
Validating a Web Service
Security Abstraction by Typing

Andrew D. Gordon
Microsoft Research

Riccardo Pucella
Cornell University

December 2002

Technical Report
MSR–TR–2002–108

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

Publication History

A portion of this work appears in the proceedings of theACM Workshop on XML
Security 2002, Washington DC, November 22, 2002.

Affiliation

Riccardo Pucella is with Cornell University. The two authors completed this work at
Microsoft Research in Cambridge.

Abstract

An XML web service is, to a first approximation, an RPC service in which
requests and responses are encoded in XML as SOAP envelopes, and transported
over HTTP. We consider the problem of authenticating requests and responses at
the SOAP-level, rather than relying on transport-level security. We propose a se-
curity abstraction, inspired by earlier work on secure RPC, in which the methods
exported by a web service are annotated with one of three security levels: none,
authenticated, or both authenticated and encrypted. We model our abstraction as
an object calculus with primitives for defining and calling web services. We de-
scribe the semantics of our object calculus by translating to a lower-level language
with primitives for message passing and cryptography. To validate our semantics,
we embed correspondence assertions that specify the correct authentication of re-
quests and responses. By appeal to the type theory for cryptographic protocols of
Gordon and Jeffrey’s Cryptyc, we verify the correspondence assertions simply by
typing. Finally, we describe an implementation of our semantics via custom SOAP
headers.

Contents

1 Introduction 1
1.1 Motivation: Web Services and SOAP 1
1.2 Background: Correspondences and Spi 2
1.3 Contributions of this Paper . 2

2 A Security Abstraction 3

3 A Formal Model 5
3.1 Syntax . 7
3.2 Informal Semantics of our Model . 8

4 A Spi-Calculus Semantics 9
4.1 A Typed Spi-Calculus (Informal Review) 9
4.2 A Semantics for Local Computation 10
4.3 A Semantics for Web Services . 11
4.4 Security Properties of a Complete System 14

5 A SOAP-Level Implementation 15

6 Related Work 16

7 Conclusions 18

A Sample SOAP Messages 19
A.1 An Authenticated Call . 19
A.2 Authenticated and Encrypted Call 20

B Semantics of the Object Calculus 21
B.1 Encoding Arithmetic . 21
B.2 Formalization of proxy objects . 21
B.3 Operational Semantics . 22
B.4 Type System . 23

C The Spi-Calculus in More Detail 28

D Formal translation of the Object Calculus 32
D.1 Types Translation . 33
D.2 Translation of Expressions . 33

E Implementation Using Asymmetric Cryptography 40
E.1 Authenticated Web Methods . 41
E.2 Authenticated and Encrypted Web Methods 45

F First-Class Web Services 51
F.1 Syntax . 51
F.2 Operational Semantics . 53
F.3 Type System . 53

1 Introduction

It is common to provide application-level developers with security abstractions that
hide detailed implementations at lower levels of a protocol stack. For example, the
identity of the sender of a message may be exposed directly at the application-level, but
computed via a hidden, lower level cryptographic protocol. The purpose of this paper
is to explore how to build formal models of such security abstractions, and how to
validate their correct implementation in terms of cryptographic primitives. Our setting
is an experimental implementation of SOAP security headers for XML web services.

1.1 Motivation: Web Services and SOAP

A crisp definition, due to the builders of the TerraService.NET service, is that “a web
service is a web site intended for use by computer programs instead of human beings”
[8]. Each request to or response from a web service is encoded in XML as a SOAP
envelope[11]. An envelope consists of aheader, containing perhaps routing or secu-
rity information, and abody, containing the actual data of the request or response. A
promising application for web services is to support direct retrieval of XML documents
from remote databases, without resorting to unreliable “screen scraping” of data from
HTML pages. Google already offers programmatic access to its database via a web
service [20]. Another major application is to support systems interoperability within
an enterprise’s intranet.

The interface exported by a web service can be captured as an XML-encoded ser-
vice description, in WSDL format [13], that describes the methods—and the types of
their arguments and results—that make up the service. Tools exist for application-level
developers to generate a WSDL description from the code of a service, and then to
generate proxy code for convenient client access to the web service. Like tools for
previous RPC mechanisms, these tools abstract from the details of the underlying mes-
saging infrastructure. They allow us to regard calling a web service, for many if not all
purposes, as if it were invoking a method on a local object. Our goal is to augment this
abstraction with security guarantees.

There are many signs of fervour over web services: there is widespread tool sup-
port from both open source and commercial software suppliers, and frequent news of
progress of web service standards at bodies such as OASIS and the W3C. Many pre-
vious systems support RPC, but one can argue that what’s new about web services
is their combination of vendor-neutral interoperability, internet-scale, and toolsets for
“mere mortals” [8]. Still, there are some reasons for caution. The XML format was
not originally designed for messaging; it allows for interoperability but is inefficient
compared to binary encodings. Moreover, it would be useful to use web services for
inter-organisational communication, for example, for e-commerce, but there is as yet
little experience or agreement on SOAP-level security mechanisms.

In fact, there is already wide support for security at the transport-level, that is, for
building secure web services using HTTPS and SSL. Still, SSL encrypts all traffic
between the client and the web server, so that it is opaque to intermediaries. Hence,
messages cannot be monitored by firewalls and cannot be forwarded by intermediate
untrusted SOAP-level routers. There are proposals to avoid some of these difficulties by

1

placing security at the SOAP-level, that is, by partially encrypting SOAP bodies and by
including authenticators, such as signatures, in SOAP headers. For example, the WS-
Security [6] specification describes an XML syntax for including such information in
SOAP envelopes.

Hence, the immediate practical goal of this work is to build and evaluate an ex-
ploratory system for SOAP-level security.

1.2 Background: Correspondences and Spi

Cryptographic protocols, for example, protocols for authenticating SOAP messages,
are hard to get right. Even if we assume perfect cryptography, exposure to various
replay and impersonation attacks may arise because of flaws in message formats. A
common and prudent procedure is to invite expert analysis of any protocol, rather than
relying on security through obscurity. Moreover, it is a useful discipline to specify and
verify protocol goals using formal notations. Here, we specify authenticity goals of
our protocol using Woo and Lam’s correspondence assertions [36], and verify them,
assuming perfect cryptography in the sense of Dolev and Yao [16], using type theories
developed as part of the Cryptyc project [21, 22, 23].

Woo and Lam’s correspondence assertions [36] are a simple and precise method
for specifying authenticity properties. The idea is to specify labelled events that mark
progress through the protocol. There are two kinds: begin-events and end-events. The
assertion is that every end-event should correspond to a distinct, preceding begin-event
with the same label. For example, Alice performs a begin-event with label “Alice
sending Bob messageM ” at the start of a session when she intends to sendM to
Bob. Upon receivingM and once convinced that it actually comes from Alice, Bob
performs an end-event with the same label. If the correspondence assertion can be
falsified, Bob can be manipulated into thinking a message comes from Alice when in
fact it has been altered, or came from someone else, or is a replay. On the other hand,
if the correspondence assertion holds, such attacks are ruled out.

There are several techniques for formally specifying and verifying correspondence
assertions. Here, we model SOAP messaging within a process calculus, and model
correspondence assertions by begin- and end-statements within the calculus. We use
a form of the spi-calculus [21], equipped with a type and effect system able to prove
by typechecking that correspondence assertions hold in spite of an arbitrary attacker.
Spi [5] is a small concurrent language with primitives for message passing and cryp-
tography, derived from theπ-calculus [31].

1.3 Contributions of this Paper

Our approach is as follows:

• Section 2 describes our high-level abstraction for secure messaging.

• Section 3 models the abstraction as an object calculus with primitives for creating
and calling web services.

2

• Section 4 defines the semantics of our abstraction by translating to the spi-
calculus. Correspondence assertions specify the authenticity guarantees offered
to caller and callee, and are verified by typechecking.

• Section 5 describes a SOAP-based implementation using Visual Studio .NET.

Our main innovation is the idea of formalizing the authentication guarantees offered
by a security abstraction by embedding correspondence assertions in its semantics. On
the other hand, our high-level abstraction is fairly standard, and is directly inspired
by work on secure network objects [34]. Although the rather detailed description of
our model and its semantics may seem complex, the actual cryptographic protocol is
actually quite simple. Still, we believe our framework and its implementation are a
solid foundation for developing more sophisticated protocols and their abstractions.

Most formal details, as well as the proofs of our formal results, have been relegated
to the appendices. Specifically, Appendix A gives sample messages exchanged during
web service methods calls using our abstractions, Appendix B gives a formal descrip-
tion of our object calculus, Appendix C gives a formal definition of the spi-calculus
used in the paper, Appendix D gives the formal details of the translation of our ob-
ject calculus into the spi-calculus, and Appendix E gives an account of our security
abstractions using asymmetric cryptography.

2 A Security Abstraction

We introduce a security abstraction for web services, where the methods exported by a
web service are annotated by one of three security levels:

None unauthenticated call
Auth authenticated call
AuthEnc authenticated and encrypted call

A call from a client to a web service is made up of two messages, therequestfrom
the client to the web service, and theresponsefrom the web service to the client. The
inspiration for the security levels, and the guarantees they provide, comes from SRC
Secure Network Objects [34]. An authenticated web method call provides a guaran-
tee ofintegrity (that the request that the service receives is exactly the one sent by the
client and that the response that the client receives is exactly the one sent by the service
as a response to this request) andat-most-once semantics(that the service receives the
request most once, and that the client receives the response at most once). An authen-
ticated and encrypted web method call provides all the guarantees of an authenticated
call, along with a guarantee ofsecrecy(that an eavesdropper does not obtain any part
of the method name, the arguments, or the results of the call).

In C#, where users can specifyattributeson various entities, our security annota-
tions take the form of an attribute on web methods, that is, the methods exported by a
web service. The attribute is written[SecurityLevel(level)] , wherelevel is one
of None, Auth , or AuthEnc . For example, consider a simple interface to a banking
service, where[WebMethod] is an attribute used to indicate a method exported by a
web service:

3

class BankingServiceClass {

string callerid;

[WebMethod] [SecurityLevel(Auth)]
public int Balance (int account);

[WebMethod] [SecurityLevel(AuthEnc)]
public string Statement (int account);

[WebMethod] [SecurityLevel(Auth)]
public void Transfer (int source,

int dest,
int amount);

}

The annotations get implemented by code to perform the authentication and en-
cryption, at the level of SOAP envelopes, transparently from the user. The annotations
on the web service side will generate a method on the web service that can be used to
establish a security context. This method will never be invoked by the user, but auto-
matically by the code implementing the annotations. For the purpose of this paper, we
assume a simple setting for authentication and secrecy, namely that the principals in-
volved possess shared keys. Specifically, we assume a distinct keyKpq shared between
every pair of principalsp andq. We use the keyKpq whenp acts as the client andq as
the web service. (Notice thatKpq is different fromKqp.) It is straightforward to extend
our approach to different settings such as public-key infrastructures or certificate-based
authentication mechanisms (see Appendix E).

An authenticated call byp to a web method̀ on a web servicew owned byq with
argumentsu1, . . . , un producing a resultr uses the following protocol:

p→ q : request nonce
q → p : nq

p→ q : p, req(w, `(u1, . . . , un), s, nq), np,
Hash(req(w, `(u1, . . . , un), s, nq),Kpq)

q → p : q, res(w, `(r), s, np),Hash(res(w, `(r), s, np),Kpq)

Here,Hash is a cryptographic hash function (a one-way message digest function such
as MD5). We tag the request and the response messages to be able to differentiate
them. We also tag the response with the name of the method that was originally called.
We include a uniquesession tags in both the request and response message to allow
the callerp to match the response with the actual call that was performed.

An authenticated and encrypted call byp to a web method̀ on a web servicew
owned byq with argumentsu1, . . . , un producing a resultr uses a similar protocol,
with the difference that the third and fourth messages are encrypted using the shared

4

key instead of signed:

p→ q : request nonce
q → p : nq

p→ q : p, {req(w, `(u1, . . . , un), s, nq)}Kpq , np

q → p : q, {res(w, `(r), s, np)}Kpq

To convince ourselves that the above protocols do enforce the guarantees prescribed
by the security abstraction, we typically argue as follows. Let’s consider the authenti-
cated and encrypted case, the authenticated case being similar. When the web service
w run by principalq receives a requestw, `(u1, . . . , un), s, nq encrypted withKpq (q
uses the identityp in the request to determine which key to use), it knows that only
p could have created the message, assuming that the shared keyKpq is kept secret by
bothp andq. This enforces the integrity of the request. Since the message also contains
the noncenq that the web service can check has never appeared in a previous message,
it knows that the message is not a replayed message, hence enforcing at-most-once se-
mantics. Finally, the secrecy of the shared keyKpq implies the secrecy of the request.
A similar argument shows that the protocol satisfies integrity, at-most-once-semantics,
and secrecy for the response.

What do we have at this point? We have an informal description of a security
abstraction, we have an implementation of the abstraction in terms of protocols, and
an informal argument that the guarantees prescribed by the abstraction are enforced
by the implementation. How do we make our security abstraction precise, and how
do we ensure that the protocols do indeed enforce the required guarantees? In the next
section, we give a formal model to make the abstraction precise. Then, we formalize the
implementation by showing how to translate the abstractions into a lower level calculus
that uses the above protocols. We use types to show that guarantees are formally met
by the implementation, via correspondence assertions.

3 A Formal Model

We model the application-level view of authenticated messaging as an object calculus.
Object calculi [1, 24, 28] are object-oriented languages in miniature, small enough to
make formal proofs feasible, yet large enough to study specific features. As in FJ [28],
objects are typed, class-based, immutable, and deterministic. As in some of Abadi
and Cardelli’s object calculi [1], we omit subtyping and inheritance for the sake of
simplicity. In spite of this simplicity, our calculus is Turing complete. We can define
classes to implement arithmetics, lists, collections, and so on.

To model web services, we assume there are finite setsPrin andWebService of
principal identifiers and web service identifiers, respectively. We think of eachw ∈
WebService as a URL referring to the service; moreover,class(w) is the name of the
class that implements the service, andowner(w) ∈ Prin is the principal running the
service.

To illustrate this model, we express the banking service interface introduced in the
last section in our calculus. Suppose there are two principalsAlice,Bob ∈ Prin, and
a web servicew = http://bob.com/BankingService, where we haveowner(w) = Bob

5

andclass(w) = BankingServiceClass. Suppose we wish to implement theBalance
method so that given an account number, it checks that it has been called by the owner
of the account, and if so returns the balance. IfAlice ’s account number is12345, we
might achieve this as follows:

class BankingServiceClass
Id CallerId
Num Balance(Num account)

if account = 12345 then
if this.CallerId = Alice then 100 else null

else . . .

There are a few points to note about this code. First, as in BIL [24], method bodies
conform to a single applicative syntax, rather than there being separate grammars for
statements and expressions. Second, while the C# code relies on attributes to spec-
ify exported methods and security levels, there are not attributes in our calculus. For
simplicity, we assume that all the methods of a class implementing a web service are
exported as web methods. Furthermore, we assume that all these exported methods are
authenticated and encrypted, as if they had been annotatedAuthEnc . (It is straight-
forward to extend our calculus to allow per-method annotations but it complicates the
presentation of the translation in the next section.)

Every class implementing a web service has exactly one field, namedCallerId ,
which exposes the identity of the caller, and allows application-level authorisation
checks.

We writew:Balance(12345) for a client-side call to methodBalance of the service
w. The semantics of such a web service call byAlice to a service owned byBob is
thatBob evaluates the local callnew BankingServiceClass(Alice).Balance(12345)
asBob. In other words,Bob creates a new objectnew BankingServiceClass(Alice)
(that is, an instance of the classBankingServiceClass with CallerId set toAlice) and
then calls theBalance method. This would terminate with100, since the value of
this.CallerId is Alice. (For simplicity, we assume every class in the object calculus
has a single constructor whose arguments are the initial values of the object’s fields.)
This semantics guarantees to the serverBob that the fieldCallerId contains the identity
of his caller, and guarantees to the clientAlice that only the correct owner of the service
receives the request and returns the result.

In a typical environment for web services, a client will not invoke web services di-
rectly. Rather, a client creates a proxy object corresponding to the web service, which
encapsulates the remote invocations. Those proxy objects are generally created auto-
matically by the programming environment. Proxy objects are easily expressible in our
calculus, by associating with every web servicew a proxy classproxy(w). The class
proxy(w) has a method for every method of the web service class, the implementation
for which simply calls the corresponding web service method. The proxy class also has
a fieldId holding the identity of the owner of the web service. Here is the client-side

6

proxy class for our example service:

class BankingServiceProxy
Id Id()

Bob
Num Balance(Num account)

w:Balance(account)

The remainder of this section details the syntax and informal semantics of our ob-
ject calculus.

3.1 Syntax

In addition toPrin andWebService, we assume finite setsClass, Field , Meth of
class, field, and method names, respectively.

