Specifying and Verifying Hardware for Tamper-Resistant Software

David Lie John Mitchell Chandramohan A. Thekkath Mark Horowitz

Computer Systems Laboratory
Stanford University
Stanford CA 94305

Abstract monitor the pins of the processor and modify or observe val-
ues on the bus to memory [10]. Cryptographic keys under
We specify a hardware architecture that supports XOM control must protect program code and data in spite of
tamper-resistant software by identifying an “idealized” these active attacks. The XOM hardware requirements and
model, which gives the abstracted actions available to a likely execution speed have already been studied [14], and
single user program. This idealized model is compared to XOM offers the promise of tamper-resistant code, at mod-
a concrete “actual” model that includes actions of an ad- erate hardware cost and minimal drop in execution speed.
versarial operating system. The architecture is verified by However, there is no value in paying for the additional hard-
using a finite-state enumeration tool (a model checker) to ware unless the architecture provides verifiable security.
compare executions of the idealized and actual models. In The primary goal of our verification study is to determine
this approach, software tampering occurs if the system canwhether XOM systems are able to provide reliable security
enter a state where one model is inconsistent with the otherto software distributors. We evaluate XOM security using
In performing the verification, we detected an replay attack a model with three parts: the XOM machine with its secu-
scenario and were able to verify the security of our solu- rity mechanisms, user code, and an adversary that tries to
tion to the problem. Our methods were also able to verify access user data or modify the user state without being de-
that all actions in the architecture are required, as well as tected by the security mechanisms. A secondary goal is to
come up with a set of constraints on the operating system tosee whether the system has been over-designed. After the
guarantee liveness for users. system has passed its primary test, we go back and remove
parts of the machine model to see if the system still passes
the safety tests. If the system is still safe despite the removal
1. Introduction of some components, then we can examine whether those
components are necessary. A final goal is to verify that the
security measures do not prevent the user from making for-

There are many systems that try to ensure some meag, .4 progress.

sure of software tamper-resistance and copy-resistance [8, e .
. . Our verification uses the Myrmodel checker to simul-
11, 18, 26, 27]. In this paper, we focus on a particular :
. taneously search two different models. One modelattie
hardware approach called XOM, which stands for eXecute . . L
Only Memory [14]. XOM embeds cryptographic keys and tual model, contains an adversary with a set of abilities. The
y y) ypograp Y model checker tries all possible combinations of these abili-

functionality on the main processor chip to provide an ex- . . .
. i o ties, trying to violate the safety guarantees of the model. To
tremely high level of security for applications. XOM makes :
; . - check those guarantees, we compare the state of this model
no assumptions about the trustworthiness of the operating_ . : . ; :
. : . _“with an simpler,idealizedmodel that does not contain an
system or physical memory. Since the XOM hardware is . ,
. . adversary. If the two models ever become inconsistent, then
responsible for access control, the operating system only, .
; the adversary has managed to tamper with the state of the
controls resource allocation. However, to manage resources .
. : . . - user in the model.
effectively, the operating system retains a higher privilege We will begin in Section 2 by givi back q
level than a user process, and an adversarial operating sys- e will begin in Section 2 by giving some backgroun

tem may abuse this to try to access user data. On the othef" the XOM architecture and on Mar In Section 3, we

hand, an adversary with physical access to the system mag;ormally specify the two models of the hardware we use,

as well as our model of the attacker. The next section ex-
*Microsoft Research, Mountain View, CA 94043 plains how the two models are combined into one model

that Murpy uses to perform a joint state exploration. Sec- performed on every memory operation, the XOM architec-
tion 5 gives the results of our verification. In this section ture relies on caching to mitigate the performance impact.
we describe how our tool helped find a solution for mem- Values in the cache are not encrypted, but tagged with XOM
ory replay attacks. We also show one instance where ourlD’s.

