
Specifying and Verifying Hardware for Tamper-Resistant Software

David Lie John Mitchell Chandramohan A. Thekkath∗ Mark Horowitz

Computer Systems Laboratory
Stanford University
Stanford CA 94305

Abstract

We specify a hardware architecture that supports
tamper-resistant software by identifying an “idealized”
model, which gives the abstracted actions available to a
single user program. This idealized model is compared to
a concrete “actual” model that includes actions of an ad-
versarial operating system. The architecture is verified by
using a finite-state enumeration tool (a model checker) to
compare executions of the idealized and actual models. In
this approach, software tampering occurs if the system can
enter a state where one model is inconsistent with the other.
In performing the verification, we detected an replay attack
scenario and were able to verify the security of our solu-
tion to the problem. Our methods were also able to verify
that all actions in the architecture are required, as well as
come up with a set of constraints on the operating system to
guarantee liveness for users.

1. Introduction

There are many systems that try to ensure some mea-
sure of software tamper-resistance and copy-resistance [8,
11, 18, 26, 27]. In this paper, we focus on a particular
hardware approach called XOM, which stands for eXecute
Only Memory [14]. XOM embeds cryptographic keys and
functionality on the main processor chip to provide an ex-
tremely high level of security for applications. XOM makes
no assumptions about the trustworthiness of the operating
system or physical memory. Since the XOM hardware is
responsible for access control, the operating system only
controls resource allocation. However, to manage resources
effectively, the operating system retains a higher privilege
level than a user process, and an adversarial operating sys-
tem may abuse this to try to access user data. On the other
hand, an adversary with physical access to the system may

∗Microsoft Research, Mountain View, CA 94043

monitor the pins of the processor and modify or observe val-
ues on the bus to memory [10]. Cryptographic keys under
XOM control must protect program code and data in spite of
these active attacks. The XOM hardware requirements and
likely execution speed have already been studied [14], and
XOM offers the promise of tamper-resistant code, at mod-
erate hardware cost and minimal drop in execution speed.
However, there is no value in paying for the additional hard-
ware unless the architecture provides verifiable security.

The primary goal of our verification study is to determine
whether XOM systems are able to provide reliable security
to software distributors. We evaluate XOM security using
a model with three parts: the XOM machine with its secu-
rity mechanisms, user code, and an adversary that tries to
access user data or modify the user state without being de-
tected by the security mechanisms. A secondary goal is to
see whether the system has been over-designed. After the
system has passed its primary test, we go back and remove
parts of the machine model to see if the system still passes
the safety tests. If the system is still safe despite the removal
of some components, then we can examine whether those
components are necessary. A final goal is to verify that the
security measures do not prevent the user from making for-
ward progress.

Our verification uses the Murϕ model checker to simul-
taneously search two different models. One model, theac-
tual model, contains an adversary with a set of abilities. The
model checker tries all possible combinations of these abili-
ties, trying to violate the safety guarantees of the model. To
check those guarantees, we compare the state of this model
with an simpler,idealizedmodel that does not contain an
adversary. If the two models ever become inconsistent, then
the adversary has managed to tamper with the state of the
user in the model.

We will begin in Section 2 by giving some background
on the XOM architecture and on Murϕ. In Section 3, we
formally specify the two models of the hardware we use,
as well as our model of the attacker. The next section ex-
plains how the two models are combined into one model

that Murϕ uses to perform a joint state exploration. Sec-
tion 5 gives the results of our verification. In this section
we describe how our tool helped find a solution for mem-
ory replay attacks. We also show one instance where our
method was able to find an action in the model which did
not provide any extra security, as well as give details on the
constraints that must be placed on an operating system to
guarantee forward progress or liveness for the user. In Sec-
tion 6 we compare our method against existing and related
work. Finally we conclude this paper with Section 7.

2. Background

The XOM architecture [14] is a generic microprocessor
architecture that maintains separatecompartmentsfor pro-
grams. On-chip compartments are isolated using architec-
tural tags, with encryption used to maintain the isolation
when data is written off-chip. XOM is fundamentally differ-
ent from architectures that use secure coprocessors [24, 27]
in that it provides a higher level of security by implement-
ing the secret keys and tags directly on the main proces-
sor. Each user program in a XOM machine has a unique
key, called acompartment keythat the XOM machine as-
sociates with aXOM ID tag. The program is initially en-
crypted with the compartment key. When the code is about
to be executed, it is read from memory and decrypted and
tagged with the program’s XOM ID. Any on-chip data or
code that belongs to a program is also tagged with that pro-
gram’s XOM ID. The tags act as an identifier of the writer
of the data, and thus determine who can read the data.

The XOM machine tags data with the XOM ID as a
proxy for encrypting it, deferring the encryption to when
the data leaves the chip boundary to be stored in memory.
When data is stored to memory, it is encrypted with the
compartment key, and a hash of the data and its address
is added to protect against the tampering of memory values.
This prevents an adversary from substituting random val-
ues in place of encrypted values, or from copying encrypted
values from one address to another. Only a program that
knows the user’s compartment key may modify or view the
contents of the compartment. The architecture records the
writer of data and ensures it matches the reader. Thus, if an
adversary tries to tamper with data by overwriting it with
some faulty value, when the user tries to read that data, the
architecture will detect a user/writer mismatch and halt the
user. A program may allow another program to read its data
by explicitly moving that data from its private compartment
to ashared compartment. In this way, programs in separate
compartments may selectively share data.

The XOM architecture can be built on top of any exist-
ing architecture through modest modifications to the pro-
cessor hardware, and has been shown to be realistically im-
plementable [7, 14]. Because cryptographic operations are

performed on every memory operation, the XOM architec-
ture relies on caching to mitigate the performance impact.
Values in the cache are not encrypted, but tagged with XOM
ID’s.