Classes, Fields, Methods, Principals, Web Services:

c ∈ Class class name
f ∈ Field field name
` ∈ Meth method name
p ∈ Prin principal name
w ∈WebService web service name

There are two kinds of data type:Id is the type of principal identifiers, andc ∈
Class is the type of instances of classc. A method signature specifies the types of its
arguments and result.

Types and Method Signatures:

A,B ∈ Type ::= type
Id principal identifier
c object

sig ∈ Sig ::= B(A1 x1, . . . , An xn) method signature (xi distinct)

An execution environment defines the services and code available in the distributed
system. In addition toowner andclass, described above, the mapsfields andmethods
specify the types of each field and the signature and body of each method, respec-
tively. We writeX → Y andX

fin→ Y for the sets of total functions and finite maps,
respectively, fromX to Y .

Execution Environment: (fields,methods, owner , class)

fields ∈ Class → (Field fin→ Type) fields of a class

methods ∈ Class → (Meth fin→ Sig × Body) methods of a class
owner ∈WebService → Prin service owner
class ∈WebService → Class service implementation

7

We complete the syntax by giving the grammars formethod bodiesand forvalues.

Values and Method Bodies:

x, y, z name: variable, argument
u, v ∈ Value ::= value

x variable
null null
new c(v1, . . . , vn) object
p principal identifier

a, b ∈ Body ::= method body
v value
let x=a in b let-expression
if u = v then a else b conditional
v.f field lookup
v.`(u1, . . . , un) method call
w:`(u1, . . . , un) service call

The free variablesfv(a) of a method body are defined in the usual way, where
the only binder isx being bound inb in the expressionlet x=a in b. We write
a{x←b} for the outcome of a capture-avoiding substitution ofb for each free oc-
curence of the variablex in method bodya. We view method bodies as being equal
up to renaming of bound variables. Specifically, we takelet x=a in b to be equal to
let x′=a in b{x←x′}, if x′ 6∈ fv(b).

Our syntax for bodies is in a reduced form that simplifies its semantics; in ex-
amples, it is convenient to allow a more liberal syntax. For instance, letif a1 =
a2 then b1 else b2 be short forlet x1=a1 in let x2=a2 in if x1 = x2 then b1 else b2.
We already used this when writingif this.CallerId = Alice then 100 else null in
our example. Similarly, we assume a classNum for numbers, and write integer literals
such as100 as shorthand for objects of that class.

Although objects are values, in this calculus, web services are not. This reflects
the fact that current WSDL does not allow for web services to be passed as requests or
results. We explore an extension of our model to account for web services as “first-class
values” in Appendix F.

We assume all method bodies in our execution environment are well-typed. If
methods(c)(`) = (sig , b) and the signaturesig = B(A1 x1, . . . , An xn) we assume
that the bodyb has typeB given a typing environmentthis:c, x1:A1, . . . , xn:An. The
variable this refers to the object on which thèmethod was invoked. The typing
rules, which are standard, are given in Appendix B. We also assume the classclass(w)
corresponding to each web servicew has a single fieldcallerid .

3.2 Informal Semantics of our Model

We explain informally the outcome of evaluating a method bodyb as principalp, that
is, on a client or server machine controlled byp. (Only the semantics of web service
calls depend onp.) A formal account of this semantics, as well as the typing rules of
the calculus, can be found in Appendix B.

8

To evaluate a valuev asp, we terminate at once withv itself.
To evaluate a let-expressionlet x=a in b asp, we first evaluatea asp. If a termi-

nates with a valuev, we proceed to evaluateb{x←v}, that is,b with each occurrence of
the variablex replaced withv. The outcome of evaluatingb{x←v} asp is the outcome
of evaluating the whole expression.

To evaluate a conditionalif u = v then a else b asp, we evaluatea asp if u andv
are the same; else we evaluateb asp.

To evaluate a field lookupv.f asp, whenv is an object valuenew c(v1, . . . , vn),
we checkf is thejth field of classc for somej ∈ 1..n (that is, thatfields(c) = fi 7→
Ai

i∈1..n and thatf = fj), and then returnvj . If v is null or if the check fails, evaluation
has gone wrong.

To evaluate a method callv.`(u1, . . . , un) asp, whenv is an objectnew c(v1, . . . ,
vn), we check̀ is a method of classc (that is, thatmethods(c) = `i 7→ (sig i, bi) i∈1..m

and that̀ = `j for somej ∈ 1..m) and we check the arity of its signature isn (that
is, thatsigj = B(A1 x1, . . . , An xn)) and then we evaluate the method body asp,
but with the objectv itself in place of the variablethis, and actual parametersu1, . . . ,
un in place of the formal parametersx1, . . . , xn (that is, we evaluate the expression
bi{this←v, x1←u1, . . . , xn←un}). If v is null or if either check fails, evaluation has
gone wrong.

To evaluate a service callw:`(u1, . . . , un) asp, we evaluate the local method call
new c(p).`(u1, . . . , un) asq, wherec = class(w) is the class implementing the service,
andq = owner(w) is the principal owning the service. (By assumption,c’s only field
is CallerId of typeId .) This corresponds directly to creating a new object onq’s web
server to process the incoming request.

4 A Spi-Calculus Semantics

We confer a formal semantics on our calculus by translation to the spi-calculus [5, 21],
a lower-level language with primitives for message-passing (to model SOAP requests
and responses) and cryptography (to model encryption and decryption of SOAP head-
ers and bodies).

4.1 A Typed Spi-Calculus (Informal Review)

To introduce the spi-calculus, we formalize the situation where Alice sends a mes-
sage to Bob using a shared key, together with a correspondence assertion concern-
ing authenticity of the message, as outlined in Section 1. Aname is an identifier
that is atomic as far as our analysis is concerned. In this example, the namesAlice
andBob identify the two principals, the nameK represents a symmetric key known
only to Alice andBob, and the namen represents a public communication channel.
A message, M or N , is a data structure such as a name, a tuple(M1, . . . ,Mn), a
tagged messaget(M), or a ciphertext{M}N (that is, a messageM encrypted with
a keyN , which is typically a name). Aprocess, P or Q, is a program that may per-
form local computations such as encryptions and decryptions, and may communicate

9

with other processes by message-passing on named channels. For example, the pro-
cessPAlice = begin sending(Alice,Bob,M); out n {M}K defines Alice’s behaviour.
First, she performs a begin-event labelled by the tagged tuplesending(Alice,Bob,M),
and then she sends the ciphertext{M}K on the channeln. The processPBob =
inp n (x); decrypt x is {y}K ;end sending(Alice,Bob, y); defines Bob’s behaviour. He
blocks till a messagex arrives on the channeln. Then he attempts to decrypt the mes-
sage with the keyK. We assume there is sufficient redundancy, such as a checksum,
in the ciphertext that we can tell whether it was encrypted withK. If so, the plaintext
message is bound toy, and he performs an end-event labelledsending(Alice,Bob, y).
The processnew (K); (PAlice | PBob) defines the complete system. The composition
PAlice | PBob represents Alice and Bob running in parallel, and able to communi-
cate on shared channels such asn. The bindernew(K) restricts the scope of the key
K to the processPAlice | PBob so that no external process may use it. Appendix C
contains the grammar of spi messages and processes. The grammar includes the type
annotations that are required to appear in spi terms. In this section, we omit the type
annotations in spi terms for the purpose of illustrating our approach.

We include begin- and end-events in processes simply to specify correspondence
assertions. We say a process issafeto mean that in every run, and for everyL, there is
a distinct, precedingbegin L event for everyend L event. Our example is safe, because
Bob’s end-event can only happen after Alice’s begin-event.

For correspondence assertions to be interesting, we need to model the possibil-
ity of malicious attacks. Let anopponentbe a spi-calculus processO, arbitrary ex-
cept thatO itself cannot perform begin- or end-events. We say a processP is ro-
bustly safeif and only if P | O is safe for every opponentO. Our example system
new (K); (PAlice | PBob) is not robustly safe. The opponent cannot acquire the key
K since its scope is restricted, but it can intercept messages on the public channel
n and mount a replay attack. The opponentinp n (x); out n x; out n x duplicates
the encrypted message so that Bob may mistakenly acceptM and perform the end-
eventsending(Alice,Bob,M) twice. To protect against replays, and to achieve robust
safety, we can add a nonce handshake to the protocol.

In summary, spi lets us precisely represent the behaviour of protocol participants,
and specify authenticity guarantees by process annotations. Robust safety is the prop-
erty that no opponent at the level of the spi-calculus may violate these guarantees. We
omit the details here, but a particular type and effect system verifies robust safety: if a
process can be assigned the empty effect, then it is robustly safe. The example above is
simple, but the general method works for a wide range of protocol examples [21, 23].

For the sake of clarity, we defer most of the technical details to the appendices.
Specifically, Appendix C contains more details on the spi-calculus and the type and
effects sytem, as well as a formal definition of robust safety; Appendix D gives a com-
plete description of the translation from our object calculus to spi, including all the type
annotations omitted in this section, and a proof of our technical results.

4.2 A Semantics for Local Computation

We translate the values and method bodies of our object calculus to messages and
processes, respectively, of the spi calculus. To begin with, we omit web services. Many

10

computational models can be studied by translation to theπ-calculus; our translation
of local computation follows a fairly standard pattern.

We assume thatPrin areπ-calculus names, and thatField∪Meth∪Class∪{null}
are message tags. Values translate easily; in particular, an object translates to a tagged
tuple containing the values of its fields.

Translation of a Value v to a Message[[v]]:

[[x]] , x

[[null]] , null()
[[new c(v1, . . . , vn)]] , c([[v1]], . . . , [[vn]])
[[p]] , p

We translate a bodyb to a process[[b]]pk that represents the evaluation ofb as princi-
palp. The namek is a continuation, a communications channel on which we send[[v]]
to represent termination with valuev. Since our focus is representing safety rather than
liveness properties, we represent an evaluation that goes wrong simply by the inactive
processstop; it would be easy—but a complication—to add an exception mechanism.
We use standardsplit andcase statements to analyse tuples and tagged messages, re-
spectively. To call a method̀of an objectv of classc, with argumentsu1, . . . ,un we
send the tuple(p, [[v]], [[u1]], . . . , [[un]], k) on the channelc `. The namep is the caller,
and channelk is the continuation for the call. We translate method` of classc to a
process that repeatedly awaits such messages, and triggers evaluations of its body. Our
translation depends in part on type information; we writevc in the translation of field
lookups and method calls to indicate thatc is the type ofv.

Translation of a Method Body b to a Process[[b]]pk:

[[v]]pk , out k [[v]]
[[let x=a in b]]pk , new (k′); ([[a]]pk′ | inp k′ (x); [[b]]pk)
[[if u = v then a else b]]pk , if [[u]] = [[v]] then [[a]]pk else [[b]]pk
[[vc.fj]]

p
k , case [[v]] is null(y); stop

is c(y); split y is (x1, . . . , xn); out k xj

wherefields(c) = fi 7→ Ai
i∈1..n, andj ∈ 1..n

[[vc.`(u1, . . . , un)]]pk , case [[v]] is null(y); stop
is c(y); out c ` (p, [[v]], [[u1]], . . . , [[un]], k)

Translation of Method ` of Classc:

Iclass(c, `) , repeat inp c ` (z); split z is (p, this, x1, . . . , xn, k); [[b]]pk
wheremethods(c)(`) = (B(A1 x1, . . . , An xn), b)

4.3 A Semantics for Web Services

We complete the semantics for our object calculus by translating our cryptographic
protocol for calling a web service to the spi-calculus. A new idea is that we embed

11

begin- and end-events in the translation to represent the abstract authenticity guarantees
offered by the object calculus.

We assume access to all web methods is at the highest security levelAuthEnc
from Section 2, providing both authentication and secrecy. Here is the protocol, for
p making a web service callw:`(u1, . . . , un) to servicew owned byq, including the
names of continuation channels used at the spi level. Recall that the protocol assumes
that the client has a way to query the web service for a nonce. Therefore, we assume
that in addition to the methods ofclass(w), each web service also supports a method
getnonce, which we implement specially.

p→ q onw : req(getnonce()), k1

q → p onk1 : res(getnonce(nq))
p→ q onw : p, {req(w, `(u1, . . . , un), t, nq)}Kpq , np, k2

q → p onk2 : q, {res(w, `(r), t, np)}Kpq

We are assuming there is a shared keyKpq for each pair of principalsp, q ∈ Prin.
For the sake of brevity, we omit the formal description of the type and effect system
[23] we rely on, but see Appendix C for a detailed overview. Still, to give a flavour, we
can define the type of a shared keyKpq as follows:

Type of Key Shared Between Clientp and Serverq:

CSKey(p, q) ,
SharedKey(Union(

req(w:Un, a:Un, t:Un,
nq:Public Response [end req(p, q, w, a, t)]),

res(w:Un, r:Un, t:Un,
np:Public Response [end res(p, q, w, r, t)])))

The type says we can use the key in two modes. First, we may encrypt a plaintext
taggedreq containing four components: a public namew of a service, an argument
a suitable for the service, a session tagt, and a noncenq proving that a begin-event
labelledreq(p, q, w, a, t) has occurred, and therefore that an end-event with that label
would be safe. Second, we may encrypt a plaintext taggedres containing four com-
ponents: a servicew, a resultr from that service, the session tagt, and a noncenp

proving that a begin-event labelledres(p, q, w, r, t) has occurred.
We translate a service call to the client-side of our cryptographic protocol as fol-

lows. We start by embedding a begin-event labelledreq(p, q, w, `([[u1]], . . . , [[un]]), t)
to record the details of clientp’s call to serverq = owner(w). We request a nonce
nq, and use it to freshen the encrypted request, which we send with our own nonce
np, which the server uses to freshen its response. If the response indeed contains our
nonce, we embed an end-event to record successful authentication. For the sake of
brevity, we rely on some standard shorthands for pattern-matching.

12

Semantics of Web Method Call:

[[w:`(u1, . . . , un)]]pk ,
new (k1, k2, t, np);
begin req(p, q, w, `([[u1]], . . . , [[un]]), t);
out w (req(getnonce()), k1);
inp k1 (res(getnonce(nq)));
out w (p, {req(w, `([[u1]], . . . , [[un]]), t, n′

q)}Kpq , np, k2);
inp k2 (q, bdy);
decrypt bdy is {res(plain)}Kpq

;
match plain is (w, rest);
split rest is (r, rest′);
match rest ′ is (t, n′

p);
check np is n′

p;
end res(p, q, w, r, t);
case r is `(x); out k x

whereq = owner(w)

Our server semantics relies on a shorthand notation defined below; the process
let x=callw(p, `(u1, . . . , un));P runs the method̀of the classclass(w) implementing
the servicew, with argumentsu1, . . . , un, and with itsCallerId field set top, binds
the result tox and runsP .

Server-Side Invocation of a Web Method:

let x=callw(p, args);P ,
new (k);

case args
(is `i(xsi);

new (k′); (out c `i (q, c(p), xsi, k
′) | inp k′ (r); out k `i(r))

) i∈1..n

| inp k (x);P
wherec = class(w), q = owner(w),
andmethods(c) = `i 7→ (Bi(Asi, xsi), bi) i∈1..n

Finally, we implement each servicew by a processIws(w). We repeatedly listen
for nonce requests, reply with one, and then await a web service call freshened by the
nonce. If we find the nonce, it is safe to perform an end-event labelledreq(p, q, w, a, t),
wherep is the caller,q = owner(w) is the service owner,a is the received method
request, andt is the session tag. We use the shorthand above to invokea. If r is the
result, we perform a begin-event labelledres(p, q, w, r, t) to record we are returning a
result, and then send a response, freshened with the nonce we received from the client.
In general, the notation

∏
i∈1..n Pi meansP1 | · · · | Pn.

13

Web Service Translation:

Iws(w) , repeat inp w (bdy , k1);
case bdy is req(getnonce());
new (nq);
out k1 (res(getnonce(nq)));
inp w (p′, cipher , np, k2);∏

p∈Prin if p = p′ then

decrypt cipher is {req(plain)}Kpq
;

match plain is (w, rest);
split rest is (a, t, n′

q);
check nq is n′

q;
end req(p, q, w, a, t);
let r=callw(p, a);
begin res(p, q, w, r, t);
out k2 (q, {res(w, r, t, n′

p)}Kpq
)

whereq = owner(w)

This semantics is subject to more deadlocks than a realistic implementation, since
we do not have a single database of outstanding nonces. Still, since we are concerned
only with safety properties, not liveness, it is not a problem that our semantics is rather
more nondeterministic than an actual implementation.

4.4 Security Properties of a Complete System

We define the following processSys(b, p) to model a piece of codeb being run by
principal p in the context of implementations of all the classes and web services in
Class andWebService.

