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Abstract. We introduce a new type of cryptographic primitives which
enforce high communication or storage complexity. Intuitively, to evalu-
ate these primitives on a random input one has to engage in a protocol
of high communication complexity, or one has to use a lot of storage.
Therefore, the ability to compute these primitives constitutes certain
“proof of work,” because the computing party is forced to contribute a
lot of its communication or storage resources to this task. Such primitives
can be used in applications which deal with non-malicious but selfishly
resource-maximizing parties. For example, they can be useful in con-
structing peer-to-peer systems which are robust against so called “free
riders.” In this paper we define two such primitives, a communication-
enforcing signature and a storage-enforcing commitment scheme, and we
give constructions for both.

Keywords: Communication Complexity and Cryptography, Storage Com-
plexity, Peer-to-Peer Networks

1 Introduction

Peer-to-peer networks have led to an explosive growth of file trading between
Internet users. Much effort has been devoted to restricting this freewheeling
market, on the assumption that Internet users are eager to trade as much as
possible and should be legally prevented from doing so. However, quite apart
of legal issues, peer-to-peer networks suffer also from a diametrically opposite
problem of so-called “free riders,” i.e. users who use the services provided by
others but do not provide any services to their peers (e.g. see [AH00,SGGO02]).
Motivated by this problem, we study the general question of how to construct
efficiently-verifiable proofs that a party in some protocol uses adequately high
communication or storage resources. We thus propose a novel class of cryp-
tographic primitives which enforce either high communication or high storage
complexity on some participating party, where “high” means proportional to the
size of a some large input of the protocol, usually the message. These primitives
are interesting on theoretical grounds, because they constitute a unique applica-
tion of cryptographic tools to enforcing linear lower-bounds on communication
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or storage resources. They can be used to generate a proof of work performed by
some party, and are therefore applicable to settings that deal with non-malicious
but selfish parties which try to minimize their resources. For example, they can
be applied to auditing file trading or file storage in peer-to-peer networks and
thus making such networks robust against free riders.

In this paper we define and give constructions for two novel primitives: (1) a
communication-enforcing signature, which is a signature scheme which enforces
high communication complexity on the party that signs a message, and (2) a
storage-enforcing commitment, a commitment scheme which enforces high stor-
age complexity on the party that commits itself to a message. We explain both
notions using the following two examples.

Consider an advertising agency that distributes digital ads (e.g., pictures
or short videos) to viewers on behalf of advertisers. We assume that viewers
are also encouraged to exchange ads among themselves. For example, a viewer
might forward an interesting or amusing ad to a friend. Viewers must submit
“proofs of download” to the ad agency, which rewards them in proportion to the
number of ads they have downloaded. Observe that standard digital signatures
are inadequate as proofs of download, since the hash-and-sign paradigm on which
they are based implies that knowledge of the digest of a message is sufficient to
sign the whole message. Viewers could save on bandwidth by exchanging only
the hashes of ads rather than the ads themselves, and claim credit for ads they
never downloaded. We propose instead to use as proofs of download a new type
of digital signature called communication-enforcing signatures. Communication-
enforcing signatures (CES) share the same security properties as standard digital
signatures, but offer the added guarantee that, short of leaking his private-key,
the signer can only sign a message after exchanging at least as much data with
the source of the message as would be required to send the message. In our
example, the ad agency could collect CES from viewers and submit them to
advertisers for the purpose of auditing the success of an ad campaign.

Let us now consider another example, to illustrate this time the need for au-
diting file storage. Assume that a couple entrusts a public notary with their will.
The couple does not want to reveal this will to their children, but at the same
time they want their children to have the ability to verify that the public notary
is storing their will. In essence, these requirements amount to a proof of storage
of a secret document. We propose a novel primitive of storage-enforcing com-
mitment which can be used to enable auditing file storage. A storage-enforcing
commitment (SEC) is a standard commitment scheme with the additional prop-
erty that the party holding a commitment can ask the party that committed
itself to a message to prove that it is still in the possession of this message, or,
more precisely, that it uses at least as much storage as required to store that mes-
sage. In our example, the notary would give to the children a storage-enforcing
commitment to the will, which would enable the children to verify in the future
that the notary is not saving on storage by erasing the will.

