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ABSTRACT of a protocol stack. For example, the identity of the sender of a mes-

An XML web service is, to a first approximation, an RPC service sage may be exposed directly at the application-level, but computed
in which requests and responses are encoded in XML as soapVia a h|dd§n, lower level cryptographlc protocal. The purpose .Of
envelopes, and transported over HTTP. We consider the problemthIS paperis to explore how to_ build for_mal mode!s of such se(_:unt_y
of authenticating requests and responses at the SOAP-level, rathefiPstractions, and how to validate their correct implementation in

than relying on transport-level security. We propose a security ab- ['M$ Of cryptographic primitives. Our setting is an experimental
straction, inspired by earlier work on secure RPC, in which the implementation of SOAP security headers for XML web services.

methods exported by a web service are annotated with one of three] 1 Motivation: Web Services and SOAP
security levels: none, authenticated, or both authenticated and en- A crisp definition, due to the builders of the TerraService.NET

crypted. We model our abstraction as an object calculus with primi- service is that “a web service is a web site intended for use b
tives for defining and calling web services. We describe the seman- ' ) R y
. . : computer programs instead of human beings” [8]. Each request to
tics of our object calculus by translating to a lower-level language or response from a web service is encoded in XML as a SEAP
with primitives for message passing and cryptography. To validate velo 5[11] An envelope consists ofeader containing perhans
our semantics, we embed correspondence assertions that speci outiFr)1 or .securit infc?rmation andtod crontainin ?hg actu%l
the correct authentication of requests and responses. By appeal tdata cﬂ the reque)gt or respons:e A proﬁwising appl?cation for web
the type theory for cryptographic protocols of Gordon and Jeffrey's - =~ "= support direct retrieval of XML documents from re-

Cryptyc, we verify the correspondence assertions simply by typ- mote databases, without resorting to unreliable “screen scraping”

Lnugs'tolzr;]ngg&gig:jg:'sbe an implementation of our semantics via of data from HTML pages. Google already offers programmatic
' access to its database via a web service [20]. Another major appli-
) ] . cation is to support systems interoperability within an enterprise’s
Categories and Subject Descriptors intranet.
D.3.1 [Programming Languaged: Formal Definitions and The- The interface exported by a web service can be captured as
ory,; D.3.3 Programming Languages: Language Constructs and an XML-encoded service description, in WSDL format [13], that
Features; D.4.6Qperating System$ Security and Protection; ~ describes the methods—and the types of their arguments and

F.3.2 ﬂ_ogics and Meanings of Program$ Semantics of Pro- results—that make up the service. Tools exist for application-level
gramming Languages developers to generate a WSDL description from the code of a ser-

vice, and then to generate proxy code for convenient client access
to the web service. Like tools for previous RPC mechanisms, these

General Terms tools abstract from the details of the underlying messaging infras-

Languages, security, theory, verification tructure. They allow us to regard calling a web service, for many if
not all purposes, as if it were invoking a method on a local object.
Keywords Our goal is to augment this abstraction with security guarantees.

) o There are many signs of fervour over web services: there is

Web services, remote procedure call, authentication, type systems yigespread tool support from both open source and commercial
software suppliers, and frequent news of progress of web service

1. INTRODUCTION standards at bodies such as OASIS and the W3C. Many previous

It is common to provide application-level developers with secu- SYStems support RPC, but one can argue that what's new about

rity abstractions that hide detailed implementations at lower levels Web Services is their combination of vendor-neutral interoperabil-
ity, internet-scale, and toolsets for “mere mortals” [8]. Still, there

are some reasons for caution. The XML format was not originally

designed for messaging; it allows for interoperability but is ineffi-
Permission to make digital or hard copies of all or part of this work for Cieént compared to binary encodings. Moreover, it would be use-
personal or classroom use is granted without fee provided that copies areful to use web services for inter-organisational communication, for
not made or distributed for profit or commercial advantage and that copies example, for e-commerce, but there is as yet little experience or
bear this notice and the full citation on the first page. To copy otherwise, to agreement on SOAP-level security mechanisms.
reput_)lls_h, to post on servers or to redistribute to lists, requires prior specific In fact, there is already wide support for security at the transport-
permission and/or a fee. level that is. for buildi b . ind HTTPS and
ACM Workshop on XML Security 2002ashington D.C. USA evel, that Is, 1or building secure web services using an
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00. SSL. Still, SSL encrypts all traffic between the client and the web



server, so that it is opaque to intermediaries. Hence, messages can- Our main innovation is the idea of formalizing the authentication
not be monitored by firewalls and cannot be forwarded by interme- guarantees offered by a security abstraction by embedding corre-
diate untrusted SOAP-level routers. There are proposals to avoidspondence assertions in its semantics. On the other hand, our high-
some of these difficulties by placing security at the SOAP-level, level abstraction is fairly standard, and is directly inspired by work
that is, by partially encrypting SOAP bodies and by including au- on secure network objects [35]. Although the rather detailed de-
thenticators, such as signatures, in SOAP headers. For examplescription of our model and its semantics may seem complex, the
the WS-Security [6] specification describes an XML syntax for in- actual cryptographic protocol is actually quite simple. Still, we be-

cluding such information in SOAP envelopes. lieve our framework and its implementation are a solid foundation
Hence, the immediate practical goal of this work is to build and for developing more sophisticated protocols and their abstractions.
evaluate an exploratory system for SOAP-level security. Some formal details are relegated to the appendices. Appendix A
) gives sample messages exchanged during web service methods
1.2 Background: Correspondences and Spi calls using our abstractions, and Appendix B gives a detailed

Cryptographic protocols, for example, protocols for authenticat- overview of the spi-calculus used in the paper. A technical re-
ing SOAP messages, are hard to get right. Even if we assume per{ort [24] includes details omitted from this conference paper, such
fect cryptography, exposure to various replay and impersonation as the formal details of the translation of our object calculus into
attacks may arise because of flaws in message formats. A commorthe spi-calculus, as well as some extensions, such as a translation
and prudent procedure is to invite expert analysis of any protocol, relying on certificates, and all proofs.
rather than relying on security through obscurity. Moreover, it is a
useful discipline to specify and verify protocol goals using formal 2, A SECURITY ABSTRACTION

notations. Here, we specify authenticity goals of our protocol using We introduce a security abstraction for web services, where the

Woo af‘d Lam's correspondencg assertions [37], and verify them, methods exported by a web service are annotated by one of three
assuming perfect cryptography in the sense of Dolev and Yao [16], security levels:

using type theories developed as part of the Cryptyc project [21,

22, 23]. None unauthenticated call
Woo and Lam’s correspondence assertions [37] are a simple and Auth authenticated call
precise method for specifying authenticity properties. The idea is AuthEnc  authenticated and encrypted call