Sys(b, p)
, new (c ` c∈Class,`∈dom(methods(c))); new (Kpq

p,q∈Prin);
(
∏

c∈Class,`∈dom(methods(c)) Iclass(c, `) |∏
w∈WebService Iws(w) |

new (k); [[b]]pk)

We claim that the ways an opponentO can interfere with the behaviour ofSys(b, p)
correspond to the ways in which an actual opponent lurking on a network could inter-
fere with SOAP-level messages being routed between web servers. The namesc ` of
methods are hidden, soO cannot interfere with calls to local methods. The keysKpq

are also hidden, soO cannot decrypt or fake SOAP-level encryption. On the other hand,
the namesw on whichSys(b, p) sends and receives our model of SOAP envelopes are
public, and soO is free to intercept, replay, or modify such envelopes.

Our main result is that an opponent cannot disrupt the authenticity properties em-
bedded in our translation. The proof is by showing the translation preserves types.

Theorem 1 If bodyb is well-typed andp ∈ Prin thenSys(b, p) is robustly safe.

14

5 A SOAP-Level Implementation

We have implemented the security abstraction introduced in Section 2 and formalized
in Sections 3 and 4 on top of the Visual Studio .NET implementation of web services,
as a library that web service developers and clients can use. A web service developer
adds security attributes to the web methods of the service. The developer also needs
to provide a web method to supply a nonce to the client. On the client side, the client
writer is provided with a modified proxy class that encapsulates the implementation of
the security abstraction and takes into account the security level of the corresponding
web service methods. Hence, from a client’s point of view, there is no fundamental
difference between accessing a web service with security annotations and one without.

Consider an implementation of our running example of a banking service. Here is
what (an extract of) the class implementing the web service looks like:

class BankingServiceClass :
System.Web.Services.WebService

{
...
[WebMethod]
public int RequestNonce () { ... }

public DSHeader header;

[WebMethod]
[SecurityLevel(Level=SecLevel.Auth)]
[SoapHeader(‘‘header’’,

Direction=Direction.InOut,Required=true)]
public int Balance (int account) { ... }

}

This is the code we currently have, and it is close to the idealized interface we gave
in Section 2. The differences are due to implementation restrictions imposed by the
development environment. The extract shows that the web service implements the
RequestNonce method required by the authentication protocol. TheBalance
method is annotated as an authenticated method, and is also annotated to indicate that
the headers of the SOAP messages used during a call will be available through the
header field of the interface. (The classDSHeader has fields corresponding to the
headers of the SOAP message.) As we shall see shortly, SOAP headers are used to carry
the authentication information. Specifically, the authenticated identity of the caller is
available in a web method throughheader.callerid .

To implement the security abstraction on the web service side, we use a feature of
Visual Studio .NET called SOAP Extensions. Roughly speaking, a SOAP Extension
acts like a programmable “filter”. It can be installed on either (or both) of a client or a
web service. It gets invoked on every incoming and outgoing SOAP message, and can
be used to examine and modify the content of the message before forwarding it to its
destination. In our case, the extension will behave differently according to whether the
message is incoming or outgoing, and depending on the security level specified. For an

15

outgoing message, if the security level isNone, the SOAP message is unchanged. If
the security level isAuth , messages are signed as specified by the protocol: a crypto-
graphic hash of the SOAP body and the appropriate nonce is stored in a custom header
of the messages. If the security level isAuthEnc , messages are encrypted as specified
by the protocol, before being forwarded. For incoming messages, the messages are
checked and decrypted, if required. If the security level isAuth , the signature of the
message checked. If the security level isAuthEnc , the message is decrypted before
being forwarded. Our implementation uses the SHA1 hash function for signatures, and
the RC2 algorithm for symmetric encryption.

To implement the security abstraction on the client side, we provide the client with a
new proxy class. The new proxy class provides methodsNone, Auth , andAuthEnc ,
that are called by the proxy methods to initiate the appropriate protocol. The method
None simply sets up the headers of the SOAP message to include the identity of the
caller and the callee.Auth andAuthEnc do the same, but also make a call to the web
service to get a nonce and add it (along with a newly created nonce) to the headers. The
actual signature and encryption of the SOAP message is again performed using SOAP
Extensions, just as on the web service side.

Our implementation uses a custom SOAP headerDSHeader to carry information
such as nonces, identities, and signatures. It provides the following elements:

callerid identity of the client
calleeid identity of the web service provider
np client nonce
nq web service nonce
signature cryptographic signature of the message

Not all of those elements are meaningful for all messages. In addition to these headers,
in the cases where the message is encrypted, the SOAP body is replaced by the en-
crypted body. Appendix A gives actual SOAP messages exchanged between the client
and web service during an authenticated call toBalance , and an authenticated and
encrypted call toStatement .

Our implementation is meant as a preliminary design of a C# abstraction for secure
RPC, a starting point to explore abstractions for more general security policies. There
are still issues that need to be addressed, even in a setting as simple as the one presented
in this paper. First, we plan to adopt recognized formats for encryption and signature of
XML data, such as XML-Encryption and XML-Signature (though our validation does
not depend on the exact XML syntax for cryptography). Second, it would be valuable
to generate the new proxy class automatically.

6 Related Work

There has been work for almost twenty years on secure RPC mechanisms, going back
to Birrell [9]. More recently, secure RPC has been studied in the context of distributed
object systems. As we mentioned, our work was inspired by the work of van Doorn
et al. [34], itself inspired by [29, 35]. These techniques (or similar ones) have been
applied to CORBA [30], DCOM [10], and Java [7, 18].

16

In contrast, little work seems to have been done on formalizing secure RPC. Of
note is the work of Abadi, Fournet, and Gonthier [2, 3], who show how to compile the
standard join-calculus into the sjoin-calculus, and show that the compilation is fully
abstract. In a subsequent paper [4], they treat similarly and more simply a join-calculus
with authentication primitives: each message contains its source address, there is a way
to extract the principal owning a channel from the channel, and any piece of code runs
as a particular principal. Their fully abstract translation gives very strong guarantees:
it shows that for all intents and purposes, we can reason at the highest level (at the level
of the authentication calculus). Although our guarantees are weaker, they are easier to
establish.

Duggan [17] formalizes an application-level security abstraction by introducing
types for signed and encrypted messages; he presents a fully abstract semantics for the
abstraction by translation to a spi-calculus.

Much of the literature on security in distributed systems studies the question of
access control. Intuitively, access control is the process of determining if the princi-
pal calling a particular method has permission to access the objects that the method
refers to, according to a particular access control policy. There is a distinction to be
made between authentication and access control. Authentication determines whether
the principal calling a method is indeed the principal claiming to be calling the method,
while access control can use this authenticated identity to determine whether that prin-
cipal is allowed access. This distinction is made clear in the work of Balfanzet al. [7],
where they provide authenticated and encrypted communication over Java RMI (using
SSL) and use that infrastructure as a basis for a logic-based access control mechanism.
The access control decisions are based on the authenticated caller identity obtained
from the layer in charge of authentication. This approach is also possible in our frame-
work, which provides access to an authenticated identity as well. We plan to study
access control abstractions in our framework. Note that various forms of access con-
trol mechanisms have been formalized viaπ-calculi, [25, 32, 26], and other process
calculi [12, 15]. An access control language based on temporal logic has been defined
by Sirer and Wang [33] specifically for web services. Damianiet al. [14] describe
an implementation of an access control model for SOAP; unlike our work, and the
WS-Security proposal [6], it relies on an underlying secure channel, such as an SSL
connection.

The GRID is a proposed distributed infrastructure with scientific computing as an
important application; consequently, the need arises for a distributed security architec-
ture [19] including authentication and access control.

An intense area of activity in the world of web services is the definition of stan-
dards for web service security. WS-Security is a standard that describes how to attach
signature and encryption headers to SOAP envelopes. Envisioned standards, described
in [27], will build on the specifications of WS-Security, for example, to manage and
authenticate message exchanges between participants. Our work has an immediate ap-
plication in this context. It is straightforward, for example, to adapt our implementation
to produce WS-Security compliant SOAP envelopes. More importantly, we can use the
techniques in this paper to model security abstractions provided by emerging standards
and study them formally.

Despite its enjoyable properties, the formal model we use to study the implementa-

17

tion of our security abstraction suffers from some limitations. For instance, it makes the
usual Dolev-Yao assumptions that the adversary can compose messages, replay them,
or decipher them if it knows the right key, but cannot otherwise “crack” encrypted mes-
sages. A more severe restriction is that we cannot yet model insider attacks: principals
with shared keys are assumed well-behaved. Work is in progress to extend the Cryp-
tyc type theory to account for malicious insiders. We have not verified the hash-based
protocol of Section 2.

7 Conclusions

Authenticated method calls offer a convenient abstraction for developers of both client
and server code. Various authorisation mechanisms may be layered on top of this ab-
straction. This paper proposes such an abstraction for web services, presents a theoret-
ical model, and describes an implementation using SOAP-level security. By typing our
formal semantics, we show no vulnerability exists to attacks representable within the
spi-calculus, given certain assumptions. Vulnerabilities may exist outside our model—
there are no methods, formal or otherwise, to guarantee security absolutely.

Our work shows that by exploiting recent advances in authenticity types, we can
develop a theoretical model of a security abstraction, and then almost immediately ob-
tain precise guarantees. (As with many formal analyses, these guarantees concern the
design of our abstraction, and do not rule out code defects in its actual implementation.)
We intend to exploit these ideas further by exploring enriched programming models for
authentication and authorisation, while simultaneously building theoretical models and
SOAP-level implementations.

This study furthermore validates the adequacy of the spi-calculus, and Cryptyc in
particular, to formally reason about security properties in a distributed communication
setting.

Acknowledgments

Cryptyc is an ongoing collaboration between Alan Jeffrey and the first author. Ernie
Cohen, Ćedric Fournet, and Alan Jeffrey made useful suggestions during the writing
of this paper.

18

A Sample SOAP Messages

We give some sample SOAP messages exchanged during web service method calls of
the web service described in Section 5. One thing that is immediately clear is that
we are not using standard XML formats for signing and encrypting messages, such as
XML-Encryption and XML-Signature. There is no intrinsic difficulty in adapting our
infrastructure to use standard formats. The point is that the validation of the security
abstraction does not rely on the exact syntax of the SOAP envelopes.

A.1 An Authenticated Call

We describe an authenticated call to theBalance method. The messages exchanged
to obtained the nonce are standard SOAP messages. The following message is the
request from Alice to the web service to execute theBalance method on argument
12345. Notice theDSHeader element holding the identity of the principals involved,
as well as the nonces and the cryptographic signature.

<?xml version=’’1.0’’ encoding=’’utf-8’’?>
<soap:Envelope xmlns:soap=’’http://schemas.xmlsoap.org/soap/envelope/’’

xmlns:xsi=’’http://www.w3.org/2001/XMLSchema-instance’’
xmlns:xsd=’’http://www.w3.org/2001/XMLSchema’’>

<soap:Header>
<DSHeader xmlns=’’http://tempuri.org/’’>

<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>13</np>
<nq>42</nq>
<signature>

3E:67:75:28:3B:AD:DF:32:E7:6C:D3:66:2A:CF:E7:8A:3F:0A:A6:0D
</signature>

</DSHeader>
</soap:Header>
<soap:Body>

<Balance xmlns=’’http://tempuri.org/’’>
<account>12345</account>

</Balance>
</soap:Body>

</soap:Envelope>

The response from the web service has a similar form:
<?xml version=’’1.0’’ encoding=’’utf-8’’?>
<soap:Envelope xmlns:soap=’’http://schemas.xmlsoap.org/soap/envelope/’’

xmlns:xsi=’’http://www.w3.org/2001/XMLSchema-instance’’
xmlns:xsd=’’http://www.w3.org/2001/XMLSchema’’>

<soap:Header>
<DSHeader xmlns=’’http://tempuri.org/’’>

<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>13</np>
<nq>42</nq>
<signature>

8D:31:52:6E:08:F0:89:7B:1E:12:3F:5E:63:EE:B0:D2:63:89:CA:73
</signature>

</DSHeader>
</soap:Header>
<soap:Body>

<BalanceResponse xmlns=’’http://tempuri.org/’’>
<BalanceResult>100</BalanceResult>

</BalanceResponse>
</soap:Body>

</soap:Envelope>

19

A.2 Authenticated and Encrypted Call

We describe an authenticated and encrypted call, this time to theStatement method.
Again, the messages exchanged to obtained the nonce are standard SOAP messages.
The following message is the request from Alice to the web service to execute the
Statement method on argument 12345. As in the authenticated call above, the
DSHeader element holds identity information. The body of the message itself is
encrypted. Note that the noncenq must be encrypted according to the protocol, so its
encrypted value is included in the encrypted data, and its element is reset to a dummy
value (here, -1). Similarly, the signature is unused and set to a dummy value.

<?xml version=’’1.0’’ encoding=’’utf-8’’?>
<soap:Envelope xmlns:soap=’’http://schemas.xmlsoap.org/soap/envelope/’’

xmlns:xsi=’’http://www.w3.org/2001/XMLSchema-instance’’
xmlns:xsd=’’http://www.w3.org/2001/XMLSchema’’>

<soap:Header>
<DSHeader xmlns=’’http://tempuri.org/’’>

<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>13</np>
<nq>-1</nq>
<signature>4E:00:6F:00</signature>

</DSHeader>
</soap:Header>
<soap:Body>

9D:8F:95:2B:BC:60:B1:73:A7:C4:82:F5:39:20:97:F7:69:71:66:
D3:A3:A0:90:B9:9B:FE:71:0A:65:C1:EF:EE:99:CB:4D:8A:40:37:
CA:1E:D0:03:50:34:76:8C:E3:F3:30:DD:C9:34:19:D4:04:CB:39:
7D:1A:84:2F:CA:30:DA:68:7E:E1:CB:07:9C:EB:79:F9:E9:4B:47:
5B:94:56:D7:22:0E:02:CD:AA:F5:D3:40:C1:EC:13:FB:B9:E6:4F:
13:CD:70:FD:BA:18:80:FC:50:F3:75:F2:2F:95:50:5D:41:7E:C8:
8B:BB:AB:76:C9:59:BA:E2:3B:E5:4D:79:71:E4:AD:18:5A:4B:EA:
29:17:30:90:66:08:27:ED:B4:BD:2E:89:06:6D:0B:56:40:43:35:
A1:77:AE:12:7E:4B:19:26:B5:24:1A:D9:67:3D:A0:91

</soap:Body>
</soap:Envelope>

The response is similarly encoded. Notice that this time the noncenp must be en-
crypted, so its value is again included in the encrypted data, and its element is reset to
a dummy value.

<?xml version=’’1.0’’ encoding=’’utf-8’’?>
<soap:Envelope xmlns:soap=’’http://schemas.xmlsoap.org/soap/envelope/’’

xmlns:xsi=’’http://www.w3.org/2001/XMLSchema-instance’’
xmlns:xsd=’’http://www.w3.org/2001/XMLSchema’’>

<soap:Header>
<DSHeader xmlns=’’http://tempuri.org/’’>

<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>-1</np>
<nq>-1</nq>
<signature>4E:00:6F:00</signature>

</DSHeader>
</soap:Header>
<soap:Body>

98:FD:6A:5B:38:0A:82:95:3F:01:EC:D3:55:F9:AA:35:4D:18:DB:
1B:7D:9D:FE:3F:78:52:29:99:C9:41:84:EE:B1:42:12:B2:02:AC:
63:F5:0C:92:9B:DB:75:FB:6C:8B:65:EB:3C:42:6B:79:70:AF:61:
2A:C2:7B:ED:96:E1:D6:7A:F6:D2:0C:DF:BC:2A:4C:93:B3:D0:7B:
7D:2D:83:18:60:D2:D8:05:EB:73:74:2D:75:A2:B2:57:C9:04:B4:
C1:E6:66:54:BA:42:86:AF:22:72:3D:B7:90:CF:03:22:E5:C4:47:
03:F0:77:A0:30:01:C9:FE:78:A1:AB:FA:B1:CB:EE:E2:0B:F2:79:
17:1B:8E:82:E2:13:F4:66:52:76:6D:BA:1B:E9:8E:75:15:90:37:

20

0A:64:ED:F3:9C:18:94:EC:4F:CF:61:92:38:EF:A9:46:E8:4E:E9:
4A:E6:8A:C9:5E:ED:A7:34:72:3E:72:A2:BE:0D:DC:07:22:45:B0:
E6:79:33:8F:CD:90:B8:97:DB:BA:3B:B2:8B:38:38:B6:5B:F1:11:
FB:DD:88:CE:9A:3E:B4:E6:31:13:CB:1C:F3:B5:17:D8:9B:CF:2E:
65:23:4D:BA:ED:72:6D:F4:53:97:B8:7A:D2:9C:2C:10:58:A3:0E:
FE:48:A2:2A:2A:57:AE:6D:69:4D:97:90:EF:9F:C6:7E:9B

</soap:Body>
</soap:Envelope>

B Semantics of the Object Calculus

In this appendix, we give a formal description of the operational semantics and typing
rules of the object calculus. We first describe some encodings showing the expressive-
ness of the calculus.