XOM defends against attacks where the adversary has
subverted the operating system to her needs. Even though
an adversarial operating system can execute both privileged
and unprivileged instructions, it cannot forge the user’s
XOM ID. Thus, the XOM machine should prevent the ad-
versary from tampering with the user’s data by checking the
data’s XOM ID tag against the XOM ID tag of the active
program. It is important to note that the security enforced
by XOM is completely orthogonal to the security enforced
by a processor’s privileged and unprivileged modes. Even
privileged instructions must meet the access requirements
of the compartment security model.

Some additional instructions must be introduced to the
instruction set for users to take advantage of the XOM hard-
ware. Secure load andsecure store instructions
are provided to allow programs to preserve the XOM ID of
data when storing it from registers into the cache. Later,
when the data is flushed to memory, it is encrypted with the
compartment key indicated by the XOM ID tag. The oper-
ating system needs to be able to save the state of the inter-
rupted user program to perform a context switch. To support
this functionality without allowing the operating system to
read user data, XOM provides theregister save in-
struction. The XOM machine encrypts the register contents
and stores the cipher text in the target register. The operat-
ing system can then store the state of an interrupted process,
but does so safely since it is only allowed to handle the en-
crypted state. When the operating system wishes to restore
the register contents it uses theregister restore in-
struction. The XOM machine returns those values back to
the registers. A hash is added to ensure that the encrypted
values have not been tampered with and to make sure the
encrypted values are restored back to their original regis-
ter. An additional measure is put in place to guard against a
replay attack from the operating system. The operating sys-
tem could potentially save encrypted registers and restore
them multiple times, thus replaying a section of user state.
To prevent this, theregister keyused to encrypt the user reg-
isters is invalidated each time the user is interrupted with a
trap, and a new key is generated. By changing the key, the
XOM machine ensures that the register state of a user can
be restored at most once. The instructions pertinent to this
verification are summarized in Tables 1 and 2.

In performing our verification, we used the Murϕ [4]
model checker. Murϕ uses explicit enumeration to check
the state space of a model. A model describes the system to
be checked as a state machine by providing an initial state
and a set of next-state functions. The next-state functions
are specified by a set of “rules”, which have a precondition

Instruction Description
i1. def $rt, immediate Generic register definition whereimmediate is written into register$rt . This

models any non-memory operation that writes to a register.
i2. use $rt Generic use of register$rt . This models any non-memory instruction that reads a

register.
i3. secure store $rt,addr This stores the value of register$rt to the memory location ataddr . The store sets

the XOM ID tag in the cache to the value of the user who caused the store.
i4. secure load $rt,addr This loads the register$rt with the memory value ataddr . If the load hits in the

cache, the XOM ID tag of the cache data is checked against the user’s XOM ID. If
the data is in memory, the data is decrypted with the user’s key and the hash verified
before loading into the register.

Table 1. User Instructions

Instruction Description
i5. register save $rt,$rs The operating system uses this instruction to store a user register. The XOM machine

encrypts and hashes the user register$rs with a temporaryregister keyand stores
it to register$rt . The register$rt is tagged with the operating system’s XOM ID.
The hardware atomically performs task, the operating system can only access the
encrypted value and the hash. The register key is inaccessible to the operating system
and is stored as part of the architectural state of the machine.

i6. register restore $rt The operating system uses this instruction to restore registers saved withregister
save . The machine decrypts the data, verifies the hash, and returns the data to its
original register. Theregister keyis revoked each time the XOM machine traps to the
operating system.

i7. prefetch addr The operating system can move a value from memory into cache, even if its XOM ID
does not match the key the data in memory is encrypted with. However in the cache,
the data is tagged, not with the XOM ID of the operating system, but with the XOM
ID of the key used to decrypt it from memory.

i8. write cache addr The operating system can change the value of a cache location. The new data is
tagged with the operating system’s XOM ID.

i9. invalidate addr The operating system can invalidate a cache location causing the data to be destroyed.
The data is not flushed to memory.

i10. flush addr The operating system can flush a cache location withaddr from the cache to mem-
ory. The value is encrypted with the key indicated by the XOM ID tag, hashed and
the placed in memory. The XOM ID of the cache location does not have to match the
XOM ID of the operating system.

i11. trap The operating system can cause the processor to trap to the operating system at any
time by sending an interrupt. However, each time this happens, theregister keyused
to encrypt and decrypt user registers from any previous traps is invalidated and can
no longer used.

i12. return The operating system can return use of the processor to the user at any time.

Table 2. Privileged Instructions

guard, and a set of actions that modify the current state to
produce a new state. A precondition is a boolean statement
based on the current state of the machine. Murϕ performs
the state exploration by starting with the initial state and
exhaustively searching for all successor states. Murϕ finds
and executes rules whose precondition is satisfied by the
current state to identify successor states. Murϕ verifies the

correctness of each new state against a set of safety criteria
to determine if any of the states are illegal. Safety criteria
in Murϕ can be specified as a set of invariants, which are
boolean statements that are evaluated every time a new state
is found. When Murϕ detects an error, it outputs a counter
example that indicates the states it traversed to reach the er-
ror state. Murϕ has been successfully used in other work to

verify both security protocols [17, 22] and computer hard-
ware [13, 25], but this is the first instance we are aware of
where it has been used to verify tamper-resistance.

Model checkers, in general, have some limitations. First,
they verify models of systems, not the systems themselves.
Models abstract details of the system to make the size of
the state space tractable for the model checker. This is of-
ten done by simplifying functionality and by scaling down
the models. Second, model checkers can only explore a fi-
nite number of states, and may miss states to save memory.
For example, rather than explicitly remembering the states it
finds, Murϕ saves a smaller, randomized low-collision hash
of them. There is some probability that a collision will re-
sult in missed states, but because the hash is randomized,
successive verifications of the same model reduce this prob-
ability.