method was able to find an action in the model which did xoOM defends against attacks where the adversary has
not provide any extra security, as well as give details on the sypverted the operating system to her needs. Even though

constraints that must be placed on an operating system tqan adversarial operating system can execute both privileged
guarantee forward progress or liveness for the user. In Secand unprivileged instructions, it cannot forge the user’s

tion 6 we compare our method against existing and relatedxom ID. Thus, the XOM machine should prevent the ad-

work. Finally we conclude this paper with Section 7. versary from tampering with the user’s data by checking the
data’s XOM ID tag against the XOM ID tag of the active
2. Background program. It is important to note that the security enforced

by XOM is completely orthogonal to the security enforced
by a processor’s privileged and unprivileged modes. Even

architecture that maintains separatenpartmentsor pro- privileged instructions mu_st meet the access requirements
grams. On-chip compartments are isolated using architec-mc the compartment security model.
tural tags, with encryption used to maintain the isolation =~ Some additional instructions must be introduced to the
when data is written off-chip. XOM is fundamentally differ- ~ instruction set for users to take advantage of the XOM hard-
ent from architectures that use secure coprocessors [24, 27{vare. Secure load andsecure store instructions
in that it provides a higher level of security by implement- are provided to allow programs to preserve the XOM ID of
ing the secret keys and tags direcﬂy on the main proces-data when storing it from registers into the cache. Later,
sor. Each user program in a XOM machine has a uniquewhen the data is flushed to memory, it is encrypted with the
key, called acompartment kehat the XOM machine as- compartment key indicated by the XOM ID tag. The oper-
sociates with &OM ID tag The program is initially en- ating system needs to be able to save the state of the inter-
crypted with the compartment key. When the code is aboutupted user program to perform a context switch. To support
to be executed' it is read from memory and decrypted andthiS fUnCtionality without aIIOWing the Operating System to
tagged with the program’s XOM ID. Any on-chip data or read user data, XOM provides thegister save in-
code that belongs to a program is also tagged with that pro-struction. The XOM machine encrypts the register contents
gram’s XOM ID. The tags act as an identifier of the writer and stores the cipher text in the target register. The operat-
of the data, and thus determine who can read the data. ing system can then store the state of an interrupted process,
The XOM machine tags data with the XOM ID as a but does so safely since it is only allowed to handle the en-
proxy for encrypting it, deferring the encryption to when crypted state. When the operating system wishes to restore
the data leaves the chip boundary to be stored in memorythe register contents it uses tregister restore in-
When data is stored to memory, itis encrypted with the struction. The XOM machine returns those values back to
compartment key, and a hash of the data and its addreséhe registers. A hash is added to ensure that the encrypted
is added to protect against the tampering of memory values.values have not been tampered with and to make sure the
This prevents an adversary from substituting random val- encrypted values are restored back to their original regis-
uesin p|ace of encrypted Va]ueS, or from Copying encrypted ter. An additional measure is put in place to guard against a
values from one address to another. Only a program that’€play attack from the operating system. The operating sys-
knows the user's compartment key may modify or view the tem could potentially save encrypted registers and restore
contents of the compartment. The architecture records thehem multiple times, thus replaying a section of user state.
writer of data and ensures it matches the reader. Thus, if anT0 prevent this, theegister keyused to encrypt the user reg-
adversary tries to tamper with data by overwriting it with isters is invalidated each time the user is interrupted with a
some faulty value, when the user tries to read that data, thelfap, and a new key is generated. By changing the key, the
architecture will detect a user/writer mismatch and halt the XOM machine ensures that the register state of a user can
user. A program may allow another program to read its databe restored at most once. The instructions pertinent to this
by explicitly moving that data from its private compartment Verification are summarized in Tables 1 and 2.
to ashared compartmentn this way, programs in separate In performing our verification, we used the Muf4]
compartments may selectively share data. model checker. Mus uses explicit enumeration to check
The XOM architecture can be built on top of any exist- the state space of a model. A model describes the system to
ing architecture through modest modifications to the pro- be checked as a state machine by providing an initial state
cessor hardware, and has been shown to be realistically imand a set of next-state functions. The next-state functions
plementable [7, 14]. Because cryptographic operations areare specified by a set of “rules”, which have a precondition

