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Abstract

An XML web service is, to a first approximation, an RPC service in which
requests and responses are encoded in XML as SOAP envelopes, and transported
over HTTP. We consider the problem of authenticating requests and responses at
the SOAP-level, rather than relying on transport-level security. We propose a se-
curity abstraction, inspired by earlier work on secure RPC, in which the methods
exported by a web service are annotated with one of three security levels: none,
authenticated, or both authenticated and encrypted. We model our abstraction as
an object calculus with primitives for defining and calling web services. We de-
scribe the semantics of our object calculus by translating to a lower-level language
with primitives for message passing and cryptography. To validate our semantics,
we embed correspondence assertions that specify the correct authentication of re-
quests and responses. By appeal to the type theory for cryptographic protocols of
Gordon and Jeffrey’s Cryptyc, we verify the correspondence assertions simply by
typing. Finally, we describe an implementation of our semantics via custom SOAP
headers.
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1 Introduction

It is common to provide application-level developers with security abstractions that
hide detailed implementations at lower levels of a protocol stack. For example, the
identity of the sender of a message may be exposed directly at the application-level, but
computed via a hidden, lower level cryptographic protocol. The purpose of this paper
is to explore how to build formal models of such security abstractions, and how to
validate their correct implementation in terms of cryptographic primitives. Our setting
is an experimental implementation of SOAP security headers for XML web services.

1.1 Motivation: Web Services and SOAP

A crisp definition, due to the builders of the TerraService.NET service, is that “a web
service is a web site intended for use by computer programs instead of human beings”
[8]. Each request to or response from a web service is encoded in XML as a SOAP
envelopg11]. An envelope consists ofleeader containing perhaps routing or secu-

rity information, and &ody, containing the actual data of the request or response. A
promising application for web services is to support direct retrieval of XML documents
from remote databases, without resorting to unreliable “screen scraping” of data from
HTML pages. Google already offers programmatic access to its database via a web
service [20]. Another major application is to support systems interoperability within
an enterprise’s intranet.

The interface exported by a web service can be captured as an XML-encoded ser-
vice description, in WSDL format [13], that describes the methods—and the types of
their arguments and results—that make up the service. Tools exist for application-level
developers to generate a WSDL description from the code of a service, and then to
generate proxy code for convenient client access to the web service. Like tools for
previous RPC mechanisms, these tools abstract from the details of the underlying mes-
saging infrastructure. They allow us to regard calling a web service, for many if not all
purposes, as if it were invoking a method on a local object. Our goal is to augment this
abstraction with security guarantees.

There are many signs of fervour over web services: there is widespread tool sup-
port from both open source and commercial software suppliers, and frequent news of
progress of web service standards at bodies such as OASIS and the W3C. Many pre-
vious systems support RPC, but one can argue that what's new about web services
is their combination of vendor-neutral interoperability, internet-scale, and toolsets for
“mere mortals” [8]. Still, there are some reasons for caution. The XML format was
not originally designed for messaging; it allows for interoperability but is inefficient
compared to binary encodings. Moreover, it would be useful to use web services for
inter-organisational communication, for example, for e-commerce, but there is as yet
little experience or agreement on SOAP-level security mechanisms.

In fact, there is already wide support for security at the transport-level, that is, for
building secure web services using HTTPS and SSL. Still, SSL encrypts all traffic
between the client and the web server, so that it is opaque to intermediaries. Hence,
messages cannot be monitored by firewalls and cannot be forwarded by intermediate
untrusted SOAP-level routers. There are proposals to avoid some of these difficulties by



placing security at the SOAP-level, that is, by partially encrypting SOAP bodies and by
including authenticators, such as signatures, in SOAP headers. For example, the WS-
Security [6] specification describes an XML syntax for including such information in
SOAP envelopes.

Hence, the immediate practical goal of this work is to build and evaluate an ex-
ploratory system for SOAP-level security.

1.2 Background: Correspondences and Spi

Cryptographic protocols, for example, protocols for authenticating SOAP messages,
are hard to get right. Even if we assume perfect cryptography, exposure to various
replay and impersonation attacks may arise because of flaws in message formats. A
common and prudent procedure is to invite expert analysis of any protocol, rather than
relying on security through obscurity. Moreover, it is a useful discipline to specify and
verify protocol goals using formal notations. Here, we specify authenticity goals of
our protocol using Woo and Lam’s correspondence assertions [36], and verify them,
assuming perfect cryptography in the sense of Dolev and Yao [16], using type theories
developed as part of the Cryptyc project [21, 22, 23].

Woo and Lam’s correspondence assertions [36] are a simple and precise method
for specifying authenticity properties. The idea is to specify labelled events that mark
progress through the protocol. There are two kinds: begin-events and end-events. The
assertion is that every end-event should correspond to a distinct, preceding begin-event
with the same label. For example, Alice performs a begin-event with label “Alice
sending Bob messagkl” at the start of a session when she intends to skhdo
Bob. Upon receiving/ and once convinced that it actually comes from Alice, Bob
performs an end-event with the same label. If the correspondence assertion can be
falsified, Bob can be manipulated into thinking a message comes from Alice when in
fact it has been altered, or came from someone else, or is a replay. On the other hand,
if the correspondence assertion holds, such attacks are ruled out.

There are several techniques for formally specifying and verifying correspondence
assertions. Here, we model SOAP messaging within a process calculus, and model
correspondence assertions by begin- and end-statements within the calculus. We use
a form of the spi-calculus [21], equipped with a type and effect system able to prove
by typechecking that correspondence assertions hold in spite of an arbitrary attacker.
Spi [5] is a small concurrent language with primitives for message passing and cryp-
tography, derived from the-calculus [31].

1.3 Contributions of this Paper
Our approach is as follows:
e Section 2 describes our high-level abstraction for secure messaging.

e Section 3 models the abstraction as an object calculus with primitives for creating
and calling web services.



e Section 4 defines the semantics of our abstraction by translating to the spi-
calculus. Correspondence assertions specify the authenticity guarantees offered
to caller and callee, and are verified by typechecking.

e Section 5 describes a SOAP-based implementation using Visual Studio .NET.

Our main innovation is the idea of formalizing the authentication guarantees offered
by a security abstraction by embedding correspondence assertions in its semantics. On
the other hand, our high-level abstraction is fairly standard, and is directly inspired
by work on secure network objects [34]. Although the rather detailed description of
our model and its semantics may seem complex, the actual cryptographic protocol is
actually quite simple. Still, we believe our framework and its implementation are a
solid foundation for developing more sophisticated protocols and their abstractions.

Most formal details, as well as the proofs of our formal results, have been relegated
to the appendices. Specifically, Appendix A gives sample messages exchanged during
web service methods calls using our abstractions, Appendix B gives a formal descrip-
tion of our object calculus, Appendix C gives a formal definition of the spi-calculus
used in the paper, Appendix D gives the formal details of the translation of our ob-
ject calculus into the spi-calculus, and Appendix E gives an account of our security
abstractions using asymmetric cryptography.

2 A Security Abstraction

We introduce a security abstraction for web services, where the methods exported by a
web service are annotated by one of three security levels:

None unauthenticated call
Auth authenticated call
AuthEnc  authenticated and encrypted call

A call from a client to a web service is made up of two messagesetiigestfrom

the client to the web service, and tlesponsdrom the web service to the client. The
inspiration for the security levels, and the guarantees they provide, comes from SRC
Secure Network Objects [34]. An authenticated web method call provides a guaran-
tee ofintegrity (that the request that the service receives is exactly the one sent by the
client and that the response that the client receives is exactly the one sent by the service
as a response to this request) atanost-once semanti¢that the service receives the
request most once, and that the client receives the response at most once). An authen-
ticated and encrypted web method call provides all the guarantees of an authenticated
call, along with a guarantee skcrecy(that an eavesdropper does not obtain any part

of the method name, the arguments, or the results of the call).

In C#, where users can spec#ygtributeson various entities, our security annota-
tions take the form of an attribute on web methods, that is, the methods exported by a
web service. The attribute is writtgSecurityLevel( leve)] , wherelevelis one
of None, Auth , or AuthEnc . For example, consider a simple interface to a banking
service, wher¢WebMethod] is an attribute used to indicate a method exported by a
web service:



class BankingServiceClass {
string callerid,;

[WebMethod] [SecurityLevel(Auth)]
public int Balance (int account);

[WebMethod] [SecurityLevel(AuthEnc)]
public string Statement (int account);

[WebMethod] [SecurityLevel(Auth)]
public void Transfer (int source,

int dest,

int amount);

The annotations get implemented by code to perform the authentication and en-
cryption, at the level of SOAP envelopes, transparently from the user. The annotations
on the web service side will generate a method on the web service that can be used to
establish a security context. This method will never be invoked by the user, but auto-
matically by the code implementing the annotations. For the purpose of this paper, we
assume a simple setting for authentication and secrecy, namely that the principals in-
volved possess shared keys. Specifically, we assume a distinkt keshared between
every pair of principalg andg. We use the key<,,, whenp acts as the client angas
the web service. (Notice thaf,, is different fromkK,,.) Itis straightforward to extend
our approach to different settings such as public-key infrastructures or certificate-based
authentication mechanisms (see Appendix E).

An authenticated call by to a web method on a web servicay owned byg with
arguments.y, . . ., u,, producing a result uses the following protocol:

p—4q: requeSt nonce

q—ping

p— q:p,req(w, l(ug, ..., Up), 8, Ng), Np,
Hash(reg(w,{(u1, ..., upn),s,ng), Kpq)

q—p:q, ?“68(11), K(T’), S, np)a Hash(res(w, 6(7' ) Sy np)v KP‘])

Here, Hash is a cryptographic hash function (a one-way message digest function such
as MD5). We tag the request and the response messages to be able to differentiate
them. We also tag the response with the name of the method that was originally called.
We include a uniqusession tag in both the request and response message to allow
the callerp to match the response with the actual call that was performed.

An authenticated and encrypted call byo a web method on a web servicev
owned byg with argumentsuy, ..., u, producing a result uses a similar protocol,
with the difference that the third and fourth messages are encrypted using the shared



key instead of signed:

p—q: request nonce

q—ping

p— q:p,{req(w,l(u1,. .., un),8,1g)} K,y Np
q—p:q{res(w,l(r),s,ny)}x,,

To convince ourselves that the above protocols do enforce the guarantees prescribed
by the security abstraction, we typically argue as follows. Let's consider the authenti-
cated and encrypted case, the authenticated case being similar. When the web service
w run by principalg receives a request, £(u1, . . ., u,), s, ny encrypted withi,, (¢
uses the identity in the request to determine which key to use), it knows that only
p could have created the message, assuming that the sharéd, kéy kept secret by
bothp andg. This enforces the integrity of the request. Since the message also contains
the noncey,, that the web service can check has never appeared in a previous message,
it knows that the message is not a replayed message, hence enforcing at-most-once se-
mantics. Finally, the secrecy of the shared k&y, implies the secrecy of the request.

A similar argument shows that the protocol satisfies integrity, at-most-once-semantics,
and secrecy for the response.

What do we have at this point? We have an informal description of a security
abstraction, we have an implementation of the abstraction in terms of protocols, and
an informal argument that the guarantees prescribed by the abstraction are enforced
by the implementation. How do we make our security abstraction precise, and how
do we ensure that the protocols do indeed enforce the required guarantees? In the next
section, we give a formal model to make the abstraction precise. Then, we formalize the
implementation by showing how to translate the abstractions into a lower level calculus
that uses the above protocols. We use types to show that guarantees are formally met
by the implementation, via correspondence assertions.

3 A Formal Model

We model the application-level view of authenticated messaging as an object calculus.
Object calculi [1, 24, 28] are object-oriented languages in miniature, small enough to
make formal proofs feasible, yet large enough to study specific features. As in FJ [28],
objects are typed, class-based, immutable, and deterministic. As in some of Abadi
and Cardelli's object calculi [1], we omit subtyping and inheritance for the sake of
simplicity. In spite of this simplicity, our calculus is Turing complete. We can define
classes to implement arithmetics, lists, collections, and so on.

To model web services, we assume there are finite Bets and WebService of
principal identifiers and web service identifiers, respectively. We think of eaeh
WebService as a URL referring to the service; moreovdiss(w) is the name of the
class that implements the service, anther(w) € Prin is the principal running the
service.

To illustrate this model, we express the banking service interface introduced in the
last section in our calculus. Suppose there are two principéte, Bob € Prin, and
a web servicev = http://bob.com/BankingServicethere we havewner(w) = Bob



and class(w) = BankingServiceClass. Suppose we wish to implement tfi#lance
method so that given an account number, it checks that it has been called by the owner
of the account, and if so returns the balanced#Mce’s account number i$2345, we

might achieve this as follows:

class BankingServiceClass
Id Callerld
Num Balance(Num account)
if account = 12345 then
if this.Callerld = Alice then 100 else null
else ...

There are a few points to note about this code. First, as in BIL [24], method bodies
conform to a single applicative syntax, rather than there being separate grammars for
statements and expressions. Second, while the C# code relies on attributes to spec-
ify exported methods and security levels, there are not attributes in our calculus. For
simplicity, we assume that all the methods of a class implementing a web service are
exported as web methods. Furthermore, we assume that all these exported methods are
authenticated and encrypted, as if they had been annctatiddEnc . (It is straight-
forward to extend our calculus to allow per-method annotations but it complicates the
presentation of the translation in the next section.)

Every class implementing a web service has exactly one field, natnddrid,
which exposes the identity of the caller, and allows application-level authorisation
checks.

We writew: Balance(12345) for a client-side call to methoBalance of the service
w. The semantics of such a web service callAlyce to a service owned byob is
that Bob evaluates the local callew BankingServiceClass(Alice).Balance(12345)
asBob. In other words Bob creates a new objectew BankingServiceClass(Alice)

(that is, an instance of the claBankingService Class with Callerld set toAlice) and

then calls theBalance method. This would terminate with00, since the value of
this.Callerld is Alice. (For simplicity, we assume every class in the object calculus
has a single constructor whose arguments are the initial values of the object’s fields.)
This semantics guarantees to the seRe@¥r that the fieldCallerld contains the identity

of his caller, and guarantees to the clidriice that only the correct owner of the service
receives the request and returns the result.

In a typical environment for web services, a client will not invoke web services di-
rectly. Rather, a client creates a proxy object corresponding to the web service, which
encapsulates the remote invocations. Those proxy objects are generally created auto-
matically by the programming environment. Proxy objects are easily expressible in our
calculus, by associating with every web serviee proxy clasgrozy(w). The class
prozy(w) has a method for every method of the web service class, the implementation
for which simply calls the corresponding web service method. The proxy class also has
a field Id holding the identity of the owner of the web service. Here is the client-side



proxy class for our example service:

class BankingServiceProxy
1d 1d()
Bob
Num Balance(Num account)
w: Balance(account)

The remainder of this section details the syntax and informal semantics of our ob-

ject calculus.

3.1 Syntax

In addition to Prin and WebService, we assume finite setSlass, Field, Meth of
class, field, and method names, respectively.

Classes, Fields, Methods, Principals, Web Services:

I
c € Class class name

f € Field field name

{ € Meth method name

p € Prin principal name

w € WebService web service name

There are two kinds of data typdd is the type of principal identifiers, and e
Class is the type of instances of clags A method signature specifies the types of its
arguments and result.

