for everyday usage, we require the
user authentication mechanism to be as lightweight as
possible while providing reasonable level of security.

¢ Authorization is flexible and convenientBecause
some files are more sensitive than others and some
people are more trustworthy than others, file owners
must be able to specify access rights for different users
on each single file conveniently.

4 Mingle Security Architecture

In the following, we present the details of the Mingle
Since Mingle is used in personal computing environ- Security architecture. We begin by describing the autho-
ments where servers are assumed to trust each other, thézation mechanism, which addresses the first and second
Mingle security architecture focuses on preventing unau- principles. We then discuss the user authentication mecha-
thorized release of information while allowing files to be nism, which addresses the third design principle. We close
shared among different types of users. Bothltwal users  this section with a discussion of possible malicious atack
who have accounts on the Mingle host amdhote users  against Mingle.
who do not have accounts should be able to participate in
Mingle. Sensitive files can be accessed only by authorized4.1  Authorization
users, while publicfiles can be searched by even anonymous
users. A straightforward way to handle access control is to
Existing mechanisms are deficient in terms of both flex- maintain an access control list (ACL) for each file. Each
ibility and user convenience. Mingle users might belong to item in the ACL specifies the permitted operations for each
different organizations and not have accounts on every ma-user. Although ACLs are flexible, they can be costly and



) ) their data. For example, each Unix file ham@debits as-
/1 Return whether Mngle user Uis allowed to search file F

bool is search permitted(filename F, mngle user U) { sociated Wit_h_ it. These mode bits specify whether the file
owner, specific group of users, and everyone else can read,
/1 Get the file owner of F . he fil | fil
0= get fileower(F): write or execute the file. In many cases, a file owner can
_ _ map a friendly remote Mingle user to an SPD that consists
//CGet the SPD of U with respect to the file owner O f Iv th « » I .
SPD = O get .SPD(U) : of only the owner account or a “guest” account, allowing
file owners to specify access permissions to most of their
/1 Check if any menber in SPD is allowed to read F . . .
foreach id in SPD { files conveniently. For the small number of files that need
if Fis readable by id { fine-grained access control, file owners can define a user
return true; . .
} group for each file and map Mingle users to the correspond-
} ing user groups. In particular, in order to allow anonymous
return fal se: Mingle users to search shared public files, a file owner can
} define a special user group for public files and map any

anonymous user to that group.

Figure 2. The Mingle algorithm for access per- 4.2 User Authentication
mission checking

In Mingle, each request to index or search files on a host

must be authenticated by that host. Since a Mingle user

prone to error since file owners must manually specify an might not have accounts on every host, or might have dif-

ACL for each file. ferent account names on different hosts, each Mingle user
We propose a new, more convenient approach that arise¢s assigned a unique global Mingle ID (a text string) that
from the observation that the underlying file system in the identifies the user to Mingle servers in a uniform way. A
Mingle host already enables access control on each file. ByMingle user without a Mingle ID is regarded as an anony-

granting a user (or group) “read” permission to a file, the mous Mingle user and can search only public files.

file owner implicitly allows that user (or group) to search A Mingle ID is assigned to a user via a registration pro-
the file as well. However, the access control schemes incess that she executes once. In this registration protess, t

the file system are only applicable to local users who haveuser selects and inputs a Mingle ID and password to her
accounts on the same computer. lightweight client, which conveys these inputs to the local
To extend the file system access control to a remote userMingle server. The local Mingle server sends this pair to
we introduce the idea aiccess-right mappingFor a file the master server for this Mingle cluster, using an encypte

owner with local account nam& a Mingle user with Min- channel (e.g., encrypted under the public key of the master
gle ID U (see Section 4.2) can be mapped search protec- server). The master server confirms that this Mingle ID has

tion domain (SPD}hat consists of one or more local users Not previously been registered. If so, it generates a public