3. XOM Models

In constructing the XOM models we make several as-
sumptions about the types of errors we are trying to catch.
First, we employ a “black box” model for cryptographic
functions [5]. This means that encrypted data cannot by
decrypted by the adversary. However, if two plain text val-
ues are equal, they will have the same cipher text values.
We also assume that hashes are collision free, and that pro-
grams have been properly written, so that all data sharing
occurring in the shared compartment is intentional.

Finally, we do not model what we call “information” at-
tacks. These are a class of attacks where by observing many
runs in a XOM machine, the adversary can surmise some in-
formation about a program. For example, the adversary is
able to obtain a trace of memory locations the user accesses.
In essence, the adversary learns something about the user —
some bits of information have been leaked. While these at-
tacks exist, they are outside of the scope of our verification
framework.

3.1. Abstracting the instruction set

To reduce the state space of our models, we consider a
simplified instruction set, in comparison to the instruction
set available on a real XOM machine. We seek to reduce
the instruction set to just the operations that affect the flow
of data and information. For example, generic register oper-
ations are amalgamated under thedef anduse operations,
while control flow operations such as branches and jumps
are left out. Similar simplifications were performed to an-
alyze Java in [6]. The instructions available to the user are
summarized in Table 1.

An adversarial operating system can execute both user
instructions and privileged kernel instructions. The addi-

tional privileged instructions available to the adversary are
summarized in Table 2.

3.2. The actual model

The model of the physical hardware in a XOM machine,
called theactualmodel contains three homogeneous arrays.
Each array represents one of the storage levels in the ma-
chine: registers, cache, and memory. The records stored in
the arrays have different properties. For example, they all
have a data value property, as they can all be used to store
data. However, not all have XOM ID tag, hash, or key prop-
erties.

A state in the modelSactual contains the three arrays, as
well as a single bit that indicates whether theuser or the
adversaryis executing on the machine.

Sactual =<r0, r1 . . . rx;
c0, c1 . . . cy;
m0,m1 . . .mz;
mode >

The state has 3 storage classes, each representing a storage
level. A registerri, has a data valued, a XOM ID tag t,
and if the value is encrypted, a keyk, and a register hashh,
associated with it. Similarly, a cache lineci, has a data value
d, XOM ID tag t, and a memory addressa. Finally, memory
locationsmi, have data valuesd, keysk, and address hashes
h. The∅ value means that the parameter is not defined. For
example, register values can be in plain text, meaning they
have no key or hash value associated with them. Similarly,
an unused cache location has a∅ address value. Finally,
either the adversary or the user can be executing as indicated
by themode.

ri : record{d : D; t : P ; k : [P , ∅]; h : [R, ∅]}
ci : record{d : D; a : [M , ∅]; t : P }

mi : record{d : D; k : P ; h : [M , ∅]}
mode : [adversary mode, user mode]

The model has four basic data types, to which members of
the records belong.D is a set of distinct data values,P is a
set of principals and can either be the user or the adversary,
R is a set of register hashes, one for each register in the
model, andM is a set of memory addresses in the model.

D = [0 . . . w, α]
P = [user, adversary]
R = [0 . . . x]

M = [0 . . . z]

Theα in D represents a value that was created by the ad-
versary, which is used to model data injection attacks. The
XOM machine uses tags as proxies for keys, so tags and
keys are type-equivalent. Similarly, the pre-image for a
memory hash is an address so they are also type-equivalent.
Initially, the model has∅ in all its storage locations and the
modeis set tousermode. The maximum number of data
valuesw, number of registersx, number of cache linesy,
and number of memory locationsz parameterize the model.

If the model detects tampering, it prevents the user from
continuing execution by causing aresetaction. The reset
action is a special action that sets the entire machine state
to a legal state. In our model, the reset condition sets the
state back to the initial state of the model. The user is able
to perform the operations specified in Table 1. The actions
that produce the next state for each instruction are:

i1. Define data valuea ∈ [0 . . . w] in registeri:
ri = {d = a, t = user, k = ∅, h = ∅}.

i2. Use registeri:
if ri.t 6= user
thenreset.

i3. Store value at registeri into addressj:
if ri.t 6= user
thenreset
else ifj is in cache such that∃ cl.a = j

thencl = {d = ri.d, a = j, t = ri.t}
else pick anl ∈ [0 . . . y] : cl.a = ∅ →
cl = {d = ri.d, a = j, t = ri.t}.

i4. Load memory addressj into registeri:
if j is in the cache such that∃ cl.a = j
then if cl.t 6= user

thenreset

else load from cacheri = {d = cl.d, t =
user, k = ∅, h = ∅}

else load from memory: ifmj .k 6= user∨mj .h 6= j

thenreset

else pick anl ∈ [0 . . . y] : cl.a = ∅ →
cl = {d = mj .d, a = j, t = user},
ri = {d = mj .d, t = user, k = ∅, h = ∅}. 1

The model checks that the user’s data has not been tam-
pered with. As explained in Section 2, a hash validates two
components — the integrity of the encrypted data and the
validity of the address it is being loaded from. These two
checks are modeled separately. Preventing the adversary
from creating any data that is encrypted with the user’s key
simulates the integrity check of the data. On the other hand,

1We note that this definition prevents the user from reading uninitial-
ized memory values. Such a read is considered a programmer error, which
we do not cover in this paper.

the validity of the address is modeled by keeping a shadow
copy of the original address of the data inh.