B.1 Encoding Arithmetic

The calculus is simple enough that questions about whether or not it is sufficiently ex-
pressive to be of interest arise. This is especially likely since there are no recursive
functions in the calculus, and it is not clear that it is even Turing complete. That the
calculus indeed is Turing complete is a consequence of the fact that we can write recur-
sive classes and methods, and that we have a null object. The following example shows
an encoding of natural numbers as a classNum, with the typical recursive definition of
addition:

class Num
Num pred
Num succ()

new Num(this)
Num add(Numx)

if x.pred = null then
this

else this.add(x.pred).succ()

We definezero asnew Num(null), one aszero.succ(), and so on.

B.2 Formalization of proxy objects

We mentioned in the text that we can easily express proxy objects within the calcu-
lus. For completeness, here is a detailed formalization of such proxy objects. First,
we assume a mapproxy ∈ WebService → Class, assigning to every web service
w ∈ WebService a proxy classproxy(w). We further assume that for eachw ∈
WebService,

• dom(methods(class(w))) ∪ {Id} = dom(methods(proxy(w))),

• fields(proxy(w)) = ∅,

• methods(proxy(w)(Id)) = (Id(), owner(w)), and

21

• for all ` ∈ dom(methods(class(w))),

methods(proxy(w))(`) = (B(A1 x1, . . . , An xn), w:`(x1, . . . , xn)),

wheremethods(class(w))(`) = (B(A1 x1, . . . , An xn), b).

B.3 Operational Semantics

The operational semantics is defined by a transition relation, writtena→p a′, wherea
anda′ are method bodies, andp is the principal evaluating the bodya.

To specify the semantics, we need to keep track of which principal is currently
running a method body. We add a new method body form to our object calculus,p[a],
meaningp running bodya. This form does not appear in code written by the user, but
only arises through the transitions of the semantics.

Extended Method Bodies:

a, b ∈ Body ::= method body
· · · as in Section 3
p[a] bodya running asp

Transitions:

(Red Let 1)
a→p a′

let x=a in b→p let x=a′ in b

(Red Let 2)

let x=v in b→p b{x←v}

(Red If)

if u = v then atrue else afalse →p au=v

(Red Field)
fields(c) = fi 7→ Ai

i∈1..n j ∈ 1..n

(new c(v1, . . . , vn)).fj →p vj

(Red Invoke)(wherev = new c(v1, . . . , vn))
methods(c) = `i 7→ (sig i, bi) i∈1..n j ∈ 1..n sigj = B(A1 x1, . . . , Am xm)

v.`j(u1, . . . , um)→p bj{this←v, xk←uk
k∈1..m}

(Red Remote)
owner(w) = q class(w) = c

w:`(u1, . . . , un)→p q[new c(p).`(u1, . . . , un)]

(Red Prin 1)
a→q a′

q[a]→p q[a′]

(Red Prin 2)

q[v]→p v

22

B.4 Type System

The judgments of our type system all depend on anenvironmentE, that defines the
types of all variables in scope. An environment takes the formx1:A1, . . . , xn:An and
defines the typeAi for each variablexi. The domaindom(E) of an environmentE is
the set of variables whose types it defines.

Environments:

D,E ::= environment
∅ empty
E, x:A entry

dom(x1:A1, . . . , xn:An) , {x1, . . . , xn} domain of an environment

The following are the two judgments of our type system. They are inductively
defined by rules presented in the following tables.

JudgmentsE ` J :

E ` � good environment
E ` a : A good expressiona of typeA

We writeE ` J when we want to talk about both kinds of judgments, whereJ stands
for either� or a : A.

The following rules define an environmentx1:A1, . . . , xn:An to be well-formed if
each of the namesx1, . . . , xn are distinct.

Rules for Environments:

(Env∅)

∅ ` �

(Envx)(wherex 6∈ dom(E))
E ` �

E, x:A ` �

We present the rules for deriving the judgmentE ` a : A that assigns a typeA to
a value or method bodya. These rules are split into two tables, one for values, and one
for method bodies.

Rules for Typing Values:

(Val x)
E = E1, x:A,E2 E ` �

E ` x : A

(Val null)
E ` �

E ` null : c

(Val Object)
fields(c) = fi 7→ Ai

i∈1..n E ` vi : Ai ∀i ∈ 1..n

E ` new c(v1, . . . , vn) : c

(Val Princ)
E ` �

E ` p : Id

23

Rules for Typing Method Bodies:

(Body Let)
E ` a : A E, x:A ` b : B

E ` let x=a in b : B

(Body If)
E ` u : A E ` v : A E ` a : B E ` b : B

E ` if u = v then a else b : B

(Body Field)
E ` v : c fields(c) = fi 7→ Ai

i∈1..n j ∈ 1..n

E ` v.fj : Aj

(Body Invoke)
E ` v : c methods(c) = `i 7→ (sig i, bi) i∈1..n j ∈ 1..n
sigj = B(A1 x1, . . . , Am xm) E ` uk : Ak ∀k ∈ 1..m

E ` v.`j(u1, . . . , um) : B

(Body Remote)
class(w) = c methods(c) = `i 7→ (sig i, bi) i∈1..n j ∈ 1..n

sigj = B(A1 x1, . . . , Am xm) E ` ui : Ai ∀i ∈ 1..m

E ` w:`j(u1, . . . , um) : B

(Body Princ)
E ` a : A

E ` p[a] : A

We make the following assumption on the execution environment.

Assumptions on the Execution Environment:

(1) For eachw ∈WebService, fields(class(w)) = CallerId : Id .
(2) No tagged expressionp[a] occurs within the body of any method;

such expressions occur only at runtime, to track the call stack of principals.
(3) for eachc ∈ Class and each̀ ∈ dom(methods(c)),

if methods(c)(`) = (B(A1 x1, . . . , An xn), b),
thenthis:c, x1:A1, . . . , xn:An ` b : B.

It is straightforward to show that our type system is sound, that is, that the type
system ensures that methods that typecheck do not get stuck when evaluating. Some
care is needed to make this precise, since evaluation can block if one attempts to access
a field of a null object, or to invoke a method on a null object. (We could introduce
an error token in the semantics and propagate that error token when such a case is
encountered, but this would needlessly complicate the semantics, at least for our pur-
poses.) Soundness can be derived as usual via Preservation and Progress theorems. To
establish these, we first need the following lemmas:

Lemma 1 The following properties of judgments hold:

(Exchange) if E, x:A, y:B,E′ ` J , thenE, y:B, x:A,E′ ` J ;

24

(Weakening) if E ` J andx 6∈ dom(E), thenE, x:A ` J ;

(Strengthening) if E, x:B ` a : A andx 6∈ fv(a), thenE ` a : A.

Proof Straightforward. 2

We often use the above properties silently in the course of proofs.

Lemma 2 (Substitution) If E, x:B ` a : A andE ` v : B, thenE ` a{x←v} : A

Proof This is a straightforward proof by induction on the height of the typing deriva-
tion for E ` a : A. We proceed by case analysis on the form ofa.

- Casea = x: SinceE, x:B ` x : A, we must haveA = B. Sincea{x←v} = v
andE ` v : B, we haveE ` v : A, as required.

- Casea = y, wherey 6= x: Sincex is not free iny, E, x:B ` y : A implies
E ` y : A, by the Strengthening Lemma, as required.

- Casea = null : Sincex is not free innull , E, x:B ` null : A implies E `
null : A, as required.

- Casea = p: Sincex is not free inp, E, x:B ` p : A implies E ` p : A, as
required.

- Casea = new c(v1, . . . , vn): We have the equationnew c(v1, . . . , vn){x←v} =
new c(v1{x←v}, . . . , vn{x←v}). We haveE, x:B ` new c(v1, . . . , vn) : A,
henceE, x:B ` vi : Ai if fields(c) = fi 7→ Ai

i∈1..n. By the induction
hypothesis, we knowE ` vi{x←v} : Ai for all i ∈ 1..n. Hence, we can
deriveE ` new c(v1{x←v}, . . . , vn{x←v}) : A, as required.

- Casea = let y=a0 in b: Without loss of generality, we can takey 6= x, sincey
is bound inb. Note that(let y=a0 in b){x←v} = let y=a0{x←v} in b{x←v}.
We haveE, x:B ` let y=a0 in b : A, henceE, x:B ` a0 : A0 for someA0, and
E, y:A0, x:B ` b : A. By the induction hypothesis,E ` a0{x←v} : A0 and
E, y:A0 ` b{x←v} : A, and henceE ` let x=a0{x←v} in b{x←v} : A, as
required.

- Casea = if u0 = u1 then a0 else a1: We have(if u0 = u1 then a0

else a1){x←v} = if u0{x←v} = u1{x←v} then a0{x←v} else a1{x←v}.
We haveE, x:B ` if u0 = u1 then a0 else a1, henceE, x:B ` u0 : A′,
E, x:B ` u1 : A′, E, x:B ` a0 : A andE, x:B ` a1 : A. Applying the
induction hypothesis to these judgments, we can derive

E ` if u0{x←v} = u1{x←v} then a0{x←v} else a1{x←v} : A

as required.

The remaining cases are similar, upon noting that:

- (u.fj){x←v} = u{x←v}.fj ,

25

- (u.`(u1, . . . , um)){x←v} = u{x←v}(u1{x←v}, . . . , um{x←v}),

- (w:`(u1, . . . , un)){x←v} = w:(u1{x←v}, . . . , un{x←v}), and

- (p[a]){x←v} = p[a{x←v}]. 2

Theorem 2 (Preservation) If E ` a : A anda→p a′ thenE ` a′ : A.

Proof We proceed by induction on the height of the typing derivation forE ` a : A.
Sincea→p a′, a cannot be a valuev.

- Casea = let x=v in b: SinceE ` a : A, we haveE ` v : B andE, x:B `
b : A. We must havea′ = b{x←v}. Applying the Substitution Lemma, we have
E ` b{x←v} : A, as required.

- Casea = let x=a0 in b, wherea0 is not a value: We haveE ` a0 : B, and
E, x:B ` b : A. Sincea →p a′, we must have havea0 →p a′0. By induction
hypothesis,E ` a′0 : B, and henceE ` let x=a′0 in b : A, as required.

- Casea = if u = v then a0 else a1: Note that eithera →p a0 or a →p a1. In
both cases, sinceE ` if u = v then a0 else a1 : A, we haveE ` a0 : A and
E ` a1 : A, as required.

- Casea = (new c(v1, . . . , vn)).fj : We havefields(c) = fi 7→ Ai
i∈1..n. The

type derivation fora is as follows:

E ` vi : Ai
i∈1..n

E ` new c(v1, . . . , vn) : c

E ` (new c(v1, . . . , vn)).fj : Aj

Sincea′ = vj , we haveE ` vj : Aj , as required.

- Casea = (new c(v1, . . . , vn)).`j(u1, . . . , um): Let v = new c(v1, . . . , vn). We
havemethods(c) = `i 7→ (sig i, bi) i∈1..n, wheresigj = B(A1 x1, . . . , Am xm).
By the typing derivation forE ` a : B, we haveE ` uk : Ak for all
k ∈ 1..m, andE ` v : c. By assumption on the execution environment, we
know this:c, x1:A1, . . . , xm:Am ` b : B. Applying the Substitution and the
Weakening Lemmas, we getE ` b{this←v, xk←uk

k∈1..m} : B, as required.

- Casea = w:`j(u1, . . . , un): We haveclass(w) = c, methods(c) = `i 7→
(sig i, bi) i∈1..n wheresigj = B(A1 x1, . . . , Am xm). By the typing derivation
for E ` a : B, we haveE ` ui : Ai for all i ∈ 1..m. We can therefore derive
the required type fora′ = q[new c(p).`(u1, . . . , um)]:

E ` new c(p) : c E ` ui : Ai ∀i ∈ 1..m

E ` new c(p).`(u1, . . . , um) : B

E ` q[new c(p).`(u1, . . . , um)] : B

- Casea = q[v]: SinceE ` q[v] : A, we haveE ` v : A, andq[v] →p v, as
required.

26

- Casea = q[a0], wherea0 is not a value: SinceE ` q[a0] : A, we haveE `
a0 : A, and sincea →p a′, we must havea0 →q a′0. By induction hypothesis,
E ` a′0 : A, and henceE ` q[a′0] : A, as required. 2

To state the Progress Theorem, we need to recognize programs that are blocked
because of anull in object position. We say a method bodya is null-blockedif, es-
sentially, it is stuck trying to access a field of a null object, or invoke a method on a
null object. Formally,a is null-blocked if it is of the formnull .fj , null .`(u1, . . . , un),
let x=a in b (wherea is null-blocked), orq[a] (wherea is null-blocked).

Theorem 3 (Progress)If ∅ ` a : A anda is not a value and is not null-blocked, and
p ∈ Prin, thena→p a′ for somea′.

Proof Again, we proceed by induction on the height of the typing derivation for
∅ ` a : A. We assumea is not a value, anda is not null-blocked.

- Casea = let x=a0 in b: We consider two subcases, depending on whethera0 is
a value or not.

- Casea0 is a valuev: We havea→p b{x←v}.
- Casea0 is not a value: Since∅ ` a : A, we have∅ ` a0 : B for some

B, a0 not a value. Sincea is not null-blocked,a0 is not null-blocked.
Hence, by induction hypothesis, we havea0 →p a′0. Hence, we have
a→p let x=a′0 in b.

- Casea = if u = v then a0 else a1: We havea →p a0 or a →p a1 depending
on the result ofu = v.

- Casea = v.fj : Since∅ ` a : A anda is not null-blocked, we must have
v = new c(u1, . . . , un), andfields(c) = fi 7→ Ai

i∈1..n. Therefore, we have
v.fj →p uj .

- Casea = v.`j(u1, . . . , um): Since∅ ` a : A and a is not null-blocked,
we must havev = new c(u1, . . . , un), methods(c) = `i 7→ (sig i, bi), and
sigj = B(A1 x1, . . . , Am xm). Therefore, we havev.`j(u1, . . . , um) →p

bj{this←v, xk←uk
k∈1..m}.

- Casea = w:`(u1, . . . , um): The following transition rulew:`(u1, . . . , um) →p

q[new c(p).`(u1, . . . , um)] applies, withowner(w) = q andclass(w) = c.

- Casea = q[a0]: We consider two subcases, depending on whethera0 is a value
or not.

- Casea0 is a valuev: We haveq[v]→p v.

- Casea0 is not a value: Since∅ ` q[a0] : A, we have∅ ` a0 : A, a0

not a value. Sincea is not null-blocked,a0 is not null-blocked. Hence, by
induction hypothesis, we havea0 →q a′0, andq[a0]→p q[a′0]. 2

27

We can now state soundness formally. We say a method bodya is stuck ifa is not
a value,a is not null-blocked, and there is noa′ andp such thata →p a′. We write
a →∗ a′ to mean that there exists a sequencea1, . . . , an and principalsp1, . . . , pn+1

such thata →p1 a1 →p2 · · · →pn an →pn+1 a′. (Hence,→∗ is a kind of transitive
closure of→p.)

Theorem 4 (Soundness)If ∅ ` a : A, anda→∗ a′, thena′ is not stuck.

Proof A straightforward induction on the number of transitions ina→∗ a′. 2

C The Spi-Calculus in More Detail

We give an overview of the language and type system on which our analysis of web
services depends. We give the syntax in detail, but for the sake of brevity give only
an informal account of the operational semantics and type system. Full details are in a
technical report [23], from which some of the following explanations are drawn. Some
constructs primitive here are actually derived forms in the original calculus.

Names, Messages:

k ::= Encrypt | Decrypt key attribute
m,n, x, y, z name: nonce, key, key-pair
L,M,N ::= message

x name
(M1, . . . ,Mn) record,n ≥ 0
ti(M) tagged union
{M}N symmetric encryption
{|M |}N asymmetric encryption
k (M) key-pair component

The messagex is a name, representing a channel, nonce, symmetric key, or asym-
metric key-pair. We do not differentiate in the syntax or operational semantics between
key-pairs used for public key cryptography and those used for digital signatures.

The message(M1, . . . ,Mn) is a record withn fields,M1, . . . ,Mn.
The messageti(M) is messageM tagged with tagti. The message{M}N is the

ciphertext obtained by encrypting the plaintextM with the symmetric keyN .
The message{|M |}N is the ciphertext obtained by encrypting the plaintextM with

the asymmetric encryption keyN .
The messageDecrypt (M) is the decryption key (or signing key) component of the

key-pairM , andEncrypt (M) is the encryption key (or verification key) component of
the key-pairM .