Organization. The rest of the paper is organized as follows. In the rest
of this section, we give a brief survey of related work. In section 2, we give



a formal definition of communication-enforcing signature (CES) and propose
heuristic constructions for CES. We also show that the ability to compute on
encrypted data would imply that CES are not possible. This leads us to believe
that heuristic constructions for CES is the best we may hope for. In section 3,
we define storage-enforcing commitment (SEC) and give a provably secure SEC
construction.

1.1 Related work

Much work has been devoted to the study of communication complexity in multi-
party computations. Mehlhorn et al. showed in [MS82] that there is a relationship
between the communication complexity of a boolean function and the rank of
the associated matrix. This relationship was also investigated in [Yao83,NW94].

However, there are surprisingly few results on communication complexity
under cryptographic assumptions. A notable exception are digital signets in-
troduced by Dwork et al. in [DLN96]. Signets are based on a primitive called
incompressible functions. A length-increasing function f is incompressible if, in
order to communicate f(z) to Bob, Alice must either reveal her secret x to Bob,
or else send Bob a message of length 2(]f(z)|).

CES mirror the properties of incompressible functions in reverse: Alice may
either send a short message to Bob (her private key) or receive from Bob the
message to be signed. In [DLN96], the authors conjecture that some functions
are incompressible, but leave as an open problem the task of building an incom-
pressible function based on standard cryptographic primitives, or prove that such
functions can not exist. Similarly, this paper offers only heuristics for building
CES.

We propose a provably secure construction for a storage-enforcing commit-
ment scheme, based conceptually upon Toeplitz matrices. These matrices have
also been used for efficient constructions of a MAC [Kra94] and universal hash
functions [MNT93].

2 Communication-Enforcing Signature Scheme

In this section we define communication-enforcing signature schemes (CES). We
propose a few simple CES with heuristic security. Since we observe that a sig-
nature scheme cannot be provably communication-enforcing if computation on
encrypted data were feasible, we conclude that the heuristically communication-
enforcing schemes are the best we can hope for, and we propose our constructions
as good heuristics for enforcing communication complexity as long as there are
no (efficient) methods for computing on encrypted data.

2.1 Definition of a CES

A communication-enforcing signature scheme (CES) has all the properties of a
regular signature scheme [GMR&8], and in addition it has the “communication-
enforcing” property, namely that in order to sign a message held by a source S,



a signer P must either enable S to sign any message on its behalf, or else engage
with S in a protocol of communication complexity equal at least to the length
of the message to be signed.

A stronger notion of communication-enforcing would require that the message
is computable from the signature, perhaps by an all-powerful machine. However,
such a notion could only be satisfied if the length of the signature was at least
the length of the message. In contrast, our definition of CES allows for schemes
in which the size of the signature is polynomial only in the security parameter,
as in standard digital signature schemes. Since CES are motivated by the goal of
creating disincentives for the owner of a private key to avoid work associated with
downloading a message that it must sign, the weaker notion of communication-
enforcing is good enough. Indeed, it forces the signer to download some file of
size comparable to the message.

Definition 1. A communication-enforcing signature scheme (CES) is a triple
of probabilistic polynomial-time algorithms:

— A key-generation algorithm G which outputs a private/public key pair (d,e)
for every security parameter k;

— A signing algorithm Sig which given a message M and a private key d com-
putes a signature sig = Sig(M, d);

— A wverification algorithm Ver s.t. if (e,d) = G(k) and sig = Sig(M,d) then
Ver(M, sig,e) = 1;

such that for every probabilistic polynomial-time interactive algorithms of a signer
P and a message source S,

- If for every private key d and message M, the protocol (S(M), P(d)) outputs
a signature sig = Sig(M, d),

- and if, after a repeated interaction with P on polynomially-many messages
My, ..., M, of his choice, S cannot forge a signature on some M # My, ..., My,
except for probability negligible in k

- then the communication complexity of the (P(M),S(d)) protocol for mes-
sages M € {0,1}™ is at least n.