Types and Method Signatures:
I

A, B € Type ::= type

Id principal identifier

c object
sig € Sig = B(Ay x1,...,Ap Tp) method signaturer{ distinct)
L

An execution environment defines the services and code available in the distributed
system. In addition towner andclass, described above, the mafislds andmethods
specify the types of each field and the signature and body of each method, respec-
tively. We write X — Y and X ™y for the sets of total functions and finite maps,
respectively, fromX to Y.

Execution Environment: (fields, methods, owner, class)
I 1

fields € Class — (Field fin Type) fields of a class
methods € Class — (Meth By Sig x Body) methods of a class
owner € WebService — Prin service owner

class € WebService — Class service implementation




We complete the syntax by giving the grammarsrfaathod bodieand forvalues

Values and Method Bodies:
I

T, 2 name: variable, argument
u,v € Value ::= value

x variable

null null

new c(vy,...,up) object

P principal identifier
a,b € Body ::= method body

v value

let x=ain b let-expression

if u=v then a else b conditional

v.f field lookup

VLU, ..., Up) method call

wl(ug, ..., uy) service call

The free variablegv(a) of a method body are defined in the usual way, where
the only binder isx being bound inb in the expressiorlet x=a in b. We write
a{x—b} for the outcome of a capture-avoiding substitutionbdfor each free oc-
curence of the variable in method body:. We view method bodies as being equal
up to renaming of bound variables. Specifically, we téker=a in b to be equal to
let ©’'=a in b{z—a'}, if ' & fu (D).

Our syntax for bodies is in a reduced form that simplifies its semantics; in ex-
amples, it is convenient to allow a more liberal syntax. For instanceiflef =
as then by else by be short forlet x1=a; in let xo=as in if x1 = x2 then by else bs.

We already used this when writing this. Callerld = Alice then 100 else null in
our example. Similarly, we assume a cla&sn for numbers, and write integer literals
such agl00 as shorthand for objects of that class.

Although objects are values, in this calculus, web services are not. This reflects
the fact that current WSDL does not allow for web services to be passed as requests or
results. We explore an extension of our model to account for web services as “first-class
values” in Appendix F.

We assume all method bodies in our execution environment are well-typed. If
methods(c)(£) = (sig,b) and the signatureig = B(A; z1,..., A, x,) wWe assume
that the body has typeB given a typing environmentis:c, x1:A1, ..., z,:A,. The
variable this refers to the object on which thémethod was invoked. The typing
rules, which are standard, are given in Appendix B. We also assume thellass)
corresponding to each web servieehas a single fieldallerid.

3.2 Informal Semantics of our Model

We explain informally the outcome of evaluating a method bbdg principalp, that

is, on a client or server machine controlled fay(Only the semantics of web service
calls depend om.) A formal account of this semantics, as well as the typing rules of
the calculus, can be found in Appendix B.



To evaluate a value asp, we terminate at once withitself.

To evaluate a let-expressider x=a in b asp, we first evaluate asp. If a termi-
nates with a value, we proceed to evaluatéz—uv}, that is,b with each occurrence of
the variabler replaced withv. The outcome of evaluating z«uv} asp is the outcome
of evaluating the whole expression.

To evaluate a conditional u = v then a else b asp, we evaluate asp if v andv
are the same; else we evalua@sy.

To evaluate a field lookup. f asp, whenv is an object valueiew c(vy, ..., v,),
we checkf is thejth field of class: for somej € 1..n (that is, thatfields(c) = f; —
A;*€t-mand thatf = f;), and then return;. If v is null or if the check fails, evaluation
has gone wrong.

To evaluate a method callé(uy, . . .,u,) asp, whenv is an objectrew c(vy, .. .,
v,,), we checkl is a method of class(that is, thatmethods(c) = ¢; — (sig;, b;)*+™
and that! = ¢; for some;j € 1..m) and we check the arity of its signaturerigthat
is, thatsig; = B(A; z4,...,A, z,)) and then we evaluate the method bodypas
but with the object itself in place of the variablehis, and actual parametets, ...,
u, in place of the formal parametess, ..., xz, (that is, we evaluate the expression
bi{this—v, x1<—uq, ..., xp—uy}). If vis null or if either check fails, evaluation has
gone wrong.

To evaluate a service call:/(uq,...,u,) asp, we evaluate the local method call
newc(p).(u1,...,u,)asq, wherec = class(w) is the class implementing the service,
andq = owner(w) is the principal owning the service. (By assumptign,only field
is Callerld of type Id.) This corresponds directly to creating a new object'srweb
server to process the incoming request.

4 A Spi-Calculus Semantics

We confer a formal semantics on our calculus by translation to the spi-calculus [5, 21],
a lower-level language with primitives for message-passing (to model SOAP requests
and responses) and cryptography (to model encryption and decryption of SOAP head-
ers and bodies).

4.1 A Typed Spi-Calculus (Informal Review)

To introduce the spi-calculus, we formalize the situation where Alice sends a mes-
sage to Bob using a shared key, together with a correspondence assertion concern-
ing authenticity of the message, as outlined in Section 1nafeis an identifier

that is atomic as far as our analysis is concerned. In this example, the nHines

and Bob identify the two principals, the nami represents a symmetric key known

only to Alice and Bob, and the name represents a public communication channel.

A messageM or N, is a data structure such as a name, a typle,..., M,), a

tagged messag€ M), or a ciphertexf{ M } 5 (that is, a messag#/ encrypted with

a key N, which is typically a name). Arocess P or ), is a program that may per-

form local computations such as encryptions and decryptions, and may communicate



with other processes by message-passing on named channels. For example, the pro-
cessPajic. = begin sending(Alice, Bob, M); out n { M } i defines Alice’s behaviour.

First, she performs a begin-event labelled by the tagged tapléng(Alice, Bob, M),

and then she sends the ciphert¢®f' } x on the channeh. The processz,, =

inpn (x); decrypt x is {y} x ;end sending(Alice, Bob, y); defines Bob’s behaviour. He
blocks till a message arrives on the channel. Then he attempts to decrypt the mes-
sage with the key<. We assume there is sufficient redundancy, such as a checksum,
in the ciphertext that we can tell whether it was encrypted \ithif so, the plaintext
message is bound 19 and he performs an end-event labelledding( Alice, Bob, ).

The processew (K); (Paiice | Prob) defines the complete system. The composition
Pyjice | Ppob represents Alice and Bob running in parallel, and able to communi-
cate on shared channels suchnasThe bindemew(K) restricts the scope of the key

K to the proces® .. | Pro» SO that no external process may use it. Appendix C
contains the grammar of spi messages and processes. The grammar includes the type
annotations that are required to appear in spi terms. In this section, we omit the type
annotations in spi terms for the purpose of illustrating our approach.

We include begin- and end-events in processes simply to specify correspondence
assertions. We say a processadeto mean that in every run, and for evelythere is
a distinct, precedingegin L event for everend L event. Our example is safe, because
Bob’s end-event can only happen after Alice’s begin-event.

For correspondence assertions to be interesting, we need to model the possibil-
ity of malicious attacks. Let anpponentbe a spi-calculus process, arbitrary ex-
cept thatO itself cannot perform begin- or end-events. We say a proéessro-
bustly safef and only if P | O is safe for every opponer®. Our example system
new (K); (Paice | Ppoy) is not robustly safe. The opponent cannot acquire the key
K since its scope is restricted, but it can intercept messages on the public channel
n and mount a replay attack. The opponermt n (z);out n x;out n x duplicates
the encrypted message so that Bob may mistakenly addephd perform the end-
eventsending(Alice, Bob, M) twice. To protect against replays, and to achieve robust
safety, we can add a nonce handshake to the protocol.

In summary, spi lets us precisely represent the behaviour of protocol participants,
and specify authenticity guarantees by process annotations. Robust safety is the prop-
erty that no opponent at the level of the spi-calculus may violate these guarantees. We
omit the details here, but a particular type and effect system verifies robust safety: if a
process can be assigned the empty effect, then it is robustly safe. The example above is
simple, but the general method works for a wide range of protocol examples [21, 23].

For the sake of clarity, we defer most of the technical details to the appendices.
Specifically, Appendix C contains more details on the spi-calculus and the type and
effects sytem, as well as a formal definition of robust safety; Appendix D gives a com-
plete description of the translation from our object calculus to spi, including all the type
annotations omitted in this section, and a proof of our technical results.

4.2 A Semantics for Local Computation

We translate the values and method bodies of our object calculus to messages and
processes, respectively, of the spi calculus. To begin with, we omit web services. Many
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computational models can be studied by translation tartigalculus; our translation
of local computation follows a fairly standard pattern.
We assume tha®rin arer-calculus names, and thBteld U MethU Class U{null}
are message tags. Values translate easily; in particular, an object translates to a tagged
tuple containing the values of its fields.

Translation of a Value v to a Messaggv]:
I

[«] £ =

[null] = null()

[new c(vy,...,v.)] = e([v], -, [va])

Ir] £p

We translate a bodyto a proces$b]}, that represents the evaluationbads princi-
pal p. The namek is a continuation, a communications channel on which we $ehd
to represent termination with valwe Since our focus is representing safety rather than
liveness properties, we represent an evaluation that goes wrong simply by the inactive
processtop; it would be easy—but a complication—to add an exception mechanism.
We use standarsblit andcase statements to analyse tuples and tagged messages, re-
spectively. To call a methoélof an object of classe, with arguments:y, ..., u, we
send the tuplép, [v], [u1], - . ., [u.], k) on the channet_¢. The name is the caller,
and channek is the continuation for the call. We translate methoof classc to a
process that repeatedly awaits such messages, and triggers evaluations of its body. Our
translation depends in part on type information; we wrijtén the translation of field
lookups and method calls to indicate tleas the type ofv.

Translation of a Method Body b to a Process[b]}:

I
[v]} £ out k [v]
[let x=a in b)Y £ new (K'); ([a]?, | inp & (x); [B]%)
[if u = v then a else b]}, = if [u] = [v] then [a]?, else [b]}
[ve.£;1% £ case [v] is null(y); stop
is c(y);splity is (z1,...,2,);out k x;

wherefields(c) = f; — A; *€1+" andj € 1..n

[vel(ua, ..., u,)]E £ case [v] is null(y); stop
is c(y); out c_€ (p, [v], [u1], - - -, [un], k)

Translation of Method ¢ of Classc:
I 1

Iiass(c, €) = repeat inp c.f (2);split 2 is (p, this, x1, ..., Ty, k); [b]}
wheremethods(c) () = (B(A1 x1,..., An Tn),b)

4.3 A Semantics for Web Services

We complete the semantics for our object calculus by translating our cryptographic
protocol for calling a web service to the spi-calculus. A new idea is that we embed
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begin- and end-events in the translation to represent the abstract authenticity guarantees
offered by the object calculus.

We assume access to all web methods is at the highest securityAleirdtnc
from Section 2, providing both authentication and secrecy. Here is the protocol, for
p making a web service calb:¢(uq, ..., u,) to servicew owned byg, including the
names of continuation channels used at the spi level. Recall that the protocol assumes
that the client has a way to query the web service for a nonce. Therefore, we assume
that in addition to the methods efass(w), each web service also supports a method
getnonce, which we implement specially.

p — g onw : req(getnonce()), k1
g — ponk; : res(getnonce(ng)
p—qonw:p,{req(w, £(u1,...,up),t,ng)} K, Np, K2
q—ponky:q,{res(w,£(r),t,ny)}k,,

We are assuming there is a shared kgy, for each pair of principalg, g € Prin.
For the sake of brevity, we omit the formal description of the type and effect system
[23] we rely on, but see Appendix C for a detailed overview. Still, to give a flavour, we
can define the type of a shared kiy,, as follows:

Type of Key Shared Between Clienp and Serveryg:
I

CSKey(p,q) =
SharedKey(Union(
req(w:Un, a:Un, ¢:Un,
nq:Public Response [end req(p, ¢, w, a, t)]),
res(w:Un, r:Un, ¢:Un,
np:Public Response [end res(p, ¢, w,r,t)])))

The type says we can use the key in two modes. First, we may encrypt a plaintext
taggedreq containing four components: a public nameof a service, an argument
a suitable for the service, a session tagnd a nonce:, proving that a begin-event
labelledreq(p, ¢, w, a, t) has occurred, and therefore that an end-event with that label
would be safe. Second, we may encrypt a plaintext taggedontaining four com-
ponents: a servicey, a resultr from that service, the session tagand a nonce,
proving that a begin-event labelleds(p, ¢, w, r, t) has occurred.

We translate a service call to the client-side of our cryptographic protocol as fol-
lows. We start by embedding a begin-event labelletp, ¢, w, ¢(Ju1], . . ., [un]),t)
to record the details of client’s call to serverg = owner(w). We request a nonce
nq, and use it to freshen the encrypted request, which we send with our own nonce
np, Which the server uses to freshen its response. If the response indeed contains our
nonce, we embed an end-event to record successful authentication. For the sake of
brevity, we rely on some standard shorthands for pattern-matching.

12



Semantics of Web Method Call:

I
[wl(uy, ... ,u,)]E =
new (ki, k2, t,np);

begin req(p, g, w, {([ui], ..., [ua]),t);
out w (req(getnonce()), k1);
inp k1 (res(getnonce(ng)));
out w (p, {req(w, £([u1], ..., [un]),t, 1)} icpys ps )5
inp k2 (g, bdy);
decrypt bdy is {res(plain)} i
match plain is (w, rest);
split rest is (r, rest’);
match rest’ is (t,n,);
check n, is n;
end res(p, q, w, T, t);
caseris f(x);out k x
whereq = owner(w)
L

prq’

Our server semantics relies on a shorthand notation defined below; the process
let z=call,, (p, £(u1, - .., uy)); P runs the methodof the class:lass(w) implementing
the servicew, with argumentsuy, ..., u,, and with itsCallerld field set top, binds
the result tor and runspP.

Server-Side Invocation of a Web Method:

I
let z=call,, (p, args); P =
new (k);
case args
(is £; (as;);
new (k'); (out c_l; (q,c(p), asi, k') | inp k" (r); out k £;(r))
)ielnn
|inpk (x); P
wherec = class(w), ¢ = owner(w),
andmethods(c) = {; — (B;(As;, xs;),b;) *€Hn

Finally, we implement each serviee by a procesd.,s(w). We repeatedly listen
for nonce requests, reply with one, and then await a web service call freshened by the
nonce. If we find the nonce, it is safe to perform an end-event labeligd, ¢, w, a, t),
wherep is the caller,g = owner(w) is the service owneg is the received method
request, and is the session tag. We use the shorthand above to invokier is the
result, we perform a begin-event labelled (p, ¢, w, r, t) to record we are returning a
result, and then send a response, freshened with the nonce we received from the client.

In general, the notatiof[,_, ,, P meansP; | - | P,.
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Web Service Translation:
I 1

Ius(w) = repeat inp w (bdy, k1);
case bdy is req(getnonce());
new (1g);
out k1 (res(getnonce(ny)));
inp w (p', cipher,ny, ka);
[L,e prin if p =D’ then
decrypt cipher is {req(plain)} k,,;
match plain is (w, rest);
split rest is (a,t,ny);
check n, is ny;

end req(p, ¢, w, a, t);

let r=call, (p, a);

begin res(p, g, w, 7, t);

out ka (g, {res(w,r,t,n;)}k,,)

whereq = owner(w)
L ]

This semantics is subject to more deadlocks than a realistic implementation, since
we do not have a single database of outstanding nonces. Still, since we are concerned
only with safety properties, not liveness, it is not a problem that our semantics is rather
more nondeterministic than an actual implementation.