to specify labelled events that mark progress through the protocol. ] o
There are two kinds: begin-events and end-events. The assertiorf* c&ll from a client to a web service is made up of two messages,
is that every end-event should correspond to a distinct, precedingthe requestfrom the client to the web service, and tresponse
begin-event with the same label. For example, Alice performs a from the web service to the client. Th_e inspiration for the security
begin-event with label “Alice sending Bob messagé at the start ~ 1evels, and the guarantees they provide, comes from SRC Secure
of a session when she intends to sevldto Bob. Upon receiv- Network ObJe(_:ts [35]. An authenticated web method pall prov_ldes
ing M and once convinced that it actually comes from Alice, Bob & guarantee ointegrity (that the request that the service receives
performs an end-event with the same label. If the correspondenceS exactly the one sent by the client and that the response that the
assertion can be falsified, Bob can be manipulated into thinking client receives is exactly the one sent by the service as a response to
a message comes from Alice when in fact it has been altered, orthiS request) andt-most-once semanti¢tat the service receives
came from someone else, or is a replay. On the other hand, if thethe request most once, _and that the client receives the response at
correspondence assertion holds, such attacks are ruled out. most once). An authenticated and encrypted web method call pro-
There are several techniques for formally specifying and verify- vides all the guarantees of an authenticated call, along with a guar-
ing correspondence assertions. Here, we model SOAP messagin@ntee ofsecrecy(that an eavesdropper does not obtain any part of
within a process calculus, and model correspondence assertions by€ method name, the arguments, or the results of the call).
begin- and end-statements within the calculus. We use a form of [N C#, where users can specijtributeson various entities, our
the spi-calculus [21], equipped with a type and effect system able to secu.rlty annotations take the form of an attrlbgte on web mgthod;
prove by typechecking that correspondence assertions hold in spitethat is, the methods exported by a web service. The attribute is
of an arbitrary attacker. Spi [5] is a small concurrent language with Written[SecurityLevel( leve)] , wherelevelis one ofNone,

primitives for message passing and cryptography, derived from the Auth , or AuthEnc . For example, consider a simple interface to
r-calculus [32]. a banking service, wher@VebMethod] is an attribute used to

indicate a method exported by a web service:

1.3 Contributions of this Paper

i class BankingServiceClass {
Our approach is as follows:

e Section 2 describes our high-level abstraction for secure mes- string  callerid;

saging. [WebMethod] [SecurityLevel(Auth)]
e Section 3 models the abstraction as an object calculus with public int Balance (int account);

primitives for creating and calling web services. .
[WebMethod] [SecurityLevel(AuthEnc)]

e Section 4 defines the semantics of our abstraction by trans- ~ public string Statement (int account);
lating to the spi-calculus. Correspondence assertions specify ]
the authenticity guarantees offered to caller and callee, and ~ [WebMethod] [SecurityLevel(Auth)]

are verified by typechecking. public void Transfer (int source,
int dest,
e Section 5 describes a SOAP-based implementation using Vi- int amount);

sual Studio .NET. }



The annotations get implemented by code to perform the authen-showing how to translate the abstractions into a lower level calculus
tication and encryption, at the level of SOAP envelopes, transpar- that uses the above protocols. We use types to show that guaran-
ently from the user. The annotations on the web service side will tees are formally met by the implementation, via correspondence
generate a method on the web service that can be used to establishssertions.

a security context. This method will never be invoked by the user,

but automatically by the code implementing the annotations. For 3, A FORMAL MODEL

the purpose of this paper, we assume a simple setting for authen-
tication and secrecy, namely that the principals involved possess
shared keys. Specifically, we assume a distinctKgy shared be-
tween every pair of principals andg. We use the key<,, when

p acts as the client anglas the web service. (Notice that,, is
different fromK,,.) Itis straightforward to extend our approach to
different settings such as public-key infrastructures or certificate-
based authentication mechanisms (see our technical report [24]).

An authenticated call by to a web method on a web services
owned byg with argumentsu, .. ., u, producing a result uses
the following protocol:

We model the application-level view of authenticated messaging
as an object calculus. Object calculi [1, 25, 29] are object-oriented
languages in miniature, small enough to make formal proofs fea-
sible, yet large enough to study specific features. As in FJ [29],
objects are typed, class-based, immutable, and deterministic. As
in some of Abadi and Cardelli's object calculi [1], we omit sub-
typing and inheritance for the sake of simplicity. In spite of this
simplicity, our calculus is Turing complete. We can define classes
to implement arithmetics, lists, collections, and so on.

To model web services, we assume there are finite/zetsand
WebService of principal identifiers and web service identifiers, re-

p — q : request nonce spectively. We think of eacly € WebService as a URL referring

q—p:ng to the service; moreoverlass(w) is the name of the class that

p—q:p,req(w, L(ur, ... un), S 1), Np, implements the service, andwner(w) € Prin is the principal
Hash(req(w, £(u1, . .., un), 8,1q), Kpqg) running the service.

q—p: g res(w,€(r),s,np), Hash(res(w, (1), s,mp), Kpq) To illustrate this model, we express the banking service inter-

face introduced in the last section in our calculus. Suppose there
Here, Hash is a cryptographic hash function (a one-way message are two principalsdlice, Bob € Prin, and a web servicer =
digest function such as MD5). We tag the request and the responsenttp://bob.com/BankingServicehere we havewner(w) = Bob
messages to be able to differentiate them. We also tag the respons@nd class(w) = BankingServiceClass. Suppose we wish to im-
with the name of the method that was originally called. We include plement theBalance method so that given an account number, it
a uniquesession tags in both the request and response message checks that it has been called by the owner of the account, and if so
to allow the callep to match the response with the actual call that  returns the balance. Hiice’s account number i$2345, we might

was performed. achieve this as follows:
An authenticated and encrypted call pyo a web method on
a web servicev owned byg with arguments., . . . , u,, producing ) )
a resultr uses a similar protocol, with the difference that the third class BankingServiceClass
and fourth messages are encrypted using the shared key instead of Id Callerld
signed: Num Balance( Num account)
if account = 12345 then
p — q : request nonce if this.Callerld = Alice then 100 else null
q—DP:nyg else ...
p—q:p, {Teq(w7£(u17 e 7u”)a S,'I’Lq)}qu,'ﬂp

There are a few points to note about this code. First, as in BIL [25],
method bodies conform to a single applicative syntax, rather than
To convince ourselves that the above protocols do enforce thethere being separate grammars for statements and expressions. Sec-
guarantees prescribed by the security abstraction, we typically ar-ond, while the C# code relies on attributes to specify exported
gue as follows. Let's consider the authenticated and encrypted casemethods and security levels, there are not attributes in our calculus.
the authenticated case being similar. When the web setviaen For simplicity, we assume that all the methods of a class imple-
by principalg receives a request, £(u1, . . ., un), s, nqg €ncrypted menting a web service are exported as web methods. Furthermore,
with K, (¢ uses the identity in the request to determine which  we assume that all these exported methods are authenticated and
key to use), it knows that only could have created the message, encrypted, as if they had been annotatedhEnc . (It is straight-
assuming that the shared ké§;,, is kept secret by botp andg. forward to extend our calculus to allow per-method annotations but
This enforces the integrity of the request. Since the message alsat complicates the presentation of the translation in the next sec-
contains the nonce, that the web service can check has never tion.)
appeared in a previous message, it knows that the message is not Every class implementing a web service has exactly one field,
a replayed message, hence enforcing at-most-once semantics. FinamedCallerld, which exposes the identity of the caller, and al-
nally, the secrecy of the shared k&y,, implies the secrecy of the  lows application-level authorisation checks.
request. A similar argument shows that the protocol satisfies in-  We write w: Balance(12345) for a client-side call to method
tegrity, at-most-once-semantics, and secrecy for the response. Balance of the servicav. The semantics of such a web service call
What do we have at this point? We have an informal description by Alice to a service owned byob is that Bob evaluates the local
of a security abstraction, we have an implementation of the ab- method callnew BankingServiceClass(Alice).Balance(12345)
straction in terms of protocols, and an informal argument that the as Bob. In other words,Bob creates a new object of the form
guarantees prescribed by the abstraction are enforced by the imple«ew BankingServiceClass(Alice) (that is, an instance of the class
mentation. How do we make our security abstraction precise, and BankingServiceClass with Callerld set to Alice) and then calls
how do we ensure that the protocols do indeed enforce the requiredthe Balance method. This would terminate with00, since the
guarantees? In the next section, we give a formal model to make value ofthis. CallerId is Alice. (For simplicity, we assume every
the abstraction precise. Then, we formalize the implementation by class in the object calculus has a single constructor whose argu-