We can restate this definition in simpler terms as follows. Whatever proto-
col the signer P and the message source S engage in to produce the signature
Sig(M, d) on message M, either the communication complexity of this protocol
is at least the size of M, or the signing protocol enables the source to forge
signatures. Thus the definition above incorporates the unforgeability notion of
[GMRSS].

2.2 Implications of computing on encrypted data

It was pointed out [San01] that if there exists a method for performing gen-
eral computation on encrypted data then communicating-enforcing signature
schemes cannot exist. The famous problem of computing on encrypted data was



posed twenty years ago by Yao [Yao82]. If there existed an efficient solution to
this problem, communicating-enforcing signature schemes could not exist be-
cause the signer P could send the encryption of its signature key to the source
S, which would then, having encrypted inputs to the Sig function compute an
encryption of the output o = Sig(M, d), which it could then send back to P,
from which P would decrypt the signature . Thus P could compute o without
revealing its inputs to .S, and the communication complexity of this protocol
would be independent of |M|. Since there is nothing that we know of which sug-
gests that computation on encrypted data cannot be done, we conclude that we
cannot hope for a proof of communicating-enforcing property of any signature
scheme. However, even if a method for computing on encrypted data was real-
ized, it is unlikely that its computational complexity would be lower than one
cryptographic operation per gate of the computer circuit. We thus propose the
following constructions as heuristics for a CES primitive.

2.3 First heuristic constructing for CES: CBC-RSA

A simple implementation of a CES would be to apply a trapdoor permuta-
tion to each block of the message separately. For example, using the RSA func-
tion [RSA77] with k-bit modulus and a hash function H with k1-bit long output
size, we divide message M into blocks M;...M,, of size k — k1, and compute
Sig(M,d) = C4]...|C,, where C; = H(M;)? mod N.! However, such scheme is
impractical because the size of the resulting signature is longer than the input
message.

To reduce the output size we could CBC-chain the above construction. In
other words the prover signs the first block C; = H(M;)? mod N, and for each
i-th block for i = 2,...,n, it computes C; = (C;_; © H(M;))? mod N, and so on
until C,, = (Cy—1 ® H(M,,))? mod N. The resulting communicating-enforcing
signature is equal to the last block signature C,. Because the block-wise RSA
signature operation we use supports message-recovery, the verifier algorithm can
unwind this CBC construction as follows. It computes C;—1 = (Cf mod N) @
H(M;) for every i = n,...,2, until it computes C;, at which point it verifies if
C¢ mod N = H(M,).

Such CBC-chaining construction enforces high communication complexity if
we model the public-key RSA permutation as a random oracle which can be
accessed by any party, with the additional property that if the prover P accesses
this oracle then it can also compute the back-door private-key operation.

The above construction of CBC-chaining private-key operations has a draw-
back of only a heuristic security argument and an usually high computational
cost for the signer, who needs to perform one private-key operation per each
k’-bit block of a message M, where k' is about 850 bits if we use a 1024-bit RSA
and a 160-bit hash function, which means that to sign a 10 MBytes music file
the signer would need to perform 100,000 RSA signature operations.

! Note that in the random oracle model we create an unforgeable signature on each
block of the message separately [BR93].



2.4 Another heuristic construction for CES: two-root RSA

In this section we present a signature scheme, which is secure in the random
oracle model and heuristically communicating-enforcing. The scheme is based
on a generalization of the RSA signature scheme [RSA77].

Consider the following typical implementation of the RSA signature scheme.
A signature on a message M is a solution of the following equation in Zy:

23 = H(M) (mod N),

where H is a collision-resistant function and N is the product of two primes.

We generalize this scheme to include more blocks of the message as follows.
A signature on a message M = (My,...,M,) is a pair of two distinct roots
x1, T € Zy of the following polynomial in Zy|x]:

H(M,)z" + H(M,_1)z" ' 4+ H(M)x + H(My) =0 (mod N), (1)

where H is a full-domain length-preserving collision-resistant function and N =
pq is a product of two prime numbers. The roots x1, s are subject to the con-
dition that x1 — x5 is coprime with V.