4.4 Security Properties of a Complete System

We define the following procesSys(b, p) to model a piece of codg being run by
principal p in the context of implementations of all the classes and web services in
Class and WebService.

Sys (b, p)
2 new <07£ c€e Cluss,fedom(methods(c))). new (qu p,qEPrin).

(HCE Class,t€ dom(methods(c)) IClaSS (C’ E) |

Hwe WebService IU)S (w) |
new (k); [b]})

We claim that the ways an opponéntcan interfere with the behaviour 6§s(b, p)
correspond to the ways in which an actual opponent lurking on a network could inter-
fere with SOAP-level messages being routed between web servers. The hémes
methods are hidden, 0 cannot interfere with calls to local methods. The kégs,
are also hidden, s0 cannot decrypt or fake SOAP-level encryption. On the other hand,
the namesv on whichSys(b, p) sends and receives our model of SOAP envelopes are
public, and sd) is free to intercept, replay, or modify such envelopes.

Our main result is that an opponent cannot disrupt the authenticity properties em-
bedded in our translation. The proof is by showing the translation preserves types.

Theorem 1 If bodyb is well-typed ang € Prin thenSys(b, p) is robustly safe.
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5 A SOAP-Level Implementation

We have implemented the security abstraction introduced in Section 2 and formalized
in Sections 3 and 4 on top of the Visual Studio .NET implementation of web services,
as a library that web service developers and clients can use. A web service developer
adds security attributes to the web methods of the service. The developer also needs
to provide a web method to supply a nonce to the client. On the client side, the client
writer is provided with a modified proxy class that encapsulates the implementation of
the security abstraction and takes into account the security level of the corresponding
web service methods. Hence, from a client's point of view, there is no fundamental
difference between accessing a web service with security annotations and one without.

Consider an implementation of our running example of a banking service. Here is
what (an extract of) the class implementing the web service looks like:

class BankingServiceClass :
System.Web.Services.WebService
{

[WebMethod]
public int RequestNonce () { ... }

public DSHeader header;

[WebMethod]

[SecurityLevel(Level=SecLevel.Auth)]

[SoapHeader(“header”,
Direction=Direction.InOut,Required=true)]

public int Balance (int account) { ... }

}

This is the code we currently have, and it is close to the idealized interface we gave
in Section 2. The differences are due to implementation restrictions imposed by the
development environment. The extract shows that the web service implements the
RequestNonce method required by the authentication protocol. Bwance
method is annotated as an authenticated method, and is also annotated to indicate that
the headers of the SOAP messages used during a call will be available through the
header field of the interface. (The clad3SHeader has fields corresponding to the
headers of the SOAP message.) As we shall see shortly, SOAP headers are used to carry
the authentication information. Specifically, the authenticated identity of the caller is
available in a web method througieader.callerid

To implement the security abstraction on the web service side, we use a feature of
Visual Studio .NET called SOAP Extensions. Roughly speaking, a SOAP Extension
acts like a programmable “filter”. It can be installed on either (or both) of a client or a
web service. It gets invoked on every incoming and outgoing SOAP message, and can
be used to examine and modify the content of the message before forwarding it to its
destination. In our case, the extension will behave differently according to whether the
message is incoming or outgoing, and depending on the security level specified. For an
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outgoing message, if the security leveNsne, the SOAP message is unchanged. If
the security level i®\uth , messages are signed as specified by the protocol: a crypto-
graphic hash of the SOAP body and the appropriate nonce is stored in a custom header
of the messages. If the security leveAigthEnc , messages are encrypted as specified
by the protocol, before being forwarded. For incoming messages, the messages are
checked and decrypted, if required. If the security levélush , the signature of the
message checked. If the security leveAithEnc , the message is decrypted before
being forwarded. Our implementation uses the SHA1 hash function for signatures, and
the RC2 algorithm for symmetric encryption.

To implement the security abstraction on the client side, we provide the client with a
new proxy class. The new proxy class provides metiaise, Auth , andAuthEnc
that are called by the proxy methods to initiate the appropriate protocol. The method
None simply sets up the headers of the SOAP message to include the identity of the
caller and the calleAuth andAuthEnc do the same, but also make a call to the web
service to get a nonce and add it (along with a newly created nonce) to the headers. The
actual signature and encryption of the SOAP message is again performed using SOAP
Extensions, just as on the web service side.

Our implementation uses a custom SOAP he&@fgiHeader to carry information
such as nonces, identities, and signatures. It provides the following elements:

callerid identity of the client

calleeid identity of the web service provider

np client nonce

nq web service nonce

signature cryptographic signature of the message

Not all of those elements are meaningful for all messages. In addition to these headers,
in the cases where the message is encrypted, the SOAP body is replaced by the en-
crypted body. Appendix A gives actual SOAP messages exchanged between the client
and web service during an authenticated calB&ance , and an authenticated and
encrypted call tstatement

Our implementation is meant as a preliminary design of a C# abstraction for secure
RPC, a starting point to explore abstractions for more general security policies. There
are still issues that need to be addressed, even in a setting as simple as the one presented
in this paper. First, we plan to adopt recognized formats for encryption and signature of
XML data, such as XML-Encryption and XML-Signature (though our validation does
not depend on the exact XML syntax for cryptography). Second, it would be valuable
to generate the new proxy class automatically.

6 Related Work

There has been work for almost twenty years on secure RPC mechanisms, going back
to Birrell [9]. More recently, secure RPC has been studied in the context of distributed
object systems. As we mentioned, our work was inspired by the work of van Doorn
et al. [34], itself inspired by [29, 35]. These techniques (or similar ones) have been
applied to CORBA [30], DCOM [10], and Java [7, 18].
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In contrast, little work seems to have been done on formalizing secure RPC. Of
note is the work of Abadi, Fournet, and Gonthier [2, 3], who show how to compile the
standard join-calculus into the sjoin-calculus, and show that the compilation is fully
abstract. In a subsequent paper [4], they treat similarly and more simply a join-calculus
with authentication primitives: each message contains its source address, there is a way
to extract the principal owning a channel from the channel, and any piece of code runs
as a particular principal. Their fully abstract translation gives very strong guarantees:
it shows that for all intents and purposes, we can reason at the highest level (at the level
of the authentication calculus). Although our guarantees are weaker, they are easier to
establish.

Duggan [17] formalizes an application-level security abstraction by introducing
types for signed and encrypted messages; he presents a fully abstract semantics for the
abstraction by translation to a spi-calculus.

Much of the literature on security in distributed systems studies the question of
access control Intuitively, access control is the process of determining if the princi-
pal calling a particular method has permission to access the objects that the method
refers to, according to a particular access control policy. There is a distinction to be
made between authentication and access control. Authentication determines whether
the principal calling a method is indeed the principal claiming to be calling the method,
while access control can use this authenticated identity to determine whether that prin-
cipal is allowed access. This distinction is made clear in the work of Badaak[7],
where they provide authenticated and encrypted communication over Java RMI (using
SSL) and use that infrastructure as a basis for a logic-based access control mechanism.
The access control decisions are based on the authenticated caller identity obtained
from the layer in charge of authentication. This approach is also possible in our frame-
work, which provides access to an authenticated identity as well. We plan to study
access control abstractions in our framework. Note that various forms of access con-
trol mechanisms have been formalized wiaalculi, [25, 32, 26], and other process
calculi [12, 15]. An access control language based on temporal logic has been defined
by Sirer and Wang [33] specifically for web services. Damiatnal. [14] describe
an implementation of an access control model for SOAP; unlike our work, and the
WS-Security proposal [6], it relies on an underlying secure channel, such as an SSL
connection.

The GRID is a proposed distributed infrastructure with scientific computing as an
important application; consequently, the need arises for a distributed security architec-
ture [19] including authentication and access control.

An intense area of activity in the world of web services is the definition of stan-
dards for web service security. WS-Security is a standard that describes how to attach
signature and encryption headers to SOAP envelopes. Envisioned standards, described
in [27], will build on the specifications of WS-Security, for example, to manage and
authenticate message exchanges between participants. Our work has an immediate ap-
plication in this context. It is straightforward, for example, to adapt our implementation
to produce WS-Security compliant SOAP envelopes. More importantly, we can use the
techniques in this paper to model security abstractions provided by emerging standards
and study them formally.

Despite its enjoyable properties, the formal model we use to study the implementa-
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tion of our security abstraction suffers from some limitations. For instance, it makes the
usual Dolev-Yao assumptions that the adversary can compose messages, replay them,
or decipher them if it knows the right key, but cannot otherwise “crack” encrypted mes-
sages. A more severe restriction is that we cannot yet model insider attacks: principals
with shared keys are assumed well-behaved. Work is in progress to extend the Cryp-
tyc type theory to account for malicious insiders. We have not verified the hash-based
protocol of Section 2.

7 Conclusions

Authenticated method calls offer a convenient abstraction for developers of both client
and server code. Various authorisation mechanisms may be layered on top of this ab-
straction. This paper proposes such an abstraction for web services, presents a theoret-
ical model, and describes an implementation using SOAP-level security. By typing our
formal semantics, we show no vulnerability exists to attacks representable within the
spi-calculus, given certain assumptions. Vulnerabilities may exist outside our model—
there are no methods, formal or otherwise, to guarantee security absolutely.

Our work shows that by exploiting recent advances in authenticity types, we can
develop a theoretical model of a security abstraction, and then almost immediately ob-
tain precise guarantees. (As with many formal analyses, these guarantees concern the
design of our abstraction, and do not rule out code defects in its actual implementation.)
We intend to exploit these ideas further by exploring enriched programming models for
authentication and authorisation, while simultaneously building theoretical models and
SOAP-level implementations.

This study furthermore validates the adequacy of the spi-calculus, and Cryptyc in
particular, to formally reason about security properties in a distributed communication
setting.
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A Sample SOAP Messages

We give some sample SOAP messages exchanged during web service method calls of
the web service described in Section 5. One thing that is immediately clear is that
we are not using standard XML formats for signing and encrypting messages, such as
XML-Encryption and XML-Signature. There is no intrinsic difficulty in adapting our
infrastructure to use standard formats. The point is that the validation of the security
abstraction does not rely on the exact syntax of the SOAP envelopes.

A.1 An Authenticated Call

We describe an authenticated call to Bedance method. The messages exchanged

to obtained the nonce are standard SOAP messages. The following message is the
request from Alice to the web service to execute Badance method on argument
12345. Notice th®SHeader element holding the identity of the principals involved,

as well as the nonces and the cryptographic signature.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/”
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmins:xsd="http://www.w3.0rg/2001/XMLSchema”>
<soap:Header>
<DSHeader xmins="http://tempuri.org/”>
<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>13</np>
<ng>42</ng>
<signature>
3E:67:75:28:3B:AD:DF:32:E7:6C:D3:66:2A:CF:E7:8A:3F:0A:A6:0D
</signature>
</DSHeader>
</soap:Header>
<soap:Body>
<Balance xmins="http://tempuri.org/”>
<account>12345</account>
</Balance>
</soap:Body>
</soap:Envelope>

The response from the web service has a similar form:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/”
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmins:xsd="http://www.w3.0rg/2001/XMLSchema’>
<soap:Header>
<DSHeader xmlIns="http://tempuri.org/”>
<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>13</np>
<ng>42</ng>
<signature>
8D:31:52:6E:08:F0:89:7B:1E:12:3F:5E:63:EE:B0:D2:63:89:CA:73
</signature>
</DSHeader>
</soap:Header>
<soap:Body>
<BalanceResponse xmlns="http://tempuri.org/”>
<BalanceResult>100</BalanceResult>
</BalanceResponse>
</soap:Body>
</soap:Envelope>

19



A.2 Authenticated and Encrypted Call

We describe an authenticated and encrypted call, this time ®tdtement method.

Again, the messages exchanged to obtained the nonce are standard SOAP messages.
The following message is the request from Alice to the web service to execute the
Statement method on argument 12345. As in the authenticated call above, the
DSHeader element holds identity information. The body of the message itself is
encrypted. Note that the nonog must be encrypted according to the protocol, so its
encrypted value is included in the encrypted data, and its element is reset to a dummy
value (here, -1). Similarly, the signature is unused and set to a dummy value.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/”
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmins:xsd="http://www.w3.0rg/2001/XMLSchema’”>
<soap:Header>
<DSHeader xmlIns="http://tempuri.org/’>
<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>13</np>
<ng>-1</ng>
<signature>4E:00:6F:00</signature>
</DSHeader>
</soap:Header>
<soap:Body>
9D:8F:95:2B:BC:60:B1:73:A7:C4:82:F5:39:20:97:F7:69:71:66:
D3:A3:A0:90:B9:9B:FE:71:0A:65:C1:EF:EE:99:CB:4D:8A:40:37:
CA:1E:D0:03:50:34:76:8C:E3:F3:30:DD:C9:34:19:D4:04:CB:39:
7D:1A:84:2F:CA:30:DA:68:7E:E1:CB:07:9C:EB:79:F9:E9:4B:47:
5B:94:56:D7:22:0E:02:CD:AA:F5:D3:40:C1:EC:13:FB:B9:E6:4F:
13:CD:70:FD:BA:18:80:FC:50:F3:75:F2:2F:95:50:5D:41: 7E:C8:
8B:BB:AB:76:C9:59:BA:E2:3B:E5:4D:79:71:E4:AD:18:5A:4B:EA:
29:17:30:90:66:08:27:ED:B4:BD:2E:89:06:6D:0B:56:40:43:35:
Al:77:AE:12:7E:4B:19:26:B5:24:1A:D9:67:3D:A0:91
</soap:Body>
</soap:Envelope>

The response is similarly encoded. Notice that this time the nopcmust be en-
crypted, so its value is again included in the encrypted data, and its element is reset to
a dummy value.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/”
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmins:xsd="http://www.w3.0rg/2001/XMLSchema”>
<soap:Header>
<DSHeader xmlIns="http://tempuri.org/’>
<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>-1</np>
<ng>-1</ng>
<signature>4E:00:6F:00</signature>
</DSHeader>
</soap:Header>
<soap:Body>
98:FD:6A:5B:38:0A:82:95:3F:01:EC:D3:55:F9:AA:35:4D:18:DB:
1B:7D:9D:FE:3F:78:52:29:99:C9:41:84:EE:B1:42:12:B2:02:AC:
63:F5:0C:92:9B:DB:75:FB:6C:8B:65:EB:3C:42:6B:79:70:AF:61:
2A:C2:7B:ED:96:E1:D6:7A:F6:D2:0C:DF:BC:2A:4C:93:B3:D0:7B:
7D:2D:83:18:60:D2:D8:05:EB:73:74:2D:75:A2:B2:57:C9:04:B4:
C1:E6:66:54:BA:42:86:AF:22:72:3D:B7:90:CF:03:22:E5:C4:47:
03:F0:77:A0:30:01:C9:FE:78:A1:AB:FA:B1:CB:EE:E2:0B:F2:79:
17:1B:8E:82:E2:13:F4:66:52:76:6D:BA:1B:E9:8E:75:15:90:37:
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0A:64:ED:F3:9C:18:94:EC:4F:CF:61:92:38:EF:A9:46:E8:4E:E9:
4A:E6:8A:C9:5E:ED:A7:34:72:3E:72:A2:BE:0D:DC:07:22:45:B0:
E6:79:33:8F:CD:90:B8:97:DB:BA:3B:B2:8B:38:38:B6:5B:F1:11:
FB:DD:88:CE:9A:3E:B4:E6:31:13:CB:1C:F3:B5:17:D8:9B:CF:2E:
65:23:4D:BA:ED:72:6D:F4:53:97:B8:7A:D2:9C:2C:10:58:A3:0E:
FE:48:A2:2A:2A:57:AE:6D:69:4D:97:90:EF:9F:C6:7E:9B
</soap:Body>
</soap:Envelope>

B Semantics of the Object Calculus

In this appendix, we give a formal description of the operational semantics and typing
rules of the object calculus. We first describe some encodings showing the expressive-
ness of the calculus.