q—p:-q, {res(w,g(r), S, np)}qu



ments are the initial values of the object’s fields.) This semantics
guarantees to the serv@ob that the fieldCallerld contains the
identity of his caller, and guarantees to the cligtiice that only

the correct owner of the service receives the request and returns the ’

result.
In a typical environment for web services, a client will not invoke
web services directly. Rather, a client creates a proxy object corre-

sponding to the web service, which encapsulates the remote invoca-

tions. Those proxy objects are generally created automatically by
the programming environment. Proxy objects are easily express-
ible in our calculus, by associating with every web service
proxy clasgprozy(w). The clasorozy(w) has a method for every
method of the web service class, the implementation for which sim-
ply calls the corresponding web service method. The proxy class
also has a fieldd holding the identity of the owner of the web
service. Here is the client-side proxy class for our example service:

class BankingServiceProxy
1d Id()
Bob
Num Balance( Num account)
w: Balance(account)

The remainder of this section details the syntax and informal se-
mantics of our object calculus.

3.1 Syntax

In addition to Prin and WebService, we assume finite sets
Class, Field, Meth of class, field, and method names, respec-
tively.

CLASSES FIELDS, METHODS, PRINCIPALS, WEB SERVICES:

I 1
c € Class

class name
f € Field field name
£ € Meth method name
p € Prin principal name

web service name

w € WebService
L ]

There are two kinds of data typeid is the type of principal
identifiers, andc € Class is the type of instances of clags A
method signature specifies the types of its arguments and result.

TYPES AND METHOD SIGNATURES:
I
A, B € Type ::=

type
Id principal identifier
c object
sig € Sig method signature
B(A1 z1,...,An Tp) (x; distinct)

An execution environment defines the services and code avail-
able in the distributed system. In addition éaner and class,
described above, the mafisids andmethods specify the types of

VALUES AND METHOD BODIES:
I 1

T,Yy, 2 name: variable, argument

u,v € Value ::= value
variable
null null
new c(vi, ..., vn) object
principal identifier
a,b € Body ::= method body
value
let x=a in b let-expression
if u=vthen a else b conditional
v.f field lookup
vl(ut, ..., up) method call
wik(Uty ..., Un) service call

The free variablegv(a) of a method body are defined in the
usual way, where the only binderisbeing bound irb in the ex-
pressioniet z=a in b. We write a{z+<b} for the outcome of a
capture-avoiding substitution @f for each free occurence of the
variablex in method bodya. We view method bodies as being
equal up to renaming of bound variables. Specifically, we take
let z=a in bto be equal tdet z'=a in b{z—=z'}, if 2’ & fu(b).

Our syntax for bodies is in a reduced form that simplifies its se-
mantics; in examples, it is convenient to allow a more liberal syn-
tax. For instance, we defing a1 = as then by else bs as a short-
hand forlet r1=a1 in let xo=as in Zf x1 = x2 then by else bs.

We already used this shorthand when writiifigthis. Callerld =
Alice then 100 else null in our example. Similarly, we assume a
classNum for numbers, and write integer literals suchl@ as
shorthand for objects of that class.

Although objects are values, in this calculus, web services are
not. This reflects the fact that current WSDL does not allow for
web services to be passed as requests or results.

We assume all method bodies in our execution environment are
well-typed. If methods(c)(¢) = (sig,b) and the signatureig =
B(A;i z1,...,A, zn) we assume that the bodyhas typeB given
a typing environmenthis:c, x1:A1, . . ., xn:Ay,. The variablehis
refers to the object on which tifemethod was invoked. The typing
rules, which are standard, appear in the technical report [24]. We
also assume the clas&iss(w) corresponding to each web service
w has a single fiel@allerid.

3.2 Informal Semantics of our Model

We explain informally the outcome of evaluating a method body
b as principalp, that is, on a client or server machine controlled by
p. (Only the semantics of web service calls depeng.dn

To evaluate a value asp, we terminate at once withitself.

To evaluate a let-expressidet x=a in b asp, we first evalu-
atea asp. If a terminates with a value, we proceed to evaluate
b{z—v}, that is,b with each occurrence of the variabteeplaced

each field and the signature and body of each method, respectivelywith v. The outcome of evaluatirig z«—v} asp is the outcome of

We write X — Y andX 2 Y for the sets of total functions and
finite maps, respectively, frofY to Y.

EXECUTION ENVIRONMENT: (fields, methods, owner, class)
I

fields € Class — (Field i3 Type) fields of a class

methods € Class — (Meth i3 Sig x Body)
methods of a class
owner € WebService — Prin service owner

class € WebService — Class service implementation
L ]

We complete the syntax by giving the grammarsifthod bod-
iesand forvalues

evaluating the whole expression.

To evaluate a conditionaf u = v then a else b asp, we evalu-
atea asp if u andv are the same; else we evaluatasp.

To evaluate a field lookup.f asp, whenv is an object value
new c(v1,...,vn), we checkf is thejth field of class: for some
§ € 1..n (thatis, thafields(c) = f; — A;*€'™ and thatf = f;),
and then returm;. If v is null or if the check fails, evaluation has
gone wrong.

To evaluate a method call.¢(u1,...,u,) asp, whenv is an
objectnew c(v1, ..., vn), we checkl is a method of class (that
is, thatmethods(c) = £; — (sig;,b;) “S*™ and that! = ¢;
for somej € 1..m) and we check the arity of its signatureris



(that is, thatsig;, = B(A: z1, ..., A, z,)) and then we evaluate
the method body ag, but with the object itself in place of the
variable this, and actual parametets, ..., u, in place of the
formal parameters;, ..., z, (that is, we evaluate the expression
bi{this—v, x1u1, ..., Tn—ux}). If vis null or if either check
fails, evaluation has gone wrong.

To evaluate a service call:{(u1, ..., u,) asp, we evaluate the
method callnew ¢(p).l(u1,...,un) asq, wherec = class(w) is
the class implementing the service, ané owner(w) is the prin-
cipal owning the service. (By assumptiefs only field is Callerld
of type Id.) This corresponds directly to creating a new object on
q’'s web server to process the incoming request.

4. A SPI-CALCULUS SEMANTICS

We confer a formal semantics on our object calculus by transla-
tion to the spi-calculus [5, 21], a lower-level language with primi-

tives for message-passing (to model SOAP requests and responses\a/u

and cryptography (to model encryption and decryption of SOAP
headers and bodies).