By using the Ben-Or algorithm [Ben81] a root of this polynomial, if it exists,
can be found in time O(nlognloglog nlog? N). By the Chinese Remainder The-
orem the polynomial has two roots x1,2xy € Zy such that ged(x; — 2o, N) =1
if and only if it has at least two distinct roots both in Z, and Z,. The existence
of at least two roots in Z, and Z, are independent events, each with probability
between 1/3 and 1/2 [Knu75, section 4.6.2]. Therefore a solution to equation
(1) exists with probability between 1/9 and 1/4. As n increases the probability
approaches e~2 & .135.

We apply this concept to design a signature scheme which is as secure as
factoring (in the random oracle model). This is done by introducing chaining
between blocks, as follows.

Signing algorithm. The message M is formatted as (My,...,M,), n > 1.
The following algorithm is executed by the signer until step 5 succeeds (the
expected number of attempts depends on n and is between 4 and 9).

Step 1. Randomly choose an initial vector IV & Zy.

Step 2. Compute C «— H(My,H(Ms,...H(H(0,IV),M,)...).

Step 3. Compute C; «— H(C, M;1) for 0 <i < n.

Step 4. Define P(z) « 2™ + C,_12" 1 + C 02" 2 + -+ + Crz + Cy.

Step 5. Find two distinct roots ¢1,ts € Z, and two distinct roots s1, s2 € Z,
of P(z).

Step 6. Find x1, 22 € Zy satistying

1 =t; (mod p) z1 =51 (mod q)

x9 =ty (mod p) To =9 (mod q).

Step 7. Output the signature (IV, 1, z2).



Verification algorithm. A signature on a message M = (M, ..., M,) is parsed
as (IV,x1,x2). The verifier computes C,Ch,...,C, and P(z) € Zy|[z] as above
and checks whether z1 # 2 (mod N). The signature is accepted if P(xz1) =0
(mod N) and P(z2) =0 (mod N).

In the random oracle model this signature scheme is existentially unforgeable
against adaptive chosen message attacks assuming the hardness of factoring. We
omit the standard part of the argument in the random oracle model (see [BR93]
for an example of a detailed proof) and sketch the reduction from the ability to
find two roots of a random polynomial of degree n in Zy|z] to factoring N.

Claim. The problem of finding two distinct roots of a random polynomial of
degree n drawn from the uniform distribution on Z y[z] is as difficult as factoring.

Proof Sketch: Suppose there exists an algorithm A that given P(z) il Zn|x]
of degree n outputs two distinct roots (x1,22) of P(x) with a non-negligible
probability €. We build an algorithm B that uses A to factor N as follows:

Step 1. Choose y1,y2 & Zn.

Step 2. Choose Q(x) E 7y [x] of degree n — 2.

Step 3. Compute P(z) = (x — y1)(x — y2)Q(x).

Step 4. Run A on P(x). Let the output of A be (x1, z2).

Step 5. If either of 1 — y1,21 — y2,22 — Y1, T2 — Y2 is not zero and not

coprime with IV, we have found a nontrivial factor of N.

The distribution from which @ is drawn in steps 1-2 is off by at most a factor of
n? from the uniform distribution on polynomials of degree n with at least two
roots. Therefore, the probability of success in step 4 is at least £/n?.

Notice that along with known roots y1,y2 of Q(z) there exist two unknown
roots (y},y5) satisfying

Yy =y (mod p) Yy =y2 (mod q)

ys =y2 (mod p) Yo =y1 (mod gq).

Any one of y},y5 gives away the factorization of N. The probability that .4
outputs one of these two values is no less than ﬁ Therefore B succeeds in
factoring N with probability at least e/n?. a

It is interesting to note that it is not known whether a similar signature
scheme in which the signature of a message consists of a single root of a poly-
nomial from Zy[z] is secure under any standard assumption.