B.1 Encoding Arithmetic

The calculus is simple enough that questions about whether or not it is sufficiently ex-
pressive to be of interest arise. This is especially likely since there are no recursive
functions in the calculus, and it is not clear that it is even Turing complete. That the
calculus indeed is Turing complete is a consequence of the fact that we can write recur-
sive classes and methods, and that we have a null object. The following example shows
an encoding of natural numbers as a cl&ssn, with the typical recursive definition of
addition:
class Num
Num pred
Num succ()
new Num/(this)
Num add(Numzx)
if x.pred = null then
this
else this.add(x.pred).succ()

We definezero asnew Num(null), one aszero.succ(), and so on.

B.2 Formalization of proxy objects

We mentioned in the text that we can easily express proxy objects within the calcu-
lus. For completeness, here is a detailed formalization of such proxy objects. First,
we assume a maprozy € WebService — Class, assigning to every web service

w € WebService a proxy classprozy(w). We further assume that for eaah <
WebService,

o dom(methods(class(w))) U {Id} = dom(methods(prozy(w))),
e fields(prozy(w)) = &,
e methods(prozy(w)(Id)) = (Id(), owner(w)), and
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o forall £ € dom(methods(class(w))),
methods(prozy(w))(€) = (B(A1 21, ..., Ap &), wl(x1,...,Zp)),
wheremethods(class(w))(£) = (B(A1 21, ..., Ap x,),b).

B.3 Operational Semantics

The operational semantics is defined by a transition relation, wiitter? a’, wherea
anda’ are method bodies, ands the principal evaluating the body

To specify the semantics, we need to keep track of which principal is currently
running a method body. We add a new method body form to our object calg{tiis,
meaningp running bodya. This form does not appear in code written by the user, but
only arises through the transitions of the semantics.

Extended Method Bodies:

I
a,b € Body ::= method body

e as in Section 3

plal bodya running ap
L 1
Transitions:
I 1
(Red Let 1) (Red Let 2)

a—Pa

let t=a in b —P let x=a’ inb  let x=vin b —P b{z—uv}

(Red If)

if u=vthen ayue else afaise =P Quzy

(Red Field)
fields(c) = fi — A; €1 jel.n
(new c(vi,...,vn)).f; =P v
(Red Invoke)(where = new c(v1, . ..,v,))
methods(c) = {; — (sig;, b;) "€'" jel.n sig;=B(Ai1z1,...,Ap )
VL (Ury ..oy U) —P bi{thise—v, x—uy <™}

(Red Remote)

owner(w) =q class(w) = ¢

wil(u, ..., up) =P qlnew c(p).L(u, ..., uy)]

(Red Prin 1) (Red Prin 2)

a—9d

. gla] =7 qla’]  qv] =P o .
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B.4 Type System

The judgments of our type system all depend oreavironmentF, that defines the
types of all variables in scope. An environment takes the ferm,, ..., z,:4, and
defines the typel; for each variable;;. The domaindom(FE) of an environment is
the set of variables whose types it defines.

Environments:

I
D, FE ::= environment
o] empty
E z:A entry
dom(z1:A1, ..., x0:A,) 2 {21, .., 20} domain of an environment
L

The following are the two judgments of our type system. They are inductively
defined by rules presented in the following tables.
JudgmentsE + 7.

I

Ero good environment
Eta:A good expression of type A
L

We write £ - 7 when we want to talk about both kinds of judgments, wh&rstands
for eitherc ora : A.

The following rules define an environment: A4, . . ., z,:A, to be well-formed if
each of the names,, ..., x,, are distinct.

Rules for Environments:

I(Env@) (Env z)(wherez ¢ dom(E))
EFo

gEo E zAFo

We present the rules for deriving the judgméhnt- a : A that assigns a typd to
a value or method body. These rules are split into two tables, one for values, and one
for method bodies.

Rules for Typing Values:

I
(Val x) (Val null)
E:El,fEZA,EQ Ero EFro
Erz: A EtFnull:c
(Val Object) (Val Princ)
fields(c) = fi— A; €+ Elwv;: Ay Vi€ l.n EFo
EF newc(vy,...,vn): ¢ Etrp:Id
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Rules for Typing Method Bodies:

I
(Body Let)
Etra:A E x:AFDbL:B

Erletx=ainb:B

(Body If)
Fru:A Ertv:A Era:B EFRbL:B

Erifu=vthenaelseb: B

(Body Field)
EFv:c fields(c) = fi— A; € jel.n

EFU.fJ‘ . Aj

(Body Invoke)
Erv:c methods(c) = {; — (sig;,b;) "™ j€l.n
819 ; =B(Ai1z1,...,Anxm) Elugp:Ar Vkel.m

Etrvli(u,...,um): B

(Body Remote) .
class(w) = ¢ methods(c) = £; — (sig;,b;) ‘€4 j€l.n (B%dl)i Pr.mj)
sigj:B(Alml,...,Amxm) Etwu;: Ay Viel.m _sraes
Etplal: A

Etrwdl(u,...,up): B

We make the following assumption on the execution environment.

Assumptions on the Execution Environment:

I
(1) For eachw € WebService, fields(class(w)) = CallerId : Id.
(2) No tagged expressigsia] occurs within the body of any method;
such expressions occur only at runtime, to track the call stack of principals.
(3) for eache € Class and eacl € dom(methods(c)),
if methods(c)(€) = (B(A1 z1,..., A, x,),b),
thenthis:c, x1:Aq, ..., x,:A, F b B.

It is straightforward to show that our type system is sound, that is, that the type
system ensures that methods that typecheck do not get stuck when evaluating. Some
care is needed to make this precise, since evaluation can block if one attempts to access
a field of a null object, or to invoke a method on a null object. (We could introduce
an error tokenin the semantics and propagate that error token when such a case is
encountered, but this would needlessly complicate the semantics, at least for our pur-
poses.) Soundness can be derived as usual via Preservation and Progress theorems. To
establish these, we first need the following lemmas:

Lemma 1 The following properties of judgments hold:

(Exchange) if E,z:A,y:B,E' + J,thenE,y:B,x:A, E' + J;
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(Weakening) if £+ J andz ¢ dom(E), thenE, z:A+ J;

(Strengthening) if E,z:B + a: Aandz & fv(a), thenE + a : A.

Proof

Straightforward. ]

We often use the above properties silently in the course of proofs.

Lemma 2 (Substitution) If E,2:BFa: AandE F v : B,thenE b a{z+v}: A

Proof

This is a straightforward proof by induction on the height of the typing deriva-

tion for £ F a : A. We proceed by case analysis on the form.of

Caseq = x: SinceFE, x:B + x : A, we must havel = B. Sincea{z+v} =v
andE v : B,we haveF v : A, as required.

Casea = y, wherey # x: Sincex is not free iny, £, x:B F y : A implies
E+y: A, by the Strengthening Lemma, as required.

Casea = null: Sincex is not free innull, £, x:B + null : A impliesFE +
null : A, as required.

Casea = p: Sincez is not free inp, E,x:B + p : AimpliesE I p : A, as
required.

Casen = newc(vy,...,v,): We have the equatiomew c(vy, . . ., v, ) {x—v} =
new c(vi{z—v},...,vp{z—v}). We haveE, x:B F new c(vy,...,v,) : A,
henceE,x:B + v; : A; if fields(c) = f; — A; €1-". By the induction
hypothesis, we knowE + v;{z<—wv} : A; for all i € 1.n. Hence, we can
deriveE + new c(vi{x—v},...,v,{x—0v}) : A, as required.

Casea = let y=aq in b: Without loss of generality, we can take# z, sincey
is bound inb. Note that(let y=ag in b){x—v} = let y=apo{x—v} in b{x—v}.
We haveFE, x:B + let y=ag in b : A, henceE,z:B + ag : Ay for someA,, and
E,y:Ag,z:B + b : A. By the induction hypothesiy - ag{z<—v} : A9 and
E,y:Ao F b{z—v} : A, and hencd? b let a=ap{x—v} in b{z—v} : A, as
required.

Casea = if up = wuy then ag else a;: We have(if ug = uy then ag
else a1 ){x—v} = if up{z—v} = wy{z—v} then ap{z—v} else ay{z—v}.
We haveE,z:B & if ug = uy then ag else ar, henceE,z:B + ug : A,
E,x:BF wu : A, E,x:BF ay : AandE,2:B + a; : A. Applying the
induction hypothesis to these judgments, we can derive

E bt if up{z—v} = uy{z—v} then ag{z—v} else ay{z—v}: A

as required.

The remaining cases are similar, upon noting that:

(ufy) v} = ulwev}.fj,
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- (wl(uy. .. um)){z—v} = v{z—v}(u{z—v}, ..., up{z—0}),

- (wil(ug, ..y up)){ze—v} = wi(uy {z—v}, ..., up{z—v}), and

- (pla]){z—v} = pla{z—v}]. O
Theorem 2 (Preservation)If £+ a: Aanda —? o’ thenE + o' : A.

Proof  We proceed by induction on the height of the typing derivationor « : A.
Sincea —? o', a cannot be a value.

- Casea = let x=v in b: SinceE' - a : A, we haveE' - v : BandE,x:B +
b: A. We must have’ = b{z<—uv}. Applying the Substitution Lemma, we have
E F b{z+wv}: A, asrequired.

- Casea = let v=ag in b, whereqg is not a value: We hav& + q¢ : B, and
E,z:BF b: A. Sincea —? o/, we must have have, —? q;. By induction
hypothesisE F af, : B, and hence® + let z=ay, in b : A, as required.

- Casead = if u = v then ag else ai: Note that either, —? ag ora —P? a;. In
both cases, sincE + if u = v then ag else a; : A, we haveFE + aq : A and
Etaq: A, asrequired.

- Casea = (new c(vi,...,vy,)).f;: We havefields(c) = f; — A; ‘€1-". The
type derivation forw is as follows:
E+ Vg L Al i€l..m
Et newc(vy,...,vn) : ¢
Et (new c(v1,...,vp)).fj+ A;

Sincea’ = v;, we haveE | v; : A;, as required.

- Caseu = (new c(vi,...,vn)) 45 (ut, ..., uy): Letv = new c(vy, ..., v,). We

havemethods(c) = {; — (sig;, b;) """, wheresig; = B(Ayx1,. .., Ap &)

By the typing derivation forE - a : B, we haveE F uy : Ay for all

k € 1.m,andE + v : ¢. By assumption on the execution environment, we
know this:c,z1: Ay, ..., zm:A F b o B. Applying the Substitution and the
Weakening Lemmas, we gét - b{ this«<uv, x«uy *$'™} : B, as required.

- Casea = wil;(uq,...,u,): We haveclass(w) = ¢, methods(c) = £; —
(sig;, b;) "1™ wheresig; = B(A; x1, ..., A zn). By the typing derivation
for EF a: B, we haveE - u; : A; forall i € 1..m. We can therefore derive
the required type fot’ = g[new c(p).L(uy, ..., um)l:

EFnewc(p):c EFwu;:A; Yiel.m

EF new c(p) L(ug, ... um): B
E b g[new c(p)L(u1,...,un)] : B

- Casea = q[v]: SinceE + q[v] : A, we haveE + v : A, andg[v] —? v, as
required.
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- Casea = ¢lag], whereay is not a value: Sincé F glag] : A, we haveE +
ap : A, and sincer —P o', we must have,, —? aj. By induction hypothesis,
Et aj : A, and hence® F g[af] : A, as required. O

To state the Progress Theorem, we need to recognize programs that are blocked
because of aull in object position. We say a method bodyis null-blockedif, es-
sentially, it is stuck trying to access a field of a null object, or invoke a method on a
null object. Formallyg is null-blocked if it is of the formnull. f;, null £(uq, ..., uy),
let z=a in b (Wherea is null-blocked), ofg[a] (wherea is null-blocked).

Theorem 3 (Progress)If @ - a : A anda is not a value and is not null-blocked, and
p € Prin, thena —? a’ for somed’.

Proof  Again, we proceed by induction on the height of the typing derivation for
@+ a: A. We assume is not a value, and is not null-blocked.

- Casen = let x=ag in b: We consider two subcases, depending on whethes
a value or not.

- Caseqy is a valuev: We haven —P b{z—wv}.

- Caseqy is not a value: Sincey + a : A, we haved + aq : B for some
B, ag not a value. Since is not null-blocked,aq is not null-blocked.
Hence, by induction hypothesis, we havg —? aj. Hence, we have
a —P let x=ay in b.

- Casea = if u = v then ag else a1: We havea —P ag or a —P a; depending
on the result ot = v.

- Casea = v.f;: Since@ + a : A anda is not null-blocked, we must have

v = new c(uy,...,uy,), andfields(c) = f; — A; *€1-m. Therefore, we have
v.f; =P u;.

- Casea = v.lj(u1,...,upy): Since@ F a : A anda is not null-blocked,
we must havey = new c(us,...,uy), methods(c) = £; — (sig;,b;), and
sig; = B(Ay z1,..., A, x,). Therefore, we have.l;(u1,...,u,) —7
bj{this—uv, zpuy ¥m}

- Casea = w:l(uq,...,un): The following transition rulav:¢(uy, . .., uy,) —P
g[new c(p).L(u1,...,uy)] applies, withowner(w) = g andclass(w) = c.

- Casea = qlap]: We consider two subcases, depending on whethés a value
or not.
- Caseqy is a valuev: We haveg[v] —? v.

- Caseqg is not a value: Since + glag] : A, we haved + ag : A4, ag
not a value. Since is not null-blockeday is not null-blocked. Hence, by
induction hypothesis, we havg —7 a(,, andg[ag] —? gag]. m
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We can now state soundness formally. We say a method dbdglgtuck ifa is not
a value,a is not null-blocked, and there is nd andp such thata —? o’. We write
a —* a’ to mean that there exists a sequence . ., a,, and principal®y, . .., pn+1
such thats —P* a1 —P2 ... =P~ q, —Pr+1 ¢/, (Hence,—* is a kind of transitive
closure of—?.)

Theorem 4 (Soundness)f @ - a : A, anda —* o/, thend’ is not stuck.

Proof A straightforward induction on the number of transitiongin+* o’. o

C The Spi-Calculus in More Detall

We give an overview of the language and type system on which our analysis of web
services depends. We give the syntax in detail, but for the sake of brevity give only
an informal account of the operational semantics and type system. Full details are in a
technical report [23], from which some of the following explanations are drawn. Some
constructs primitive here are actually derived forms in the original calculus.