4.1 A Typed Spi-Calculus (Informal Review)

To introduce the spi-calculus, we formalize the situation where
Alice sends a message to Bob using a shared key, together with

correspondence assertion concerning authenticity of the message,

as outlined in Section 1. Aameis an identifier that is atomic
as far as our analysis is concerned. In this example, the nhame
Alice and Bob identify the two principals, the namg represents

a symmetric key known only tellice and Bob, and the name:
represents a public communication channem@ssageM or N,

is a data structure such as a name, a taple, . . ., M,,), a tagged
message (M), or a ciphertex{ M}y (that is, a messag&/ en-
crypted with a keyV, which is typically a name). Arocess P or

Q, is a program that may perform local computations such as en-

cryptions and decryptions, and may communicate with other pro-

cesses by message-passing on named channels. For example, th

processPajice = begin sending(Alice, Bob, M );out n {M }
defines Alice’s behaviour. First, she performs a begin-event la-
belled by the tagged tuplending(Alice, Bob, M), and then she
sends the cipherteXtV } x on the channek. The proces$s., =

inp n (z);decrypt z is {y}x;end sending(Alice, Bob,y); de-
fines Bob’s behaviour. He blocks till a messagarrives on the

form begin- or end-events. We say a procésss robustly safe

if and only if P | O is safe for every opponer@®. Our example
systemnew (K); (Paiice | Ppos) is not robustly safe. The oppo-
nent cannot acquire the kéy since its scope is restricted, but it
can intercept messages on the public chamnahd mount a re-

play attack. The opponeip n (x);out n z;out n = duplicates

the encrypted message so that Bob may mistakenly addepnd
perform the end-eversending(Alice, Bob, M) twice. To protect
against replays, and to achieve robust safety, we can add a nonce
handshake to the protocol.

In summary, spi lets us precisely represent the behaviour of pro-
tocol participants, and specify authenticity guarantees by process
annotations. Robust safety is the property that no opponent at the
level of the spi-calculus may violate these guarantees. We omit the
details here, but a particular type and effect system verifies robust
safety: if a process can be assigned the empty effect, then it is ro-
stly safe. The example above is simple, but the general method
orks for a wide range of protocol examples [21, 23].

4.2 A Semantics for Local Computation

We translate the values and method bodies of our object calculus
to messages and processes, respectively, of the spi calculus. To
begin with, we omit web services. Many computational models

%an be studied by translation to thecalculus; our translation of
local computation follows a fairly standard pattern.

We assume thaPrin are w-calculus names, and thételd U
SMeth U Class U {null} are message tags. Values translate easily;
in particular, an object translates to a tagged tuple containing the
values of its fields.

TRANSLATION OF A VALUE v TO A MESSAGE[v]:
I

[z] & =

[null] 2 null()

[new c(v,...,v.)] 2 c([vi], ..., [va])
] =p

We translate a bodlyto a proces§b]’ that represents the evalu-
ation ofb as principap. The nhame is a continuation, a communi-
cations channel on which we sef] to represent termination with
valuew. Since our focus is representing safety rather than liveness
properties, we represent an evaluation that goes wrong simply by
the inactive processop; it would be easy—but a complication—to

channeln. Then he attempts to decrypt the message with the key add an exception mechanism. We use stansjglitiandcase state-
K. We assume there is sufficient redundancy, such as a check-ments to analyse tuples and tagged messages, respectively. To call

sum, in the ciphertext that we can tell whether it was encrypted
with K. If so, the plaintext message is bounditoand he per-
forms an end-event labellednding(Alice, Bob,y). The process
new (K); (Paiice | Ppos) defines the complete system. The com-
position Pajic. | Proy represents Alice and Bob running in paral-
lel, and able to communicate on shared channels suech dhe
binder new(K) restricts the scope of the kelf to the process
Puaiice | Prob SO that no external process may use it. Appendix B
contains the grammar of spi messages and processes. The gral

m_

a method of an object of classe, with argumentsuy, ..., u, we

send the tuplép, [v], [u1],- - -, [uxn], k) on the channet_¢. The
namep is the caller, and channglis the continuation for the call.

We translate methoélof classc to a process that repeatedly awaits
such messages, and triggers evaluations of its body. Our translation
depends in part on type information; we writgin the translation

of field lookups and method calls to indicate thas the type ofv.

TRANSLATION OF A METHOD BODY b TO A PROCESS])]%:

mar includes the type annotations that are required to appear in spi[v]}, £ out k [v]

terms. In this section, we omit the type annotations in spi terms for
the purpose of illustrating our approach.

A

llet z=a in b]}, £ new (K'); ([al}, | inp &' (z); [b]%)
[if w=v then a else b} £ if [u] = [v] then [a]} else [b]%

We include begin- and end-events in processes simply to specify [ve- ;12 2

correspondence assertions. We say a procesaféto mean that

in every run, and for every., there is a distinct, precedinggin L
event for everyend L event. Our example is safe, because Bob’s
end-event can only happen after Alice’s begin-event.

For correspondence assertions to be interesting, we need to

model the possibility of malicious attacks. Let apponentbe a
spi-calculus proces®, arbitrary except tha® itself cannot per-

case [v] is null(y); stop
is c(y);splity is (x1,...,xn);0ut k x;
wherefields(c) = f; — A; *S* ™, andj € 1.n
[veb(u1, ..., un)]h £
case [[v] is null(y); stop

is c(y); out c£ (p, [v], [u1], - - -, [un], k)




TRANSLATION OF METHOD ¢ OF CLASS c: SEMANTICS OF WEB METHOD CALL:
I 1 I

Iclass (67 K) £ szg(uh B Un)]]i £
repeat inp c_{ (z);split z is (p, this, 1, ..., Tn, k); [0]} new (ki, k2, t,np);
wheremethods(c)(£) = (B(A1 x1,. .., An Tn),b) begin req(p, ¢, w, £(Ju1], - - -, [un]), t);

out w (reg(getnonce ), k1)
inp k1 (res(getnonce(ng)));
out w (p, {req(w, £([u1l, ..., [un]), t,10) } iy s ps K2);

4.3 A Semantics for Web Services inp k2 (g, bdy); . .
decrypt bdy is {res(plain)} k,,;

We complete the semantics for our object calculus by translat-  match plain is (w, rest);
ing our cryptographic protocol for calling a web service to the spi-  gp|it rest is (r, rest’);
calculus. A new idea is that we embed begin- and end-events inthe - match rest’ is (¢, nl);
translation to represent the abstract authenticity guarantees offered check n,, is nh;
by the object calculus. end res(p, g, w, r, t);

We assume access to all web methods is at the highest security case 1 is ¢(z); out k o
level AuthEnc  from Section 2, providing both authentication and  \hereq = owner(w)
secrecy. Here is the protocol, fer making a web service call 1 I
w:l(u1,...,u,) to servicew owned byg, including the names
of continuation channels used at the spi level. Recall that the pro-
tocol assumes that the client has a way to query the web service
for a nonce. Therefore, we assume that in addition to the methods
of class(w), each web service also supports a methethonce,
which we implement specially.

Our server semantics relies on a shorthand notation defined be-
low; let z=cally(p, l(u1,...,un)); P runs the method of the
classclass(w) implementing the servica, with argumentsu,

.., un, and with itsCallerld field set top, binds the result ta:
and runsP.