Types and Effects:

` ::= Public | Private nonce attribute
S, T, U ::= type

Un data known to the opponent

28

(x1:T1, . . . , xn:Tn) dependent record,n ≥ 0
Union(t1(T1), . . . , tn(Tn)) tagged union
Top top
SharedKey(T) shared-key type
KeyPair(T) asymmetric key-pair
k Key(T) encryption or decryption part
` Challenge es challenge type
` Response fs response type

e, f ::= atomic effect
end L end-event labelledL
check ` N name-check for a nonceN
trust M :T trust thatM :T

es, fs ::= effect
[e1, . . . , en] multiset of atomic effects

The typeUn describes messages that may flow to or from the opponent, which we
model as an arbitrary process of the calculus. We say that a type ispublic if messages
of the type may flow to the opponent. Dually, we say a type istaintedif messages from
the opponent may flow into the type. The typeUn is both public and tainted.

The type(x1:T1, . . . , xn:Tn) describes a record(M1, . . . ,Mn) where eachMi :
Ti. The scope of each variablexi consists of the typesTi+1, . . . , Tn. Type(x1:T1, . . . ,
xn:Tn) is public just if all of the typesTi are public, and tainted just if all of the types
Ti are tainted.

The typeUnion(t1(T1), . . . , tn(Tn)) describes a tagged messageti(M) wherei ∈
1..n andM : Ti. TypeUnion(t1(T1), . . . , tn(Tn)) is public just if all of the typesTi

are public, and tainted just if all of the typesTi are tainted.
The typeTop describes all well-typed messages; it is tainted but not public.
The typeSharedKey(T) describes symmetric keys for encrypting messages of type

T ; it is public or tainted just ifT is both public and tainted.
The typeKeyPair(T) describes asymmetric key-pairs for encrypting or signing

messages of typeT ; it is public or tainted just ifT is both public and tainted. The
key-pair can be used for public-key cryptography just ifT is tainted, and for digital
signatures just ifT is public.

The typeEncrypt Key(T) describes an encryption or signing key for messages of
typeT ; it is public just ifT is tainted, and it is tainted just ifT is public.

The typeDecrypt Key(T) describes a decryption or verification key for messages
of typeT ; it is public just ifT is public, and it is tainted just ifT it tainted.

The types` Challenge es and ` Response fs describe nonce challenges and re-
sponses, respectively. The effectses andfs embedded in these types represent cer-
tain events. An outgoing challenge of some type` Challenge es can be cast into a
response of typè Response fs and then returned, provided the events in the effect
es + fs have been justified, as explained below. Therefore, if we have created a fresh
challenge at typè Challenge es, and check that it equals an incoming response of type
` Response fs, we can conclude that the events ines+fs may safely be performed. The
attribute` is eitherPublic or Private; the former means the nonce may eventually be

29

public, while the latter means the nonce is never made public. TypePublic Challenge es
is public, or tainted, just ifes = []. TypePublic Response fs is always public, but
tainted just ifes = []. NeitherPrivate Challenge es norPrivate Response fs is public;
both are tainted.

An effectes is a multiset, that is, an unordered list of atomic effects,e or f . Effects
embedded in challenge or response types signify that certain actions are justified, that
is, may safely be performed. An atomic effectend L justifies a single subsequent end-
event labelledL, and is justified by a distinct, preceding begin-event labelledL. An
atomic effectcheck ` N justifies a single subsequent check that an` response equals an
` challenge namedN , where` is Public or Private, and is justified by freshly creating
the challengeN . An atomic effecttrust M :T justifies casting messageM to typeT ,
and is justified by showing thatM indeed has typeT .

Processes:

O,P,Q,R ::= process
out M N output
inp M (x:T);P input (x bound inP)
repeat inp M (x:T);P replicated input (x bound inP)
split M is (x1:T1, . . . , xn:Tn);P record splitting
match M is (N, y:T);P pair matching (y bound inP)
case M is ti(xi:Ti);Pi

i∈1..n tagged union case (ti distinct)
if M = N then P else Q conditional (new)
new (x:T);P name generation (x bound inP)
P | Q composition
stop inactivity
decrypt M is {x:T}N ;P symmetric decrypt (x bound inP)
decrypt M is {|x:T |}N−1 ;P asymmetric decrypt (x bound inP)
check M is N ;P nonce-checking
begin L;P begin-assertion
end L;P end-assertion
cast M is (x:T);P cast to nonce type
witness M :T ;P witness testimony
trust M is (x:T);P trusted cast

The processesout M N and inp M (x:T);P are output and input, respectively,
along an asynchronous, unordered channelM . If an outputout x N runs in par-
allel with an inputinp x (y);P , the two can interact to leave the residual process
P{y←N}, the outcome of substitutingN for each free occurrence ofy in P . We
write out x (M);P as a simple shorthand forout x M | P .

The processrepeat inp M (x:T);P is replicated input, which behaves like input,
except that each time an input ofN is performed, the residual processP{y←N} is
spawned off to run concurrently with the original processrepeat inp M (x:T);P .

The processsplit M is (x1:T1, . . . , xn:Tn);P splits the recordM into its n com-
ponents. IfM is (M1, . . . ,Mn), the process behaves asP{x1←M1} · · · {xn←Mn}.
Otherwise, it deadlocks, that is, does nothing.

30

The processmatch M is (N, y:U);P splits the pair (binary record)M into its two
components, and checks that the first one isN . If M is (N,L), the process behaves as
P{y←L}. Otherwise, it deadlocks.

The processcase M is ti(xi:Ti);Pi
i∈1..n checks the tagged unionM . If M is

tj(L) for somej ∈ 1..n, the process behaves asP{xi←L}. Otherwise, it deadlocks.
The processif M = N then P else Q behaves asP if M andN are the same

message, and otherwise asQ. (This process is not present in the original calculus [23]
but is a trivial and useful addition.)

The processnew (x:T);P generates a new namex, whose scope isP , and then
runsP . This abstractly represents nonce or key generation.

The processP | Q runs processesP andQ in parallel.
The processstop is deadlocked.
The processdecrypt M is {x:T}N ;P decryptsM using symmetric keyN . If M is

{L}N , the process behaves asP{x←L}. Otherwise, it deadlocks. We assume there is
enough redundancy in the representation of ciphertexts to detect decryption failures.

The processdecrypt M is {|x:T |}N−1 ;P decryptsM using asymmetric keyN . If
M is {|L|}Encrypt (K) andN is Decrypt (K), then the process behaves asP{x←L}.
Otherwise, it deadlocks.

The processcheck M is N ;P checks the messagesM andN are the same name
before executingP . If the equality test fails, the process deadlocks.

The processbegin L;P autonomously performs a begin-event labelledL, and then
behaves asP .

The processend L;P autonomously performs an end-event labelledL, and then
behaves asP .

The processcast M is (x:T);P binds the messageM to the variablex of typeT ,
and then runsP . In well-typed programs,M is a challenge of typèChallenge es, and
T is a response typèChallenge fs. This is the only way to populate a response type.

The processwitness M :T ;P simply runsP , but is well-typed only ifM has the
typeT . This is the only way to justify atrust M :T effect.

The processtrust M is (x:T);P binds the messageM to the variablex of typeT ,
and then runsP . In well-typed programs, this cast is justified by a previous run of a
witness M :T ;Q process.

Next, we recall the notions of process safety, opponents, and robust safety intro-
duced in Section 4. The notion of a run of a process can be formalized by an operational
semantics.

Safety:

A processP is safeif and only if
for every run of the process and for everyL,

there is a distinctbegin L event for everyend L event.

Opponents and Robust Safety:

A processP is assertion-freeif and only if
it contains no begin- or end-assertions.

A processP is untypedif and only if

31

the only type occurring inP is Un.
An opponentO is an assertion-free untyped process.
A processP is robustly safeif and only if

P | O is safe for every opponentO.

Our problem, then, is to show that processes representing protocols are robustly
safe. We appeal to a type and effect system to establish robust safety (but not to define
it). The system involves the following type judgments.

JudgmentsE ` J :

E ` � good environment
E ` es good effectes
E ` T good typeT
E `M : T good messageM of typeT
E ` P : es good processP with effectes

We omit the rules defining these judgments, which can be found in [23]; our previ-
ous informal explanation of types should give some intuitions.

We made two additions to the language as defined in [23], namely the empty record
type() (and corresponding empty record message()), and the conditional formif M =
N then P else Q. The empty record type can be handled by simply extending the typing
rules for records to the case where there are no elements. The main consequence of this
is that the type() will be isomorphic to the typeUn, by the extended subtyping rules.
The extension of spi to handle the conditional is similarly straightforward, except that
we need to actually add a transition rule to the operational semantics, and a new typing
rule to propagate the effects. For completeness, we describe the additions here, with
the understanding that they rely on terminology defined and explained in [23]:

Extensions to Spi for the Conditional:

[if M = N then Ptrue else Pfalse] + As→ [PM=N] + As transition rule

(Proc If)
E `M : Top E ` N : Top E ` P : es E ` Q : fs

E ` if M = N then P else Q : es ∨ fs
typing rule

The type and effect system can guarantee the robust safety of a process, according
to the following theorem [23]:

Theorem 5 (Robust Safety)If x1:Un, . . . , xn:Un ` P : [] thenP is robustly safe.

D Formal translation of the Object Calculus

In this appendix, we give the complete translation of our object calculus into the spi-
calculus. The translation acts on both types and expressions. The translation presented
in Section 4 was incomplete, in that it did not address types.

32

D.1 Types Translation

The translations for types is straightforward.

Type Translation:

Prin , Un

[[Id]] , Prin

[[c]] , Union(null(Un), c(Un))

A consequence of this translation is that[[A]] is isomorphic toUn for all typesA.
Formally,

Lemma 3 [[A]] <:> Un ` for all typesA.

In practice, this means that we can replace[[A]] by Un in type derivations, and vice
versa.

Environment Translation:

[[x1:A1, . . . , xn:An]] , x1:[[A1]], . . . , xn:[[An]]

If As = A1, . . . , An andxs = x1, . . . , xn we sometimes writeB(As xs) as short-
hand for the signatureB(A1 x1, . . . , An xn).

Request and Response Types:

[[A1, . . . , Am]] , [[A1]], . . . , [[Am]]
Req(w),Res(w) , (Union(`i([[Asi]]) i∈1..n),Union(`i([[Bi]]) i∈1..n))

whereclass(w) = c andmethods(c) = `i 7→ (Bi(Asixsi), bi) i∈1..n

D.2 Translation of Expressions

The translation of expressions really acts on the type derivation of an expression, not
just the expression itself. This means that during the translation of an expression, we
have access to the types of the subexpressions appearing in the expression. To reduce
clutter, we write the translation as though it is acting on the expression itself, except
that when we need access to the type of a subexpression, we annotate the appropriate
subexpression with its type. For example, the translation oflet x=a in b depends on
the type ofa, which is available through the type derivation ofE ` let x=a in b : B.
We write let x=aA in b to indicate that the type ofa is A, according to the type
derivation.

Translation of a Value v to a Message[[v]]:

[[x]] , x

[[null]] , null()
[[new c(v1, . . . , vn)]] , c([[v1]], . . . , [[vn]])
[[p]] , p

33

Translation of a Method Body b to a Process[[b]]pk:

[[v]]pk , out k [[v]]
[[let x=aA in b]]pk , new (k′:Un); ([[a]]pk′ | inp k′ (x:Un); [[b]]pk)
[[if u = v then a else b]]pk , if [[u]] = [[v]] then [[a]]pk else [[b]]pk
[[vc.fj]]

p
k , case [[v]] is null(y:Un); stop

is c(y:Un); split y is (x1:[[A1]], . . . , xn:[[An]]); out k xj

wherefields(c) = fi 7→ Ai
i∈1..n, andj ∈ 1..n

[[vc.`(u1, . . . , un)]]pk , case [[v]] is null(y:Un); stop
is c(y:Un); out c ` (p, [[v]], [[u1]], . . . , [[un]], k)

Translation of Method ` of Classc:

Iclass(c, `) , repeat inp c ` (z:Un);
split z is (p:Prin, this:Un, x1:[[A1]], . . . , xn:[[An]], k:Un); [[b]]pk

wheremethods(c)(`) = (B(A1 x1, . . . , An xn), b)

Type of Key Shared Between Clientp and Serverq:

CSKey(p, q) ,
SharedKey(Union(req(w:Un, a:Un, t:Un,

nq:Public Response [end req(p, q, w, a, t)]),
res(w:Un, r:Un, t:Un,

np:Public Response [end res(p, q, w, r, t)])))

Semantics of Web Method Call:

[[w:`(u1, . . . , un)]]pk ,
new (k1:Un, k2:Un, t:Un, np:Public Challenge []);
begin req(p, q, w, `([[u1]], . . . , [[un]]), t);
out w (req(getnonce()), k1);
inp k1 (res(getnonce(nq:Un)));
cast nq is (n′

q:Public Response [end req(p, q, w, `([[u1]], . . . , [[un]]), t)]);
out w (p, {req(w, `([[u1]], . . . , [[un]]), t, n′

q)}Kpq
, np, k2);

inp k2 (q′:Un, bdy :Un);
decrypt bdy is {res(plain)}Kpq

;
match plain is (w, rest :(r:Res(w), t′:Un,Public Response [end res(p, q, w, r, t′)]));
split rest is (r:Res(w), rest′:(t′:Un, n′

p:Public Response [end res(p, q, w, r, t′)]));
match rest ′ is (t, n′

p:Public Response [end res(p, q, w, r, t)]);
check np is n′

p;
end res(p, q, w, r, t);
case r is `(x); out k x

whereq = owner(w)

34

Server-Side Invocation of Web Method:

let x=callw(p, args);P ,
new (k);

case args
(is `i(xsi);

new (k′); (out c `i (q, c(p), xsi, k
′) | inp k′ (r); out k `i(r))

) i∈1..n

| inp k (x);P
wherec = class(w), q = owner(w),
andmethods(c) = `i 7→ (Bi(Asi, xsi), bi) i∈1..n

Web Service Translation:

Iws(w) , repeat inp w (bdy :Un, k1:Un);
case bdy is req(getnonce());
new (nq:Public Challenge []);
out k1 (res(getnonce(nq)));
inp w (p′:Un, cipher :Un, np:Un, k2:Un);∏

p∈Prin if p = p′ then

decrypt cipher is {req(plain)}Kpq
;

match plain is (w, rest :
(a:Req(w), t:Un,Public Response [end req(p, q, w, a, t)]));

split rest is (a:Req(w), t:Un, n′
q:

Public Response [end req(p, q, w, a, t)]);
check nq is n′

q;
end req(p, q, w, a, t);
let r:Res(w)=callw(p, a);
begin res(p, q, w, r, t);
cast np is (n′

p:Public Response [end res(p, q, w, r, t)]);
out k2 (q, {res(w, r, t, n′

p)}Kpq)
whereq = owner(w)

Implementation of Classes and Web Services:

ClMeth , {(c, `) : c ∈ Class, ` ∈ dom(methods(c))}
Iclass ,

∏
(c,`)∈ClMeth Iclass(c, `)

Iws ,
∏

w∈WebService Iws(w)

Top-Level Environments:

Eclass , (c `:Un) (c,`)∈ClMeth

Ekeys , (Kpq:CSKey(p, q)) p,q∈Prin

Ews , (w:Un) w∈WebService

Eprin , p1:Prin, . . . , pn:Prin wherePrin = {p1, . . . , pn}
E0 , Ews , Eprin , Eclass , Ekeys

35

Some general remarks on typing are in order. A consequence of Lemma 3, as well
as our general use of types, reveals that we rely on typing exclusively to show security
properties, not to establish standard safety results. For instance, we do not use types
to ensure that the type of the arguments supplied at method invocation match the type
of the parameters to the method. Indeed, the only channel type in our translation has
itself typeUn.

In order to prove Theorem 1, we first establish some lemmas.

Lemma 4

(1) If E ` v : A thenEprin , [[E]] ` [[v]] : [[A]].

(2) If E ` a : A andE0, [[E]] ` p : Prin andk /∈ dom(E0, [[E]]) then:

E0, [[E]], k:Un ` [[a]]pk : []

(3) If c ∈ Class and` ∈ dom(methods(c)) thenE0 ` Iclass(c, `) : [].

(4) If w ∈WebService thenE0 ` Iws(w) : [].

Proof

(1) We prove this by induction on the height of the type derivation forE ` v : A:

- Casev = x: SinceE ` x : A, we must havex:A ∈ E. By definition of
the translation for environment,x:[[A]] ∈ [[E]], henceEprin , [[E]] ` x : [[A]],
as required.

- Casev = null : We haveE ` null : c. Since[[c]] = Union(null(), c(Un))
and [[null]] = null(), we haveEprin , [[E]] ` null() : Union(null(Un),
c(Un)), as required.