Names, Messages:
I 1

k ::= Encrypt | Decrypt key attribute
m,n,x,y,z name: nonce, key, key-pair
L,M,N ::= message
x name
(My,...,My,) record,n > 0
t;(M) tagged union
{M}n symmetric encryption
{{M[} v asymmetric encryption
k(M) key-pair component

The message is a name, representing a channel, nonce, symmetric key, or asym-
metric key-pair. We do not differentiate in the syntax or operational semantics between
key-pairs used for public key cryptography and those used for digital signatures.

The messagéMy, ..., M,) is a record withn fields, My, ..., M,.

The message (M) is messagé/ tagged with tag;. The messagéM } y is the
ciphertext obtained by encrypting the plaintéxtwith the symmetric keyv.

The messag@M [} v is the ciphertext obtained by encrypting the plaintekiwvith
the asymmetric encryption key.

The messagPecrypt (M) is the decryption key (or signing key) component of the
key-pairM, andEncrypt (M) is the encryption key (or verification key) component of
the key-pairM .

Types and Effects:
I

£ ::= Public | Private nonce attribute
S, T,U ::= type
Un data known to the opponent

28



(x1: 11, ...,z Ty) dependent recora, > 0

Union(t1(Th), - - ., tn(Th)) tagged union
Top top
SharedKey(T) shared-key type
KeyPair(T) asymmetric key-pair
k Key(T) encryption or decryption part
£ Challenge es challenge type
¢ Response fs response type

e, f = atomic effect
end L end-event labelled
check ¢ N name-check for a nonc¥
trust M:T trust thatM : T

es, fs = effect
le1,...,en] multiset of atomic effects

The typeUn describes messages that may flow to or from the opponent, which we
model as an arbitrary process of the calculus. We say that a typii if messages
of the type may flow to the opponent. Dually, we say a tygaiistedif messages from
the opponent may flow into the type. The tye is both public and tainted.

The type(z1:Th,...,z,:T,) describes a recorM, ..., M, ) where eachV/; :

T;. The scope of each variabtg consists of the typ€s; . 1, ..., T,. Type(x1:11, .. .,
x,:Ty,) is public just if all of the typed; are public, and tainted just if all of the types
T; are tainted.

The typeUnion(t1(T4), ..., t,(T,)) describes a tagged messagel/) wherei €
l.nandM : T;. TypeUnion(t1(T1), ..., t,(T})) is public just if all of the typed;
are public, and tainted just if all of the typ&sare tainted.

The typeTop describes all well-typed messages; it is tainted but not public.

The typeSharedKey(T") describes symmetric keys for encrypting messages of type
T'; itis public or tainted just iff" is both public and tainted.

The typeKeyPair(T') describes asymmetric key-pairs for encrypting or signing
messages of typ@; it is public or tainted just ifl" is both public and tainted. The
key-pair can be used for public-key cryptography just’ifs tainted, and for digital
signatures just if’" is public.

The typeEncrypt Key(T') describes an encryption or signing key for messages of
typeT; itis public just if T is tainted, and it is tainted justif is public.

The typeDecrypt Key(T') describes a decryption or verification key for messages
of typeT'; itis public just if T" is public, and it is tainted just if’ it tainted.

The typest¢ Challenge es and ¢ Response fs describe nonce challenges and re-
sponses, respectively. The effeetsand fs embedded in these types represent cer-
tain events. An outgoing challenge of some typ€hallenge es can be cast into a
response of typé Response fs and then returned, provided the events in the effect
es + fs have been justified, as explained below. Therefore, if we have created a fresh
challenge at typé Challenge es, and check that it equals an incoming response of type
¢ Response fs, we can conclude that the eventssn- fs may safely be performed. The
attribute/ is eitherPublic or Private; the former means the nonce may eventually be
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public, while the latter means the nonce is never made public. Fyplc Challenge es
is public, or tainted, just its = []. Type Public Response fs is always public, but
tainted just ifes = []. NeitherPrivate Challenge es nor Private Response fs is public;
both are tainted.

An effectes is a multiset, that is, an unordered list of atomic effeets, f. Effects
embedded in challenge or response types signify that certain actions are justified, that
is, may safely be performed. An atomic effeatl L justifies a single subsequent end-
event labelled, and is justified by a distinct, preceding begin-event labelledAn
atomic effectheck ¢ N justifies a single subsequent check that aesponse equals an
¢ challenge named/, where/ is Public or Private, and is justified by freshly creating
the challengeV. An atomic effecttrust M:T justifies casting messagd to typeT,
and is justified by showing that/ indeed has typé.

Processes:
I 1
O,P,Q,R ::= process
out M N output
inp M (z:T); P input (x bound inP)
repeat inp M (x:T); P replicated input«{ bound inP)
split M is (z1:T1, ..., x,:Ty); P record splitting
match M is (N, y:T); P pair matching ¢ bound inP)
case M is t;(z;:T;); P; €1 tagged union case;(distinct)
if M = N then P else Q conditional (new)
new (x:T); P name generationz(bound inP)
PlQ composition
stop inactivity
decrypt M is {x:T} ;P symmetric decrypt# bound inP)
decrypt M is {|z:T|} y—1;P asymmetric decrypty(bound inP)
check M is N; P nonce-checking
begin L; P begin-assertion
end L; P end-assertion
cast M is (x:T); P cast to nonce type
witness M:T'; P witness testimony
trust M is (x:T'); P trusted cast

The processesut M N andinp M (x:T); P are output and input, respectively,
along an asynchronous, unordered chanvfel If an outputout = N runs in par-
allel with an inputinp z (y); P, the two can interact to leave the residual process
P{y<—N}, the outcome of substituting/ for each free occurrence gfin P. We
write out = (M); P as a simple shorthand fout « M | P.

The processepeat inp M (x:T'); P is replicated input, which behaves like input,
except that each time an input 8f is performed, the residual proceBf{y—N} is
spawned off to run concurrently with the original processeat inp M (2:T); P.

The processplit M is (x1:T1, ..., x,:T,); P splits the recordV/ into its n com-
ponents. IfM is (M, ..., M,), the process behaves B§xz1—M;} - - {z,«—M,}.
Otherwise, it deadlocks, that is, does nothing.
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The processnatch M is (N, y:U); P splits the pair (binary record)/ into its two
components, and checks that the first on®&idf M is (N, L), the process behaves as
P{y—L}. Otherwise, it deadlocks.

The procesgase M is t;(x;:T;); P; ‘1™ checks the tagged unial/. If M is
t;(L) for somej € 1..n, the process behaves B§x;—L}. Otherwise, it deadlocks.

The processf M = N then P else Q behaves a® if M and N are the same
message, and otherwise@s (This process is not present in the original calculus [23]
but is a trivial and useful addition.)

The processiew (x:T); P generates a new namg whose scope i, and then
runs P. This abstractly represents nonce or key generation.

The process | Q runs processeB and( in parallel.

The processtop is deadlocked.

The processdecrypt M is {«:T'} ;P decryptsM using symmetric key. If M is
{L} n, the process behaves B§z—L}. Otherwise, it deadlocks. We assume there is
enough redundancy in the representation of ciphertexts to detect decryption failures.

The processlecrypt M is {|z:T'|} y—1;P decryptsM using asymmetric key. If
M is {|L[}gncrypt (k) @nd N is Decrypt (K), then the process behaves@gr«—L}.
Otherwise, it deadlocks.

The procesgheck M is N; P checks the messag@$ and N are the same name
before executing®. If the equality test fails, the process deadlocks.

The processegin L; P autonomously performs a begin-event labellecnd then
behaves a®.

The procesend L; P autonomously performs an end-event labelledand then
behaves a®.

The processast M is (x:T'); P binds the messag¥/ to the variable: of type T,
and then runs. In well-typed programs)/ is a challenge of typé Challenge es, and
T is a response typéChallenge fs. This is the only way to populate a response type.

The processvitness M:T'; P simply runsP, but is well-typed only ifAM has the
typeT'. This is the only way to justify arust M:T effect.

The processrust M is (z:T'); P binds the messag¥ to the variabler of typeT’,
and then rund”. In well-typed programs, this cast is justified by a previous run of a
witness M:T'; () process.

Next, we recall the notions of process safety, opponents, and robust safety intro-
duced in Section 4. The notion of a run of a process can be formalized by an operational
semantics.

Safety:
I

A processP is safeif and only if
for every run of the process and for evdry

there is a distincbegin L event for everyend L event.
L |

Opponents and Robust Safety:
I

A processP is assertion-freéf and only if
it contains no begin- or end-assertions.
A processP is untypedif and only if
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the only type occurring irP is Un.
An opponen is an assertion-free untyped process.
A processP is robustly saféf and only if

P | O is safe for every opponenl.

Our problem, then, is to show that processes representing protocols are robustly
safe. We appeal to a type and effect system to establish robust safety (but not to define
it). The system involves the following type judgments.

JudgmentsFE + 7:
I

EFrko good environment

Etes good effectes

ERT good typeTl’

E-M:T good message/ of typeT
EFP:es good proces® with effectes
L

We omit the rules defining these judgments, which can be found in [23]; our previ-
ous informal explanation of types should give some intuitions.

We made two additions to the language as defined in [23], namely the empty record
type() (and corresponding empty record messggeand the conditional forrif M =
N then P else Q. The empty record type can be handled by simply extending the typing
rules for records to the case where there are no elements. The main consequence of this
is that the typd) will be isomorphic to the typéin, by the extended subtyping rules.
The extension of spi to handle the conditional is similarly straightforward, except that
we need to actually add a transition rule to the operational semantics, and a new typing
rule to propagate the effects. For completeness, we describe the additions here, with
the understanding that they rely on terminology defined and explained in [23]:

Extensions to Spi for the Conditional:
I 1

[if M = N then Py else Pryse] + As — [Py=n] + As transition rule

(Proc If)
EF-M:Top EFN:Top EFP:es EFQ:fs
ErFif M =NthenPelse@ :esV fs

typing rule

The type and effect system can guarantee the robust safety of a process, according
to the following theorem [23]:

Theorem 5 (Robust Safety)If z;:Un,...,z,:Un+ P : [] thenP is robustly safe.

D Formal translation of the Object Calculus
In this appendix, we give the complete translation of our object calculus into the spi-

calculus. The translation acts on both types and expressions. The translation presented
in Section 4 was incomplete, in that it did not address types.
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D.1 Types Translation
The translations for types is straightforward.

Type Translation;
I

Prin £ Un
[Id] £ Prin
I[[c]] £ Union(null(Un), ¢(Un))

A consequence of this translation is tljat] is isomorphic toUn for all typesA.
Formally,

Lemma 3 [A] <:> Un - for all typesA.

In practice, this means that we can replded by Un in type derivations, and vice
versa.

Environment Translation:

I

[z1:A1, ... 20 AL = 2 [Ad], - 20 [AL]
L

If As = Aq,..., A, andas = z1,...,x, we sometimes writd3(As xs) as short-
hand for the signatur8(A; x1,..., A, zp).

Request and Response Types:
I

[[A17._,7Am]]é[[Al]],---7|IAmH ) )
Reg(w), Res(w) £ (Union(£;([As]) "€, Union(£;([B;]) €1-™))

whereclass(w) = ¢ andmethods(c) = £; — (B;(As;as;),b;) €1
L |

D.2 Translation of Expressions

The translation of expressions really acts on the type derivation of an expression, not
just the expression itself. This means that during the translation of an expression, we
have access to the types of the subexpressions appearing in the expression. To reduce
clutter, we write the translation as though it is acting on the expression itself, except
that when we need access to the type of a subexpression, we annotate the appropriate
subexpression with its type. For example, the translatiolziof=a in b depends on

the type ofa, which is available through the type derivationiof- let x=a in b : B.

We write let z=a 4 in b to indicate that the type of is A, according to the type
derivation.

Translation of a Value v to a Messaggv]:
I

[z] £ =

[null] = null()

[new c(vy,...,v.)] = e([vi], -+, [vn])

Ir] £p
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Translation of a Method Body b to a Procesgb[}:

I
[v]Y £ out k [v]
[let x=a 4 in b)Y = new (k":Un); ([a]}, | inp &’ (2:Un); [b]%)
[if uw = v then a else b]}, = if [u] = [v] then [a]?, else [b]}
[ve.£;1% £ case [v] is null(y:Un); stop
is c(y:Un);splity is (x1:[A1], - .., zn:[AL]); out k
wherefields(c) = f; — A; "€+, andj € 1..n
[vel(ui, ..., u,)]E = case [v] is null(y:Un); stop
is c(y:Un);out c_? (p, [v], [u1], - - -, [un], k)

Translation of Method ¢ of Classc:
I 1

L 1ass(c, ) = repeat inp c_¢ (2:Un);
split z is (p:Prin, this:Un, z1:[A1], ..., 2,:[An], k:Un); [b]%
wheremethods(c)(¢) = (B(A1 z1,..., A, n),b)

Type of Key Shared Between Clienp and Serveryg:
I

CSKey(p,q) =
SharedKey(Union(req(w:Un, a:Un, ¢:Un,
nq:Public Response [end req(p, ¢, w, a,t)]),
res(w:Un, r:Un, ¢:Un,
n,:Public Response [end res(p, ¢, w, r,t)])))

Semantics of Web Method Call:

I
[w:l(us, ... u,)]% £
new (k1:Un, k2:Un, t:Un, n,:Public Challenge []);
begin req(p, q,w, Z(Hul}]a ) [[unﬂ)a t);
out w (req(getnonce()), k1);
inp k1 (res(getnonce(ng:Un)));
cast n, is (ng:Public Response [end req(p, ¢, w, £([u1], - . ., [un]), )]);
out w (p, {req(w, £([us], ..., [unl), ;1) } i,y s s b2);
inp k2 (¢:Un, bdy:Un);
decrypt bdy is {res(plain)} Kk, ;
match plain is (w, rest:(r: Res(w), ¢’ :Un, Public Response [end res(p, ¢, w,r,t')]));
split rest is (r:Res(w), rest’:(t":Un, n;,:Public Response [end res(p, ¢, w, 7, t')]));
match rest’ is (t,n;,:Public Response [end res(p, ¢, w, r,1)]);
check n, is nj,;
end res(p, q, w, 1, t);
caseris {(x);out k x
whereq = owner(w)
L
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Server-Side Invocation of Web Method:

I
let z=call, (p, args); P =
new (k);
case args
new (k'); (out c_¢; (q,c(p), zs;, k') | inp k' (r);out k £;(r))
1€l..n
| inp k (x); P
wherec = class(w), ¢ = owner(w),
andmethods(c) = {; — (B;(As;, xs;),b;) *€Hn

Web Service Translation:

I
Is(w) = repeat inp w (bdy:Un, k;:Un);
case bdy is req(getnonce());
new (n4:Public Challenge []);
out k1 (res(getnonce(nyg)));
inp w (p":Un, cipher:Un, n,:Un, ka:Un);
HpEPrin if p= p/ then
decrypt cipher is {req(plain)}
match plain is (w, rest:
(a:Reg(w), t:Un, Public Response [end req(p, ¢, w, a, t)]));
split rest is (a:Reg(w), t:Un, ng:
Public Response [end req(p, ¢, w, a, t)]);
check n, is ny;
end req(p, q,w, a, t);
let r: Res(w)=call,, (p, a);
begin res(p, q, w,r,t);
cast ny, is (n;,:Public Response [end res(p, ¢, w, 7, t)]);
out ky (g, {res(w,r,t,n;)}k,,)
whereg = owner(w)

prq’

Implementation of Classes and Web Services:

I
ClMeth £ {(c,?) : c € Class, ! € dom(methods(c))}
Telass = H(c,é)eClMeth Tetass (e, 0)

II"US 2 Hwe WebService IU’S (w)

Top-Level Environments:
I

Eelass = (c4:Un) (©)ECIMeth

Eeys = (Kpq:CSKey(p, q)) Pacfrin

By 2 (w:Un) wEWebService

Eprin = p1:Prin, ..., p,:Prin wherePrin = {p1,...,pn}
|Ej0 = Ews, Eprin7 Eclasw Ekeys
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Some general remarks on typing are in order. A consequence of Lemma 3, as well
as our general use of types, reveals that we rely on typing exclusively to show security
properties, not to establish standard safety results. For instance, we do not use types
to ensure that the type of the arguments supplied at method invocation match the type
of the parameters to the method. Indeed, the only channel type in our translation has
itself typeUn.

