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Abstract. The Abstract State Machine Language supports use-case oriented modeling in a faithful way. 
In this paper we discuss how the AsmL test tool, a new component of the AsmL tool environment, is 
used to generate finite state machines from use-case models which can be used for validation purposes 
or for testing.1 

1 Introduction 
The Abstract State Machine Language (AsmL) is an executable modeling language which is fully 
integrated in the .NET framework and Microsoft development tools. AsmL is designed to meet modeling 
needs arising in requirement and design specifications. This paper shows how AsmL can be used in a 
faithful way for use-case/scenario oriented modeling and how these models can be used for validation and 
verification purposes with the AsmL test tool. The paper refines and extends earlier work on AsmL and use 
cases [1]. 

The AsmL test tool is the newest component of the AsmL system [2]. It supports the generation of 
parameters, of call sequences, and the conduction of conformance tests. The tool realizes a semi-automatic 
approach, requiring a user to annotate models with information for generating tests. On the basis of the 
annotated model, parameter sets, a finite state machine, and call sequences are algorithmically derived. 
Some basic aspects of the AsmL test tool have been described in [4]2. In this paper we investigate the use 
of the AsmL test tool for generating finite state machines from use-case models, which serve as a validation 
for the model and as a starting point for generating conformance tests.  

The paper is organized as follows. We start with a sketch of AsmL. We then describe how we model 
use-cases in AsmL. We then introduce as a non-trivial example a model for the weather control logic of 
CTAS, a flight control system. We will use the AsmL test tool for deriving a finite state machine for the 
CTAS weather control logic which puts together the scenarios of the model into a coherent view of the 
behavior. The paper concludes with a discussion and comparison of related work. 

2 A Glimpse of AsmL 
Space constraints prevent us from giving a systematic introduction into AsmL; instead we rely on the 
readers’ intuitive understanding of the language as used in the examples3. Conceptually, AsmL is a fusion 
of the Abstract State Machine paradigm and the .NET common language runtime type system. One finds 
the usual concepts of earlier modeling languages like VDM or Z. AsmL has sets, finite mappings and other 
high level data types with convenient and mathematically-oriented notations (e.g., comprehensions); it uses 
ASM update semantics and atomic transactions for dealing with state [3]; and it has all the ingredients of a 
.NET language like interfaces, structures, classes, enumerations, methods, delegates, properties, and events. 
The close embedding into .NET allows AsmL to interoperate with any other .NET language, and makes it a 
perfect choice for modeling under .NET. 

The most unique feature of AsmL is its foundation on Abstract State Machines (ASM) [3]. An ASM is a 
state machine which in each step computes a set of updates of the machine's variables. Upon the 
completion of a step, all updates are "fired" (committed) simultaneously. The computation of an update set 
can be complex, and the number of updates calculated may depend on the current state. The expressive 
power of AsmL in modeling is an extension of basic ASMs to that of nondeterministic synchronous 

                                                        
1 Note to referees: this paper is an extended version of a paper accepted for presentation at the SCESM'03 workshop; 

the proceedings of the workshop do not have a formal publication status. 
2 We expect to have more references for the tool available at publication time of this paper. 
3 At the time of this writing, there is no publication about the AsmL language available. However, the AsmL 

distribution [1] contains a tutorial and reference. 
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parallel ASMs with submachines. AsmL uses the theory of partial updates [11,12] and the concept of state 
background for ASMs [10]. 

Control flow of the ASM is described in AsmL in a programmatic, textual way: there are constructs for 
parallel composition, sequencing of steps, non-deterministic (more exactly, random) choice, loops, and 
exceptions. Upon an exception, all of the updates are rolled back, enabling atomic transactions to be built 
from many sub-steps. 

AsmL supports meta-modeling and introspection that allows a systematic exploration of the non-
determinism in the model. On the meta-level the state is a first-class citizen, which enables us to realize 
various search strategies over the state space of a model. This is important for the instrumentation of an 
AsmL model for test generation and the use as a test oracle. 