Heuristically this scheme is communicating-enforcing, since it is deemed to
be hard to find a root of a polynomial without full knowledge of this polynomial.

3 Storage-enforcing Commitment

In this section we introduce a primitive called storage-enforcing commitment
scheme. Its setup is similar to commitment schemes, but the scheme has the
additional property that the committer (whom we call the prover) cannot throw



away the secret it is supposed to store. This problem is trivial if the storage
complexity of the verifier or the complexity of its communications with the prover
are unbounded. However, we are able to define a practical storage-enforcing
commitment scheme even in a more restricted setting, for which the storage and
the amortized communication complexity are independent of the length of the
message.

Regular commitment schemes [Blu83] bind the prover to a particular value
of a string that is to be kept secret during some stages of the execution of a
protocol. These commitment schemes are not designed to permit verification
of repeated commitments to the same string. Storage-enforcing commitment
schemes on the other hand are multi-round protocols that ensure that the prover
neither “forgets” nor alters the secret between rounds. Any prover who is able
to answer the verifier’s challenges must keep the secret, or at least use as much
storage complexity as would be required to store the secret. Formally, we define:

Definition 2 (Storage-enforcing commitment scheme). A storage-enfor-
cing commitment scheme (SEC) is a three-party protocol executed between a
message source S, a prover P, and a verifier V.. The message source communi-
cates the message M to the prover and the commitment C to the verifier. The
verifier V. may verify whether the prover is storing the secret by invoking a prob-
abilistic interactive algorithm Checkpy (C, M). This algorithm may be executed
an unlimited number of times. Once the message is revealed, the verifier may
check the commitment by running the algorithm Verify(C, M).

The scheme has the following three properties called binding, concealing, and
storage-enforcing:

binding A coalition of a computationally bounded message source and a prover
cannot find two strings M and M’ that both pass the test Verify with the
same commitment C.

concealing A computationally unbounded verifier V' cannot decide if M = M,
or M = My prior to the opening of the commitment with non-negligible
advantage over a random guess even if M is known to be either My or My
and the strings My and My were chosen by V.

storage-enforcing Any prover P that passes the test Check with probability
a > 0 has storage complexity Q2(|M|). The probability is taken over all mes-
sages of a fized length |M| and over the coin tosses of the prover and the
verifier.

To illustrate this definition, recall our example from the introduction. A
couple entrusts a public notary with their will. The couple doesn’t want their
children to learn the will, yet the children should be able to verify that the
public notary is properly storing the will. These requirements are satisfied by a
storage-enforcing commitment scheme, where the notary is the prover and the
children are verifiers. The verification protocol enables the children to verify that
the notary is still in possession of the will (or at least, that the notary uses at
least as much storage space as would be required to store the will), yet it does
not leak any information about the will.



Verifier Prover Message Source

C

commit

. Check
accept or reject «———— M

. Check
accept or reject «+———— M

M
M —

Verify(C, M)

Table 1. Storage-enforcing commitment scheme

Unsatisfactory solutions. We explain here why other possible commit-
ment schemes do not meet the requirements of our example. Consider first that
we could have the message source send to the verifier a non-compressing com-
mitment to each block of the message. The verifier stores hashes of all these com-
mitments. To execute the protocol Check, the verifier requests from the prover
a commitment to a random block, hashes it and compares it to the hash previ-
ously stored. The problem with this approach is that it requires the verifier to
store an amount of data (in the form of commitments) which is proportional to
the amount of data the prover has to store. This defeats the point of having the
prover store the data on behalf of the verifier.

Alternately, instead of storing hashes of all the commitments, the verifier
could store a single hash computed on all the commitments concatenated. This
approach however requires the prover to send all the commitments each time
the protocol Check is executed. This leads to a scheme with unacceptable com-
munication complexity.