Here is a section of the model in the Murϕ description
language. This particular section describes instruction i3:

Rule "User secure store"
!isundefined(reg_i.data) &
mode = user_mode

==>
Var

cache_l : cache_range;
Begin

if (reg_i.tag != user) then
reset();

endif;
-- find the data in the cache
cache_l = find_data(addr_j);
if (!isundefined(cache_l)) then

-- hit in the cache,
-- write data to cache
cache_l.data := reg_i.data;
cache_l.addr := addr_j;
cache_l.tag := reg_i.tag;

else
-- cache miss (code not shown)

endif;
endrule;

A “ -- ” indicates the following text on that line is a com-
ment. The precondition is the boolean expression before
the “==>,” which checks that the register has data in it, and
that the processor is not in adversary mode. The body of the
function, after theBegin statement checks the permissions
on the register, checks if the data is in the cache, and if so,
writes it to the cache. The actions for servicing a cache miss
are left out for brevity.

This model has some safety conditions that are checked:

1. Each cache location must have a different address tag.
This ensures the cache is implemented correctly.

2. User data (data that is notα) is either tagged with the
user’s XOM ID or encrypted with the user’s key. This
ensures the access control guarantees are correct.

3.3. The idealized model

The idealizedmodel is a very simple version of a XOM
architecture. It has no caches since they are invisible to the
user, and does not contain an adversary. The model has a
two storage levels: registers and memory locations. The
state of the model can be expressed as:

Sideal =< r0 . . . rx; m0 . . .mz >

ri : [0 . . . w, ∅]
mi : [0 . . . w, ∅]

The parameters of the model arew, x andz which are the
number of data values, registers, and memory locations re-
spectively. We see the model is much simpler and each
storage class only has a data value property. As in the ac-
tual model, the initial state has all locations initialized to
∅. There is only one user in this model and the user can
perform the following actions:

i1. Define data valuea ∈ [0 . . . w] in registeri:
ri = a.

i2. Use registeri:
this action is a null action.

i3. Store value at registeri into memory locationj:
if ri 6= ∅
thenmj = ri.

i4. Load an initialized memory locationj into registeri:
if mj 6= ∅
thenri = mj .

The same register store action in the actual model is written
as the following in the idealized model:

Rule "User secure store"
!isundefined(reg_i.data)

==>
Begin

mem_j.data := reg_i.data;
endrule;

The model has no safety conditions since the absence of
an adversary means it cannot be tampered with.

3.4. The adversary

The actual model also includes an adversary that can per-
form actions to modify the state of the machine. In the
model checker, the adversary is given a set of primitive ac-
tions that it can perform. We then rely on the model checker
to exhaustively try all combinations of these actions in an
attempt to break the XOM machine. It is important to en-
sure that the adversary is adequately powerful to model all
attacks, but constrained so as not to be capable of things
not possible in reality. Based on our earlier “black box”
model for cryptography, and assuming reasonable counter-
measures against physical tampering of the hardware, our
adversary is not able to:

1. Access registers not tagged with its ID.

2. Decrypt values for which it does not have the key.

3. Access keys stored on the XOM machine.

4. Forge hashes.

The actions that the adversary can perform are the basic user
operations and the kernel mode operations detailed in Ta-
ble 2. Aside from the 12 basic instructions available to the
adversary, we add two composite instructions. These in-
structions are composed from several basic instructions, but
do not require a free a register or cache line.

i1. The adversary can define data in a registeri:
ri = {d = α, t = adversary, k = ∅, h = ∅}.

i2. The adversary can use a registeri:
if ri.t 6= adversary
thenreset.

i3. The adversary can store a registeri to addressj:
if ri.k = ∅
then if ri.t = adversary

then if j is in the cache such that∃ cl.a = j
thencj = {d = ri.d, a = j, t = adversary}
else pick anl ∈ [0 . . . y] : cl.a = ∅ →
cl = {d = ri.d, a = j, t = adversary}

elsereset.

i4. The adversary can load a cache locationi to registerj:
if ci.t = adversary
thenrj = {d = ci.d, t = adversary, k = ∅, h = ∅}
elsereset.

i5. The adversary can save registeri to registerj:
if ri.k = ∅
thenrj = {d = ri.d, t = adversary, k = ri.t, h =
i}.

i6. The adversary can restore registeri to registerj:
if ri.h = j
thenrj = {d = ri.d, t = ri.k, k = ∅, h = ∅}
elsereset.

i7. The adversary can prefetch memory locationi into
cache locationj:
if mi.h = i
thencj = {d = mi.d, a = i, t = mi.k}
elsereset.

i8. The adversary can write cache locationi:
ci = {d = α, a = ci.a, t = adversary}.

i9. The adversary can invalidate a cache locationi:
ci = {d = α, a = ∅, t = adversary}.

i10. The adversary can flush cache locationi:
givenci.a = j → mj = {d = ci.d, a = ci.k, h = j}.

i11. The adversary can trap to adversary mode. When do-
ing so, the register key is revoked, so all encrypted reg-
isters are cleared:
if mode = user

thenmode = adversary,
∀ ri ∈ [r0 . . . rx]: if ri.k 6= ∅

thenri = {d = α, t = adversary, k = ∅, h =
∅}.

i12. The adversary can return to user mode and allow the
user to execute:
if mode = adversary
thenmode = user.

c13. The adversary can copy a memory locationi to another
memory locationj:
mi = mj .

c14. The adversary can copy a registeri to registerj:
if rj .t = adversary
thenri = rj

elsereset.

In modeling the adversary, we make two simplifying as-
sumptions. First, in primitive i5, the adversary is not al-
lowed to encrypt an already encrypted register. The same
is true for an adversary trying to decrypt a value that has
not been encrypted. While a real adversary could encrypt
or decrypt register contents an arbitrary number of times by
executing the appropriate instruction over and over again,
our models are finite so we cannot model this. Our models
can easily be extended to allow an arbitrarily long chain of
these instructions, but this would create a larger state space.
Thus, for efficiency, we restrict these operations to be per-
formed only once on any value.

Second, we do not allow the adversary to store encrypted
register values to memory in primitive i3. The only opera-
tion that could be performed on an encrypted value is prim-
itive i6, which only operates on values in registers. As a re-
sult, storing the values to memory means at some point, the
adversary will have to load that encrypted value back from
memory to another register to do anything with it. Since,
this is already modeled in action c14, modeling this func-
tionality again is unnecessary.