The XOM architecture [14] is a generic microprocessor

[Instruction

Description \

il. def $rt, immediate

Generic register definition wheienmediate is written into registe$rt . This
models any non-memory operation that writes to a register.

i2. use $rt

Generic use of registéirt . This models any non-memory instruction that read
register.

i3. secure store $rt,addr

This stores the value of registbrt to the memory location atddr . The store sets

the XOM ID tag in the cache to the value of the user who caused the store.

i4. secure load $rt,addr

This loads the registeprt with the memory value addr . If the load hits in the
cache, the XOM ID tag of the cache data is checked against the user's XOM
the data is in memory, the data is decrypted with the user’s key and the hash v
before loading into the register.

Table 1. User Instructions

Instruction

Description \

i5. register save $rt,$rs

The operating system uses this instruction to store a user register. The XOM mg
encrypts and hashes the user regi$isr with a temporaryregister keyand stores
it to register$rt . The registebrt is tagged with the operating system’s XOM I
The hardware atomically performs task, the operating system can only acce
encrypted value and the hash. The register key is inaccessible to the operating
and is stored as part of the architectural state of the machine.

i6. register restore $rt

The operating system uses this instruction to restore registers saveggiiter
save . The machine decrypts the data, verifies the hash, and returns the datz
original register. Theegister keyis revoked each time the XOM machine traps to
operating system.

i7. prefetch addr

The operating system can move a value from memory into cache, even if its XO
does not match the key the data in memory is encrypted with. However in the @
the data is tagged, not with the XOM ID of the operating system, but with the X
ID of the key used to decrypt it from memory.

D

D. If
erified

achine

D.
ss the
system

A to its
he

M ID
ache,
OM

i8. write _cache addr

The operating system can change the value of a cache location. The new
tagged with the operating system’s XOM ID.

data is

i9. invalidate addr

The operating system can invalidate a cache location causing the data to be destroyed.

The data is not flushed to memory.

i10. flush addr

The operating system can flush a cache location adltlr from the cache to mem

ory. The value is encrypted with the key indicated by the XOM ID tag, hashed and
the placed in memory. The XOM ID of the cache location does not have to matgh the

XOM ID of the operating system.

i11. trap The operating system can cause the processor to trap to the operating system at any
time by sending an interrupt. However, each time this happensediister keyused
to encrypt and decrypt user registers from any previous traps is invalidated and can
no longer used.

i12. return The operating system can return use of the processor to the user at any time.

Table 2. Privileged Instructions

guard, and a set of actions that modify the current state tocorrectness of each new state against a set of safety criteria
produce a new state. A precondition is a boolean statemento determine if any of the states are illegal. Safety criteria

based on the current state of the machine. §performs

in Mury can be specified as a set of invariants, which are

the state exploration by starting with the initial state and boolean statements that are evaluated every time a new state

exhaustively searching for all successor states. Mimds

is found. When Mup detects an error, it outputs a counter

and executes rules whose precondition is satisfied by theexample that indicates the states it traversed to reach the er-

current state to identify successor states. Muerifies the

ror state. Mup has been successfully used in other work to

verify both security protocols [17, 22] and computer hard- tional privileged instructions available to the adversary are
ware [13, 25], but this is the first instance we are aware of summarized in Table 2.
where it has been used to verify tamper-resistance.

Model checkers, in general, have some limitations. First, 3.2. The actual model
they verify models of systems, not the systems themselves.
Models abstract details of the system to make the size of The model of the physical hardware in a XOM machine,
the state space tractable for the model checker. This is of-cajled theactualmodel contains three homogeneous arrays.
ten done by simplifying functionality and by scaling down gach array represents one of the storage levels in the ma-
the models. Second, model checkers can only explore a fichine: registers, cache, and memory. The records stored in
nite number of states, and may miss states to save memorfhe arrays have different properties. For example, they all
For example, rather than explicitly remembering the states ithaye 5 data value property, as they can all be used to store

finds, Mury saves a smaller, randomized low-collision hash §ata. However. not all have XOM 1D tag, hash, or key prop-
of them. There is some probability that a collision will re- gtjes.