- Casev = new c(v1, . . . , vn): SinceE ` v : A, whereA = c, we have
fields(c) = fi 7→ Ai

i∈1..n, andE ` vi : Ai for all i ∈ 1..n. Let E′ =
Eprin , [[E]]. By induction hypothesis,E′ ` [[vi]] : [[Ai]] for all i ∈ 1..n. We
can now derive:

E′ ` [[vi]] : [[Ai]] ∀i ∈ 1..n

E′ ` ([[v1]], . . . , [[vn]]) : ([[A1]], . . . , [[An]])
E′ ` [[v1]], . . . , [[vn]] : (Un, . . . ,Un)

E′ ` [[v1]], . . . , [[vn]] : Un

E′ ` c([[v1]], . . . , [[vn]]) : Union(null(Un), c(Un))

- Casev = p: SinceE ` p : A (with A = Id), we havep ∈ Prin, hence
p:Prin ∈ Eprin . Since[[Id]] = Prin, we haveEprin , [[E]] ` p : Prin, as
required.

(2) Again, we proceed by induction on the height of the type derivation forE ` a :
A.

36

- Casea = v: We can apply the result of part (1). SinceE ` v : A, then
Eprin , [[E]] ` [[v]] : [[A]]. We can derive:

E0, [[E]], k:Un ` k : Un

E0, [[E]] ` [[v]] : [[A]]
E0, [[E]] ` [[v]] : Un

E0, [[E]], k:Un ` out k [[v]] : []

- Casea = let x=a0 in b: We haveE ` a0 : B for someB, andE, x:B `
b : A. Applying the induction hypothesis, we deriveE0, [[E]], k′:Un `
[[a0]]

p
k′ : [] andE0, [[E]], x:[[B]], k:Un ` [[b]]pk : []. Let E′ = E0, [[E]], k:Un.

We can now derive:

E′, k′:Un ` [[a]]pk′ : []
E′, k′:Un ` k′ : Un

E′, k′:Un, x:[[B]] ` [[b]]pk : []
E′, k′:Un, x:Un ` [[b]]pk : []

E′, k′:Un ` inp k′ (x:Un); [[b]]pk : []
E′, k′:Un ` [[a]]pk′ | inp k′ (x:Un); [[b]]pk : []

E′ ` new (k′:Un); ([[a]]pk′ | inp k′ (x:Un); [[b]]pk) : []

- Casea = if u = v then a0 else a1: We haveE ` u : B, E ` v : B,
E ` a0 : A, andE ` a1 : A. Applying the induction hypothesis, we derive
E0, [[E]], k:Un ` [[a0]]

p
k : [] andE0, [[E]], k:Un ` [[a0]]

p
k : []. By (1), we

also haveE0, [[E]] ` [[u]] : [[B]] andE0, [[E]] ` [[v]] : [[B]]. This gives us
E0, [[E]], k:Un ` if [[u]] = [[v]] then [[a0]]

p
k else [[a1]]

p
k : [], as required.

- Casea = v.fj : We haveE ` v.fj : Aj , whereE ` v : c andfields(c) =
fi 7→ Ai

i∈1..n. By (1),E0, [[E]] ` [[v]] : [[c]]. LetE′ = E0, [[E]], k:Un. First,
let us derive thatE′, y : Un ` split y is (x1:[[A1]], . . . , xn:[[An]]); out k xj :
[]. Let E′′ = x1:[[A1]], . . . , xn:[[An]]. (We trim the environments where
possible to reduce clutter.)

E′, y : Un ` y : Un

E′ ` k : Un

E′, y : Un, E′′ ` xj : [[Aj]]
E′, y : Un, E′′ ` xj : Un

E′, y : Un, E′′ ` out k xj : []
E′, y : Un ` split y is (x1:[[A1]], . . . , xn:[[An]]); out k xj : []

We can now derive:

E′ ` [[v]] : Union(null(Un), c(Un))
E′, y : Un ` stop : []
E′, y : Un ` split y is (x1:[[A1]], . . . , xn:[[An]]); out k xj : []

E′ ` case [[v]] is null(y:Un); stop
is c(y); split y is (x1:[[A1]], . . . , xn:[[An]]); out k xj : []

- Casea = v.`j(u1, . . . , um): We haveE ` v.`j(u1, . . . , um) : B, where
E ` v : c, methods(c) = `i 7→ (sig i, bi) i∈1..n, sigj = B(A1 x1, . . . ,
Am xm), andE ` uk : Ak for all k ∈ 1..m. By (1), E0, [[E]] ` [[uk]] :

37

[[Ak]] for all k ∈ 1..m. Let E′ = E0, [[E]], k:Un. First, let us derive that
E′, y:Un ` out c ` (p, [[v]], [[u1]], . . . , [[un]], k) : [].

E′, y:Un ` c ` : Un E′, y:Un ` (p, [[v]], [[u1]], . . . , [[un]], k) : Un

E′, y:Un ` out c ` (p, [[v]], [[u1]], . . . , [[un]], k) : []

We can derive:

E′ ` [[v]] : Union(null(Un), c(Un))
E′, y:Un ` stop : []
E′, y:Un ` out c ` (p, [[v]], [[u1]], . . . , [[un]], k) : []

E′ ` case [[v]] is null(y:Un); stop
is c(y); out c ` (p, [[v]], [[u1]], . . . , [[un]], k) : []

- Casea = w:`j(u1, . . . , um): We haveE ` w:`j(u1, . . . , um) : B, where
class(w) = c, owner(w) = q, methods(c) = `i 7→ (sig i, bi) i∈1..n,
sigj = B(A1 x1, . . . , Am xm), andE ` uk : Ak for all k ∈ 1..m. By (1),
E0, [[E]] ` [[uk]] : [[Ak]] for all k ∈ 1..m. Rather than giving the full type
derivation for the translation of a web service call, we outline the derivation
of effects:

new (k1:Un, k2:Un, t:Un, np:Public Challenge []);
// Effect: [check Public np]
begin req(p, q, w, `([[u1]], . . . , [[un]]), t);
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
out w (req(getnonce()), k1);
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
inp k1 (res(getnonce(nq:Un)));
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
cast nq is (n′

q:Public Response [end req(p, q, w, `([[u1]], . . . , [[un]]), t)]);
// Effect: [check Public np]
out w (p, {req(w, `([[u1]], . . . , [[un]]), t, n′

q)}Kpq
, np, k2);

// Effect: [check Public np]
inp k2 (q′:Un, bdy :Un);
// Effect: [check Public np]
decrypt bdy is {res(plain)}Kpq

;
// Effect: [check Public np]
match plain is (w, rest :

(r:Res(w), t′:Un,Public Response [end res(p, q, w, r, t′)]));
// Effect: [check Public np]
split rest is (r:Res(w), rest′:

(t′:Un, n′
p:Public Response [end res(p, q, w, r, t′)]));

// Effect: [check Public np]
match rest ′ is (t, n′

p:Public Response [end res(p, q, w, r, t)]);
// Effect: [check Public np]
check np is n′

p;
// Effect: [end res(p, q, w, r, t)]

38

end res(p, q, w, r, t);
// Effect: []
case r is `(x); out k x
// Effect: []

(3) Recall that we assume that method bodies are well-typed, that is, we assume for
c, `j with methods(c) = `i 7→ (sig i, bi) andsigj = B(A1 a1, . . . , Am xm),
that this:c, x1:A1, . . . , xm:Am ` bj : B. By clause (2) above, this means that
E0, this:[[c]], x1:[[A1]], . . . , xm:[[Am]], k:Un ` [[bj]]

p
k : []. Applying Lemma 3, we

deriveE0, this:Un, x1:Un, . . . , xm:Un, k:Un ` [[bj]]
p
k : []. We can now easily

derive the following:

E0 ` c ` : Un

E0, z:Un ` z : (Prin,Un, . . . ,Un)
E0, z:Un, p:Prin, this:Un, x1:Un, . . . , xn:Un, k:Un ` [[bj]]

p
k : []

E0, z:Un ` split z is (p:Prin, this:Un, x1:Un, . . . , xn:Un, k:Un); [[bj]]
p
k : []

E0 ` repeat inp c ` (z); split z is (p:Prin, this:Un, x1:Un, . . . , xn:Un, k:Un); [[bj]]
p
k : []

E0 ` Iclass(c, `) : []

(4) Letw ∈WebService, with owner(w) = q. First, note that the following deriva-
tion is admissible:

E0, E ` p : Prin E0, E ` a : Req(w) E0, E, r:Res(w) ` P : es

E0, E ` let r:Res(w)=callw(p, a);P : es

(The proof is a straightforward, if longish, type derivation.) Rather than giving
the full type derivation for the implementation of web servicew, we outline the
derivation of effects:

repeat inp w (bdy :Un, k1:Un);
// Effect: []
case bdy is req(getnonce());
// Effect: []
new (nq:Public Challenge []);
// Effect: [check Public nq]
out k1 (res(getnonce(nq)));
// Effect: [check Public nq]
inp w (p′:Un, cipher :Un, np:Un, k2:Un);
// Effect: [check Public nq]∏

p∈Prin if p = p′ then

// Effect: [check Public nq]
decrypt cipher is {req(plain)}Kpq ;
// Effect: [check Public nq]
match plain is (w, rest :(a:Req(w), t:Un,

Public Response [end req(p, q, w, a, t)]));
// Effect: [check Public nq]

39

split rest is (a:Req(w), t:Un, n′
q:Public Response [end req(p, q, w, a, t)]);

// Effect: [check Public nq]
check nq is n′

q;
// Effect: [end req(p, q, w, a, t)]
end req(p, q, w, a, t);
// Effect: []
let r:Res(w)=callw(p, a);
// Effect: []
begin res(p, q, w, r, t);
// Effect: [end res(p, q, w, r, t)]
cast np is (n′

p:Public Response [end res(p, q, w, r, t)]);
// Effect: []
out k2 (q, {res(w, r, t, n′

p)}Kpq
)

// Effect: []

2

Lemma 5 If ∅ ` a : A andp ∈ Prin andk /∈ dom(E0) then:

Ews , Eprin ` new (Eclass , Ekeys); (Iclass | Iws | new (k:Un); [[a]]pk) : []

Proof This is a corollary of Lemma 4. Specifically, we can derive:

E0 ` Iclass(c, `) : [] (c,`)∈ClMeth

E0 ` Iclass : []
E0 ` Iws(w) : [] w∈WebService

E0 ` Iws : []
E0, k:Un ` [[a]]pk : []

E0 ` new (k:Un); [[a]]pk : []
E0 ` Iclass | Iws | new (k:Un); [[a]]pk : []

Ews , Eprin ` new (Eclass , Ekeys); (Iclass | Iws | new (k:Un); [[a]]pk) : []

2

We can now rephrase Theorem 1 formally, and prove it.

Theorem 6 If ∅ ` a : A andp ∈ Prin andk /∈ dom(E0) then the system

new (Eclass , Ekeys); (Iclass | Iws | new (k:Un); [[a]]pk)

is robustly safe.

Proof By Lemma 5,

Ews , Eprin ` new (Eclass , Ekeys); (Iclass | Iws | new (k:Un); [[a]]pk) : [].

Robust safety of the system follows by Theorem 5. 2

E Implementation Using Asymmetric Cryptography

The security abstraction we describe in Section 2 relies on shared keys between princi-
pals. This is hardly a reasonable setup in modern systems. In this appendix, we show
that our approach can easily accommodate public-key infrastructures.

40

E.1 Authenticated Web Methods

We start by describing the protocol and implementation for authenticated web methods.
Hence, for now, we assume that all the exported methods of a web service are annotated
with Auth .

Consider a simple public-key infrastructure for digital signatures. Each principal
p has a signing keySKp and a verification keyVKp. The signing key is kept pri-
vate, while the verification key is public. To bind the name of a principal with their
verification key, we assume acertification authorityCA (itself with a signing key
SKCA and verification keyVKCA) that can sign certificatesCertVKp of the form
{|p,VKp|}SKCA. (The notation{| · |}K is used to represent both asymmetric encryption
and signature, differentiating it from symmetric encryption. In the case where{|M |}K
represent a signature, this is simply notation forM along with a token representing the
signature ofM with asymmetric keyK.)

Here is a protocol that uses digital signatures to authenticate messages, forp mak-
ing a web service callw:`(u1, . . . , un) to servicew owned byq, including the names
of continuation channels used at the spi level. Again, we assume that in addition to the
methods ofclass(w), each web service also supports a methodgetnonce, which we
implement specially.

p→ q onw : CertVKp, np, req(getnonce()), k1

q → p onk1 : CertVKq , res(getnonce(nq))
p→ q onw : p, {|req(w, `(u1, . . . , un), t, q, nq)|}SKp , k2

q → p onk2 : q, {|res(w, `(r), t, p, np)|}SKq

Type of Signing Keys:

AuthMsg(p) ,
Union(req(w:Un, a:Un, t:Un, q:Un, nq:Public Response [end req(p, q, w, a, t)]),

res(w:Un, r:Un, t:Un, q:Un, nq:Public Response [end res(q, p, w, r, t)]))
AuthKeys(p) , KeyPair(AuthMsg(p))
AuthCert , (p : Un,Decrypt Key(AuthMsg(p)))
AuthCertKeys , KeyPair(AuthCert)

We will represent the key pair of a signing key and verification key for principalp
by a pairDSp, of typeAuthKeys(p). The key pair for the certification authority will
be represented by a pairDSCA. We use the following abbreviations:

Key and Certificates Abbreviations:

SKp , Encrypt (DSp) p’s signing key
VKp , Decrypt (DSp) p’s verification key
CertVKp , {|p,VKp|}SKCA p’s certificate

With that in mind, we can amend the translation of Section 4 to accommodate the
new protocol. First, we give a new translation for a web method callw:`(u1, . . . , un):

41

New Semantics of Web Method Call:

[[w:`(u1, . . . , un)]]pk ,
new (k1:Un, k2:Un, t:Un, np:Public Challenge []);
begin req(p, q, w, `([[u1]], . . . , [[un]]), t);
out w (CertVKp, np, req(getnonce()), k1);
inp k1 (c:Un, res(getnonce(nq:Un)));
decrypt c is {|cert :(q′:Un,Decrypt Key(AuthMsg(q′)))|}VKCA−1 ;
match cert is (q, vkq :Decrypt Key(AuthMsg(q)));
cast nq is (n′

q:Public Response [end req(p, q, w, `([[u1]], . . . , [[un]]), t)]);
out w (p, {|req(w, `([[u1]], . . . , [[un]]), t, q, n′

q)|}SKp , k2);
inp k2 (q′′:Un, bdy :Un);
decrypt bdy is {|res(plain:(w′:Un, r:Un, t′:Un, p′:Un,

Public Response [end res(p′, q, w′, r, t′)]))|}vkq−1 ;
match plain is (w, rest :(r:Res(w), t′:Un, p′:Un,

Public Response [end res(p′, q, w, r, t′)]));
split rest is (r:Res(w), rest ′:(t′:Un, p′:Un,

Public Response [end res(p′, q, w, r, t′)]));
match rest ′ is (t, rest ′′:(p′:Un,Public Response [end res(p′, q, w, r, t)]));
match rest ′′ is (p, n′

p:Public Response [end res(p, q, w, r, t)]);
check np is n′

p;
end res(p, q, w, r, t);
case r is `(x); out k x

whereq = owner(w)

We also need to give a new implementation for web services, again to take into
account the different messages being exchanged:

New Web Service Translation:

Iws(w) ,
repeat inp w (c:Un, np:Un, bdy :Un, k1:Un);
case bdy is req(getnonce());
decrypt c is {|p:Un, vkp:Decrypt Key(AuthMsg(p))|}VKCA−1 ;
new (nq:Public Challenge []);
out k1 (CertVKq , res(getnonce(nq)));
inp w (p′:Un, cipher :Un, k2:Un);
if p = p′ then
decrypt cipher is {|req(plain:(w:Un, a:Un, t:Un, q′:Un,

Public Response [end req(p, q′, w, a, t)]))|}vkp−1 ;
match plain is (w, rest :(a:Req(w), t:Un, q′:Un,

Public Response [end req(p, q′, w, a, t)]));
split rest is (a:Req(w),

t:Un, rest ′:(q′:Un,Public Response [end req(p, q′, w, a, t)]));
match rest ′ is (q, n′

q:Public Response [end req(p, q, w, a, t)]);
check nq is n′

q;
end req(p, q, w, a, t);

42

let r:Res(w)=callw(p, a);
begin res(p, q, w, r, t);
cast np is (n′

p:Public Response [end res(p, q, w, r, t)]);
out k2 (q, {|res(w, r, t, p, n′

p)|}SKq)
whereq = owner(w)

Finally, we need to change the top-level environment to account for the new keys,
and to add a channel through which we will publish the public keys.