In the description of the XOM architecture, attacks were
classified into three categories: spoofing, splicing, and re-
play [14]. We will show how the primitive actions above
allow an adversary to at least implement all three of these
attacks. While, the adversary does not know the user’s key
and thus cannot insert chosen text into the user’s compart-
ment, she can still attempt to randomly write values there. A
spoofing attack can be performed by actions i1, i8 and i10.
A splicing attack is one where the adversary tries to copy
valid, user encrypted values from one location to another.
Actions c13, c14, and i7 allow an adversary splice regis-
ters, memory locations and caches respectively2. Finally,

2Note that actions i5 and i6 do not constitute splicing attacks since the
copied values are inaccessible to the user due to the XOM ID tags on the
registers.

a replay attack involves an adversary who actively records
data, waits for the user to overwrite that location with dif-
ferent data, and then inserts the old, stale data. To replay
a register, the adversary executes c14 and then i11 to copy
and return control to the user. When the user overwrites
the old register value, the adversary executes i11 again, and
uses c14 to copy the saved data back. To replay a memory
location, the adversary can either use c13 instead of c14, or
use i9 to prevent a new value in the cache from reaching
memory.

4. Verification

Our primary goals are to verify two properties of the
XOM architecture: that adversaries cannot read user data
and that adversaries cannot modify user data without being
undetected.

Since the XOM machine only permits principals to read
registers that have been tagged with the correct XOM ID,
we verify the first property by checking that data created
by the user is never tagged with the adversary’s XOM ID.
This is actually the second safety condition in the actual
model given in Section 3.2. However verifying the actual
model alone does not ensure that the adversary has not mod-
ified user data. The difficulty is that there is no condition to
check the user’s data against in the actual model. The key
observation is that there can be no tampering by the adver-
sary on the idealized model by virtue of the fact that there
is no adversary. Thus, the idealized model can be used as a
“golden” model against which we can check the state of the
actual model. For this, assume we have the functionf that
checks whether a certain state in the actual model matches
a certain idealized model state:

f :f(Actual Model State, Idealized Model State)
= {true, false}

We can verify tamper resistance by exploring both the ide-
alized and actual model states simultaneously. This in-
volves concatenating the idealized model state with the ac-
tual model to create the “joint” state. We also label every
action in the actual model as either a user action or an adver-
sary action. User actions are ones that would be performed
by a user, and as a result, these actions have analogues in
the idealized model. All other actions are considered adver-
sary actions and have no analogue in the idealized model.
User actions affect the state of the idealized and actual por-
tions of the model state, while adversary actions only affect
the actual portion of the joint state. We applyf to each
new joint state created to verify consistency. If this check
above holds for all the states found, then the adversary is not
able to make the actual state inconsistent from the idealized
state, which leads to the conclusion that the adversary was
not able to tamper with the user’s data.

The merging of the models must be done in a way that
does not restrict the state exploration of either model, other-
wise this may result in the Murϕ failing to find states where
the two models might have been inconsistent. Murϕ rules
have a guard condition that states when a particular rule can
be applied. The idealized model is what the user should
think she is running on, so user actions in the joint model de-
rive their guards from the idealized model. The one caveat
is all user actions can only execute when the actual model is
in usermode, so this check is added to all user guards. The
bodies of those rules are a combination of the actions that
modify the idealized model and the actual model in parallel.

Adversary actions have no corresponding actions in the
idealized model and so they are guarded by elements from
the actual state. Naturally, the adversary actions only mod-
ify the actual state of the model. Because of this, we see that
adversary actions change the actual state but leave the ide-
alized state unchanged. As an example, we provide a sec-
tion of the Murϕ description that combines the same user
action from the actual and idealized models given in Sec-
tions 3.2 and 3.3. Because the states of the models are now
combined into the same name space, elements from the ide-
alized model are prefixed with an “i”, while elements in the
actual model are prefixed with an “a”:

Rule "User secure store"
-- only guarded by idealized state
!isundefined(ireg_i.data) &
-- must be in user mode
mode = user_mode

==>
Var

acache_l : cache_range;
Begin

-- actual model part
if (areg_i.tag != user) then

reset();
endif;
acache_l = find_data(addr_j);
if (!isundefined(acache_l)) then

acache_l.data := areg_i.data;
acache_l.addr := addr_k;
acache_l.tag := areg_i.tag;

else
-- cache miss (code not shown)

endif;
-- idealized part
imem_j.data := ireg_i.data;

endrule;

We have outlined the method for combining the two models
– all that is left is to definedf . Our XOM CPU is based on a
RISC-like load/store architecture. As a result, assembler in-

structions either move data between registers and memory,
or they perform logical or arithmetic operations on register
values. As such, from the point of view of a running pro-
gram, the only state that needs to be consistent is the register
state since that is what is used to do any computation that
could produce output. Because of this property, our func-
tion f turns out to be very simple:

f : (Sactual, Sidealized) → {true, false},
if ∀ Sactual.ri.id = user∧

Sactual.ri.data = Sidealized.ri.data

thenf = true

elsef = false

The XOM architecture only allows programs to read reg-
isters that are tagged with their XOM ID. The abovef is
true if registers tagged with the user’s ID, and thus are ac-
cessible to the user, have the same data in both the actual
and idealized model. If a XOM machine was built on top
of a CISC machine, where arithmetic or logical operations
may be performed directly on memory values, then values
in memory and cache must always be consistent as well.
This does not preclude a definition forf , but would make
the definition more complex.