In order to prove Theorem 1, we first establish some lemmas.

Lemma 4
(1) If EFv: AthenEy ., [E] F [v] : [A]-
2 fEFa:AandEy, [E]F p: Prinandk ¢ dom(Ey, [E]) then:
Eo, [E], k:Un F [al} : []

(3) If ¢ € Class and? € dom(methods(c)) thenEy k- I qss(c, £) = [].
(4) If w € WebService thenEy - I,s(w) : [].

Proof
(1) We prove this by induction on the height of the type derivationHadr v : A:

- Casev = z: SinceE F x : A, we must haver:A € E. By definition of
the translation for environment;[A] € [E], henceE, ., [E] F = : [A],
as required.

- Casev = null: We haveE  null : ¢. Since[c¢] = Union(null(), ¢(Un))
and [null] = null(), we haveE,;,, [E] F null() : Union(null(Un),
¢(Un)), as required.

- Casev = new ¢(vy,...,v,): SinceE F v : A, whereA = ¢, we have
fields(c) = fi — A; *€+" andE & v; : A;foralli € 1.n. LetE' =
Eprin, [E]. By induction hypothesist’ i [v;] : [4;] foralli € 1..n. We
can now derive:

E'+ (o], .-+, [val) - (JA4], - - -, [AR])
E'F Jv],. -, [vn] - (Un, ..., Un)
E'F [vi],-.., Jvn] : Un
E'+ ¢([v1],-- -, [vn]) : Union(null(Un), c(Un))

- Casev = p: SinceFE F p : A (with A = Id), we havep € Prin, hence
p:Prin € E,.,. Since[Id] = Prin, we haveE,,,, [E] + p : Prin, as
required.

(2) Again, we proceed by induction on the height of the type derivatiofféra :
A.
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Casea = v: We can apply the result of part (1). Sinéet v : A, then
Eprin, [E] F [v] : [A]. We can derive:
EO, HE]] F [[U]] : [[A]]
Eo,[E],k:Untk:Un Eg[E]F [v] : Un
Ey, [E], k:Un k- out k [v] : []

Casea = let x=agq in b: We haveE + aq : B for someB, andFE, z:B +
b : A. Applying the induction hypothesis, we deri&, [E], k":Un
laoly, : [] andEy, [E], :[B], k:Un & [b]}, : []. Let E' = Ey, [E], k:Un.
We can now derive:
E'E':Un,2:[B] + [b]}, : []
E' E':UnkE :Un FE K:Un,z:Unt [0} : []
E' E:Unt [a]}, : [] E' kE":Unkinp k" (x:Un); [b]} : []
E' E:Unt [a]?, | inp &' (z:Un); [b]7 : []
E'+ new (K":Un); ([a]}, | inp k" (z:Un); [b]%) : []

Casea = if u = v then ag else a1: We haveE - v : B, E+ v : B,
Etag: A, andE + a; : A. Applying the induction hypothesis, we derive
Ey, [E], k:Un + [ao]} : [] and Ey, [E], k:Un F [ao]% : []. By (1), we
also haveEy, [E] + [u] : [B] andEy, [E] + [v] : [B]. This gives us
Eo,[E], k:Un F if [u] = [v] then [ao]} else [a1]}, : [], as required.

Caseq = v.f;: We haveE - v.f; : A;, whereE - v : c andfields(c) =
fi— Aj€Lm By (1), Eo, [E] & [v] : [c]. LetE’ = Eq, [E], k:Un. First,
let us derive thal’, y : Un b split yis (z1:[A1], ..., zn:[An]);out k z; :

[]. Let B = z1:[A1],...,2n:[An]. (We trim the environments where
possible to reduce clutter.)

Ey:UnE"Fz;:[A)]
E'Fk:Un  E' y:UnE"Fz;:Un
E',y:Unky:Un E',y:Un,E"Foutkxj: ]
E' y:Unksplityis (z1:[A1], ..., zn:[An]);out k z; : []

We can now derive:
E’ F [v] : Union(null(Un), ¢(Un))
E’,y:Unk stop:[]
E' y:Unksplityis (z1:[A1], ..., zn:[An]);out k z; : []
E' I case [v] is null(y:Un); stop
is c(y);splityis (z1:[A1], - - -, zn:[An]);out k x; : []

Casea = v.lj(u1,...,un): We haveE + v.l;(uy,...,uy) : B, where
E v : ¢, methods(c) = €; — (sig;,b;) "<, sig; = B(Ay x1, ...,
Apm xy), aNdE F uy © A forall k € 1.m. By (1), Eo, [E] & [ui] :

37



[Ag] forall k € 1.m. Let E' = Ey, [E], k:Un. First, let us derive that
E' y:Untout el (p,[v], [ui],-- -, [un], k) : []-
E' y:Unkct:Un E' y:Unt (p,[v], Juil,-- -, [un], k) : Un
E' y:UntFout el (p,[v], [ui],-- -, [us], k) : []

We can derive:

E' I [v] : Union(null(Un), c(Un))
E' y:Un F stop : []
E' y:Untout el (p,[v], [ui],- .-, [us], k) : []

E' + case [v] is null(y:Un); stop
is c(y);out c_€ (p, [v], [u1], - - -, [un], k) : ]

Casea = wilj(uq, ..., uy): We haveE F w:l;(uq, ..., uy) : B, where
class(w) = ¢, owner(w) = q, methods(c) = ; — (sig;,b;) ‘€7,
sig; = B(Arz1,..., Ay o), aNdE =y, © Ay forall k € 1..m. By (1),
Eo, [E] F [ux] : [Ax] for all & € 1..m. Rather than giving the full type
derivation for the translation of a web service call, we outline the derivation
of effects:

new (k1:Un, k2:Un, ¢:Un, n,:Public Challenge []);

Il Effect: [check Public n,)]

begin req(p, ¢, w, €([u1], ..., [un]), t);

/I Effect: [check Public n,,end req(p, ¢, w, £(Jui], - - -, [un]), t)]

out w (req(getnonce()), k1);

Il Effect: [check Public n,,end req(p, ¢, w, £(Jui], .. ., [un]), t)]

inp k1 (res(getnonce(ng:Un)));

Il Effect: [check Public n,,end req(p, g, w, £([u1], ..., [u,]), )]

cast n, is (ng:Public Response [end req(p, ¢, w, £([u1], ..., [un]), 1)]);

/I Effect: [check Public n,)]

out w (p, {req(w, £([u1], ..., [unl), ;1) } iy ps b2);

Il Effect: [check Public n,]

inp k2 (¢:Un, bdy:Un);

/I Effect: [check Public n,]

decrypt bdy is {res(plain)} k,,;

Il Effect: [check Public n,)]

match plain is (w, rest:

(r:Res(w), t":Un, Public Response [end res(p, ¢, w,7,t')]));
/I Effect: [check Public n,]
split rest is (r: Res(w), rest’:
(t":Un, n,:Public Response [end res(p, ¢, w, 7, t')]));

Il Effect: [check Public n,)]

match rest’ is (t, n;,:Public Response [end res(p, ¢, w, 7, t)]);

/I Effect: [check Public n,]

check n, is n);

/I Effect: [end res(p, ¢, w, 1, t)]
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end res(p, q,w,r,t);
/I Effect: []

caseris f(x);out k x
/I Effect: []

(3) Recall that we assume that method bodies are well-typed, that is, we assume for
c,£j with methods(c) = {; ~— (sig;,b;) andsig; = B(A;y a1,..., Am Tm),
that this:c,z1:A1, ..., xm:Am F b; © B. By clause (2) above, this means that
Ey, this:[c], z1:[A1], - . ., 2m:[An], k:Un E [b;]7 : []. Applying Lemma 3, we
derive Ey, this:Un, z1:Un, ..., zp:Un, k:Un = [b;]} : []. We can now easily
derive the following:

Ep,z:Unt z: (Prin,Un,... Un)
Ey, z:Un, p:Prin, this:Un, z1:Un, ..., z,:Un, k:Un - [b,]} : []

Eobctl:Un  Ey,z:Unk split zis (p:Prin, this:Un, z1:Un, ..., 2,:Un, k:Un); [b;]% : []

Ey - repeat inp c_{ (z);split z is (p:Prin, this:Un, z1:Un, ..., z,:Un, k:Un); [b,]7 : []
EO F Iclass(cv K) : H

(4) Letw € WebService, with owner(w) = g. First, note that the following deriva-
tion is admissible:
Ey,E+-p: Prin Ey,Eta: Req(w) Ey, E,r:Res(w)k P :es
Ey, E F let r:Res(w)=call,, (p,a); P : es

(The proof is a straightforward, if longish, type derivation.) Rather than giving
the full type derivation for the implementation of web servieewe outline the
derivation of effects:

repeat inp w (bdy:Un, kq:Un);
Il Effect: []
case bdy is req(getnonce());
Il Effect: []
new (n4:Public Challenge []);
Il Effect: [check Public ng]
out k1 (res(getnonce(ny)));
/1 Effect: [check Public ng]
inp w (p:Un, cipher:Un, n,:Un, ka:Un);
Il Effect: [check Public ng]
HpEPrin if b= p/ then
Il Effect: [check Public ng]
decrypt cipher is {req(plain) } k
/1 Effect: [check Public ng]
match plain is (w, rest:(a: Req(w), t:Un,

Public Response [end req(p, ¢, w, a,t)]));
Il Effect: [check Public ng]

rq’
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split rest is (a:Req(w), t:Un, nj:Public Response [end req(p, ¢, w, a, t)]);
Il Effect: [check Public ng]

check n, is ny;

Il Effect: [end req(p, ¢, w, a,t)]

end req(p, ¢, w, a, t);

Il Effect: []

let r: Res(w)=call,, (p, a);
Il Effect: []

begin res(p, q, w, r,t);

Il Effect: [end res(p, ¢, w, 7, )]

cast ny, is (n,,:Public Response [end res(p, ¢, w, 7, t)]);
Il Effect: []

out ka (g, {res(w,r,t,n;)}k,,)

/I Effect: []

Lemma5 If @+ a: Aandp € Prin andk ¢ dom(Ey) then:
EwsaEprin F new (Ecla,ssaEkeys); (Iclass | st | new (kUn), [[a]]z) : H

Proof Thisis a corollary of Lemma 4. Specifically, we can derive:

Eo b Iclass(c7 f) . H (¢,0)€ ClMeth Fo b st(,w) . H we WebService EO’ k:UnF [[a]]z . H
Eo b Igss i [] Eo b Lys i [] Eo - new (k:Un); [a]? : []

Eo b Ioass | Tws | new (k:Un); [a]? : []
Ewstprin '_ new (Eclasstkeys); (Iclass ‘ st ‘ new (kUn)7 [[a]]i) : H

O
We can now rephrase Theorem 1 formally, and prove it.
Theorem 6 If o+ a: Aandp € Prin andk ¢ dom(Ey) then the system
new (Eciass, Ereys); Lciass | Tws | new (k:Un); [a]})
is robustly safe.
Proof ByLemmabs,
Ews, Eprin F new (Eciass, Ereys); (Leiass | Lws | new (k:Un); [a]?) : [].

Robust safety of the system follows by Theorem 5. |

E Implementation Using Asymmetric Cryptography
The security abstraction we describe in Section 2 relies on shared keys between princi-

pals. This is hardly a reasonable setup in modern systems. In this appendix, we show
that our approach can easily accommodate public-key infrastructures.
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E.1 Authenticated Web Methods

We start by describing the protocol and implementation for authenticated web methods.
Hence, for now, we assume that all the exported methods of a web service are annotated
with Auth .

Consider a simple public-key infrastructure for digital signatures. Each principal
p has a signing keysKp and a verification keyWKp. The signing key is kept pri-
vate, while the verification key is public. To bind the name of a principal with their
verification key, we assume eertification authority CA (itself with a signing key
SKCA and verification keyVKCA) that can sign certificate€ertVKp of the form
{lp, VKpl} skca. (The notationy - [} x is used to represent both asymmetric encryption
and signature, differentiating it from symmetric encryption. In the case whefg x
represent a signature, this is simply notationfé6ralong with a token representing the
signature ofA/ with asymmetric keyx'.)