SERVER-SIDE INVOCATION OF A WEB METHOD:
I

p — g onw : req(getnonce()), k1 let z=call, (p, args); P 2
q — ponky : res(getnonce(ng)) new (k);
p—qonw:p,{req(w,l(ur,..., un),t, M)} Kpy, T, k2 case args
g — ponks : q,{res(w, £(r), ¢, np) } &, (is £ (xs:);
new (k'); (out c_¢; (g, c(p), zsi, k') |
We are assuming there is a shared k&y, for each pair of prin- inp k' (r);out k £;(r))
cipalsp,q € Prin. For the sake of brevity, we omit the formal ) i€t-n
description of the type and effect system [23] we rely on, but see |inp k (z); P
Appendix B for a detailed overview. Still, to give a flavour, we can  wherec = class(w), ¢ = owner(w),
define the type of a shared kég,, as follows: andmethods(c) = £; — (Bi(As;, xs;),b;) '€

Finally, we implement each servieeby a procesd s (w). We

TYPE OFKEY SHARED BETWEEN CLIENT p AND SERVERg: ) . .
1 repeatedly listen for nonce requests, reply with one, and then await

I
CSKey(p,q) = a web service call freshened by the nonce. If we find the nonce, it
SharedKey(Union( is safe to perform an end-event labelled(p, ¢, w, a, t), wherep
req(w:Un, a:Un, t:Un, is the callerg = owner(w) is the service owner is the received
ngq:Public Response [end req(p, ¢, w, a, t)]), method request, antlis the session tag. We use the shorthand
res(w:Un, r:Un, t:Un, above to invokea. If r is the result, we perform a begin-event
| np:Public Response [end res(p, g, w, 7, t)]))) | labelledres(p, g, w, r, t) to record we are returning a result, and
then send a response, freshened with the nonce we received from
the client. In general, the notatigfi, ., ,, P, meansP; | --- | P,.
The type says we can use the key in two modes. First, we may
encrypt a plaintext taggeckq containing four components: a pub- ~ WEB SERVICE TRANSLATION: |
lic namew of a service, an argument suitable for the service, 1, (1)) 2 repeat inp w (bdy, k1);
a session tag, and a noncex, proving that a begin-event labelled case bdy is req(getnonce());
req(p, q, w, a, t) has occurred, and therefore that an end-event with new (ng);
that label would be safe. Second, we may encrypt a plaintext tagged out k1 (res(getnonce(ng)));
res containing four components: a servieg a resultr from that inp w (p', cipher, ny, ka);
service, the session tagand a nonce,, proving that a begin-event IT,c pin if p = then

labelledres(p, g, w, r, t) has occurred.

We translate a service call to the client-side of our cryptographic
protocol as follows. We start by embedding a begin-event labelled
req(p, ¢, w, £(Ju1], - - -, [uxn]), t) to record the details of clients
call to servely = owner(w). We request a noneeg,, and use it to
freshen the encrypted request, which we send with our own nonce
ny, Which the server uses to freshen its response. If the response begin res(p, g, w, 7, t);
indeed contains our nonce, we embed an end-event to record suc- out ka (q, {res(w,r,t,n)) } K, )

. . . ) y Py ¥ Ifp pq
cessful authentication. For the sake c_Jf brevity, we rely on some whereq = owner(w)
standard shorthands for pattern-matching. L I

decrypt cipher is {req(plain)} k,,;
match plain is (w, rest);

split rest is (a, t, ny);

check ng is ng;

end req(p, ¢, w, a,t);

let r=cally(p, a);




This semantics is subject to more deadlocks than a realistic im- public int Balance (int account) { ... }
plementation, since we do not have a single database of outstanding }
nonces. Still, since we are concerned only with safety properties,
not liveness, it is not a problem that our semantics is rather more
nondeterministic than an actual implementation.

This is the code we currently have, and it is close to the ide-
alized interface we gave in Section 2. The differences are due
to implementation restrictions imposed by the development envi-

4.4 Security Properties of a Complete System  ronment. The extract shows that the web service implements the
We define the following procesSys(b, p) to model a piece of RequestNonce method required by the authentication protocol.

. LT . . : The Balance method is annotated as an authenticated method,
codeb being run by principap in the context of implementations ; L
. . and is also annotated to indicate that the headers of the SOAP mes-
of all the classes and web servicedituss and WebService.

sages used during a call will be available throughttbéader field
Sys(b, p) of the interface. (The clad3SHeader has fields corresponding to
the headers of the SOAP message.) As we shall see shortly, SOAP
(Il Totass (¢, ) | headers are used_ to carry th_e authentication_ inforr_nation_. Specifi-
CeCl“ss"ed"m}'”e““’ds(c)) cassim cally, the authenticated identity of the caller is available in a web
we WebService ws (W) | method througtheader.callerid
new (k); [6]%) To implement the security abstraction on the web service side,
We claim that the ways an opponedican interfere with the be- ~ we use a feature of Visual Studio .NET called SOAP Extensions.
haviour of Sys (b, p) correspond to the ways in which an actual op- Roughly speaking, a SOAP Extension acts like a programmable
ponent lurking on a network could interfere with SOAP-level mes- “filter”. It can be installed on either (or both) of a client or a web
sages being routed between web servers. The namfieémethods service. It gets invoked on every incoming and outgoing SOAP
are hidden, s@® cannot interfere with calls to local methods. The message, and can be used to examine and modify the content of
keys K, are also hidden, s© cannot decrypt or fake SOAP-level  the message before forwarding it to its destination. In our case, the

Ay new (67€ ce Class,@Edom(methodS(C))); new (qu p,qGPMn);

encryption. On the other hand, the name®n which Sys(b, p) extension will behave differently according to whether the mes-
sends and receives our model of SOAP envelopes are public, andsage i_S incoming or outgoing, and depending on _the seCL_lrity level
soO is free to intercept, replay, or modify such envelopes. specified. For an outgoing message, if the security levidbise,

Our main result is that an opponent cannot disrupt the authentic- the SOAP message is unchanged. If the security levAlih _
ity properties embedded in our translation. The proof is by showing messages are signed as specified by the protocol: a cryptographic

the translation preserves types. hash of the SOAP body and the appropriate nonce is stored in a
) custom header of the messages. If the security levdlteEnc ,
THEOREM 1. If bodyb is well-typed ang € Prin thenSys(b, p) messages are encrypted as specified by the protocol, before being
is robustly safe. forwarded. For incoming messages, the messages are checked and
decrypted, if required. If the security level Auth , the signa-
5. A SOAP-LEVEL IMPLEMENTATION ture of the message checked. If the security levalithEnc , the

We have implemented the security abstraction introduced in Sec- Message is decrypted before being forwarded. Our implementation
tion 2 and formalized in Sections 3 and 4 on top of the Visual Studio US€S the SHA1 hash function for signatures, and the RC2 algorithm
NET implementation of web services, as a library that web service for symmetric encryption.. _ S
developers and clients can use. A web service developer adds secu-, 10 implement the security abstraction on the client side, we pro-
rity attributes to the web methods of the service. The developer also Vide the client with a new proxy class. The new proxy class pro-

needs to provide a web method to supply a nonce to the client. OnVides methodlone, Auth , andAuthEnc , that are called by the
the client side, the client writer is provided with a modified proxy Proxy methods to initiate the appropriate protocol. The method

class that encapsulates the implementation of the security abstracNOne simply sets up the headers of the SOAP message to include

tion and takes into account the security level of the corresponding the identity of the caller and the calleéuth andAuthEnc do
web service methods. Hence, from a client's point of view, there the same, but also make a call to the web service to get a nonce and

is no fundamental difference between accessing a web service withdd it (along with a newly created nonce) to the headers. The actual
security annotations and one withou. signature and encryption of the SOAP message is again performed
Consider an implementation of our running example of a bank- USing SOAP Extensions, just as on the web service side.

ing service. Here is what (an extract of) the class implementing the  OUr implementation uses a custom SOAP hedd&Header
web service looks like: to carry information such as nonces, identities, and signatures. It

provides the following elements:
class BankingServiceClass :

System.Web. Services.WebService callerid identity of the client
{ ' ' ' calleeid identity of the web service provider
np client nonce
nq web service nonce
[WebMethod] signature cryptographic signature of the message

public int RequestNonce () { ... }
Not all of those elements are meaningful for all messages. In addi-

public DSHeader header; tion to these headers, in the cases where the message is encrypted,
the SOAP body is replaced by the encrypted body. Appendix A
[WebMethod] gives actual SOAP messages exchanged between the client and web
[SecurityLevel(Level=SecLevel.Auth)] service during an authenticated calBalance , and an authenti-
[SoapHeader("header", cated and encrypted call &tatement
Direction=Direction.InOut, Our implementation is meant as a preliminary design of a C#