One of the limitations is that the model must approxi-
mate the real machine by scaling down the number of ele-
ments in the model to limit the state space. The verification
was performed on a scaled down model with 3 memory lo-
cations, 3 cache locations, 3 register elements, 2 user data
values and 1 adversary data value. All three attacks detailed
in Section 3.4 require a minimum of two user data values, in
the case of a splicing or replay attack, or a user value and an
adversary value in the case of a spoofing attack. Thus, the
largest number of different data values we need to support in
our models is three. As a result, we require three elements
in each storage level so that the adversary can move all pos-
sible values around without overwriting some. While, this
is not proof that all cases will be covered in our approxi-
mated model, we believe that our model does cover all the
attacks capable by our adversary model. We were able to
run slightly larger models (with one of the storage levels in-
creased to 4) but did not find any more errors. With more
memory, larger models could be verified.

With this method that combines our two models in a spe-
cific way, we were able to verify the XOM architecture and
find errors that we will detail in the next section.

5. Results

In performing our verification, we found a way for an ad-
versary to perform replay attacks on memory values. With
our tool, we were able to verify that our solution to the er-
ror is correct. We then searched the XOM architecture for

extraneous actions and were able to find one. Finally we
checked for liveness guarantees and were able to show that
when certain constraints were placed on the operating sys-
tem, the user could be guaranteed forward progress. The
models ran for approximately 4-6 hours on a Sun Worksta-
tion with 8GB of memory and 1Ghz UltraSparc 3 proces-
sors.

5.1. Replay attacks on memory

We were able to find an exact sequence of events that
allow adversary to replay values in memory. This existence
of this attack was also suggested in [7, 14, 21]. Our method
also helped us find and implement a safe solution to the
memory replay problem.

We start by noting that [14] proposes that a hash of a
memory region can be used to protect that region from re-
play. We model this hash by creating a second memory
array that shadows the memory in the actual model. Be-
cause the hash is meant to be kept in a replay-proof register,
we make this shadow memory inaccessible to any of the
adversary actions. Acalculate hashfunction models the
calculation of the hash by copying the contents of memory
in the actual model into the shadow. Averify hashfunction
then checks the contents of the shadow memory against the
contents of memory in the actual model and an exception is
thrown if the two do not match.

However, [14] does not precisely define when and where
the calculate hashandverify hashfunctions should be in-
voked. Since the hash updates would be expensive in reality,
we decided to try to reduce the frequency of the updates.
We take advantage of the fact that cache locations are on
chip and thus cannot be modified by the adversary without
detection. We implemented a model where the hash is only
updated when a cache line is flushed to memory and verified
when a memory location was read into the cache. While this
appears to be all right at first glance, Murϕ was able to find
an attack where the adversary would invalidate cache lines
before they were flushed to memory so that the old value in
memory became the current value. It is possible to exploit
this vulnerability as shown in Table 3.

Even though the hash matches the memory valueA, the
last value written wasB, so the adversary has successfully
performed a replay attack. This problem arose because the
write to an address, which occurs when the value is written
into the cache, is not atomic with the update of the hash,
which occurs when the value is flushed to memory. With
Murϕ we are able to show that against an adversary who
cannot invalidate cache lines, delaying the update of the
hash in this way is safe. However, since many architectures
support his operation, this optimization is generally unsafe.
As a result, we must be sure the hash is updated whenever
a value is written to the cache.

Action $ M H
1. User writesA to cache. A ∅ {∅}
2. Cache is flushed to memory. ∅ A {h(A)}
3. User writesB to cache. B A {h(A)}
4. Adversary invalidates cache. ∅ A {h(A)}

Table 3. Updates of the hash cannot be de-
layed as shown here with $ is the contents of
the cache, M is the contents of memory, and
H is the value of the hash.

Since of reducing the frequency of hash operations
failed, we try instead to reduce the cost of each hash calcu-
lation by using an incremental hash. An incremental hash
uses a function to add and remove elements from a hash ef-
ficiently. An example of an incremental hash that uses the
exclusive-or function is given in [3] and an implementation
appears in [7]. Such a hash would make updates to the hash
more efficient as we would not need to read all memory lo-
cations to recalculate the hash. Instead, we simply remove
the old value from the hash, and add the new one. Again, we
were able to find a weakness. Essentially, Murϕ exploited
the fact that when we read in the old value to remove it, we
do not actually verify that the old value is the correct value.
A clever adversary can insert a different value at this point
to create havoc. For example, the adversary could insert a
value that will cancel out the value that the user is about
to write, thus leaving the hash unchanged. The adversary
is then free to replay an old value, since the hash was not
updated as shown in Table 4.

Again, though the last value written is actuallyA, the
hash forB validates correctly. It seems that the only way
to defeat this is to verify that the value being removed is the
correct value, which requires reading in all of memory when
updating the hash. Unfortunately, this negates the benefit of
the incremental hash.

From these two failed hash implementations, we were
able to create a successful hash implementation. The first
optimization failed because hash calculations are not atomic
with updates to memory. Thus we call thecalculate hash
function every time the user writes values to the cache. Sim-
ilarly, we must callverify hashevery time a value is read
into the cache from memory and before we recalculate a
new hash as shown by the second failed optimization. Un-
fortunately, this method may be inefficient because the en-
tire memory region must be read each time the hash is cal-
culated or verified. Some techniques, such as hash trees and
caching may be applied to this problem to help mitigate its
performance impact [7].

Action $ M H
1. User writesA to cache. A ∅ {h(A)}
2. Cache is flushed to memory. ∅ A {h(A)}
3. User writesB to cache. B A {h(A)− h(A) + h(B)} = {h(B)}
4. Cache is flushed to memory. ∅ B {h(B)}
5. Adversary replaysA in memory. ∅ A {h(B)}
6. User writesA to cache. A A {h(B)}
7. Cache is flushed to memory. ∅ A {h(B)− h(A) + h(A)} = {h(B)}
8. Adversary replaysB in memory. ∅ B {h(B)}

Table 4. An incremental hash cannot be used as shown here with $ is the contents of the cache, M is
the contents of memory, and H is the value of the hash.