Here is a protocol that uses digital signatures to authenticate messages)dkr
ing a web service calb:{(uq, ..., u,) to servicew owned byg, including the names
of continuation channels used at the spi level. Again, we assume that in addition to the
methods ofclass(w), each web service also supports a methethonce, which we
implement specially.

p — gonw : CertVKp,n,, req(getnonce()), ki

g — ponk; : CertVKq, res(getnonce(ng))

p— qonw : p,{req(w,l(u1,...,un),t,qng)}skp, k2
g —ponks : q,{res(w,l(r),t,p,np) [} skq

Type of Signing Keys:

AuthMsg(p) =
Union(reg(w:Un, a:Un, ¢:Un, g:Un, ny:Public Response [end req(p, ¢, w, a,t)]),
res(w:Un, r:Un, ¢:Un, g:Un, n,:Public Response [end res(g, p, w, r,t)]))
AuthKeys(p) £ KeyPair(AuthMsg(p))
AuthCert £ (p : Un, Decrypt Key(AuthMsg(p)))
AuthCertKeys = KeyPair(AuthCert)
L

We will represent the key pair of a signing key and verification key for pringipal
by a pairDSp, of type AuthKeys(p). The key pair for the certification authority will
be represented by a pditSCA. We use the following abbreviations:

Key and Certificates Abbreviations:

I

SKp £ Encrypt (DSp) p's signing key
VKp 2 Decrypt (DSp) p’'s verification key
CertVKp = {|p, VKp[} skca p’s certificate

L

With that in mind, we can amend the translation of Section 4 to accommodate the
new protocol. First, we give a new translation for a web methodwedllu,, . . ., u,):
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New Semantics of Web Method Call:

I
[wl(uy, ... ,u,)]E =

new (k1:Un, k2:Un, t:Un, n,:Public Challenge []);
begin req(p, ¢, w, €([ua], - - ., [un]), t);
out w (CertVKp,n,, req(getnonce()), k1);
inp k1 (c:Un, res(getnonce(ng:Un)));
decrypt cis {|cert:(¢’:Un, Decrypt Key(AuthMsg(¢)) [} vixca-1;
match cert is (q, vkg:Decrypt Key(AuthMsg(q)));
cast n, is (ng:Public Response [end req(p, ¢, w, £([u1], ..., [un]), )]);
out w (pa {|TBQ(U)7 g([[ul]]v te [[un]])v t,q, n/q)|}SKp’ kQ);
inp k2 (¢":Un, bdy:Un);
decrypt bdy is { res(plain:(w’:Un,r:Un,¢':Un, p":Un,
Public Response [end res(p’, ¢, w’, 7, t')])) [} yrg—1;

match plain is (w, rest:(r:Res(w), t':Un, p’:Un,

Public Response [end res(p’, q,w,r,t")]));
split rest is (r: Res(w), rest’:(¢':Un, p’:Un,

Public Response [end res(p’, q, w,r,t')]));
match rest’ is (¢, rest”:(p’:Un, Public Response [end res(p’, ¢, w, r,1t)]));
match rest” is (p, n;,:Public Response [end res(p, ¢, w,7,1)]);
check n, is ny);
end res(p, q,w,r,t);
caseris {(x);out k x

whereq = owner(w)
L |

We also need to give a new implementation for web services, again to take into
account the different messages being exchanged:

New Web Service Translation:
I 1

Lys(w) &
repeat inp w (c:Un, n,:Un, bdy:Un, k;1:Un);
case bdy is req(getnonce());
decrypt ¢ is {|p:Un, vkp:Decrypt Key(AuthMsg(p))[} vxca-1;
new (n4:Public Challenge []);
out k1 (CertVKyq, res(getnonce(ng)));
inp w (p':Un, cipher:Un, ko:Un);
if p=p’ then
decrypt cipher is {|req(plain:(w:Un, a:Un, t:Un, ¢":Un,
Public Response [end req(p, ¢, w, a, t)])) [} yrp—1;
match plain is (w, rest:(a: Req(w), t:Un, ¢":Un,
Public Response [end req(p, ¢, w, a,t)]));

split rest is (a:Req(w),
t:Un, rest’:(q":Un, Public Response [end req(p, ¢', w, a, t)]));
match rest’ is (¢, n;:Public Response [end req(p, ¢, w, a,t)]);
check ng is ny;
end req(p, g, w, a, t);
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let r: Res(w)=call,, (p, a);

begin res(p, g, w, r, t);

cast ny, is (n;,:Public Response [end res(p, ¢, w, 7, t)]);
out ka (g, {res(w,r,t,p,n},) [} sxq)

whereq = owner(w)
L |

Finally, we need to change the top-level environment to account for the new keys,
and to add a channel through which we will publish the public keys.

Top-Level Environments:
I

EClass = (C,EIUn) (e,)e ClMeth

Eleys £ DSCA:AuthCertKeys, (DSp:AuthKeys(p)) PEP™™

Ews 2 (w:Un) we WebService

Eprin = p1:Prin, ..., p,:Prin wherePrin = {p1,...,pn}
Enet é n€t1Un

EO = Ews, EPM"’ Enet, Eclassa Ekeys

L

Publishing can be achieved by simply sending the public keys on a public channel,
herenet:

Public Keys Publishing:
I
It 2 out net (VKCA, (VKp) PEPT™)

We can now establish that the resulting system is robustly safe:

Theorem 7 If @+ a: Aandp € Prin andk ¢ dom(Ey) then the system
new (Eclass;Ekeys); (Inet ‘ Iclass | st | new (kUn), Haﬂz)
is robustly safe.

Proof Rather than giving a full proof, we point out the parts of the proof of The-
orem 6 that need to be updated. Essentially, we need to show that the new semantics
for web method invocations is effect-free, and similarly for the new implementation of
web services. These occur in the proof of Lemma 4, part (2) and (4).

As we did in Lemma 4, rather than giving the full type derivation for the translation
of a web service call, we outline the derivation of effects:

new (k1:Un, ko:Un, t:Un, n,:Public Challenge []);

Il Effect: [check Public n,]

begin req(p, ¢, w, £([ur], ..., [un]), t);

Il Effect: [check Public n,, end req(p, ¢, w, £([ui], ..., [us]), )]

out w (CertVKp,n,, req(getnonce()), k1);

Il Effect: [check Public n,, end req(p, ¢, w, £([ui], - - -, [un]), t)]

inp k1 (c:Un, res(getnonce(ng:Un)));

Il Effect: [check Public n,, end req(p, ¢, w, £([ui], . . ., [un]),t)]
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decrypt ¢ is {|cert:(¢’:Un, Decrypt Key(AuthMsg(¢')) [} vica-1;
Il Effect: [check Public n,, end req(p, ¢, w, £([u1], - - ., [un]), t)]
match cert is (g, vkq:Decrypt Key(AuthMsg(q)));
Il Effect: [check Public n,, end req(p, ¢, w, £([ui], . . ., [un]),t)]
cast ng is (ng:Public Response [end req(p, g, w, £([ud], - . ., [un]), t)]);
Il Effect: [check Public n,]
out w (p, {req(w, (([ur], ..., [un]), t, ;1) [} skp, k2);
Il Effect: [check Public n,)]
inp k2 (¢:Un, bdy:Un);
Il Effect: [check Public n,)]
decrypt bdy is {res(plain:(w’:Un,7:Un,¢':Un, p’:Un,
Public Response [end res(p’, g, w’, 7, t")])) [} yq—15
Il Effect: [check Public n,]
match plain is (w, rest:(r: Res(w), t':Un, p’:Un,
Public Response [end res(p’, ¢, w,r,t')]));
Il Effect: [check Public n,]
split rest is (r:Res(w), rest’:(¢':Un, p’:Un,
Public Response [end res(p’, g, w,r,t')]));
Il Effect: [check Public n,)]
match rest’ is (¢, rest”:(p’:Un, Public Response [end res(p’, ¢, w,r,t)]));
Il Effect: [check Public n,]
match rest” is (p, ny,:Public Response [end res(p, ¢, w, 7, t)]);
Il Effect: [check Public n,]
check n, is ny;
Il Effect: [end res(p, ¢, w,,t)]
end res(p, q,w,r,t);
Il Effect: []
caseris {(x);out k x
Il Effect: []

For the new implementation of web serviae rather than giving the full type
derivation, we outline the derivation of effects:

repeat inp w (c:Un, ny:Un, bdy:Un, k;1:Un);
Il Effect: []

case bdy is req(getnonce());

Il Effect: []

decrypt ¢ is {|p:Un, vkp:Decrypt Key(AuthMsg(p))[} vxca-1;
Il Effect: []

new (ng:Public Challenge []);

Il Effect: [check Public ng]

out ky (CertVKyq, res(getnonce(ng)));

Il Effect: [check Public ng]

inp w (p":Un, cipher:Un, ko:Un);

/1 Effect: [check Public ng]

if p=p’ then

Il Effect: [check Public ng]
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decrypt cipher is {{req(plain:(w:Un, a:Un, t:Un, ¢":Un,
Public Response [end req(p, ¢', w, a,t)])) [} prp—1;
Il Effect: [check Public ng]
match plain is (w, rest:(a:Req(w), t:Un, ¢':Un,
Public Response [end req(p, ¢', w, a,t)]));
Il Effect: [check Public ng]
split rest is (a:Reg(w),
t:Un, rest’:(¢’:Un, Public Response [end req(p, ¢', w, a,t)]));
Il Effect: [check Public ng]
match rest’ is (g, n,:Public Response [end req(p, ¢, w, a, 1)]);
Il Effect: [check Public ng]
check ng is ny;
Il Effect: [end req(p, q, w, a, t)]
end req(p, q,w, a, t);
Il Effect: []
let r: Res(w)=call,, (p, a);
Il Effect: []
begin res(p, q, w, r,t);
Il Effect: [end res(p, ¢, w, r,t)]
cast ny, is (n;,:Public Response [end res(p, ¢, w,7,t)]);
Il Effect: []
out ka (g, {{res(w, r,t,p,ny,) [} srq)

Il Effect: []
O

The protocol we give above to provide authentication has some undesirable prop-
erties. Specifically, it requires the server to remember the certificateV/Kp and
noncen, at the time when a nonce is requested. Since anyone can request a nonce,
and no authentication is performed at that stage of the protocol, this makes the server
severely vulnerable to denial-of-service attacks. The following variation on the proto-
col achieves the same guarantees, but pushes the exchange of certificates and nonces to
later messages, basically just when they are needed.

p — qonw : req(getnonce()), ki

g — ponk; : res(getnonce(ng))

p—qonuw:p, Ce?”tVKP» Np, {|7’eq(w, g(ula s 7un)7 ta q, nq)|}SKp> k2
q — ponksy: q, CertVKq, {{res(w, £(r),t,p,np) [} skq

E.2 Authenticated and Encrypted Web Methods

We now describe a protocol and implementation for authenticated and encrypted web
methods. Hence, for now, we assume that all the exported methods of a web service
are annotated witAuthEnc .

The public-key infrastructure we consider for this case is similar to the one for au-
thenticated web methods, except that now we have encryption and decryption keys, as
opposed to signing and verification keys. Each principlads an encryption kef Kp
and a decryption keypKp. The decryption key is kept private, while the encryption
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key is public. To bind the name of a principal with their encryption key, we again
assume aertification authorityCA (with a signing keySKCA and verification key
VKCA) that can sign certificateSertEKp of the form{|p, EKp[} sxca.

Here is a protocol fop making a web service calb:{(uq, ..., u,) to servicew
owned byg, including the names of continuation channels used at the spi level. Again,
we assume that in addition to the methodsieks(w), each web service also supports
a methodgetnonce, which we implement specially. The protocol uses public key en-
cryption to exchange a session-specific sharedkesged to encrypt the actual method
call.

p — qgonw : CertEKp, req(getnonce()), k1

g — ponk; : CertEKq, {|{msgs(q,ni)[} Exp, res(getnonce(ny))

p — qonw : {msgs(w,p, K,nK) [} 5xq, M, {req((ua, ..., un), t,ng) i, k2
g—ponks : {res(t(r),t,ny) } x

Type of Keys:
I

SKey(p, q,w) £

SharedKey(Union(reg(a:Un, t:Un, ng:Public Response [end req(p, ¢, w, a, t)]),

res(r:Un, t:Un, n,:Public Response [end res(p, ¢, w,r,t)])))

AuthEncMsg(p) £

Union(msgz (q:Un, ng :Private Challenge []),

msgs(w:Un, ¢:Un, K:Top,
nk:Private Response [trust K:SKey(p, ¢, w)]))

AuthEncKeys(p) = KeyPair(AuthEncMsg(p))
AuthEncCert = (p:Un, Encrypt Key(AuthEncMsg(p)))
AuthEncCertKeys = KeyPair(AuthEncCert)
L

We will represent the key pair of an encryption key and decryption key for principal
p by a pair PKp, of type AuthEncKeys(p). The signing key pair for the certification
authority will be represented by a pditSCA. We use the following abbreviations:

Key and Certificates Abbreviations:
I

EKp = Encrypt (PKp) p’s encryption key
DKp £ Decrypt (PKp) p’s decryption key
CertEKp = {p, EKp|} sxca p's certificate

L

Again, we can amend the translation of Section 4 to accommodate the new protocol.
First, we give a new translation for a web method eall(u;, ..., u,):

New Semantics of Web Method Call:

I
[w:l(ug, ... u,)]} £

new (k1:Un, ko:Un, ¢:Un, n,:Public Challenge []);

begin req(p, g, w, {([ui], ..., [ua]), t);
out w (CertEKp, req(getnonce()), k1);
inp k1 (c:Un, cipher:Un, res(getnonce(ng:Un)));
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decrypt cis {|cert:(¢’:Un, Encrypt Key(AuthEncMsg(¢')) [} vica-1;
match cert is (q, ekg:Encrypt Key(AuthEncMsg(q)));
decrypt cipher is {{msgz(q":Un, ng:Un)[} pr,—1;
if ¢ = ¢ then
cast ng is (ng:Public Response [end req(p, ¢, w, (([ud], . - ., [un]), t)]);
new (K:SKey(p, ¢, w));
witness K:SKey(p, ¢, w);
cast ng is (n/y:Private Response [trust K:SKey(p, ¢, w)]);
out w ({{msgs(w, p, t, K, 0y ) [} ekg, nps {req(w, £([ua], . . ., [un]), t,ny) } i, k2);
inp ko2 (bdy:Un);
decrypt bdy is {res(plain:(r: Res(w), t":Un,
Public Response [end res(p, ¢, w, r,t')])) } k;
match plain is (r:Res(w), rest:(¢':Un, Public Response [end res(p, ¢, w,r,t')]));
match rest is (¢, n;,:Public Response [end res(p, g, w,7,t)]);
check n, is ny;
end res(p, q,w,r,t);
caseris {(x);out k x

whereq = owner(w)
L |

We also need to give a new implementation for web services, again to take into
account the different messages being exchanged:

New Web Service Translation:
I 1

Tus(w) &
repeat inp w (c:Un, bdy:Un, kq:Un);
case bdy is req(getnonce());
decrypt cis {|p:Un, ekp:Encrypt Key(AuthEncMsg(p))[} vkca-1;
new (n4:Public Challenge []);
new (n:Private Challenge []);
out k1 (CertEKq, {{msgzs(q,nK )|} erp, res(getnonce(ng)));
inp w (ciphery:Un, ny,:Un, ciphery:Un, ko:Un);
decrypt cipher;
is {{msgs (plain:(w:Un,p":Un, K:Top,
Private Response [trust K:SKey(p', ¢, w)]))} prg-—1;
match plain, is (w, rest:(p:Un, K:Top,
Private Response [trust K:SKey(p', ¢, w)]));
match rest is (p, rest’:(K:Top, Private Response [trust K:SKey(p, ¢, w)]));
split rest’ is (K:Top, n/y:Private Response [trust K:SKey(p, ¢, w)]);
check nk is n;
trust K is (K':SKey(p, ¢, w));
decrypt ciphery is {req(plainy:(a:Req(w), t:Un,
Public Response [end req(p, ¢, w, a,t)]))} k+;
split plain, is (a: Req(w), t:Un, ng:Public Response [end req(p, ¢, w, a,t)]);
check ng is ny;
end req(p, ¢, w, a,t);
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let r: Res(w)=call,, (p, a);
begin res(p, g, w, r, t);
cast ny, is (n;,:Public Response [end res(p, ¢, w, 7, t)]);
out ko {res(r,t,n,) }x/
whereq = owner(w)
L 1

Finally, we need to change the top-level environment to account for the new keys,
and to add a channel through which we will publish the public keys.

Top-Level Environments:
I

Eolass 4 (C,EZUH) (e,£)e CiMeth

Ejeys = DSCA:AuthEncCertKeys, (PKp:AuthEncKeys(p)) PEFmin

Ews L (’IUZUI"I) we€ WebService

Eprin = p1:Prin, ..., p,:Prin wherePrin = {p1,...,pn}
E,et £ net:Un

EO £ Ewsa Epri’ru Enet7 Ecla557 Ekeys

L

Publishing can be achieved by simply sending the public keys on a public channel,
herenet:

Public Keys Publishing:
I
Lt 2 out net (VKCA, (EKp) PEFTn)

We can now establish that the resulting system is robustly safe:

Theorem 8 If @+ a : Aandp € Prin andk ¢ dom(Ey) then the system
new (Eclass;Ekeys); (Inet ‘ Iclass | st | new (k‘Un), Ha]]z)
is robustly safe.