Or user groups: signing key pair (e.g., [23]) for this Mingle ID, and saves th
Mingle ID and associated password and key pair. Upon suc-
SPDA(U) = {userID1,userID?2,. .. groupID1,groupID?2,...}, cessful return, the user can convey her Mingle ID to other

users in whatever way she wishes, so that these users can
create access-right mappings (see Section 4.1) for this Min
whereuserlDiis some local user account name, @mdu- gle ID on other machines, as they choose.
pIDi is some local group name. This user can then execute distributed searches using
The meaning of the mapping is that Mingle ukhas Mingle from any computer running a Mingle server as fol-
permission to search any local file ownedAgnd readable  lows. The user enters her Mingle ID, password, and search
by one or more members 8P D4 (U). keyword into the lightweight Mingle client, which conveys
The process of access-right mapping is performed bythese to the local Mingle server. The local Mingle server
each file owner independently. Thus, a Mingle user can beexecutes a protocol with the master server to retrieve the
mapped to different SPDs by different file owners on the private key corresponding to this Mingle ID (using the pass-
same host. Given the access-right mapping, the algorithmword to authenticate to the master server). Once the private
for access permission checking is simple, as shown in Fig-key is obtained, the local Mingle server can issue the query,
ure 2. containing the user’'s Mingle ID and signed using the re-
The access-right mapping preserves the file system actrieved private key, to the relevant remote Mingle servers.
cess control semantics. It greatly simplifies the access con Each remote Mingle server that receives this query can use
trol specification, while giving file owners full control ave  the contained Mingle ID to retrieve the corresponding pub-



lic key from the master server, and can then verify the digita niques. We briefly outline the types of malicious attacks
signature using it. that Mingle is vulnerable to and discuss possible ways to
There are numerous opportunities to use caching to elim-cope with them. Completely addressing these attacks is be-
inate steps in the above description and thereby improveyond the scope of this paper.
the user experience. Specifically, the user’s local Mingle  Mingle query responses are sent from remote servers un-
server can temporarily cache the user’s private key for useencrypted, and thus Mingle is vulnerable to information re-
in subsequent searches, which eliminates the need for théease and modification attacks. Moreover, without strong
user to re-enter her Mingle ID or password. Moreover, a authentication of servers, a malicious Mingle server can
remote Mingle server can temporarily cache the public key provide fraudulentinformation. If data privacy and intiégr
of this Mingle ID, so that it need not contact the master is a major concern, then further cryptographic protocats ca
server again upon receiving another search query bearinge used to authenticate servers as well as clients, and to set
this Mingle ID. Of course, this caching also introduces win- up session keys for message encryption.
dows of vulnerability: e.g., if the user’s public key is re- A potential vulnerability to timing attacks exists within
voked due to the compromise of the corresponding privateMingle, due to its precomputation of an inverted index to
key, this may go unnoticed by a remote Mingle server that is permit fast searching. Specifically, the processing tirme fo
caching the public key. It is therefore necessary to turge thi a Mingle server to compute its response is a function of the
caching to best balance performance, user experience, andumber of files actually containing the search item, not only
security. Such tradeoffs are common in public key infras- those to which the client has search access. As a result, a
tructures (e.g., [14]), and we will not discuss them further client that can accurately measure the duration requined fo
in the present paper. a Mingle daemon to respond to its search request can learn
A benefit of this architecture is the fact that the user's some information about the number of files on that host that
password and private key are exposed only on machinescontain the search item, even if the client has search access
where the user enters her password (and on the masteto very few of them. Randomizing search latencies could
server). Moreover, the protocol by which the user’'s machine mitigate this threat. In addition, a filter could be applied t
retrieves the user’s private key can be constructed toaehie check user permission before searching through the irverte
strong security properties (e.g., see [20]), notably that t index. We note, however, that this threat applies only te file
protocol messages themselves do not leak information thathat their owners have volunteered to be indexed by Mingle.
would permit an eavesdropping adversary to conducta “dic-  Finally, like most other distributed systems, Mingle is
tionary attack” against the user’'s password [17, 13]. As vulnerable to various forms of denial-of-service attacks.
a result, dictionary attacks are limited to online guesses
sent to the master server, which the server can detect an&s  Mingle Implementation
stop. The primary vulnerability of this approach is the mas-
ter server itself: if penetrated, the master server wilklea In this section, we discuss the implementation of the

aI_I us_er’s private keys. This_ risk can be mitiggted by ‘?”S' Mingle server and client. We first describe the design of
tributing the master server in a way that requires multiple the inverted index in Mingle. Then we present the Mingle

master servers to be compromised to disclose sensitive datgg e architecture and explain the interactions amorig var
(e.g., [6]), though we have not implemented this approach g o system components

in the present system.
We view the above approach to user authentication and5.1
single sign-on in Mingle as an interim solution suitable for
small-scale Mingle deployments in user populations lagkin
a unified authentication infrastructure. For user popaotei
with an existing authentication and single sign-on sohutio
ideally Mingle would exploit that solution for its user au-
thentication needs, rather than “reinventing the wheel.”