Top-Level Environments:

Eclass , (c `:Un) (c,`)∈ClMeth

Ekeys , DSCA:AuthCertKeys, (DSp:AuthKeys(p)) p∈Prin

Ews , (w:Un) w∈WebService

Eprin , p1:Prin, . . . , pn:Prin wherePrin = {p1, . . . , pn}
Enet , net :Un

E0 , Ews , Eprin , Enet , Eclass , Ekeys

Publishing can be achieved by simply sending the public keys on a public channel,
herenet :

Public Keys Publishing:

Inet , out net (VKCA, (VKp) p∈Prin)

We can now establish that the resulting system is robustly safe:

Theorem 7 If ∅ ` a : A andp ∈ Prin andk /∈ dom(E0) then the system

new (Eclass , Ekeys); (Inet | Iclass | Iws | new (k:Un); [[a]]pk)

is robustly safe.

Proof Rather than giving a full proof, we point out the parts of the proof of The-
orem 6 that need to be updated. Essentially, we need to show that the new semantics
for web method invocations is effect-free, and similarly for the new implementation of
web services. These occur in the proof of Lemma 4, part (2) and (4).

As we did in Lemma 4, rather than giving the full type derivation for the translation
of a web service call, we outline the derivation of effects:

new (k1:Un, k2:Un, t:Un, np:Public Challenge []);
// Effect: [check Public np]
begin req(p, q, w, `([[u1]], . . . , [[un]]), t);
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
out w (CertVKp, np, req(getnonce()), k1);
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
inp k1 (c:Un, res(getnonce(nq:Un)));
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]

43

decrypt c is {|cert :(q′:Un,Decrypt Key(AuthMsg(q′)))|}VKCA−1 ;
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
match cert is (q, vkq :Decrypt Key(AuthMsg(q)));
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
cast nq is (n′

q:Public Response [end req(p, q, w, `([[u1]], . . . , [[un]]), t)]);
// Effect: [check Public np]
out w (p, {|req(w, `([[u1]], . . . , [[un]]), t, q, n′

q)|}SKp , k2);
// Effect: [check Public np]
inp k2 (q′′:Un, bdy :Un);
// Effect: [check Public np]
decrypt bdy is {|res(plain:(w′:Un, r:Un, t′:Un, p′:Un,

Public Response [end res(p′, q, w′, r, t′)]))|}vkq−1 ;
// Effect: [check Public np]
match plain is (w, rest :(r:Res(w), t′:Un, p′:Un,

Public Response [end res(p′, q, w, r, t′)]));
// Effect: [check Public np]
split rest is (r:Res(w), rest ′:(t′:Un, p′:Un,

Public Response [end res(p′, q, w, r, t′)]));
// Effect: [check Public np]
match rest ′ is (t, rest ′′:(p′:Un,Public Response [end res(p′, q, w, r, t)]));
// Effect: [check Public np]
match rest ′′ is (p, n′

p:Public Response [end res(p, q, w, r, t)]);
// Effect: [check Public np]
check np is n′

p;
// Effect: [end res(p, q, w, r, t)]
end res(p, q, w, r, t);
// Effect: []
case r is `(x); out k x
// Effect: []

For the new implementation of web servicew, rather than giving the full type
derivation, we outline the derivation of effects:

repeat inp w (c:Un, np:Un, bdy :Un, k1:Un);
// Effect: []
case bdy is req(getnonce());
// Effect: []
decrypt c is {|p:Un, vkp:Decrypt Key(AuthMsg(p))|}VKCA−1 ;
// Effect: []
new (nq:Public Challenge []);
// Effect: [check Public nq]
out k1 (CertVKq , res(getnonce(nq)));
// Effect: [check Public nq]
inp w (p′:Un, cipher :Un, k2:Un);
// Effect: [check Public nq]
if p = p′ then
// Effect: [check Public nq]

44

decrypt cipher is {|req(plain:(w:Un, a:Un, t:Un, q′:Un,
Public Response [end req(p, q′, w, a, t)]))|}vkp−1 ;

// Effect: [check Public nq]
match plain is (w, rest :(a:Req(w), t:Un, q′:Un,

Public Response [end req(p, q′, w, a, t)]));
// Effect: [check Public nq]
split rest is (a:Req(w),

t:Un, rest ′:(q′:Un,Public Response [end req(p, q′, w, a, t)]));
// Effect: [check Public nq]
match rest ′ is (q, n′

q:Public Response [end req(p, q, w, a, t)]);
// Effect: [check Public nq]
check nq is n′

q;
// Effect: [end req(p, q, w, a, t)]
end req(p, q, w, a, t);
// Effect: []
let r:Res(w)=callw(p, a);
// Effect: []
begin res(p, q, w, r, t);
// Effect: [end res(p, q, w, r, t)]
cast np is (n′

p:Public Response [end res(p, q, w, r, t)]);
// Effect: []
out k2 (q, {|res(w, r, t, p, n′

p)|}SKq)
// Effect: []

2

The protocol we give above to provide authentication has some undesirable prop-
erties. Specifically, it requires the server to remember the certificateCertVKp and
noncenp at the time when a nonce is requested. Since anyone can request a nonce,
and no authentication is performed at that stage of the protocol, this makes the server
severely vulnerable to denial-of-service attacks. The following variation on the proto-
col achieves the same guarantees, but pushes the exchange of certificates and nonces to
later messages, basically just when they are needed.

p→ q onw : req(getnonce()), k1

q → p onk1 : res(getnonce(nq))
p→ q onw : p,CertVKp, np, {|req(w, `(u1, . . . , un), t, q, nq)|}SKp , k2

q → p onk2 : q,CertVKq , {|res(w, `(r), t, p, np)|}SKq

E.2 Authenticated and Encrypted Web Methods

We now describe a protocol and implementation for authenticated and encrypted web
methods. Hence, for now, we assume that all the exported methods of a web service
are annotated withAuthEnc .

The public-key infrastructure we consider for this case is similar to the one for au-
thenticated web methods, except that now we have encryption and decryption keys, as
opposed to signing and verification keys. Each principalp has an encryption keyEKp
and a decryption keyDKp. The decryption key is kept private, while the encryption

45

key is public. To bind the name of a principal with their encryption key, we again
assume acertification authorityCA (with a signing keySKCA and verification key
VKCA) that can sign certificatesCertEKp of the form{|p,EKp|}SKCA.

Here is a protocol forp making a web service callw:`(u1, . . . , un) to servicew
owned byq, including the names of continuation channels used at the spi level. Again,
we assume that in addition to the methods ofclass(w), each web service also supports
a methodgetnonce, which we implement specially. The protocol uses public key en-
cryption to exchange a session-specific shared keyK used to encrypt the actual method
call.

p→ q onw : CertEKp, req(getnonce()), k1

q → p onk1 : CertEKq , {|msg2 (q, nK)|}EKp , res(getnonce(nq))
p→ q onw : {|msg3 (w, p, K, nK)|}EKq , np, {req(`(u1, . . . , un), t, nq)}K , k2

q → p onk2 : {res(`(r), t, np)}K

Type of Keys:

SKey(p, q, w) ,
SharedKey(Union(req(a:Un, t:Un, nq:Public Response [end req(p, q, w, a, t)]),

res(r:Un, t:Un, np:Public Response [end res(p, q, w, r, t)])))
AuthEncMsg(p) ,

Union(msg2 (q:Un, nK :Private Challenge []),
msg3 (w:Un, q:Un,K:Top,

nK :Private Response [trust K:SKey(p, q, w)]))
AuthEncKeys(p) , KeyPair(AuthEncMsg(p))
AuthEncCert , (p:Un,Encrypt Key(AuthEncMsg(p)))
AuthEncCertKeys , KeyPair(AuthEncCert)

We will represent the key pair of an encryption key and decryption key for principal
p by a pairPKp, of typeAuthEncKeys(p). The signing key pair for the certification
authority will be represented by a pairDSCA. We use the following abbreviations:

Key and Certificates Abbreviations:

EKp , Encrypt (PKp) p’s encryption key
DKp , Decrypt (PKp) p’s decryption key
CertEKp , {|p,EKp|}SKCA p’s certificate

Again, we can amend the translation of Section 4 to accommodate the new protocol.
First, we give a new translation for a web method callw:`(u1, . . . , un):

New Semantics of Web Method Call:

[[w:`(u1, . . . , un)]]pk ,
new (k1:Un, k2:Un, t:Un, np:Public Challenge []);
begin req(p, q, w, `([[u1]], . . . , [[un]]), t);
out w (CertEKp, req(getnonce()), k1);
inp k1 (c:Un, cipher :Un, res(getnonce(nq:Un)));

46

decrypt c is {|cert :(q′:Un,Encrypt Key(AuthEncMsg(q′)))|}VKCA−1 ;
match cert is (q, ekq :Encrypt Key(AuthEncMsg(q)));
decrypt cipher is {|msg2 (q′:Un, nK :Un)|}DKp−1 ;
if q = q′ then
cast nq is (n′

q:Public Response [end req(p, q, w, `([[u1]], . . . , [[un]]), t)]);
new (K:SKey(p, q, w));
witness K:SKey(p, q, w);
cast nK is (n′

K :Private Response [trust K:SKey(p, q, w)]);
out w ({|msg3 (w, p, t,K, n′

K)|}ekq , np, {req(w, `([[u1]], . . . , [[un]]), t, n′
q)}K , k2);

inp k2 (bdy :Un);
decrypt bdy is {res(plain:(r:Res(w), t′:Un,

Public Response [end res(p, q, w, r, t′)]))}K ;
match plain is (r:Res(w), rest :(t′:Un,Public Response [end res(p, q, w, r, t′)]));
match rest is (t, n′

p:Public Response [end res(p, q, w, r, t)]);
check np is n′

p;
end res(p, q, w, r, t);
case r is `(x); out k x

whereq = owner(w)

We also need to give a new implementation for web services, again to take into
account the different messages being exchanged:

New Web Service Translation:

Iws(w) ,
repeat inp w (c:Un, bdy :Un, k1:Un);
case bdy is req(getnonce());
decrypt c is {|p:Un, ekp:Encrypt Key(AuthEncMsg(p))|}VKCA−1 ;
new (nq:Public Challenge []);
new (nK :Private Challenge []);
out k1 (CertEKq , {|msg2 (q, nK)|}ekp , res(getnonce(nq)));
inp w (cipher1:Un, np:Un, cipher2:Un, k2:Un);
decrypt cipher1

is {|msg3 (plain1:(w:Un, p′:Un,K:Top,
Private Response [trust K:SKey(p′, q, w)]))|}DKq−1 ;

match plain1 is (w, rest :(p′:Un,K:Top,
Private Response [trust K:SKey(p′, q, w)]));

match rest is (p, rest ′:(K:Top,Private Response [trust K:SKey(p, q, w)]));
split rest ′ is (K:Top, n′

K :Private Response [trust K:SKey(p, q, w)]);
check nK is n′

K ;
trust K is (K ′:SKey(p, q, w));
decrypt cipher2 is {req(plain2:(a:Req(w), t:Un,

Public Response [end req(p, q, w, a, t)]))}K′ ;
split plain2 is (a:Req(w), t:Un, n′

q:Public Response [end req(p, q, w, a, t)]);
check nq is n′

q;
end req(p, q, w, a, t);

47

let r:Res(w)=callw(p, a);
begin res(p, q, w, r, t);
cast np is (n′

p:Public Response [end res(p, q, w, r, t)]);
out k2 {res(r, t, n′

p)}K′

whereq = owner(w)

Finally, we need to change the top-level environment to account for the new keys,
and to add a channel through which we will publish the public keys.

Top-Level Environments:

Eclass , (c `:Un) (c,`)∈ClMeth

Ekeys , DSCA:AuthEncCertKeys, (PKp:AuthEncKeys(p)) p∈Prin

Ews , (w:Un) w∈WebService

Eprin , p1:Prin, . . . , pn:Prin wherePrin = {p1, . . . , pn}
Enet , net :Un

E0 , Ews , Eprin , Enet , Eclass , Ekeys

Publishing can be achieved by simply sending the public keys on a public channel,
herenet :

Public Keys Publishing:

Inet , out net (VKCA, (EKp) p∈Prin)

We can now establish that the resulting system is robustly safe:

Theorem 8 If ∅ ` a : A andp ∈ Prin andk /∈ dom(E0) then the system

new (Eclass , Ekeys); (Inet | Iclass | Iws | new (k:Un); [[a]]pk)

is robustly safe.

Proof Rather than giving a full proof, we point out the parts of the proof of The-
orem 6 that need to be updated. Essentially, we need to show that the new semantics
for web method invocations is effect-free, and similarly for the new implementation of
web services. These occur in the proof of Lemma 4, part (2) and (4).

As we did in Lemma 4, rather than giving the full type derivation for the translation
of a web service call, we outline the derivation of effects:

new (k1:Un, k2:Un, t:Un, np:Public Challenge []);
// Effect: [check Public np]
begin req(p, q, w, `([[u1]], . . . , [[un]]), t);
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
out w (CertEKp, req(getnonce()), k1);
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]

48

inp k1 (c:Un, cipher :Un, res(getnonce(nq:Un)));
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
decrypt c is {|cert :(q′:Un,Encrypt Key(AuthEncMsg(q′)))|}VKCA−1 ;
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
match cert is (q, ekq :Encrypt Key(AuthEncMsg(q)));
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
decrypt cipher is {|msg2 (q′:Un, nK :Un)|}DKp−1 ;
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
if q = q′ then
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
cast nq is (n′

q:Public Response [end req(p, q, w, `([[u1]], . . . , [[un]]), t)]);
// Effect: [check Public np]
new (K:SKey(p, q, w));
// Effect: [check Public np]
witness K:SKey(p, q, w);
// Effect: [check Public np, trust K:SKey(p, q, w)]
cast nK is (n′

K :Private Response [trust K:SKey(p, q, w)]);
// Effect: [check Public np]
out w ({|msg3 (w, p, t,K, n′

K)|}ekq , np, {req(w, `([[u1]], . . . , [[un]]), t, n′
q)}K , k2);

// Effect: [check Public np]
inp k2 (bdy :Un);
// Effect: [check Public np]
decrypt bdy is {res(plain:(r:Res(w), t′:Un,

Public Response [end res(p, q, w, r, t′)]))}K ;
// Effect: [check Public np]
match plain is (r:Res(w), rest :(t′:Un,Public Response [end res(p, q, w, r, t′)]));
// Effect: [check Public np]
match rest is (t, n′

p:Public Response [end res(p, q, w, r, t)]);
// Effect: [check Public np]
check np is n′

p;
// Effect: [end res(p, q, w, r, t)]
end res(p, q, w, r, t);
// Effect: []
case r is `(x); out k x
// Effect: []

For the new implementation of web servicew, rather than giving the full type
derivation, we outline the derivation of effects:

repeat inp w (c:Un, bdy :Un, k1:Un);
// Effect: []
case bdy is req(getnonce());
// Effect: []
decrypt c is {|p:Un, ekp:Encrypt Key(AuthEncMsg(p))|}VKCA−1 ;
// Effect: []
new (nq:Public Challenge []);
// Effect: [check Public nq]

49

new (nK :Private Challenge []);
// Effect: [check Public nq, check Private nK]
out k1 (CertEKq , {|msg2 (q, nK)|}ekp , res(getnonce(nq)));
// Effect: [check Public nq, check Private nK]
inp w (cipher1:Un, np:Un, cipher2:Un, k2:Un);
// Effect: [check Public nq, check Private nK]
decrypt cipher1

is {|msg3 (plain1:(w:Un, p′:Un,K:Top,
Private Response [trust K:SKey(p′, q, w)]))|}DKq−1 ;

// Effect: [check Public nq, check Private nK]
match plain1 is (w, rest :(p′:Un,K:Top,

Private Response [trust K:SKey(p′, q, w)]));
// Effect: [check Public nq, check Private nK]
match rest is (p, rest ′:(K:Top, n′

K :Private Response [trust K:SKey(p, q, w)]));
// Effect: [check Public nq, check Private nK]
split rest ′ is (K:Top, n′

K :Private Response [trust K:SKey(p, q, w)]);
// Effect: [check Public nq, check Private nK]
check nK is n′

K ;
// Effect: [check Public nq, trust K:SKey(p, q, w)]
trust K is (K ′:SKey(p, q, w));
// Effect: [check Public nq]
decrypt cipher2 is {req(plain2:(a:Req(w), t:Un,

Public Response [end req(p, q, w, a, t)]))}K′ ;
// Effect: [check Public nq]
split plain2 is (a:Req(w), t:Un, n′

q:Public Response [end req(p, q, w, a, t)]);
// Effect: [check Public nq]
check nq is n′

q;
// Effect: [end req(p, q, w, a, t)]
end req(p, q, w, a, t);
// Effect: []
let r:Res(w)=callw(p, a);
// Effect: []
begin res(p, q, w, r, t);
// Effect: [end res(p, q, w, r, t)]
cast np is (n′

p:Public Response [end res(p, q, w, r, t)]);
// Effect: []
out k2 {res(r, t, n′

p)}K′

// Effect: []
2

We can note some further possibilities, with respect to the protocols implemented
in this section:

• The protocol implementing authenticated and encrypted invocation uses certifi-
cates to essentially negotiate a symmetric key with which to actually perform the
encryption. It is straightforward to apply the same idea to the authenticated-only

50

case, negotiating a symmetric key with which to hash the content of the method
call (instead of relying on public-key signatures).