Proof  Rather than giving a full proof, we point out the parts of the proof of The-
orem 6 that need to be updated. Essentially, we need to show that the new semantics
for web method invocations is effect-free, and similarly for the new implementation of
web services. These occur in the proof of Lemma 4, part (2) and (4).

As we did in Lemma 4, rather than giving the full type derivation for the translation
of a web service call, we outline the derivation of effects:

new (k1:Un, ko:Un, t:Un, n,:Public Challenge []);
Il Effect: [check Public n,]

begin req(p, ¢, w, {([ui], - - ., [un]), t);
Il Effect: [check Public n,, end req(p, ¢, w, £([ui], . . ., [un]),t)]
out w (CertEKp, req(getnonce()), k1);
Il Effect: [check Public n,, end req(p, ¢, w, £([ui], - - ., [un]),t)]
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inp k1 (c:Un, cipher:Un, res(getnonce(ng:Un)));
Il Effect: [check Public n,, end req(p, ¢, w, £([u1], - - -, [un]), t)]
decrypt cis {|cert:(¢’:Un, Encrypt Key(AuthEncMsg(¢'))[} vkca-1;
Il Effect: [check Public n,, end req(p, ¢, w, £([ui], . . ., [un]),t)]
match cert is (g, ekq:Encrypt Key(AuthEncMsg(q)));
Il Effect: [check Public n,, end req(p, ¢, w, £([ui], - - ., [un]),t)]
decrypt cipher is {{msgz(q":Un, ng:Un)[} pg,-1;
Il Effect: [check Public n,, end req(p, ¢, w, £(Jui], - - ., [un]), t)]
if ¢ = ¢ then
Il Effect: [check Public n,, end req(p, ¢, w, £([ui], . . ., [un]), t)]
cast ng is (ng:Public Response [end req(p, g, w, £([ud], - . ., [un]), t)]);
Il Effect: [check Public n,]
new (K:SKey(p, ¢, w));
Il Effect: [check Public n,]
witness K:SKey(p, ¢, w);
Il Effect: [check Public n,, trust K:SKey(p, ¢, w)]
cast n is (n/y:Private Response [trust K:SKey(p, ¢, w)]);
Il Effect: [check Public n,]
out w ({{msgs(w, p,t, K, 0y ) [} kg, nps {req(w, £([ua], - . ., [un]), t,n}) } i, k2);
Il Effect: [check Public n,]
inp k2 (bdy:Un);
Il Effect: [check Public n,]
decrypt bdy is {res(plain:(r:Res(w), t':Un,
Public Response [end res(p, ¢, w, r,t')])) } k3
Il Effect: [check Public n,]
match plain is (r: Res(w), rest:(+':Un, Public Response [end res(p, ¢, w, r, t')]));
/1 Effect: [check Public n,]
match rest is (¢, n;,:Public Response [end res(p, ¢, w,,t)]);
Il Effect: [check Public n,]
check n, is nyy;
Il Effect: [end res(p, ¢, w, 7, )]
end res(p, q,w,r,t);
Il Effect: []
caseris {(x);out k x
Il Effect: []

For the new implementation of web serviag rather than giving the full type
derivation, we outline the derivation of effects:

repeat inp w (c:Un, bdy:Un, k;:Un);

Il Effect: []

case bdy is req(getnonce());

Il Effect: []

decrypt cis {|p:Un, ekp:Encrypt Key(AuthEncMsg(p))[} vkca-1;
Il Effect: []

new (n,:Public Challenge []);

Il Effect: [check Public ng]
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new (n:Private Challenge []);
Il Effect: [check Public ny, check Private nk]
out ky (CertEKq, {{msgz(q,nK )|} ekp, res(getnonce(ng)));
Il Effect: [check Public ny, check Private nk]
inp w (cipher,:Un, n,:Un, ciphery:Un, ko:Un);
Il Effect: [check Public n, check Private ng]
decrypt cipher;

is {{msgs (plain,:(w:Un, p’:Un, K:Top,

Private Response [trust K:SKey(p', ¢, w)]))} pry—13
Il Effect: [check Public ng, check Private nx]
match plain, is (w, rest:(p":Un, K:Top,
Private Response [trust K:SKey(p', ¢, w)]));
Il Effect: [check Public ny, check Private nx]
match rest is (p, rest’:(K:Top, n/, :Private Response [trust K:SKey(p, ¢, w)]));
Il Effect: [check Public ng, check Private n]
split rest’ is (K:Top, n':Private Response [trust K:SKey(p, ¢, w)]);
Il Effect: [check Public ny, check Private nk]
check nk is n';
Il Effect: [check Public ng, trust K:SKey(p, ¢, w)]
trust K is (K':SKey(p, ¢, w));
Il Effect: [check Public ng]
decrypt ciphery is {req(plainy:(a:Req(w), t:Un,
Public Response [end req(p, ¢, w, a,t)]))} k7;

Il Effect: [check Public ng]
split plain, is (a:Req(w), t:Un, n;:Public Response [end req(p, ¢, w, a, t)]);
Il Effect: [check Public ng]
check ng is ny;
Il Effect: [end req(p, g, w, a, t)]
end req(p, q,w, a, t);
Il Effect: []
let r: Res(w)=call,, (p, a);
Il Effect: []
begin res(p, q, w, r,t);
Il Effect: [end res(p, ¢, w, r,t)]
cast ny, is (n;,:Public Response [end res(p, ¢, w,7,t)]);
Il Effect: []
out kg {res(r,t,n;,)} i

Il Effect: []
O

We can note some further possibilities, with respect to the protocols implemented
in this section:

e The protocol implementing authenticated and encrypted invocation uses certifi-
cates to essentially negotiate a symmetric key with which to actually perform the
encryption. Itis straightforward to apply the same idea to the authenticated-only
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case, negotiating a symmetric key with which to hash the content of the method
call (instead of relying on public-key signatures).

¢ In the above protocol, a new symmetric key is negotiated at every method invo-
cation. A more efficient variation would be to re-use a negotiated symmetric key
over multiple web method calls. Once a symmetric key has been negotiated, it
can effectively act as a shared key between the two principals, which is the case
we investigated in the body of this paper. We can therefore use the above pro-
tocol for the first web method call between a principal and a particular service,
and the shared-key protocol for subsequent web method calls.

F First-Class Web Services

The model of web services captured by our calculus in Section 3 does not consider
web services to be values. This reflects the fact that current WSDL does not allow for
web services to be passed as requests or results. On the other hand, a web service has
a simple representation as a string, namely the URL used to access the web service,
and this stringcanbe passed as a request or a result. Hence, it is possible, in a sense,
to pass web services as values given the current web services infrastructure. In this
section, we explore an extension of our object calculus that allows web services as
first-class values. The main point here is to show that there is no real difficulty in
modelling this aspect of the web services infrastructure.

For the sake of keeping this section essentially self-contained, we give the full
syntax and semantics of the extended object calculus.

F.1 Syntax

We assume finite setBrin, WebService, Class, Field, Meth of principal, web ser-
vice, class, field, and method names, respectively.

Classes, Fields, Methods, Principals, Web Services:

I
c € Class class name

f € Field field name

{ € Meth method name

p € Prin principal name

w € WebService web service name

There are now three kinds of data typ&l is the type of principal identifiers,
¢ € Class is the type of instances of classand WS(c) is the type of web services
with implementation class € Class. A method signature specifies the types of its
arguments and result.

Types and Method Signatures:
I

A, B € Type ::= type
Id principal identifier
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object
web service
method signaturer distinct)

¢
WS(c)

sig € Sig = B(Ay x1,...,Ap Tp)

L

As in Section 3, an execution environment defines the services and code available
in the distributed system.

Execution Environment: (fields, methods, owner, class)
I 1

fields € Class — (Field iy Type) fields of a class

methods € Class — (Meth fin Sig x Body) methods of a class
owner € WebService — Prin service owner

class € WebService — Class service implementation
L |

The owner and implementation class of a web service need not be globally known.
We can assume that the representation of a web sexviagries representations of its
owner and its implementation class, whidhass andowner simply read off. Since we
assume web services are given, and we do not provide for ways to actually create new
web services, there is no loss of generality in taking this particular approach.

The syntax of method bodies and values is that of the original object calculus, with
the differences that web services are values, and that we do not assume that web service

invocations require a fixed web service.

Values and Method Bodies:

xT,Y, 2 name: variable, argument
u,v € Value ::= value
T variable
null null
new c(v1, . ..,,) object
D principal identifier
w web service
a,b € Body ::= method body
v value
let z=a in b let-expression
if u=wv then a else b conditional
v.f field lookup
vl(Ug, ... Up) method call
vil(ug, ..., up) service call
pla] bodya running ap

We again require a method body of the fopfa], meaningp running bodya, to
keep track of which principal is running a method body in the upcoming operational

semantics.
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F.2 Operational Semantics

The operational semantics is defined by a transition relation, wiitter? a’, wherea
anda’ are method bodies, ands the principal evaluating the body
Transitions:

I

(Red Let 1) (Red Let 2)

a—Pa

let t=a in b —P let x=a’ inb  let x=vin b —P b{z—uv}

(Red If)

if = then atry. else agse = ay=y

(Red Field)
fields(c) = fi — A; €+ jel.n
(new c(vi,...,v,)).f; =P v;
(Red Invoke)(where = new c(v1, . ..,v,))
methods(c) = {; — (sig;, b;) "€'" jel.n sig;=B(Ai1z1,...,Ap m)
VL (U, ..oy U) —P bi{this—v, x—uy <™}

(Red Remote)
owner(w) =q class(w) = ¢

wih(ug,. .., u,) =P qlnew c(p).l(u, ..., uy)]

(Red Prin 1) (Red Prin 2)

a—9d

ala] =7 gl g |

F.3 Type System

The judgments of our type system all depend oreawvironmentE, that defines the
types of all variables in scope. An environment takes the ferm,, ..., z,:4, and
defines the typel; for each variable:;. The domairdom (E) of an environmeng is
the set of variables whose types it defines.

Environments:

I
D, E ::= environment

o] empty

E x:A entry
dom(z1:A1,. .., o0 Ay) 2 {21, 2.} domain of an environment
L
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The following are the two judgments of our type system. They are inductively
defined by rules presented in the following tables.
JudgmentsFE + 7.

Ero good environment
Eta:A good expression of type A
L

We write E' - 7 when we want to talk about both kinds of judgments, wh&rgtands
for eitherc ora : A.

The following rules define an environment: A4, . . ., z,:A, to be well-formed if
each of the names,, ..., x,, are distinct.

Rules for Environments:

I(Env@) (Env z)(wherez & dom(E))
Elro

ko E,x:AFo

We present the rules for deriving the judgméht- a : A that assigns a typd to
a value or method body. These rules are split into two tables, one for values, and one
for method bodies.

Rules for Typing Values:

I
(Val z) (Val null) (Val WS)
E=F,x:A/E; EFo Etro EFo class(w)=c
Etxz: A EFnull:c Etw: WS(c)
(Val Object) (Val Princ)
fields(c) = fi— A; '€+ Eblwv;: Ay Vi€ l.n Ero
EF new c(vy,...,vn) : ¢ Erp:1d

Rules for Typing Method Bodies:
I
(Body Let)
Etra:A E x:AFDbL:B
Etrletx=ainb: B

(Body If)
Fru:A Ertv:A Era:B EFRbL:B

Erifu=vthenaelseb: B

(Body Field)
EFwv:c fields(c) = fi— A; € jel.n

EFU.fJ‘ . Aj
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(Body Invoke)
Erv:c methods(c) = €; — (sig;,b;) " j€l.n
sigj:B(Alxl,...,Amxm) Eru,:A, Vkel.m

Etrvlj(u,...,um): B

(Body Remote)
EFv: WS(c) (Body Princ)
methods(c) = €; — (sig;, b;) *€+" j€l.n Era:A
sig; = B(Arzy,..., Anam) EFu:A; Yiel.m g Fpla] : A

ErFovlj(uy,...,up): B

We make the following assumption on the execution environment.

Assumptions on the Execution Environment:

(1) For eachw € WebService, fields(class(w)) = Callerld : Id.
(2) No tagged expressigfia] occurs within the body of any method;

such expressions occur only at runtime, to track the call stack of principals.
(3) for eache € Class and eacll € dom(methods(c)),

if methods(c)(¢) = (B(A1 z1,...,4, x,),b),

thenthis:c, x1:Aq, ..., x5 A, b B.

We can establish the soundness of the type system of this extended object calculus
by essentially the same way we established the soudness of the type system of the
original object calculus. Recall that a method body is null-blocked if it is of the form
null. f, null £(uq, . .., u,), let x=a in b (Wherea is null-blocked), org[a] (Wherea
is null-blocked). A method body is stuckadfis not a valueg is not null-blocked, and
there is noa’ andp such thata —? o/. We writea —* o’ to mean that there exists
a sequencey, ..., a, and principal®y, ..., p,+1 such thats —P* q; —P2 ... —Pn

a, —P .

Theorem 9 (Soundness)f @ - a : A, anda —* o/, thend’ is not stuck.

Proof A straightforward adaptation of the proof of Theorem 4, via corresponding
Preservation and Progress theorems. ]

To illustrate the usefulness of first-class web services, consider the following sim-
ple example, where the fact that web services can be passed as arguments to meth-
ods is quite natural. Suppose, as we did in Section 3, that there are two principals
Alice, Bob € Prin, and a web servicea! = http://mycalendar.com/CalendarServijce
where we havelass(cal) = CalendarServiceClass. The web serviceal maintains
an appointment calendar for principals. It offers web methods to query a principal’s
calendar for a free time slot, and to reserve time slots. More precisely, the service has
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the following interface:

class CalendarServiceClass
Id Callerld
Bool Available(Id account, Time from, Time to)
(check if selected time slot if free for account
Void Reserve(Id account, Time from, Time to)
(reserve time slot for account

(We assume that the classBsol, T'ime, and Void are provided in the execution envi-
ronment. The details of their implementation are irrelevant to our discussion.)
Suppose that Alice has an accounta, and that she wants to make an appoint-
ment with a calendar-enabled banking service—that is, a banking service that offers a
web method for scheduling appointments with a bank advisor via a calendar service.
Consider a calendar-enabled version of the banking service of Section v ket
http://bob.com/BankingServicevhere we haverwner(w) = Bob and class(w) =
BankingServiceClass. We add a web methodlakeAppt to BankingServiceClass
that takes as argument a time period during which the appointment is sought, and a
calendar service that the banking service can query to confirm that a common free time
slot is available between the client and the bank advisor. The interface of the augmented
banking service is as follows:

class BankingServiceClass

Id Callerld

Num Balance(Num account)
if account = 12345 then

if this.Callerld = Alice then 100 else null

else ...

Time MakeAppt(Time from, Time to, WS(CalendarService) cs)
... cs. Available(CallerId, . ..) ...

Hence, if Alice wants to make an appointment sometime within the next week, she
could callw: MakeAppt(18/11/02:08:0023/11/02:17:00Qcal). (We assume appropri-

ate syntax for constants of tygBime.) During the evaluation of this web method
invocation, the implementation dffakeAppt will make calls tocal: Available to find

a time slot suitable to Alice, and finally a call tai: Reserve to reserve a time slot.

A principal with an account on a different calendar servieeould callw: MakeAppt
passing inc as the calendar service.
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