Inverted Index

Indexing is a mechanism for quickly locating a given
word in a collection of files. There are three common data
structures for file indexinginverted indexsignature files
andbitmaps(see [28]). An inverted index is the most nat-
ural indexing method, with each entry consisting of a word
o and its occurrences in the files. A signature file is a proba-
4.3 Other Vulnerabilities bilistic method for file indexing, where each file has a sig-

nature. Every indexed word in a file is used to generate sev-

Since Mingle assumes a friendly personal computing en-eral hash values. The bits of the signature corresponding to
vironment where servers trust each other, it is subjectrto va those hash values are set to one, indicating the occurrences
ious malicious attacks. Although we do not explicitly ad- of the word. A bitmap stores a bit vector for every word.
dress how to defend against these attacks in Mingle, manyEach bit in the bit vector corresponds to a file and is set
of them can be prevented or mitigated by standard tech-to one if the word appears in that file. Compared with the



inverted index, signature files can cause false matches, re- Hash(mowe) =
sulting in either longer search times or large signaturse.file ' Hash(event) = 39 Index Table
Bitmaps have relatively short search times, but require ex-"~------—-------—"~----
travagant storage space and the update is slow when files are
updated frequently. In Mingle, we decided to choose the in-

verted index because of its relatively small cost of storage‘
and low search latency. . File ID list for keyword "event": (1, 3)

search index entry 1 and

F|Ie ID list for keyword "movie": (1, 4)

However, a fine-grained inverted index is still spacecon- ________________ i/ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
suming. A fine-grained inverted index containing all oc- | File ID list for keyword "movie AND event": (1),
currences of every word can consume 50% to 300% of the‘ File with ID 1: /home/bovik/example.txt
original text size, which is not acceptable in personal com- l scan /home/bowk/exampletxt
puting. Therefore, Mingle computes a coarse-grained in- from position 6
verted index. Each index entry for a word contains only the . /Siéiéfci:hf result T ‘
first occurrence of that word in every file. A hash table is ’ }

used to quickly locate the index entry for a word. 3 keyword: "movie AND event"
' Number of query results: 1 |
' Result display: i
[Word ID [ Word [ (Document ID; First occurrence) - 1. /home/bovik/example.txt :
1 movie | (1;6), (4,228) __line #2: ... a movie festival, which is a big event ..
2 day | (28), (3:57), (4:200) _ .
3 event | (1,37), (3,22) Figure 4. A query example in Mingle

Figure 3. An example of inverted index table [ Mingle Server ‘

in Mingle ouery o
Processor 5 ender -
[=2)
1 1
L L. . : ) = ) '
Before a file is indexed, it is assigned a document ID. | Local Disk|_ | lnsgier 7 F"'Tv' 2ﬁzzgl:t0f
Then the file is scanned word by word to build the index ‘ g It
table incrementally. All of the words are converted to lower : &
case. User specified stop words (defined by a configure ; fﬂzcnlgggr Receiver i—
file) are removed to reduce index size. For each word in | L |

the index table, if it appears multiple times in the file, then

only the position of the first occurrence of that word will be Figure 5. Mingle server architecture
recorded in the corresponding index entry. Figure 3 shows

an example of inverted index table in Mingle. Once the in-

dex table is built, it can be updated regularly to remove out 5.2 Mingle Server Architecture

of date entries.