sult in missed states, but because the hash is randomized, a state in the Modes,.ruq; CONtains the three arrays, as
successive verifications of the same model reduce this proby,g|| as a single bit that indicates whether theer or the

ability. adversaryis executing on the machine.
3. XOM Models Sactual =<T0,7T1 .- Ta;
Cp,C1 -+ - Cy;
In constructing the XOM models we make several as- mo, My ... My;
sumptions about the types of errors we are trying to catch. mode >

First, we employ a “black box” model for cryptographic
functions [5]. This means that encrypted data cannot by The state has 3 storage classes, each representing a storage
decrypted by the adversary. However, if two plain text val- level. A registerr;, has a data valué, a XOM ID tagt,
ues are equal, they will have the same cipher text values.and if the value is encrypted, a keéyand a register hash
We also assume that hashes are collision free, and that proassociated with it. Similarly, a cache ling has a data value
grams have been properly written, so that all data sharingd, XOM ID tag ¢, and a memory addreas Finally, memory
occurring in the shared compartment is intentional. locationsm;, have data value$ keysk, and address hashes

Finally, we do not model what we call “information” at- /. The< value means that the parameter is not defined. For
tacks. These are a class of attacks where by observing mangxample, register values can be in plain text, meaning they
runs in a XOM machine, the adversary can surmise some in-have no key or hash value associated with them. Similarly,
formation about a program. For example, the adversary isan unused cache location haszaaddress value. Finally,
able to obtain a trace of memory locations the user accesseither the adversary or the user can be executing as indicated
In essence, the adversary learns something about the user -y themode.
some bits of information have been leaked. While these at-
tacks exist, they are outside of the scope of our verification ~ 7i : record{d: D; t¢:P; k:[P,2); h:[R, 2]}
framework. ci:record{d: D; a:[M,2]; t:P}

m; :record{d: D; k:P; h:[M,o|}

3.1. Abstracting the instruction set mode : [adversary-mode, user_mode]

To reduce the state space of our models, we consider a
simplified instruction set, in comparison to the instruction The model has four basic data types, to which members of
set available on a real XOM machine. We seek to reducethe records belongD is a set of distinct data valuek, is a
the instruction set to just the operations that affect the flow set of principals and can either be the user or the adversary,
of data and information. For example, generic register oper-R is a set of register hashes, one for each register in the

ations are amalgamated under tied anduse operations, model, andM is a set of memory addresses in the model.
while control flow operations such as branches and jumps

are left out. Similar simplifications were performed to an- D=[0...w,q]
alyze Java in [6]. The instructions available to the user are
summarized in Table 1.

An adversarial operating system can execute both user
instructions and privileged kernel instructions. The addi-

user, adversary|

o

7]

P
M=10...7]

[
[
[
[

The a in D represents a value that was created by the ad-the validity of the address is modeled by keeping a shadow
versary, which is used to model data injection attacks. Thecopy of the original address of the datahin

XOM machine uses tags as proxies for keys, so tags and Here is a section of the model in the Mudescription
keys are type-equivalent. Similarly, the pre-image for a language. This particular section describes instruction i3:

memory hash is an address so they are also type-equivalent.
Initially, the model hasy in all its storage locations and the
modeis set tousermode. The maximum number of data
valuesw, number of registers, number of cache lineg,
and number of memory locatiorparameterize the model.

If the model detects tampering, it prevents the user from
continuing execution by causingrasetaction. The reset

action is a special action that sets the entire machine state
to a legal state. In our model, the reset condition sets the

state back to the initial state of the model. The user is able
to perform the operations specified in Table 1. The actions
that produce the next state for each instruction are:

Rule "User secure store"

lisundefined(reg_i.data) &
mode = user_mode
==>
Var
cache | :
Begin
if (reg_i.tag '= user) then
reset();
endif;
-- find the data in the cache
cache_| = find_data(addr_j);
if (lisundefined(cache_l)) then

cache_range;

il. Define data value € [0...w] in register:: L
r;={d=a,t =user,k =, h =0} - hlt. in the cache,
-- write data to cache
i2. Use registei: cache_l.data := reg_i.data;
if r;.t # user cache_l.addr := addr_j;
thenreset cache_l.tag := reg_i.tag;
else
i3. Store value at registérinto addresg: -- cache miss (code not shown)
if 7;.t # user endif:
thenreset endrule;
else if; is in cache such th&t?l'a —J A “-- " indicates the following text on that line is a com-
thene, = {d =ri.d,a =j,t =ri.t} ment. The precondition is the boolean expression before
elsepickai € [0...y] : qa =2 — the “==>." which checks that the register has data in it, and
a={d=ri.da=jt=rt} that the processor is not in adversary mode. The body of the
i4. Load memory addressinto register:: function, after thBegin statement checks the permissions

if 7 is in the cache such thatc;.a = j
thenif¢;.t # user
thenreset

else load from cache;
user,k = @, h = &}

else load from memory: ifv; .k # userV m;.h # j
thenreset

g.d,t =

elsepickai € [0...y]: qra =2 —
¢ ={d=mj.d a=jt=user},
ri ={d=mj.d,t =user,k =2,h=0o}.1

The model checks that the user’'s data has not been tam
pered with. As explained in Section 2, a hash validates two
components — the integrity of the encrypted data and the
validity of the address it is being loaded from. These two

on the register, checks if the data is in the cache, and if so,
writes it to the cache. The actions for servicing a cache miss
are left out for brevity.

This model has some safety conditions that are checked:

1. Each cache location must have a different address tag.
This ensures the cache is implemented correctly.

2. User data (data that is na} is either tagged with the
user’s XOM ID or encrypted with the user’s key. This
ensures the access control guarantees are correct.

3.3. The idealized model

Theidealizedmodel is a very simple version of a XOM
architecture. It has no caches since they are invisible to the
user, and does not contain an adversary. The model has a

checks are modeled separately. Preventing the adversarjwo storage levels: registers and memory locations. The

from creating any data that is encrypted with the user’s key
simulates the integrity check of the data. On the other hand,

1We note that this definition prevents the user from reading uninitial-

ized memory values. Such a read is considered a programmer error, which

we do not cover in this paper.

state of the model can be expressed as:

Sideal =<Tg...Tz; Mg...My >
ri:[0...w, 2]
m; :[0...w,]

The parameters of the model are 2 andz which are the The actions that the adversary can perform are the basic user
number of data values, registers, and memory locations re-operations and the kernel mode operations detailed in Ta-
spectively. We see the model is much simpler and eachble 2. Aside from the 12 basic instructions available to the
storage class only has a data value property. As in the ac-adversary, we add two composite instructions. These in-
tual model, the initial state has all locations initialized to structions are composed from several basic instructions, but
@. There is only one user in this model and the user cando not require a free a register or cache line.

erform the following actions:
P g il. The adversary can define data in a register

il. Define data value € [0...w] in registeri: r; = {d = a,t = adversary, k = &, h = &}.
T = Q.) L
i2. The adversary can use a register
i2. Use registet: if r;.t # adversary
this action is a null action. thenreset
i3. Store value at registérinto memory locatiory: i3. The adversary can store a registés addresg:
if r; £ @ if ri.k =0
thenm,; = r;. then ifr;.t = adversary
. o o] thenif j is in the cache such thatc;.a = j
i4. !_oad an initialized memory locationinto register:: thenc; = {d = r;.d,a = j,t = adversary}
it m; # & else pickarl € [0...y] : p.a= @ —

thenr; = m;. ¢, =1{d=r;.d,a=jt=adversary}

The same register store action in the actual model is written elsereset

as the following in the idealized model:)])
i4. The adversary can load a cache locatibmregister;:

Rule "User secure store" if ¢;.t = adversary

lisundefined(reg_i.data) thenr; = {d = ¢;.d,t = adversary,k = @, h = &}
==> elsereset
Begin . . .