3.1 Our storage-enforcing commitment scheme

We work in a group G of prime order p with generator g. The order of the
group depends on the security parameter A\. Our scheme is based on a variant of
the Decisional Diffie-Hellman assumption, which we call the n-Power Decisional
Diffie-Hellman (n-PDDH) assumption.

n-Power Decisional Diffie-Hellman (n-PDDH) assumption. No po-
lynomial-time algorithm can distinguish between the following two distributions
with non-negligible advantage over a random guess:

3

Distribution P™: (gm,gIQ,gm voong®"), where ki3 Ly,
and
Distribution R™: (g1, 92, .- .,9n) where g1,92,...,9n £ a.

Notice that 2-PDDH is the same as the Decisional Square Exponent Diffie-
Hellman assumption [BDS98,SS01]. We also need a weaker, computational as-
sumption defined below.



n-Power Computational Diffie-Hellman (n-PCDH) assumption. No

probabilistic polynomial-time algorithm can compute g* given g%, g* e’ g

with non-negligible probability.

The 2-PCDH assumption is equivalent to the Computational Diffie-Hellman
assumption. It is unknown whether n-PCDH implies (n+1)-PCDH (the converse
is obviously true).

Design of the scheme. We limit the size of a message to m blocks, where
blocks are interpreted as elements of Z,. Longer messages can be broken into
pieces and committed to simultaneously. Let n = 2m + 1 and assume that n-
PDDH holds in the group G.

The secret key of the verifier is 2 randomly chosen from Z,. The corre-
sponding public key is

2 3 n
PK = (nggx 7gx ,.“7g:c ): (gla-~-agn)~

The commitment phase consists of the following three steps:

Step 1. The verifier publishes the public key PK.

Step 2. The verifier gives a zero-knowledge proof to P that the key is
properly constructed, i.e. for any index 1 < ¢ < n the quadruple
(9,91, 9i, gi+1) is a DH-tuple [CP92].

Step 3. The message source S formats the message as an m-tuple M =
(My, ..., My,) € Z'. S chooses a random element M, 1 € Z;, and
appends it to the message

Step 4. S computes fy = H;ntl g; Mi and sends it to the verifier. fy € G is
the commitment to the message.

From the verifier’s point of view the blinding block M,, 1 is considered as
an integral part of the message. For the purpose of computing the storage com-
plexity we include this block into the message.

To check that the prover still has the message, the verifier initiates the fol-
lowing Check protocol:

Step 1. The verifier sends to the prover a challenge 0 < k£ < m.

Step 2. The prover computes fi = H:ntl g%_k, where M; is the it block

of the message and sends fi back to the verifier.

Step 3. The verifier checks whether fgk = f%. If the equality holds, the
verifier accepts the proof, otherwise the proof is rejected.

The verification phase is trivial—given the message M , the verifier computes
fo and compares it to the fy received from the message source during the com-
mitment phase.

The storage complexity of the verifier is one group element fo and x € Z,.
Since the verifier’s public key can be reused for multiple messages, the scheme’s
storage overhead approaches zero on a per-message basis.

3.2 Proof of this commitment scheme

The commitment scheme described above is unconditionally concealing and sat-
isfies the binding property against a computationally-bounded adversary under
the n-PCDH assumption. Our proofs are generalizations of [Ped91].



Computational binding. Suppose that the message source can find two
messages that may be committed to the same string C. It means that S can
find for a given public key g1,...,¢g, two messages M = (M,...,M,,) and
M' = (Mj,...,M! ) such that

My Moy M,, M, M, M,
g1 9> - Gm™ =91 'Ga C -G

It follows that the following equation is satisfied:
Mz + Mox® + -+« + Myz™ = Miz + M-+ M., 2™ (mod p).

Since My, My # 0 (mod p) and M # M, the two sides of the equation are not
identical. Therefore the equation can be solved for z in quasi-linear time [Ben81].
This violates the n-PCDH assumption.

Perfect concealing. The concealing property holds because the only in-
formation the verifier learns about the message prior to the opening phase is
determined by the value of Z?:{l M;z* mod p, which is independent of the mes-
sage due to the blinding block M,, 1. This property is unconditional and holds
against a computationally unbounded verifier.

Storage-enforcing. The following theorem proves that the scheme is storage-
enforcing.