• In the above protocol, a new symmetric key is negotiated at every method invo-
cation. A more efficient variation would be to re-use a negotiated symmetric key
over multiple web method calls. Once a symmetric key has been negotiated, it
can effectively act as a shared key between the two principals, which is the case
we investigated in the body of this paper. We can therefore use the above pro-
tocol for the first web method call between a principal and a particular service,
and the shared-key protocol for subsequent web method calls.

F First-Class Web Services

The model of web services captured by our calculus in Section 3 does not consider
web services to be values. This reflects the fact that current WSDL does not allow for
web services to be passed as requests or results. On the other hand, a web service has
a simple representation as a string, namely the URL used to access the web service,
and this stringcanbe passed as a request or a result. Hence, it is possible, in a sense,
to pass web services as values given the current web services infrastructure. In this
section, we explore an extension of our object calculus that allows web services as
first-class values. The main point here is to show that there is no real difficulty in
modelling this aspect of the web services infrastructure.

For the sake of keeping this section essentially self-contained, we give the full
syntax and semantics of the extended object calculus.

F.1 Syntax

We assume finite setsPrin, WebService, Class, Field , Meth of principal, web ser-
vice, class, field, and method names, respectively.

Classes, Fields, Methods, Principals, Web Services:

c ∈ Class class name
f ∈ Field field name
` ∈ Meth method name
p ∈ Prin principal name
w ∈WebService web service name

There are now three kinds of data type:Id is the type of principal identifiers,
c ∈ Class is the type of instances of classc, andWS (c) is the type of web services
with implementation classc ∈ Class. A method signature specifies the types of its
arguments and result.

Types and Method Signatures:

A,B ∈ Type ::= type
Id principal identifier

51

c object
WS (c) web service

sig ∈ Sig ::= B(A1 x1, . . . , An xn) method signature (xi distinct)

As in Section 3, an execution environment defines the services and code available
in the distributed system.

Execution Environment: (fields,methods, owner , class)

fields ∈ Class → (Field fin→ Type) fields of a class

methods ∈ Class → (Meth fin→ Sig × Body) methods of a class
owner ∈WebService → Prin service owner
class ∈WebService → Class service implementation

The owner and implementation class of a web service need not be globally known.
We can assume that the representation of a web servicew carries representations of its
owner and its implementation class, whichclass andowner simply read off. Since we
assume web services are given, and we do not provide for ways to actually create new
web services, there is no loss of generality in taking this particular approach.

The syntax of method bodies and values is that of the original object calculus, with
the differences that web services are values, and that we do not assume that web service
invocations require a fixed web service.

Values and Method Bodies:

x, y, z name: variable, argument
u, v ∈ Value ::= value

x variable
null null
new c(v1, . . . , vn) object
p principal identifier
w web service

a, b ∈ Body ::= method body
v value
let x=a in b let-expression
if u = v then a else b conditional
v.f field lookup
v.`(u1, . . . , un) method call
v:`(u1, . . . , un) service call
p[a] bodya running asp

We again require a method body of the formp[a], meaningp running bodya, to
keep track of which principal is running a method body in the upcoming operational
semantics.

52

F.2 Operational Semantics

The operational semantics is defined by a transition relation, writtena→p a′, wherea
anda′ are method bodies, andp is the principal evaluating the bodya.

Transitions:

(Red Let 1)
a→p a′

let x=a in b→p let x=a′ in b

(Red Let 2)

let x=v in b→p b{x←v}

(Red If)

if u = v then atrue else afalse →p au=v

(Red Field)
fields(c) = fi 7→ Ai

i∈1..n j ∈ 1..n

(new c(v1, . . . , vn)).fj →p vj

(Red Invoke)(wherev = new c(v1, . . . , vn))
methods(c) = `i 7→ (sig i, bi) i∈1..n j ∈ 1..n sigj = B(A1 x1, . . . , Am xm)

v.`j(u1, . . . , um)→p bj{this←v, xk←uk
k∈1..m}

(Red Remote)
owner(w) = q class(w) = c

w:`(u1, . . . , un)→p q[new c(p).`(u1, . . . , un)]

(Red Prin 1)
a→q a′

q[a]→p q[a′]

(Red Prin 2)

q[v]→p v

F.3 Type System

The judgments of our type system all depend on anenvironmentE, that defines the
types of all variables in scope. An environment takes the formx1:A1, . . . , xn:An and
defines the typeAi for each variablexi. The domaindom(E) of an environmentE is
the set of variables whose types it defines.

Environments:

D,E ::= environment
∅ empty
E, x:A entry

dom(x1:A1, . . . , xn:An) , {x1, . . . , xn} domain of an environment

53

The following are the two judgments of our type system. They are inductively
defined by rules presented in the following tables.

JudgmentsE ` J :

E ` � good environment
E ` a : A good expressiona of typeA

We writeE ` J when we want to talk about both kinds of judgments, whereJ stands
for either� or a : A.

The following rules define an environmentx1:A1, . . . , xn:An to be well-formed if
each of the namesx1, . . . , xn are distinct.

Rules for Environments:

(Env∅)

∅ ` �

(Envx)(wherex 6∈ dom(E))
E ` �

E, x:A ` �

We present the rules for deriving the judgmentE ` a : A that assigns a typeA to
a value or method bodya. These rules are split into two tables, one for values, and one
for method bodies.

Rules for Typing Values:

(Val x)
E = E1, x:A,E2 E ` �

E ` x : A

(Val null)
E ` �

E ` null : c

(Val WS)
E ` � class(w) = c

E ` w : WS (c)

(Val Object)
fields(c) = fi 7→ Ai

i∈1..n E ` vi : Ai ∀i ∈ 1..n

E ` new c(v1, . . . , vn) : c

(Val Princ)
E ` �

E ` p : Id

Rules for Typing Method Bodies:

(Body Let)
E ` a : A E, x:A ` b : B

E ` let x=a in b : B

(Body If)
E ` u : A E ` v : A E ` a : B E ` b : B

E ` if u = v then a else b : B

(Body Field)
E ` v : c fields(c) = fi 7→ Ai

i∈1..n j ∈ 1..n

E ` v.fj : Aj

54

(Body Invoke)
E ` v : c methods(c) = `i 7→ (sig i, bi) i∈1..n j ∈ 1..n
sigj = B(A1 x1, . . . , Am xm) E ` uk : Ak ∀k ∈ 1..m

E ` v.`j(u1, . . . , um) : B

(Body Remote)
E ` v : WS (c)

methods(c) = `i 7→ (sig i, bi) i∈1..n j ∈ 1..n
sigj = B(A1 x1, . . . , Am xm) E ` ui : Ai ∀i ∈ 1..m

E ` v:`j(u1, . . . , um) : B

(Body Princ)
E ` a : A

E ` p[a] : A

We make the following assumption on the execution environment.

Assumptions on the Execution Environment:

(1) For eachw ∈WebService, fields(class(w)) = CallerId : Id .
(2) No tagged expressionp[a] occurs within the body of any method;

such expressions occur only at runtime, to track the call stack of principals.
(3) for eachc ∈ Class and each̀ ∈ dom(methods(c)),

if methods(c)(`) = (B(A1 x1, . . . , An xn), b),
thenthis:c, x1:A1, . . . , xn:An ` b : B.

We can establish the soundness of the type system of this extended object calculus
by essentially the same way we established the soudness of the type system of the
original object calculus. Recall that a method body is null-blocked if it is of the form
null .fj , null .`(u1, . . . , un), let x=a in b (wherea is null-blocked), orq[a] (wherea
is null-blocked). A method body is stuck ifa is not a value,a is not null-blocked, and
there is noa′ andp such thata →p a′. We writea →∗ a′ to mean that there exists
a sequencea1, . . . , an and principalsp1, . . . , pn+1 such thata →p1 a1 →p2 · · · →pn

an →pn+1 a′.

Theorem 9 (Soundness)If ∅ ` a : A, anda→∗ a′, thena′ is not stuck.

Proof A straightforward adaptation of the proof of Theorem 4, via corresponding
Preservation and Progress theorems. 2

To illustrate the usefulness of first-class web services, consider the following sim-
ple example, where the fact that web services can be passed as arguments to meth-
ods is quite natural. Suppose, as we did in Section 3, that there are two principals
Alice,Bob ∈ Prin, and a web servicecal = http://mycalendar.com/CalendarService,
where we haveclass(cal) = CalendarServiceClass. The web servicecal maintains
an appointment calendar for principals. It offers web methods to query a principal’s
calendar for a free time slot, and to reserve time slots. More precisely, the service has

55

the following interface:

class CalendarServiceClass
Id CallerId
Bool Available(Id account ,Time from,Time to)
〈check if selected time slot if free for account〉

Void Reserve(Id account ,Time from,Time to)
〈reserve time slot for account〉

(We assume that the classesBool , Time, andVoid are provided in the execution envi-
ronment. The details of their implementation are irrelevant to our discussion.)

Suppose that Alice has an account oncal , and that she wants to make an appoint-
ment with a calendar-enabled banking service—that is, a banking service that offers a
web method for scheduling appointments with a bank advisor via a calendar service.
Consider a calendar-enabled version of the banking service of Section 3. Letw =
http://bob.com/BankingService, where we haveowner(w) = Bob and class(w) =
BankingServiceClass. We add a web methodMakeAppt to BankingServiceClass
that takes as argument a time period during which the appointment is sought, and a
calendar service that the banking service can query to confirm that a common free time
slot is available between the client and the bank advisor. The interface of the augmented
banking service is as follows:

class BankingServiceClass
Id CallerId
Num Balance(Num account)

if account = 12345 then
if this.CallerId = Alice then 100 else null

else . . .
Time MakeAppt(Time from,Time to,WS (CalendarService) cs)

. . . cs.Available(CallerId , . . .) . . .

Hence, if Alice wants to make an appointment sometime within the next week, she
could callw:MakeAppt(18/11/02:08:00, 23/11/02:17:00, cal). (We assume appropri-
ate syntax for constants of typeTime.) During the evaluation of this web method
invocation, the implementation ofMakeAppt will make calls tocal :Available to find
a time slot suitable to Alice, and finally a call tocal :Reserve to reserve a time slot.
A principal with an account on a different calendar servicec would callw:MakeAppt
passing inc as the calendar service.

56

References

[1] M. Abadi and L. Cardelli.A Theory of Objects. Springer, 1996.

[2] M. Abadi, C. Fournet, and G. Gonthier. Secure communications implementation
of channel abstractions. In13th IEEE Symposium on Logic in Computer Science
(LICS’98), pages 105–116, 1998.

[3] M. Abadi, C. Fournet, and G. Gonthier. Secure communications processing for
distributed languages. InIEEE Computer Society Symposium on Research in
Security and Privacy, pages 74–88, 1999.

[4] M. Abadi, C. Fournet, and G. Gonthier. Authentication primitives and their com-
pilation. In 27th ACM Symposium on Principles of Programming Languages
(POPL’00), pages 302–315, 2000.

[5] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi
calculus.Information and Computation, 148:1–70, 1999.

[6] B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker,
C. Kaler, J. Klein, B. LaMacchia, P. Leach, J. Manferdelli, H. Maruyama,
A. Nadalin, N. Nagaratnam, H. Prafullchandra, J. Shewchuk, and D. Si-
mon. Web services security (WS-Security), version 1.0. Available from
http://msdn.microsoft.com/library/en-us/dnglobspec/
html/ws-security.asp , April 2002.

[7] D. Balfanz, D. Dean, and M. Spreitzer. A security infrastructure for distributed
Java applications. InProceedings of the IEEE Symposium on Security and Pri-
vacy, pages 15–26. IEEE Computer Society Press, 2000.

[8] T. Barclay, J. Gray, E. Strand, S. Ekblad, and J. Richter. TerraService.NET: An
introduction to web services. Technical Report MS–TR–2002–53, Microsoft Re-
search, June 2002.

[9] A. D. Birrell. Secure communication using remote procedure calls.ACM Trans-
actions on Computer Systems, 3(1):1–14, 1985.

[10] D. Box. Essential COM. Addison Wesley Professional, 1997.

[11] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen,
S. Thatte, and D. Winer. Simple object access protocol (SOAP) 1.1. Available
from http://www.w3.org/TR/SOAP , 2000.

[12] L. Cardelli and A.D. Gordon. Mobile ambients.Theoretical Computer Science,
240:177–213, 2000.

[13] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services
description language (WSDL) 1.2. Available fromhttp://www.w3.org/
TR/2002/WD-wsdl12-20020709 , 2002.

57

[14] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Securing
SOAP e-services.International Journal of Information Security (IJIS), 1(2):100–
115, 2002.

[15] R. De Nicola, G. Ferrari, and R. Pugliese. Types as specifications of access poli-
cies. InSecure Internet Programming 1999, volume 1603 ofLecture Notes in
Computer Science, pages 117–146. Springer, 1999.

[16] D. Dolev and A.C. Yao. On the security of public key protocols.IEEE Transac-
tions on Information Theory, IT–29(2):198–208, 1983.

[17] D. Duggan. Cryptographic types. In15th IEEE Computer Security Foundations
Workshop, pages 238–252. IEEE Computer Society Press, 2002.

[18] P. Eronen and P. Nikander. Decentralized Jini security. InProceedings of Network
and Distributed System Security 2001 (NDSS2001), pages 161–172, 2001.

[19] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for
computational grids. In5th ACM Conference on Computer and Communications
Security, pages 83–92, 1998.

[20] Google. Google Web APIs (beta).http://www.google.com/apis , July
2002.

[21] A.D. Gordon and A. Jeffrey. Authenticity by typing for security protocols. In14th
IEEE Computer Security Foundations Workshop, pages 145–159. IEEE Computer
Society Press, 2001. Extended version to appear inJournal of Computer Security.

[22] A.D. Gordon and A. Jeffrey. Typing correspondence assertions for communi-
cation protocols. InMathematical Foundations of Programming Semantics 17,
volume 45 ofElectronic Notes in Theoretical Computer Science. Elsevier, 2001.
Extended version to appear inTheoretical Computer Science.

[23] A.D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic
protocols. In15th IEEE Computer Security Foundations Workshop, pages 77–91.
IEEE Computer Society Press, 2002. An extended version appears as Technical
Report MSR–TR–2002–31, Microsoft Research, August 2002.

[24] A.D. Gordon and D. Syme. Typing a multi-language intermediate code. In28th
ACM Symposium on Principles of Programming Languages (POPL’01), pages
248–260, 2001.

[25] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
In Proceedings HLCL’98, volume 16(3) ofElectronic Notes in Theoretical Com-
puter Science. Elsevier, 1998.

[26] D. Hoshina, E. Sumii, and A. Yonezawa. A typed process calculus for fine-
grained resource access control in distributed computation. InFourth Interna-
tional Symposium on Theoretical Aspects of Computer Software (TACS2001), vol-
ume 2215 ofLecture Notes in Computer Science, pages 64–81. Springer, 2001.

58

[27] IBM Corporation and Microsoft Corporation. Security in a web ser-
vices world: A proposed architecture and roadmap. White paper available
from http://msdn.microsoft.com/library/en-us/dnwssecur/
html/securitywhitepaper.asp , April 2002.

[28] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calcu-
lus for Java and GJ. InObject Oriented Programming: Systems, Languages and
Applications (OOPSLA ’99), pages 132–146. ACM Press, 1999.

[29] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in dis-
tributed systems: Theory and practice.ACM Transactions on Computer Systems,
10(4):265–310, 1992.

[30] U. Lang and R. Schreiner.Developing Secure Distributed Systems with CORBA.
Artech House, 2002.

[31] R. Milner. Communicating and Mobile Systems: theπ-Calculus. Cambridge
University Press, 1999.

[32] P. Sewell. Global/local subtyping and capability inference for a distributedπ-
calculus. In25th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP’98), volume 1443 ofLecture Notes in Computer Science,
pages 695–706. Springer, 1998.

[33] E. G. Sirer and K. Wang. An access control language for web services. InPro-
ceedings of the ACM Symposium on Access Control Models and Technologies,
pages 23–30. ACM Press, 2002.

[34] L. van Doorn, M. Abadi, M. Burrows, and E. Wobber. Secure network objects. In
IEEE Computer Society Symposium on Research in Security and Privacy, pages
211–221, 1996.

[35] T. Wobber, M. Abadi, M. Burrows, and B. Lampson. Authentication in the Taos
operating system.ACM Transactions on Computer Systems, 12(1):3–32, 1994.

[36] T.Y.C. Woo and S.S. Lam. A semantic model for authentication protocols. In
IEEE Computer Society Symposium on Research in Security and Privacy, pages
178–194, 1993.

59