AsmL documents are given in XML and/or in Word and can be compiled from Visual Studio .NET or 
from Word; the AsmL source is embedded in special tags/styles. Conversion between XML and Word (for 
a well-defined subset of styles) is available.  Note that this paper is itself a valid AsmL document; it is fed 
directly into the AsmL system for executing the formal parts it contains or for working with the AsmL test 
tool. 

3 Use-Cases in AsmL 
We consider a use case to be a set of scenarios; each scenario describes a sequence of events. As in [1], we 
do not explicitly attach actors and roles to the events, but regard this as an extra level of methodology 
which can be expressed for a particular model if required.  Our goal is to describe scenarios 
programmatically by using the sequence notation of AsmL, as in: 

Here step is a keyword introducing the next step of the abstract state machine in a sequence, and DO is a 
helper method which appends an event to the sequence of events associated with this scenario.  

We collect the required auxiliary definitions in an abstract class UseCase which is extended for a 
concrete use case. An event is described by an interface which just serves as a type tag. The class contains 
an ASM variable holding a sequence of events. The DO helper method appends to this sequence. If a use-
case is "played" we can think of this variable as holding the history of what has happened so far.      

interface Event 

abstract class UseCase 

  var events as Seq of Event = [] 

  DO(e as Event) 

    events := events + [e] 

To give life to these definitions, let us consider a simple example, a keycard controlled door. The use case 
for this defines structures (value types in AsmL) for the actions of the door and of the user, and gives 
scenarios for the normal behavior (the keycard is valid) and for the error behavior. Note that the "case" 
notation below is a convenient way to extend the enclosing class/structure in AsmL's OO type system, and 
corresponds to the sum-of-products or "free algebraic type" construct in other languages: 

  step DO( Event1 ) 

  step DO( Event2 )  
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class KeycardControlledDoor extends UseCase 

  structure DoorEvent implements Event 

    case WaitForCard 

    case ReleaseLock 

    case SignalInvalidCard 

  structure UserEvent implements Event 

    case SwipeCard 

  NormalScenario() 

    step DO( DoorEvent.WaitForCard ) 

    step DO( UserEvent.SwipeCard ) 

    step DO( DoorEvent.ReleaseLock ) 

  InvalidCardScenario() 

    step DO( DoorEvent.WaitForCard ) 

    step DO( UserEvent.SwipeCard ) 

    step DO( DoorEvent.SignalInvalidCard ) 

So far, we have a problem-oriented notation for use-cases in AsmL. The use-cases are type-checked and 
can be executed by calling the scenario methods.  For example, the following top-level AsmL definition 
allows one to "play" the scenarios for the keycard controlled door: 

PlayDoor(numberOfIters as Integer) as Seq of Event 

  let door = new KeycardControlledDoor() 

  step for i=1 to numberOfIters 

    choose oracle in {true,false} 

      if oracle  

        door.NormalScenario() 

      else 

        door.InvalidCardScenario() 

  step  

    return door.events 

PlayDoor(3)4 will result in a sequence of events, and due to the non-deterministic choice of the scenario, 
different ones over time. With the expression explore PlayDoor(3) we can actually explore all the 
different choices taken, resulting in 8 sequences of events, covering the behavior described for the use-case 
with a chosen iteration depth of 3. (In general, the AsmL explore expression takes an arbitrary expression 
and delivers the sequence of the results of executing all possible combinations of choices in the 
expression.) Note that in [1] we needed a much more complicated setup to basically achieve the same 
functionality, which is now built into the AsmL language. 