Theorem 1. Any prover P that has probability o > 0 of passing the test Check
has storage complexity at least o| M| under the n-PDDH assumption. The prob-
ability is taken over messages drawn from the uniform distribution on {0,1}MI
the public key of the verifier, and all coin tosses.

Proof. We present the proof in two parts. First, we show (under the n-PDDH
assumption) that the storage complexity of the prover and his probability of
success is independent on whether the public key is chosen from R™ or P™.
Second, we demonstrate that in order to pass the test with probability @ when
the key comes from R™, the prover must have storage complexity at least «|M]|.
The second part of the proof is information-theoretic and unconditional.

We model the prover at different points in time as two separate algorithms P
and P. These two algorithms communicate by means of a bit string output by
Py and received by P,. The length of this string is at least the storage complexity
of the prover.

Suppose we are given an instance of the n-PDDH problem: we must decide
whether the tuple (g1,...,9,) € G™ belongs to P™ or R™. The claim is that a
prover with storage complexity less than «|M| can be used as a distinguisher
between these two distributions. We set the public key of the verifier to the n-
tuple (g1,-..,9,) and simulate the prover’s view such that the only difference
between this game and a real execution of the scheme be the type of the tuple.

The zero-knowledge proof of the key’s correctness can be simulated using
standard techniques. We assume that the transcript of the proof is given to P.

Let the message M be a random string consisting of m+1 blocks. The message
is known and therefore we can check the responses of p by a direct computation



of fr = H:’j{l g%k without knowing = or even without being aware of whether
the public key has the right structure. This perfectly simulates the prover’s view
and enables us to check his output.

If the prover has probability « of passing the test when the public key is
constructed correctly but has a different probability of success when the key is
a random n-tuple, this prover can be used as a distinguisher between the two
distributions. Therefore his probability of success in either case is negligibly close
to a.

Similarly, the storage complexity, modelled as the communication complexity
between P; and 152, is an observable characteristic. Therefore it must be the same
for the keys drawn from R™ and P™. Otherwise we could use the observable
difference between the storage complexity to break the n-PDDH assumption.

We have just proved that P must be able to pass the test Check with the
same probability and storage complexity regardless of whether PK is properly
constructed or drawn from PK & R™.

We now show that in order to pass the test with a key chosen from R™ the
prover must have storage complexity at least «|M|, where « is the probability
of success.

Consider the following random tuple: g1 = g*,...,g, = g*. To pass the
test the prover must compute fr = H?:{l g%k = H:f{l g%+ Mi for a random
k. We claim that the vector (fo,..., fm) has guessing entropy |M]|. For P, to
reproduce a value from this list with probability at least « its input must be at
least | M| bit long.

Let the discrete logarithms of (fy, ..., fm) to the base g be (bg, ..., by). It is
easy to see that

bi = (ai, e ,ai_,_m) . (Ml, .. .,Mm+1),

where - denotes the scalar product of two vectors from Zj. Therefore the entire
vector (bg,...,by,) can be computed as

ai as ... Gm Qpel M, bo

as asz ... Qm41 Gm42 Mg b1

Ay AQm41 -+ Ap—2 Ap—1 Mm bmfl
Am+4+1 Om42 -+ - Gp—1 0an Mm+1 bm

Denote the matrix from the left-hand side of the equation by A. This is a Toeplitz
matrix defined by the values (a1, ..., a,). The following lemma proves that this
matrix is non-singular with overwhelming probability?.

Lemma 1. The Toeplitz matriz A defined as above has full rank with probability
at least 1 — % over all tuples (a1, ...,an) randomly chosen from Zy .

2 Using more advanced techniques [KL96] showed that a Toeplitz matrix is non-
singular with probability 1 — 1/p.



Proof. We use the Schwartz Lemma [Sch80], which can be briefly stated as fol-
lows:

For a non-trivial multivariate polynomial of degree n defined on variables
from Z,, a random assignment to the variables evaluates it to zero with
probability at most 1 —n/p.