5.2. Extraneous actions

We removed actions from the model to see if they were
necessary for security. With Murϕ we found one action in
the model that appeared to be extraneous. When the user
loads data from memory, it is not necessary to check that the
data is actually encrypted with the user’s key. It is sufficient
to simply tag the register that the data is stored to with the
key that the data was encrypted with. In other words we can
change the user action to:

4. Read memory addressj into registeri:
if j is in the cache such that∃ cl.a = j
then load from cacheri = {d = cl.d, t = cl.t, k =
∅, h = ∅}
else load from memory ifmj .h 6= j

thenreset

else pick anl ∈ [0 . . . y] : cl.a = ∅ →
cl = {d = mj .d, a = j, t = mj.k},
ri = {d = mj .d, t = mj.k, k = ∅, h = ∅}.

Later, when the user tries to use the data with ause op-
eration in Table 1, the machine will check the tag any-
way. Though unnecessary for security, specifying the key
in the instruction does make the hardware more efficient.
The XOM architecture allows encrypted programs to select
whether data stored to memory should be encrypted or in
plain text. Having the program specify the whether the data
it loads is encrypted or not, saves the hardware from having
to maintain that information.

5.3. Liveness

We were also able to show that the user can be guar-
anteed forward progress given that a set of constraints are
placed on the operating system. Because the operating sys-
tem is untrusted in a XOM machine, the machine does not
ensure that users are always able to make forward progress.
However, a “properly working” operating system should be

able to guarantee forward progress. A properly working op-
erating system must demonstrate two things. First, it must
show that the user is always able to make forward progress.
Second, the operating system must show that it is able to
perform all functions it needs to perform.

The first condition can be met by modifying the condi-
tions under which the operating system actions will execute.
Note that the functionf , defined in Section 4, still evaluates
to true even if data that exists in the idealized model is not
present in the actual model. This means that the verification
will not catch the case where the operating system either de-
stroys user data or moves user data without moving it back.
In such a case, when the user tries to access data, she will
find that it has been overwritten with operating system data,
and the machine will reset because of an XOM ID tag vio-
lation.

To find the constraints that must be placed on the operat-
ing system to guarantee user forward progress, we redefine
the reset action to be a violation of a safety property so that
Murϕ will report it as an error. From the counter example,
we can deduce additional guards on adversary actions that
would prevent that particular sequence of actions from hap-
pening. In effect, these guards, turn the adversary from a
malicious operating system to a properly working one. The
general constraints are:

1. If the operating system moves the user’s data away, the
operating system must move it back before returning to
the user.

2. The operating system must not destroy any user data
by overwriting it.

These constraints ensure that the operating system does not
destroy any of the user’s data or render it inaccessible by
moving it to a place that the user is not aware of.

By adding more detail to the model we were also able to
find another constraint on the operating system. This is a
race that can cause the user to inadvertently lose data. To
cause this error to happen, we must model the caches in

more detail. Modern processor cache lines usually contain
multiple register words, while our simple model hash cache
lines that are one register word long. Longer cache lines
also have single XOM ID tag associated with them. They
also have valid bits that indicate which words in the cache
line belong to the XOM ID tag. When the XOM ID tag of a
cache line changes, all previous data in that cache line is in-
validated. The race occurs if the user writes data to a cache
line and then the operating system writes data to the same
cache line. Even if the operating system’s data is written
to a different address in the same cache line, the write by a
different XOM ID causes the old data to be destroyed. As
a result, the operating system is constrained from sharing
any cache lines with user applications. This constraint falls
under the second constraint listed above.

The second requirement, that the operating system is
able to perform all functions despite the above constraints,
is more difficult to prove. Essentially this shows that the
operating system is still able to interrupt applications and
manage system resources amongst applications. At the end
of a state exploration, Murϕ displays a list of all actions ex-
ecuted along with the number of times they were executed
in the state exploration. With this information, we can show
that the operating system is still able to execute all the ac-
tions it needs to, despite the additional constraints on when
they can execute. We note, however, that this does not nec-
essarily show that the operating system can execute actions
whenit needs to — it simply shows that there exist condi-
tions within the model for the operating system to execute
all it’s required actions.

6. Related work

Theorem proving is a formal verification alternative to
model checking. The design of IBM 4758 Secure Copro-
cessor [23] used theorem proving techniques to verify its
security. While theorem proving is not restricted to a fi-
nite number of states, it significantly more difficult and time
consuming to use.

The idea of performing verification by checking for con-
sistency between a higher level model and a lower level
model has been detailed in work on refinement maps [2].
Our technique differs from refinement maps in that we en-
sure that every transition in the idealized model has an ex-
isting transition in the actual model, while a refinement map
specifies the converse. There has also been some work that
verified security by asserting an equivalence between an
idealized model and a model with certain actions available
to the adversary. One specification method using equiv-
alence between a realistic model and an idealized attack-
impervious model is outlined in [15], with related ideas pre-
sented earlier in [1]. Prior work on CSP and security proto-
cols, also uses process calculus and security specifications

in the form of equivalence or related approximation order-
ings on processes [19, 20].

Lastly, none of the techniques presented in this paper are
Murϕ specific. A variety of other model checkers such as
SPIN, TLA+, or SMV could have been used [9, 12, 16].

7. Conclusion

We have given a formal specification of the XOM ar-
chitecture that supports tamper-resistant software. We then
developed a method to verify the specifications. In this ver-
ification, we used the Murϕ model checker to perform the
simultaneous state exploration of an actual and an idealized
model. We verified two safety properties. The first ensures
that an adversary was never able to read data that belongs
to the user. This is done by making sure that user data is
always either tagged in the XOM hardware with the user’s
ID, or encrypted and hashed with the user’s key. The second
safety property ensures that the adversary can never tam-
per with the user’s data without the user’s execution being
halted. This is done by splitting all transitions in the XOM
models into user caused actions and adversary caused ac-
tions. We then simultaneously explore two models of the
XOM architecture — one that only the user could affect and
the other that both the adversary and the user could affect.
If one model ever becomes inconsistent with the other, than
the adversary will have successfully tampered with the user
state.