4 Example: CTAS Weather Control Logic 
CTAS weather control logic is suggested by the organizers of the SCESM 2003 workshop as a case study 
for scenario oriented modeling [5]. CTAS (Center TRACON Automation System) is a set of tools designed 
to help air traffic controllers. CTAS consists of a set of processes with one of them acting as the connection 
manager (CM) to which the other processes are clients. One task in the CTAS system is to synchronize 
weather information between a weather forecast provider and the variety of clients, which is safety critical 
since adverse weather conditions can grind an entire traffic control system to a halt. The weather control 
logic is given as a "real world" informal specification consisting of a set of axioms and scenarios written by 
NASA. Here, we will model a fragment of the logic, more specifically, the updating of the weather 
information between the CM and its clients. The interesting aspect of the update phase is that it has to 

                                                        
4 Note that you can directly evaluate the expression from this document under Word XP by highlighting it and selecting 

the Quick Watch function of the AsmL tool bar. To that end, you will need to edit the configuration file and change 
the target to "library" and the output file name to end with ".dll". 
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guarantee atomicity: new weather information becomes effective only if all clients successfully receive the 
new weather information. Our approach to use-cases in AsmL allows us a nearly one-to-one translation 
from the original spec (note that the choice of identifiers is also taken from the original spec and not 
invented by us).  

4.1 Data Domains and State 
We start with modeling some data domains. The (simplified) STATUS of the CM as well of its clients is 
described by an enumeration distinguishing the states pre-updating, updating, post-updating, post-reverting, 
and done (idle): 

class CTASWeatherControl extends UseCase 

  enum STATUS 

    PREUPDATING 

    UPDATING 

    POSTUPDATING 

    POSTREVERTING 

    DONE 

One interesting aspect of this example is that we deal with a variable number of clients; each client (CL) 
is identified by a unique CLIENTID, which is a number. We define structures describing the events 
(messages) of the client, of the connection manager, and events related to the environment; the former both 
are parameterized by a client id: 

class CTASWeatherControl 

  type CLIENTID = Integer  

  structure ENV implements Event 

    case NEW_FORECAST  

  structure CM implements Event 

    destination as CLIENTID 

    case CLOSE_CONNECTION 

    case GET_NEW_WEATHER 

    case USE_NEW_WEATHER 

    case REVERT_WEATHER 

  structure CL implements Event 

    source as CLIENTID 

    case CONNECT 

    case RECEIVED_GET 

      sucess as Boolean 

    case RECEIVED_USE 

      success as Boolean 

    case RECEIVED_REVERT 

      success as Boolean 

To represent a connection with a client, we add a socket class to the class CTASWeatherControl. It 
holds the id of the client and its status: 

class CTASWeatherControl 

  class SOCKET 

    id         as CLIENTID 

    var status as STATUS 

We can now define the data state of the use case. It consists of the current cycle status of the CM and a 
set of sockets representing the clients with their status. Note that this is the state of the entire system, not of 
an actor like the CM or a client.  
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class CTASWeatherControl 

  var status as STATUS = DONE  

  var sockets as Set of SOCKET = {} 

4.2 Scenarios 
We start with a scenario for a client connecting with the CM. This scenario is parameterized over the 
client's id. When the client connects, a new socket is created and the client's and CM's cycle status is set to 
DONE. (Note that in the original spec we have an initialization protocol for the new client, which we skip 
here to save space.) We use the require construct of AsmL to ensure that a client connect can happen 
only when the CM is in cycle status DONE: 

class CTASWeatherControl 

  ConnectClient(id as CLIENTID) 

    require status = DONE and not exists s in sockets where s.id = id 

    DO( CL.CONNECT(id) )  

    let s = new SOCKET(id,DONE) 

    add s to sockets 

The technique of parameterized scenarios will be used in our approach whenever we need to invent some 
data to synthesize events.  

The next scenario describes the situation where the CM enters the update weather information phase. 
This is triggered by the event ENV.NEW_FORECAST. The CM will send out a message to each client to get 
the new weather information; in reality, the message carries the weather information, which we omit here: 

class CTASWeatherControl 

  NewForecast() 

    require status = DONE 

    step DO( ENV.NEW_FORECAST ) 

         status := UPDATING 

    step foreach s in sockets 

           DO( CM.GET_NEW_WEATHER(s.id) ) 

           s.status := UPDATING 

The next scenario handles incoming CL.RECEIVED_GET responses from the clients. It is parameterized 
over the client's socket and a Boolean flag indicating whether the client has successfully received the new 
weather. It is enabled only if both the CM and the given client are in the status updating. If the client has 
successfully received, its status is changed to post-updating. If the client failed, then the CM switches into 
status post-reverting and all clients are sent messages to revert: 