A query can consist of one or more keywords. With The Mingle server is implemented as a single process
a coarse-grained inverted index table, queries are rasolve (Figure 5). Thefile descriptor manageuses thesel ect
in two steps. First, the corresponding index entries of the function to multiplex concurrent requests. After a request
gueried keywords are searched to return a list of files thathas been received by theceiver itis parsed by theequest
match the query. Then, each individual file in the list is managey which determines the request type and forwards
scanned to return all the exact occurrences of the queriedhe request to the appropriate components for further pro-
keywords. For example, Figure 4 illustrates the search pro-cessing. The major components that process a user request
cess for a query “movie AND event” using the index table in are thefile indexer query processqrandsecurity manager
Figure 3. There is a tradeoff between index granularity and Thefile indexeraccesses files from the local disk and builds
search latency. Compared with the fine-grained inverted in-up an inverted index table in disk. For performance op-
dex, a coarse-grained index table requires longer search latimization, thefile indexermaintains a cache in memory
tency since the second step will be otherwise unnecessaryfor frequently accessed terms and their indices. qiery
However, the extra latency is typically small, as is shown in processoiprocesses user queries, including advanced query
Section 6.1. options based on the index table built by file indexer



Thesecurity manageaperforms security operations, includ- 2500
ing access control and user authentication. After the ique
processing is finished, tleendersends out the reply passed
by therequest manager

Both the Mingle server and the client program are im-
plemented in C++ in Linux. The request signing and signa-
ture verification use the RSA algorithm [23], which is im- :
plemented by the Crypte+ library (version 4.2) [5]. The
communications among servers are via TCP connections,
while the server and the client program communicate via
Unix IPC.
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In this section, we present the performance evaluation of
Mingle. We have conducted three sets of experiments to
answer the following three questions: (1) What is the cost
of index and search — the two major operations in Min-
gle? (2) What is the impact of our security mechanism on
performance? (3) What is the scalability of Mingle? The
first and the second sets of experiments are conducted on
PIIl 550MHz machines with 128 MB of RAM. The last
set of experiments are run on the cluster of computers (PIII 5
550MHz) in a 10BaseT Ethernet LAN. Each data point in 0
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6.1 Whatis the Cost of Index and Search?

Since only text files will be indexed, we have down- F_'gure 6. Index latency and disk size vs. text
loaded the RFC [22] and the Internet Drafts [11] reposi- size indexed
tories to test the index performance. We vary the text size
to be indexed. Figure 6 plots the index latency and the gen-
erated index table size. We observe that both costs increase We are also interested in the penalty of a cache miss,
linearly with the text size. It takes about 30 minutes to inde When the required items in the index table need to be fetched
200 MB of text (about 9 seconds per 1 MB). Usually, only from the disk. Figure 7(b) shows the comparison of search
a portion of the data on a disk will be text. With the current latency in case of cache hit and cache miss. In both cases,
index speed, we can index a local disk regularly at machinethe indexed text size is 100 MB. As indicated in the figure,
idle time. The generated index table size is about 15% ofthe penalty of a cache miss is on the order of tens of mil-
the original text size. Both costs are acceptable for paison liseconds, which is relatively small.
computing.

With the pre-computed index table, we then examine the 6.2 What is the Impact of Security on Perfor-
search latency on the local server without using our securit mance?
mechanism. We vary the indexed text size and the number
of keywords in a query. Figure 7(a) plots the query lookup  In this section, we measure the impact of the Mingle
latency in case of cache hits, when the required items insecurity mechanism on performance. Since cryptographic
the index table are already in memory. Overall, the searchcomputation is often expensive, our main concern is the la-
latency is on the order of milliseconds and seconds, whichtency penalty of cryptographic operations for remote user
is fast. For example, in 200 MB text, it takes about 250 authentication. We evaluate the cost of request signing and
ms to find answers to a two-keyword query, while it takes signature verification by measuring the time spent in each
as long as 15 seconds to get the same results using “grep”step of request processing.
If the keywords in a query do not exist in the indexed text, = We conducted our experiments on two machines serving
the search latency is less than 1ms regardless of the indexeds the local server and the remote server respectively in the
text size. same LAN. Since the security penalty does not depend on



| | Total | Parsing] Networking| Look up | Signing| Sig.Check|

Mean (1024 bit) 313590 940 6010 | 279530| 25710 1400
Std dev (1024 bit) 2615 15 643 2613 44 25
Percentage (1024 bit) 100.0%| 0.3% 1.9% | 89.1% 8.2% 0.5%
Mean (512 bit) 292440 950 5610 | 279650 5390 850
Std dev (512 bit) 1100 10 55 1037 18 10
Percentage (512 bit)|| 100.0%| 0.3% 1.9% | 95.6% 1.9% 0.3%

Figure 8. Time to process a search request using 1024-bit and 512-bit RSA keys (uSs).
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Figure 7. Search latency on a single server

generates the reply by query lookup. The “Total” column
corresponds to the time elapsed between the arrival of the
request and sending the reply to the client program by the
local server. The “Networking” column corresponds to the
latency spent in forwarding the request and getting the/repl
from the remote server. For each step, we show the mean
and the standard deviation of latency as well as the percent-
age of total latency.