After successfully detecting design errors by model
checking, we corrected the errors and found no further prob-
lems. With this, we were able to show how a replay-proof
register can be used to protect memory from replay. We
were also able to find one action in the specification that
was not necessary for security, but is required to make the
implementation practical. Lastly, we were also able to put
some constraints on what actions in the operating system
can perform so as to guarantee the user forward progress.
In this way, we were able to show that it is possible to build
a well behaved operating system.

Acknowledgements

We would like to acknowledge Yuan Yu for his helpful
comments. The research presented in this paper was per-
formed with the support of DARPA F29601-01-2-0085 and
NSF CCR-0121403.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic
protocols: the spi calculus.Information and Computation,
143:1–70, 1999. Expanded version available as SRC Re-
search Report 149 (January 1998).

[2] M. Abadi and L.Lamport. The existence of refinement map-
pings.Theoretical Computer Science, 82(2):253–284, 1991.

[3] M. Bellare, R. Guerin, and P. Rogaway. XOR MAC’s: New
methods for message authentication using finite pseudoran-
dom functions. CRYPTO’95, Lecture Notes in Computer
Science, 963, 1995.

[4] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol
verification as a hardware design aid. InIEEE International
Conference on Computer Design: VLSI in Computers and
Processors, pages 522–5, 1992.

[5] D. Dolev and A. Yao. On the security of public-key pro-
tocols. IEEE Transactions on Information Theory, 2(29),
1983.

[6] S. Freund and J. Mitchell. A type system for object ini-
tialization in the java bytecode language.ACM Transac-
tions on Programming Languages and Systems, 21(6):1196–
1250, Nov. 1999.

[7] B. Gassend, E. Suh, D. Clarke, M. van Dijk, and S. De-
vadas. Caches and merkle trees for efficient memory authen-
tication. InNinth International Symposium on High Perfor-
mance Computer Architecture, pages 295–306, 2003.

[8] P. Gutmann. The design of a cryptographic security archi-
tecture. InThe Usenix Security Symposium, 1999.

[9] G. Holzmann. The spin model checker.IEEE Trans. on
Software Engineering, 23(5):279–295, May 1997.

[10] A. Huang. Keeping secrets in hardware: The mi-
crosoft XBox case study. Technical Report 2002–008,
Massachusetts Institute of Technology, May 2002.
http://web.mit.edu/bunnie/www/proj/anatak/AIM-2002-
008.pdf.

[11] M. Kuhn. The TrustNo1 cryptoprocessor concept. Technical
Report CS555, Purdue University, Apr. 1997.

[12] L. Lamport. Specifying Systems. Addison-Wesley, Boston,
2002.

[13] D. Lie, A. Chou, D. Engler, and D. Dill. A simple method
for extracting models from protocol code. InProceedings
of the 28th International Symposium on Computer Architec-
ture, July 2001.

[14] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for
copy and tamper resistant software. InProceedings of the
9th International Conference Architectural Support for Pro-
gramming Languages and Operating Systems, pages 168–
177, Nov. 2000.

[15] P. Lincoln, M. Mitchell, J. Mitchell, and A. Scedrov. A
probabilistic poly-time framework for protocol analysis. In
M. Reiter, editor,Proc. 5-th ACM Conference on Computer
and Communications Security, pages 112–121, San Fran-
cisco, California, 1998. ACM Press.

[16] K. McMillan and J. Schwalbe. Formal verification of the
gigamax cache consistency protocol. InProceedings of the
International Symposium on Shared Memory Multiprocess-
ing, pages 242–51. Tokyo, Japan Inf. Process. Soc., 1991.

[17] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis
of cryptographic protocols using murphi. InIEEE Sympo-
sium on Security and Privacy, pages 141–153, 1997.

[18] Microsoft palladium initiative - technical FAQ.
http://www.microsoft.com/technet/treeview/def-
ault.asp?url=/technet/security/news/PallFAQ2.asp.

[19] A. W. Roscoe. Modelling and verifying key-exchange pro-
tocols using CSP and FDR. InCSFW VIII, page 98. IEEE
Computer Soc Press, 1995.

[20] S. Schneider. Security properties and CSP. InIEEE Sympo-
sium on Security and Privacy, 1996.

[21] W. Shapiro and R. Vingralek. How to manage persistent
state in DRM systems. InDigital Rights Management Work-
shop, pages 176–191, 2001.

[22] V. Shmatikov and J. Mitchell. Analysis of a fair exchange
protocol. InSeventh Annual Symposium on Network and
Distributed System Security, pages 119–128, 2000.

[23] S. Smith, R. Perez, S. Weingart, and V. Austel. Validating
a high-performance, programmable secure coprocessor. In
Proceedings of the22nd National Information Systems Secu-
rity Conference, Oct. 1999.

[24] S. W. Smith, E. R. Palmer, and S. Weingart. Using a high-
performance, programmable secure coprocessor. InFinan-
cial Cryptography, pages 73–89, Feb. 1998.

[25] U. Stern and D. Dill. Automatic verification of the SCI cache
coherence protocol. InCorrect Hardware Design and Verifi-
cation Methods: IFIP WG10.5 Advanced Research Working
Conference Proceedings, 1995.

[26] The Trusted Computing Platform Alliance, 2000.
http://www.trustedpc.com .

[27] J. Tygar and B. Yee. Dyad: A system for using physically
secure coprocessors. Technical Report CMU–CS–91–140R,
Carnegie Mellon University, May 1991.