The determinant of A is a polynomial of n variables (a1, ..., a,). This poly-
nomial is not identically zero, since the matrix defined by a,, = 1 and a; = 0 for
all other i # m has determinant (—1)"~!. Therefore, by the Schwartz Lemma,
the determinant of the Toeplitz matrix with randomly chosen entries is non-zero
with probability at least 1 —n/p. O(Lemma)

When the matrix A is full-rank, the vector (by,...,b,) can take any value
from ZZ’“ independently of the public key. Since we assume that messages are
uniformly distributed, the resulting distributions of (by, ..., b,,) and the prover’s
responses (fo, ..., fm) are also uniform. In this case the guessing entropy is equal
to the Shannon entropy, which is |M| bits. Therefore the prover must possess
at least a| M| bits to give a correct response with probability «. This completes
the proof of the theorem. O

3.3 Heuristic extensions

Apart from two non-classical assumptions (n-PDDH and n-PCDH), the scheme
presented in the previous section is provably secure in the standard model of
computation. We propose here various heuristic extensions to make the scheme
more practical.

Random oracles. Recall that the first step of Commit is a zero-knowledge
proof given by V that the key is properly constructed. We can make this step
non-interactive by applying the Fiat-Shamir heuristic [FS87,BR93] to the 3-
round Chaum-Pedersen protocol. This non-interactive proof can be part of the
verifier’s public key. In the random oracle model we can attach this proof even
to a random tuple, thus preserving the validity of the n-PDDH assumption.

DDH-oracle. We may conjecture that our scheme is secure under a weaker
assumption then the decisional variant of the Diffie-Hellman assumption. Assume
for a moment that there exists a group in which there is a DDH-oracle that tests
a tuple (g, g%, h, h®) for the equality a = b but in which the computational n-
PCDH problem is hard. The binding and concealing properties of the scheme
hold and the scheme may still be storage-enforcing albeit the proof of Theorem 1
is no longer valid. In this case additional optimizations of the scheme are possible.
We briefly sketch the resulting scheme.

With a DDH-oracle, the main improvement to the scheme comes from the

fact that all receivers can share the same public-key:

3 n

2
(91,--590) = (9%, 9% 19" ....9" ).



This common parameter may be generated once and for all during a set-
up phase by a trusted authority. The value = used to generate this common
parameter can then be discarded and the scheme requires no further involve-
ment of the trusted authority.

The commitment is computed as follows:

Step 1. The message source S formats the message as an m-tuple M=
(My,...,My,) € Zy'. S chooses a random element M, 1 € Z;
and appends it to the message.

Step 2. S computes fy = Hf;;l giM" and sends it to the verifier. fo € G
is the commitment to the message.
The Check protocol queries the DDH-oracle, which we denote as DDH:

Step 1. The verifier sends to the prover a challenge 0 < k < m.

Step 2. The prover computes fi = HZ':{l gﬁk and sends it back to the
verifier.

Step 3. The verifier queries DDH(g, gk, fo, fx). If the tuple is a Diffie-
Hellman tuple, the proof is accepted.

The verification of the revealed message is trivial: The verifier recomputes
fo from the received message.

Since the verifier does not have secret data any more, the scheme can be used
in a scenario where the verifier outsources his entire storage to the prover (the
public key and the commitment must be signed and come with certificates).

This scheme is provably secure in the generic algorithm model [Sho97]. This
is a much weaker security argument, but for many practical protocols it is often
the only guarantee we have (see [Sch00] for a survey of this situation).

The first example of a group in which the Decisional Diffie-Hellman problem
is easy while its computational counterpart is hard was recently proposed by
Joux and Nguyen [JNO1]. It is a group of points on an elliptic curve of a special
type, in which the Weil pairing is non-trivial and efficiently computable. We refer
the interested reader to [BFO01] for details of building a practical cryptographic
scheme from the Weil pairing.

4 Conclusion and Further Work

We have introduced cryptographic primitives enforcing communication and stor-
age complexity and give constructions for them. A general direction for future
work would be to further investigate the connections between communication
complexity and cryptographic assumptions.
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