We can see from Figure 8 that most of the processing
latency is spent on query lookup. Although request sign-
ing is also expensive, it is not the performance bottleneck.
Compared with signing, signature verification is fast. Note
that the standard deviation is small for all steps except net
working latency, which has a relatively larger variatioredu
to the network instability. In summary, our security mecha-
nism has little impact on overall search performance.

6.3 Whatis the Scalability of Mingle?

In this section, we examine whether Mingle is able to
scale with an increasing number of hosts. We consider sce-
narios with and without our security mechanism. We run the
Mingle server on every host in a cluster of up to 23 comput-
ers. Each server has a precomputed index table of 100 MB
text.

Figure 9(a) plots the average search latency and the stan-
dard deviations without security checking by varying the
number of participating hosts. We can see that the per-
formance degradation is not constant with the increasing
number of Mingle servers. The search latency increases
most when the number of hosts in Mingle increases from

request type, we choose a 3-keyword search request as owne to three. The increased latency is due to network com-
example and fix the indexed text size to be 100 MB. We use munication and remote processing, which do not happen in

1024-bit and 512-bit RSA keys, respectively. Figure 8

the single server case. When we further increase the num-

lists the processing steps we are interested in. The pro-ber of the participating hosts, the performance degradatio

cessing consists of two stages: First, the request is parsethecomes smaller. The reason is that although the network
and signed at the local server, and forwarded to the remotecommunication time is increased, the remote processing can
server. Second, the remote server verifies the signature antde done in parallel on different servers. We observe that

1Each user can select her own key length in Mingle. Though ywerte
performance for 512-bit keys here, such keys provide irdeafit security
for commercial applications [15] and are discouraged ferinsany com-

mercial application of Mingle.

the search latency has higher standard deviation with the
increased number of servers. This is because the network
latency variation increases with the number of hosts in the

system. If security checking is enforced, the overall dearc
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Figure 9. Search latency in a Mingle cluster.
(a) Search latency without security checking
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latencies increase only slightly, as indicated by Figui®.9(

We note that when the number of hosts is greater than 21,

the search latency with security checking is even lower than
that without security checking. This is because the securit

overhead is small compared with the overall search latency.
The lower search latency with security checking is due to

the large variance of network latencies when there are more [4]
hosts in the cluster. Overall, our measurements suggest tha

Mingle is able to scale with increasing number of hosts.

7 Concluding Remarks

We have developed Mingle to help authorized users ef-
ficiently locate their personal data on distributed comput-
ers. Mingle hosts precompute inverted index of local files,

our security mechanism is user convenience. For authoriza-
tion, we introduce an access-right mapping that allows data
owners to conveniently specify access permissions. This is
supported using a user authentication mechanism that per-
mits a form of single sign-on.

Preliminary performance evaluation of Mingle suggests
that: (1) Both the cost of index and search grow linearly
with the indexed text size. (2) The Mingle security mecha-
nism has little impact on search performance. (3) Mingle is
able to scale with increasing number of hosts.

Future work includes expanding Mingle to larger net-
works, considering schemes for encrypting and replicating
host indexes, and better understanding Mingle’s vulnérabi
ity to attacks such as timing attacks.

8 Acknowledgements

We are grateful to Srinivasan Seshan, Yang-hua Chu,
Julio Lopez, Hyang-Ah Kim and Tiankai Tu for their com-
ments and suggestions. We also thank the anonymous re-
viewers for their comments. This work is sponsored in
part by the National Science Foundation under Grant CMS-
9980063, and in part by a grant from the Intel Corporation.

References

[1] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and
M. F. Schwartz. Harvest: A Scalable, Customizable Discov-
ery and Access System. Technical Report CU-CS-732-94,
Department of Computer Science, University of Colorado,
Boulder, 1994.