class CTASWeatherControl 

  ReceivedGet(s as SOCKET, success as Boolean) 

    require status = UPDATING and s.status = UPDATING 

    step DO( CL.RECEIVED_GET(s.id,success) ) 

    step if success 

           s.status := POSTUPDATING 

         else 

           status := POSTREVERTING 

           step foreach s' in sockets 

                  DO( CM.REVERT_WEATHER(s'.id) ) 

                  s'.status := POSTREVERTING  

The next scenario describes what to do when the CM is in status updating and all clients have 
successfully received the new weather information, i.e. are in state post-updating. The CM sends a message 
to all clients to actually use the new data: 
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class CTASWeatherControl 

  AllReceivedGet() 

    require status = UPDATING and forall s in sockets holds s.status = POSTUPDATING 

    status := POSTUPDATING 

    step foreach s in sockets 

           DO( CM.USE_NEW_WEATHER(s.id) ) 

The next scenario describes incoming CL.RECEIVED_USE responses from the clients and is similar to 
the scenario ReceivedGet. However, if in this state any of the clients fail when using the new weather, the 
system essentially resets, disconnecting all clients: 

class CTASWeatherControl 

  ReceivedUse(s as SOCKET, success as Boolean) 

    require status = POSTUPDATING and s.status = POSTUPDATING 

    step DO( CL.RECEIVED_USE(s.id,success) ) 

    step if success 

           s.status := DONE 

         else 

           status := DONE 

           step foreach s' in sockets 

                  DO( CM.CLOSE_CONNECTION(s'.id) ) 

                  remove s' from sockets 

The next scenario describes the situation where all clients have successfully acknowledged usage of the 
new weather info. The CM returns to status DONE. In reality, more things happen (like logging the new 
weather info to a file) which we omit here: 

class CTASWeatherControl 

  AllReceivedUse() 

    require status = POSTUPDATING and forall s in sockets holds s.status = DONE 

    status := DONE 

We finally need to model the reverting phase, which happens when any of the clients fail to get the new 
weather data: 

class CTASWeatherControl 

  ReceivedRevert(s as SOCKET,success as Boolean) 

    require status = POSTREVERTING and s.status = POSTREVERTING 

    step DO( CL.RECEIVED_REVERT(s.id,success) ) 

    step if success 

           s.status := DONE 

         else 

           status := DONE 

           step foreach s' in sockets 

                  DO( CM.CLOSE_CONNECTION(s'.id) ) 

                  remove s' from sockets 

  AllReceivedRevert() 

    require status = POSTREVERTING and forall s in sockets holds s.status = DONE 

    status := DONE 

This finishes the CTAS model. As with the keycard controlled door, we could give now definitions 
which play the scenarios of the CTAS. However, a more powerful approach to analyze the behavior is 
provided by the AsmL test tool. 

5 The AsmL Test Tool 
The AsmL test tool supports exploring a model's behavior by various means. The main purpose of the tool 
is to generate test suites and conduct conformance tests on the basis of a model, but the tool is also useful to 
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understand the behavior of a model, which is the main focus of this paper. The technologies currently used 
in the tool are the followings: 
•  Parameter generation: given annotations on types and/or methods providing domain information, and 

a precondition or invariant on the parameters, parameter tuples are automatically generated. 
Conceptually, the product of the domains of each parameter is generated (including the inductive 
generation of terms for nested/recursive types like trees and general graphs), filtered by the 
precondition/invariant. In fact, filter promotion is used to optimize the process. (In this paper, we won't 
use much of the powerful facilities for parameter generation found in the AsmL test tool but focus on 
call sequence generation.) 

•  Call sequence generation: our approach to call sequence generation is divided into two phases. First 
we generate a finite state machine (FSM) from the model [4]. This is done as follows: starting from the 
initial state, the state space is transitively explored by executing all enabled actions (those whose 
precondition holds). By defining so-called state abstraction properties and filters, the user can control 
when the exploration is terminated (we discuss this in more detail below). Once the FSM is generated, 
we use standard techniques to generate a set of sequences covering all paths of the FSM in an optimal 
way (we use a version of the algorithm found in [6]). 