Required=true)] abstraction for secure RPC, a starting point to explore abstractions



for more general security policies. There are still issues that needheaders to SOAP envelopes. Envisioned standards, described in
to be addressed, even in a setting as simple as the one presente@8], will build on the specifications of WS-Security, for example,

in this paper. First, we plan to adopt recognized formats for en- to manage and authenticate message exchanges between partici-
cryption and signature of XML data, such as XML-Encryption and pants. Our work has an immediate application in this context. Itis
XML-Signature (though our validation does not depend on the ex- straightforward, for example, to adapt our implementation to pro-
act XML syntax for cryptography). Second, it would be valuable duce WS-Security compliant SOAP envelopes. More importantly,

to generate the new proxy class automatically. we can use the techniques in this paper to model security abstrac-
tions provided by emerging standards and study them formally.
6. RELATED WORK Despite its enjoyable properties, the formal model we use to

study the implementation of our security abstraction suffers from
some limitations. For instance, it makes the usual Dolev-Yao as-
sumptions that the adversary can compose messages, replay them,
or decipher them if it knows the right key, but cannot otherwise
“crack” encrypted messages. A more severe restriction is that we
cannot yet model insider attacks: principals with shared keys are
assumed well-behaved. Work is in progress to extend the Cryptyc
type theory to account for malicious insiders. We have not verified
the hash-based protocol of Section 2.

There has been work for almost twenty years on secure RPC
mechanisms, going back to Birrell [9]. More recently, secure RPC
has been studied in the context of distributed object systems. As we
mentioned, our work was inspired by the work of van Doetml.
[35], itself inspired by [30, 36]. These techniques (or similar ones)
have been applied to CORBA [31], DCOM [10], and Java [7, 18].

In contrast, little work seems to have been done on formalizing
secure RPC. Of note is the work of Abadi, Fournet, and Gonthier
[2, 3], who show how to compile the standard join-calculus into the
sjoin-calculus, and show that the compilation is fully abstract. In a
subsequent paper [4], they treat similarly and more simply a join- 7. CONCLUSIONS
calculus with authentication primitives: each message contains its  Authenticated method calls offer a convenient abstraction for
source address, there is a way to extract the principal owning adevelopers of both client and server code. Various authorisation
channel from the channel, and any piece of code runs as a par-mechanisms may be layered on top of this abstraction. This paper
ticular principal. Their fully abstract translation gives very strong proposes such an abstraction for web services, presents a theoreti-
guarantees: it shows that for all intents and purposes, we can reacal model, and describes an implementation using SOAP-level se-
son at the highest level (at the level of the authentication calculus). curity. By typing our formal semantics, we show no vulnerability
Although our guarantees are weaker, they are easier to establish. exists to attacks representable within the spi-calculus, given certain

Duggan [17] formalizes an application-level security abstrac- assumptions. Vulnerabilities may exist outside our model—there
tion by introducing types for signed and encrypted messages; heare no methods, formal or otherwise, to guarantee security abso-
presents a fully abstract semantics for the abstraction by translationlutely.
to a spi-calculus. Our work shows that by exploiting recent advances in authen-

Much of the literature on security in distributed systems stud- ticity types, we can develop a theoretical model of a security ab-
ies the question adiccess controlintuitively, access control is the  straction, and then almost immediately obtain precise guarantees.
process of determining if the principal calling a particular method We intend to exploit these ideas further by exploring enriched pro-
has permission to access the objects that the method refers to, acgramming models for authentication and authorisation, while si-
cording to a particular access control policy. There is a distinction multaneously building theoretical models and SOAP-level imple-
to be made between authentication and access control. Authenti-mentations.
cation determines whether the principal calling a method is indeed This study furthermore validates the adequacy of the spi-
the principal claiming to be calling the method, while access con- calculus, and Cryptyc in particular, to formally reason about se-
trol can use this authenticated identity to determine whether that curity properties in a distriouted communication setting.
principal is allowed access. This distinction is made clear in the
work of Balfanzet al. [7], where they provide authenticated and Acknowledgments
encrypted communication over Java RMI (using SSL) and use that ) ) )
infrastructure as a basis for a logic-based access control mecha_(_lryptyc IS an ongoing CO”{:IbO_ratlon between Alan Jeffrey and the
nism. The access control decisions are based on the authenticateéirst author. Ernie Cohen, &iric Fournet, and Alan Jeffrey made
caller identity obtained from the layer in charge of authentication. USeful suggestions during the writing of this paper.

This approach is also possible in our framework, which provides

access to an authenticated identity as well. We plan to study accessAPPENDIX

control abstractions in our framework. Note that various forms of

access control mechanisms have been formalizeg-i@culi, [26, A. SAMPLE SOAP MESSAGES

33, 27], and other process calculi [12, 15]. An access control lan- We give some sample SOAP messages exchanged during web
guage based on temporal logic has been defined by Sirer and Wangservice method calls of the web service described in Section 5. One
[34] specifically for web services. Damiaei al. [14] describe an thing that is immediately clear is that we are not using standard
implementation of an access control model for SOAP; unlike our XML formats for signing and encrypting messages, such as XML-
work, and the WS-Security proposal [6], it relies on an underlying Encryption and XML-Signature. There is no intrinsic difficulty in
secure channel, such as an SSL connection. adapting our infrastructure to use standard formats. The point is

The GRID is a proposed distributed infrastructure with scien- that the validation of the security abstraction does not rely on the
tific computing as an important application; consequently, the need exact syntax of the SOAP envelopes.
arises for a distributed security architecture [19] including authen- .
tication and access control. A.1 An Authenticated Call

An intense area of activity in the world of web services is the  We describe an authenticated call to Belance method. The
definition of standards for web service security. WS-Security is messages exchanged to obtained the nonce are standard SOAP mes-
a standard that describes how to attach signature and encryptiorsages. To simplify the presentation of these messages, we have re-



moved some of the namespace information. More specifially, the <ng>-1</ng>
<soap:Envelope> element carries the following namespaces: <signature>4E:00:6F:00</signature>

</DSHeader>
xmins:soap="http://schemas.xmlsoap.org/soap/ </soap:Header>
envelope" <soap:Body>

xmins:xsi="http://www.w3.0rg/2001/ 9D:8F:95:2B:BC:60:B1:73:A7:C4:82:F5:39:20:97:

XMLSchema-instance" F7:69:71:66:D3:A3:A0:90:B9:9B:FE:71:0A:65:C1:
xmins:xsd="http://www.w3.0rg/2001/XMLSchema" EF:EE:99:CB:4D:8A:40:37:CA:1E:D0:03:50:34:76:
8C:E3:F3:30:DD:C9:34:19:D4:04:CB:39:7D:1A:84:
The following message is the request from Alice to the web service 2F:CA:30:DA:68:7E:E1:CB:07:9C:EB:79:F9:E9:4B:
to execute thdalance method on argument 12345. Notice the 47:58:94:56:D7:22:08:02:CDIAAF 5:D3:40. CLEC:
A i . g T 13:FB:B9:E6:4F:13:CD:70:FD:BA:18:80:FC:50:F3:

DSHeader element holding the identity of the principals involved, 75:F2:2F:95:50:5D:41:7E:C8:8B:BB:AB:76:C9:59:
as well as the nonces and the Cryptographic Signature_ BA:E2:3B:E5:4D:79:71:E4:AD:18:5A:4B:EA:29:17:

30:90:66:08:27:ED:B4:BD:2E:89:06:6D:0B:56:40:

<?xml version="1.0" encoding="utf-8"?> 43:35:A1:77:AE:12:7E:4B:19:26:B5:24:1A:D9:67:

<soap:Envelope> 3D:A0:91
<soap:Header> </soap:Body>
<DSHeader xmins="http://tempuri.org/"> </soap:Envelope>
<callerid>Alice</callerid>
<calleeid>Bob</calleeid> The response is similarly encoded. Notice that this time the nonce
jgg:igjggi np must be encrypted, so its value is again included in the en-
<signature> crypted data, and its element is reset to a dummy value.