[2] J. P. Callan, Z. Lu, and W. B. Croft. Searching Distrilaite

Collections with Inference Networks . IRroceedings of

the 18th Annual International ACM SIGIR Conference on

Research and Development in Information Retriepales

21-28, Seattle, Washington, 1995. ACM Press.

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:

A Distributed Anonymous Information Storage and Re-

trieval System. IrDesigning Privacy Enhancing Technolo-

gies:International Workshop on Design Issues in Anonymity

and Unobservability, LNCS 200December 2000.

S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and

R. H. Katz. An architecture for a secure service discovery

service. InMobile Computing and Networkingages 24—

35, 1999.

[5] W. Dai. Cryptot+.
http://www.eskimo.com/“weidai/cryptlib.html.

[6] W. Ford and B. Kaliski. Server-Assisted Generation of a
Strong Secret from a Password.Rroceedings of the IEEE
9th International Workshops on Enabling Technologies: In-
frastructure for Collaborative Enterprises, NIST, Gaithe
burg MD, June 2000.

(3]

searching among each other in a peer-to-peer way. The [7] J. French, A. Powell, J. Callan, C. Viles, T. Emmitt, Kelpr

Mingle security architecture consists of authorizatiod an
authentication mechanisms. One of the major benefits of

and Y.Mou. Comparing the performance of database selec-
tion algorithms. InProceedings of the 22nd Annual Inter-



(8]
(9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

national ACM SIGIR Conference on Research and Develop- [28] I. WITTEN, A. MOFFAT, and T. Bell. Managing gigabytes:

ment in Information Retrievapages 238-245, 1999.
Gnutella hosts. http://www.gnutellahosts.com.

Google. http://www.google.com.

E. Guttman, C. Perkins, J. Veizades, and M. Day. Service
location protocol, version 2IETF. RFC 2165 November
1998.

Internet-Drafts. http://www.ietf.org/ID.html.

S. Kirsch. Document retrieval over networks whereink-a

ing and relevance scores are computed at the client for mul-
tiple database documentd.S.Patent 5,659,732997.

D. Klein. Foiling the cracker: A survey of, and improve-
ments to, password security. 2md USENIX Security Work-
shop August 1990.

B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in distributed systems: Theory and practice.
In ACM Trans. Computer Systems 10,pages 265-310,
November 1992.

A. Lenstra and E. Verheul. Selecting cryptographic key
sizes. InProceedings of the 2000 International Workshop
on Practice and Theory in Public Key Cryptography (PKC)
January 2000.

U. Manber and S. Wu. GLIMPSE: A Tool to Search
Through Entire File Systems. Technical Report 34, De-
partment of Computer Science, The University of Arizona,
1993.

R. Morris and K. Thompson. Password security: A case
history. InCommunications of the ACM, 22(1ppges 594—
597, November 1979.

Napster. http://www.napster.com.

Oasis. http://www.oasis-europe.org.

R. Periman and C. Kaufman. Secure Password-Based Pro-
tocol for Downloading a Private Key. IRroceedings of
the 1999 Network and Distributed System SecuFgbru-

ary 1999.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
Proceedings of ACM Sigcomwugust 2001.

RFC. http://iwww.rfc-editor.org.

R. L. Rivest, A. Shamir, and L. M. Adleman. A method for
obtaining digital signatures and public-key crypt osystem
Communications of the ACN7(2), February 1978.

A. Rowstron and D. P. Pastry: Scalable, distributeceobj
location and routing for large-scale peer-to-peer systéms
IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germamages 329—
350, November 2001.

I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. IRroceedings of ACM Sigcomm
August 2001.

M. van Steen, F. Hauck, P. Homburg, and A. Tanenbaum.
Locating Objects in Wide Area Systems. IEEE Commu-
nications Magazingpages 104-109, 1998.

C. L. Viles and J. C. French. Dissemination of collentio
wide information in a distributed information retrievalssy
tem. InProceedings of the 18th Annual International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrievalpages 12-20, 1995.

Compressing and indexing documents and imag=xond
ed. Morgan Kaufmanri999.

[29] Y. Zhao, J. D. Kubiatowicz, and A. Joseph. Tapestry: An |

frastructure for Fault-tolerant Wide-area Location andiRo
ing. Technical Report UCB//CSD-01-1141, U. C. Berkeley,
April 2000.