•  Conformance testing: given a model-to-implementation binding that relates types and methods, the 
model is used to verify whether the implementation conforms to the specified behavior, running the 
test sequences generated in a previous step. To achieve this, we do not need the source of the 
implementation; instead we modify it at the binary level in order to monitor all API method calls. (In 
this paper, we won't use the facilities for conformance testing.) 

Here, we will focus on the FSM generation technique to understand the behavior of the CTAS model. 

6 Generating an FSM for CTAS 
The first step in preparing for FSM generation is configuring variables and actions of the abstract state 
machine to explore. The variables constitute the relevant state of the ASM. During exploration, states 
which are identical regarding these variables are identified. The actions are methods which shall be used for 
exploration. A variable can either be shared or instance based; in the last case, a domain for the instance 
type needs to be configured to provide values for the instances. If a variable v is instance based, and i1,...,in 
is the domain for the instance type, then the tuple (i1.v,...,in.v) will be part of the relevant state.  

For the CTAS example, as variables we use the CM cycle status, the set of client sockets and the client 
cycle status per socket; all these variables are instance based. As actions we use the scenario methods. Note 
that each scenario actually describes a sequence of use-case events, though it is an atomic action of the 
ASM.  

Once we have configured the ASM we need to provide domains for the types of instance variables and 
parameters of methods. The tool allows defining these domains as arbitrary AsmL expressions which 
depend on the current state.  

For example, we need to tell the tool the domain of the socket type since it is required to obtain instances 
for the client cycle status variables and for parameters of scenarios like ReceivedGet. We can use the 
current value of the variable sockets of the CTAS use case. Naturally, this variable presents those sockets 
in each step of the ASM whose client cycle state is relevant and which should be considered as a parameter 
for the scenarios. (In general, we have found that the domains needed for object types naturally arise from 
the model.) 

To define the domain of the CTASWeatherControl type itself we introduce a constant which represents 
the use case; the domain is then the singleton set containing this constant: 

const CTAS = new CTASWeatherControl() 
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The complete configuration for the CTAS is shown in the screen shot given in Fig. 1.  In addition to the 
ones mentioned, we have defined the domains for Boolean to be the enumeration of this type (true and 
false), and for client ids to be a set containing two numbers (thus we will have only two clients which 
connect to the CTAS in this configuration). 

The next step is the configuration for FSM generation: to define state abstraction properties and other 
means to control the state exploration. Our state exploration algorithm works by applying enabled ASM 
actions from the initial state with the provided parameters in a breadth-first way; actions are enabled if their 
precondition (require form) is true in the current state. This exploration potentially does not terminate in 
feasible time if the state space is not finite or of a huge size; but even if the exploration space is feasible, we 
might want to reduce it to get a more comprehensive picture.  

The state abstraction properties allow us to group states into equivalence classes; when we encounter a 
state for which we have already seen an equivalent one according to the state abstraction we stop 
exploration at this point. For the CTAS configuration we actually have a finite state space (since there are 
only two clients). However, there are symmetrical behaviors we do not want to distinguish, for example, 
the order in which clients connect, or perform other actions. This is achieved by the following abstraction: 

property CTASAbstraction as (STATUS, Map of STATUS to Integer) 

  get return (CTAS.status, 

              { st -> [st | so in CTAS.sockets where so.status = st].Length  

                                                         | st in enum of STATUS }) 

The domain of the state abstraction is a pair of the status of the CM and a multi-set of the status of 
connected clients (where the multi-set is presented as a mapping from a status into occurrences). For 
example, the sequence of events where first client #1 connects and then client #2 will lead to the same 
multi-set as in the opposite order ({DONE->2,...}, since clients are in state DONE after connection.) 