3E:67:75:28:3B:AD:DF:32:E7:6C:D3:66:2A:CF:
E7:8A:3F:0A:A6:0D
</signature>

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope>
<soap:Header>

</DSHeader>
</soap:Header>
<soap:Body>
<Balance xmlins="http://tempuri.org/">
<account>12345</account>
</Balance>
</soap:Body>
</soap:Envelope>

The response from the web service has a similar form:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope>
<soap:Header>
<DSHeader xmins="http://tempuri.org/">
<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>13</np>
<ng>42</ng>
<signature>
8D:31:52:6E:08:F0:89:7B:1E:12:3F:5E:63:EE:
B0:D2:63:89:CA:73
</signature>
</DSHeader>
</soap:Header>
<soap:Body>
<BalanceResponse xmlins="http://tempuri.org/">

<DSHeader xmins="http://tempuri.org/">
<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>-1</np>
<ng>-1</ng>
<signature>4E:00:6F:00</signature>
</DSHeader>

</soap:Header>
<soap:Body>

98:FD:6A:5B:38:0A:82:95:3F:01:EC:D3:55:F9:AA:
35:4D:18:DB:1B:7D:9D:FE:3F:78:52:29:99:C9:41:
84:EE:B1:42:12:B2:02:AC:63:F5:0C:92:9B:DB:75:
FB:6C:8B:65:EB:3C:42:6B:79:70:AF:61:2A:C2:7B:
ED:96:E1:D6:7A:F6:D2:0C:DF:BC:2A:4C:93:B3:DO0:
7B:7D:2D:83:18:60:D2:D8:05:EB:73:74:2D:75:A2:
B2:57:C9:04:B4:C1:E6:66:54:BA:42:86:AF:22:72:
3D:B7:90:CF:03:22:E5:C4:47:03:F0:77:A0:30:01:
C9:FE:78:A1:AB:FA:B1:CB:EE:E2:0B:F2:79:17:1B:
8E:82:E2:13:F4:66:52:76:6D:BA:1B:E9:8E:75:15:
90:37:0A:64:ED:F3:9C:18:94:EC:4F:CF:61:92:38:
EF:A9:46:E8:4E:E9:4A:E6:8A:C9:5E:ED:A7:34:72:
3E:72:A2:BE:0D:DC:07:22:45:B0:E6:79:33:8F:CD:
90:B8:97:DB:BA:3B:B2:8B:38:38:B6:5B:F1:11:FB:
DD:88:CE:9A:3E:B4:E6:31:13:CB:1C:F3:B5:17:D8:
9B:CF:2E:65:23:4D:BA:ED:72:6D:F4:53:97:B8:7A:
D2:9C:2C:10:58:A3:0E:FE:48:A2:2A:2A:57:AE:6D:
69:4D:97:90:EF:9F:C6:7E:9B

<BalanceResult>100</BalanceResult>
</BalanceResponse>
</soap:Body>
</soap:Envelope>

A.2 Authenticated and Encrypted Call

We describe an authenticated and encrypted call, this time to

</soap:Body>
</soap:Envelope>

B. THESPI-CALCULUS IN MORE DETAIL

We give an overview of the language and type system on which
; our analysis of web services depends. We give the syntax in de-
the Statement  method. Again, the messages exchanged to 0b- 5 1yt for the sake of brevity give only an informal account of the
tained the nonce are standard SOAP messages. The followingy e ational semantics and type system. Full details are in a techni-

message is the request from Alice to the web service to execute | renort [23], from which some of the following explanations are
the Statement method on argument 12345. As in the authenti- 4.1

cated call above, thBSHeader element holds identity informa-
tion. The body of the message itself is encrypted. Note that the NAMES, MESSAGES

nonceng must be encrypted according to the protocol, so its en- Ik ::= Encrypt | Decrypt key attribute
crypted value is included in the encrypted data, and its element is ,, ,, .. Y, 2 name: nonce, key, key-pair
reset to a dummy value (here, -1). Similarly, the signature is unused j, '3/ N -.— message
and set to a dummy value. T name
<?xml version="1.0" encoding="utf-8"?> (Ml» RS Mn) record,n > 0
<soap:EnveIoge> ti (M) tagged union
<soap:Header> i i
<DSHeader xmins="http://tempuri.org/"> {M}N symmetrlc_ encryptlo_n
<callerid>Alice</callerid> {Mtn asymmetric encryption
<calleeid>Bob</calleeid> k(M) key-pair component

<np>13</np> 1 1




The message is a name, representing a channel, nonce, sym-
metric key, or asymmetric key-pair. We do not differentiate in the
syntax or operational semantics between key-pairs used for public
key cryptography and those used for digital signatures.

The messagéM, ..., M,) is a record withn fields, M, ...,

M,.
The message (M) is messagé/ tagged with tag;. The mes-
sage{ M} n is the ciphertext obtained by encrypting the plaintext
M with the symmetric keyV.

The messagd| M [} v is the ciphertext obtained by encrypting
the plaintext)M with the asymmetric encryption key.

The messagBecrypt (M) is the decryption key (or signing key)
component of the key-pait/, andEncrypt (M) is the encryption
key (or verification key) component of the key-paif.

TYPES AND EFFECTS
I
£ ::= Public | Private

nonce attribute

S, T,U = type
Un data known to the opponent
(x1:T1y ooy xniTh) dependent recore, > 0
Union(t1(Th),...,tn(Tw))  tagged union
Top top
SharedKey(T) shared-key type
KeyPair(T') asymmetric key-pair
k Key(T) encryption or decryption part
£ Challenge es challenge type
¢ Response fs response type

e, f = atomic effect
end L end-event labelled
check ¢ N name-check for a nonc¥
trust M:T trust thatd:T

€s, fs = effect
le1,...,en] multiset of atomic effects

The typeUn describes messages that may flow to or from the
opponent, which we model as an arbitrary process of the calculus.
We say that a type ipublic if messages of the type may flow to
the opponent. Dually, we say a typa#ntedif messages from the
opponent may flow into the type. The typk is both public and
tainted.

The type(z1:Th, . .., zn:Ty) describes a recordVfs, . .., My,)
where eachV/; : T;. The scope of each variahig consists of the
typesTiti, ..., Tn. Type(z1:11, ..., xo:Ty) is public just if all
of the typesT; are public, and tainted just if all of the typ&s are
tainted.

The typeUnion(t1(T1),...,tn(T%)) describes a tagged mes-
saget; (M) wherei € 1..n andM : T;. TypeUnion(¢1(T1), .. .,
t»(Ty)) is public just if all of the typed’; are public, and tainted
just if all of the typesT’; are tainted.

The typeTop describes all well-typed messages; it is tainted but
not public.

The typeSharedKey(T") describes symmetric keys for encrypt-
ing messages of tygE; it is public or tainted just ifl" is both public
and tainted.

The typeKeyPair(T') describes asymmetric key-pairs for en-
crypting or signing messages of typeit is public or tainted just if
T is both public and tainted. The key-pair can be used for public-
key cryptography just if” is tainted, and for digital signatures just
if T is public.