Figure 1: Configuration for the CTAS 
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A further means to control the state exploration are filters. If filters are given, then only those states 
which pass the filter are considered for exploration. For the CTAS example, we want to restrict the 
exploration to those states where a non-trivial number of clients is connected to the CM. We can express 
this as follows: whenever the CM is not in status DONE, there must be more then one client connected: 

property CTASFilter as Boolean 

  get return CTAS.status <> STATUS.DONE implies Size(CTAS.sockets) > 1 

 

 
Figure 2: FSM for CTAS (revert actions hidden) 

 
The result of the FSM generation with this property and filter is shown in Fig. 2. The visible FSM shows 

the behavior we expected. The screenshot shows a view of the FSMs automatic layout where actions 
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belonging to the reverting phase of the CTAS are hidden (for reasons of space). These actions are collapsed 
into the transitions with dotted lines: successful reverting leads us from S5 back to S3 from where a new 
forecast can be handled, failing revert shuts down the CTAS and leads to the initial state where no client is 
connected. 

For sake of completeness of this document as a formal input to the AsmL test tool, we provide two 
further auxiliary definitions for the printout of sockets and the CTAS use case object (this representation is 
seen in the screenshot): 

class CTASWeatherControl 

  class SOCKET 

    override ToString() as String? 

      return "#" + id     

class CTASWeatherControl 

  override ToString() as String? 

    return "C"     

7 Discussion and Conclusion 
In this paper we showed with a non-trivial example the application of AsmL for use-case/scenario oriented 
modeling and how the AsmL test tool can be used to visualize the behavior of the use-case model as a finite 
state machine. The visualization of the FSM serves at least as a validation of the model. But we can do 
more. The AsmL test tool allows generating sequences of actions from the FSM which cover all branches. 
Since the CTAS example is a cyclic system where all states are connected, we get a single sequence from 
the FSM consisting of 44 actions when running the AsmL test tool. The value of the events variable of the 
use case in the last step of this sequence gives us a corresponding sequence of events which can be used for 
conformance testing of an implementation of the CTAS weather control logic. This sequence contains all 
combination of behaviors where two clients are connected to the CM and where updating the weather 
succeeds or fails in various ways, including the reverting phase on failure. It is easy to generate longer 
sequences by increasing e.g. the number of clients which can connect to the CM.  

We have presented earlier work on use-cases in AsmL in [1]. In contrast, this paper presents a much 
simplified technical approach which is enabled by meta-modeling facilities of AsmL which have been 
recently added, and by the AsmL Test Tool which is based on these facilities. Though we haven't discussed 
it in this paper, we nevertheless believe one general message of [1] is still very true:  use-case modeling in 
the style we presented in this paper has to augment existing techniques, e.g. by means of annotation of 
informal use-cases with AsmL fragments, as we showed in [1]. 

The basic FSM generation algorithm that is implemented in the AsmL test tool is described in [4]. One 
of the first automated techniques for extracting FSMs from model-based specifications for the purpose of 
test case generation, introduced in [7], is based on a finite partitioning of the state space of the model using 
full disjunctive normal forms. While our partition of the state space is related to that of the DNF approach, 
the two approaches are quite different. Most importantly, the DNF approach employs symbolic techniques 
while we build the FSM by executing the model. Heuristics are used differently in the two approaches: in 
the DNF approach, heuristics are used as part of theorem proving, whereas we use heuristics to prune the 
search space.  

In model checking, data abstraction is used to cope with state explosion when the original model M is 
too large.  Data abstraction groups states of M and produces a reduced model Mr which is analogous to the 
FSM produced in our tool by using properties. Due to efficiency considerations, the standard data 
abstraction algorithms may yield an over-approximation of Mr; see [8]. In contrast, our approach may yield 
an under-approximation of the true abstraction, in other words some transitions may be missing, but there 
are no false transitions, which is important for using the FSM for test case generation. In general, model 
checking techniques have been considered in the context of ASM based test case generation; in [9] the 
counter examples of SPIN are considered as test cases generated from a given ASM and a given property.  
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Currently our tool supports the Rural Chinese Postman Tour method to traverse the generated FSM. For 
an efficient implementation of the postman tour the tool uses the algorithm for Maximal Weight Bipartite 
Matching given in [6].  
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