The typeEncrypt Key(T') describes an encryption or signing
key for messages of tygE; it is public just if T is tainted, and it is
tainted just ifT" is public.

The typeDecrypt Key(T') describes a decryption or verification

key for messages of tygg; it is public just if T" is public, and it is
tainted just ifT it tainted.

The typed Challenge es and? Response fs describe nonce chal-
lenges and responses, respectively. The effectsd fs embed-
ded in these types represent certain events. An outgoing challenge
of some typel Challenge es can be cast into a response of type
¢ Response fs and then returned, provided the events in the effect
es + fs have been justified, as explained below. Therefore, if we
have created a fresh challenge at ty¥p€hallenge es, and check
that it equals an incoming response of tyjiResponse fs, we can
conclude that the events & + fs may safely be performed. The
attribute/ is eitherPublic or Private; the former means the nonce
may eventually be public, while the latter means the nonce is never
made public. Typdublic Challenge es is public, or tainted, just if
es = []. TypePublic Response fs is always public, but tainted just
if es = []. NeitherPrivate Challenge es nor Private Response fs
is public; both are tainted.

An effectes is a multiset, that is, an unordered list of atomic
effects,e or f. Effects embedded in challenge or response types
signify that certain actions are justified, that is, may safely be per-
formed. An atomic effecénd L justifies a single subsequent end-
event labelledL, and is justified by a distinct, preceding begin-
event labelledL. An atomic effectcheck ¢ N justifies a single
subsequent check that &mesponse equals @nchallenge named
N, where/ is Public or Private, and is justified by freshly creat-
ing the challengeV. An atomic effecttrust M:T justifies casting
messagé\/ to typeT’, and is justified by showing that/ indeed
has typeT'.

PROCESSES
I 1
O,P,Q,R ::= process

out M N output

inp M (z:T); P input

repeat inp M (x:T); P

split M is (z1:T1, ..., xn:Th); P
match M is (N, y:T); P

case M is t;(x::T3); Ps i€l..n

if M = N then P else Q

replicated input
record splitting
pair matching
tagged union case
conditional (new)

new (z:T); P name generation
P|Q composition
stop inactivity

decrypt M is {z:T}n; P
decrypt M is {|z:T[} y—1;P
check M is N; P

begin L; P

end L; P

symmetric decrypt
asymmetric decrypt
nonce-checking
begin-assertion
end-assertion

cast M is (z:T); P
witness M:T'; P
trust M is (z:T); P

cast to nonce type
witness testimony
trusted cast

| |

The processesut M N andinp M (z:T); P are output and
input, respectively, along an asynchronous, unordered chadnel
If an outputout = N runs in parallel with an inpuinp x (y); P,
the two can interact to leave the residual procB§gy— N}, the
outcome of substitutingv for each free occurrence gfin P. We
write out = (M); P as a simple shorthand fout « M | P.

The processepeat inp M (x:T); P is replicated input, which
behaves like input, except that each time an inpufNofs per-
formed, the residual proce$¥{y<— N} is spawned off to run con-
currently with the original processpeat inp M (z:T); P.

The processplit M is (z1:T1,...,xn:Tyn); P splits the record
M into its n components. IfM is (Mi,..., M,), the process
behaves a®{z1<—M}---{z,<—M,}. Otherwise, it deadlocks,
that is, does nothing.




The processnatch M is (N, y:U); P splits the pair (binary

record) M into its two components, and checks that the first one '

is N. If M is (N, L), the process behaves &{y«—L}. Other-
wise, it deadlocks.

The procesgase M is t;(z;:T;); P; “*™ checks the tagged
unionM. If M ist;(L) for somej € 1..n, the process behaves as
P{z;«L}. Otherwise, it deadlocks.

The process$f M = N then P else @) behaves a® if M and
N are the same message, and otherwis€as(This process is
not present in the original calculus [23] but is a trivial and useful
addition.)

The processew (z:7T'); P generates a new namewhose scope
is P, and then runsP. This abstractly represents nonce or key
generation.

The proces® | Q runs processeB and( in parallel.

The processtop is deadlocked.

The processlecrypt M is {z:T} ;P decryptsM using sym-
metric keyN. If M is {L}x, the process behaves &{z—L}.

JUDGMENTS F - J:

Ero good environment

Etes good effectes

ErT good typeT’

Er-M:T good messag@/ of typeT
IE FP:es good process$ with effectes

We omit the rules defining these judgments, which can be found
in [23]; our previous informal explanation of types should give
some intuitions.

We made two additions to the language as defined in [23],
namely the empty record tyge (and corresponding empty record
messag€)), and the conditional fornf M = N then P else Q.

The empty record type can be handled by simply extending the typ-
ing rules for records to the case where there are no elements. The
main consequence of this is that the typeawill be isomorphic to

the typeUn, by the extended subtyping rules. The extension of spi
to handle the conditional is similarly straightforward, except that

Otherwise, it deadlocks. We assume there is enough redundancy inye need to actually add a transition rule to the operational seman-

the representation of ciphertexts to detect decryption failures.

The processdecrypt M is {|z:T'[} y—1;P decrypts M using
asymmetric keyV. If M is {| L[} encrypt (k) @NdN is Decrypt (K),
then the process behavessr— L}. Otherwise, it deadlocks.

The procesgheck M is N; P checks the messagdd and N
are the same name before executihdf the equality test fails, the
process deadlocks.

The procesbegin L; P autonomously performs a begin-event
labelledL, and then behaves &%

The procesend L; P autonomously performs an end-event la-
belled L, and then behaves &

The procesgast M is (z:T); P binds the messag®/ to the
variablez of type T', and then runs’. In well-typed programs,
M is a challenge of typé Challenge es, andT is a response type
£ Challenge fs. This is the only way to populate a response type.

The processvitness M:T'; P simply runsP, but is well-typed
only if M has the typel. This is the only way to justify a
trust M. T effect.

The processrust M is (z:T'); P binds the messag/ to the
variablex of typeT', and then rung. In well-typed programs, this
cast is justified by a previous run ofsdtness M:T'; Q process.

Next, we recall the notions of process safety, opponents, and ro-
bust safety introduced in Section 4. The notion of a run of a process
can be formalized by an operational semantics.

SAFETY:

I
A processP is safeif and only if
for every run of the process and for evdry
there is a distincbegin L event for everyend L event.

OPPONENTS ANDROBUST SAFETY:

I
A processP is assertion-freaf and only if
it contains no begin- or end-assertions.
A processP is untypedif and only if
the only type occurring i is Un.
An opponen® is an assertion-free untyped process.
A processP is robustly safaf and only if

P | O is safe for every opponend.

Our problem, then, is to show that processes representing pro-
tocols are robustly safe. We appeal to a type and effect system to
establish robust safety (but not to define it). The system involves
the following type judgments.

tics, and a new typing rule to propagate the effects. For complete-
ness, we describe the additions here, with the understanding that
they rely on terminology defined and explained in [23]:

EXTENSIONS TOSPI FOR THECONDITIONAL :

I
[if M = N then Piyc €lse Projse] + As —
[Pr=n] + As

(Proc If)
EFM:Top EFN:Top
EFP:es EFEQ: fs

Erif M= NthenPelse@ :esV fs

1
transition rule

typing rule

The type and effect system can guarantee the robust safety of a
process, according to the following theorem [23]:

THEOREM 2 (ROBUST SAFETY). If z1:Un,...,zn:Un - P : []
then P is robustly safe.
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