mem _j.data := reg_i.data; i5. The adversary can save registéo register;:

thenr; = {d = r;.d,t = adversary,k = r;.t,h =
The model has no safety conditions since the absence of i}.
an adversary means it cannot be tampered with.

endrule;

i6. The adversary can restore registén register;:

if ;. h =94

3.4. The adversar W=

y thenTj:{dzri.d,t:’f’i.k,k:@,h:@}
elsereset

The actual model also includes an adversary that can per-
form actions to modify the state of the machine. In the 7. The adversary can prefetch memory locatiomto

model checker, the adversary is given a set of primitive ac- cache location:

tions that it can perform. We then rely on the model checker if m;.h =1

to exhaustively try all combinations of these actions in an thenc; = {d =m;.d,a =1i,t = m;.k}
attempt to break the XOM machine. It is important to en- elsereset

sure that the adversary is adequately powerful to model all) .
attacks, but constrained so as not to be capable of things i8. The adversary can write cache location
not possible in reality. Based on our earlier “black box” ¢i ={d=a,a = ci.a,t = adversary}.
model for cryp'Fography,_ and assuming reasonable counter- i9. The adversary can invalidate a cache location
measures against physical tampering of the hardware, our i _ _

. ¢ ={d=a,a =2,t = adversary}.
adversary is not able to:

i10. The adversary can flush cache location

1. Access registers not tagged with its ID. givenc.a =j — mj = {d = ci.d,a = c;. ke, h = j}.

2. Decrypt values for which it does not have the key. i11. The adversary can trap to adversary mode. When do-
ing so, the register key is revoked, so all encrypted reg-
isters are cleared:

4. Forge hashes. if mode = user

3. Access keys stored on the XOM machine.

thenmode = adversary, a replay attack involves an adversary who actively records

Vor, €lrg...re]i if rik #£ @ data, waits for the user to overwrite that location with dif-
thenr; = {d = «a,t = adversary,k = &, h = ferent data, and then inserts the old, stale data. To replay
o} a register, the adversary executes c14 and then i1l to copy

) and return control to the user. When the user overwrites

i12. The adversary can return to user mode and allow thegg | register value, the adversary executes i11 again, and
user to execute: uses c14 to copy the saved data back. To replay a memory
if mode = adversary location, the adversary can either use c13 instead of c14, or
thenmode = user. use i9 to prevent a new value in the cache from reaching

c13. The adversary can copy a memory locatitmanother ~ Memory.
memory locatiory: o
m; = m;. 4. Verification

cl4. The adversary can copy a registey register;:
if r;.t = adversary
thenr; = r;
elsereset

Our primary goals are to verify two properties of the
XOM architecture: that adversaries cannot read user data
and that adversaries cannot modify user data without being
undetected.

In modeling the adversary, we make two simplifying as- Since the XOM machine only pe_rmits principals to read
sumptions. First, in primitive i5, the adversary is not al- egisters that have been tagged with the correct XOM ID,
lowed to encrypt an already encrypted register. The same/Ve Verify the first property by checking that data created
is true for an adversary trying to decrypt a value that has PY the user is never tagged with the adversary’s XOM ID.
not been encrypted. While a real adversary could encryptTh'S is a_lctua_lly the _second safety Condlt!oq in the actual
or decrypt register contents an arbitrary number of times by Model given in Section 3.2. However verifying the actual
executing the appropriate instruction over and over again, M0odel alone does not ensure that the adversary has not mod-
our models are finite so we cannot model this. Our modelsified user data. The difficulty is that there is no condition to
can easily be extended to allow an arbitrarily long chain of check the user's data against in the actual model. The key
these instructions, but this would create a larger state spacedPservation is that there can be no tampering by the adver-
Thus, for efficiency, we restrict these operations to be per-Sary on the idealized mode_l by _V|rtue of the fact that there
formed only once on any value. is no adversary. Thys, the _|deal|zed model can be used as a

Second, we do not allow the adversary to store encryloted“golden" model agalnst which we can check the state of the
register values to memory in primitive i3. The only opera- actual model. For this, assume we have the funcfidhat
tion that could be performed on an encrypted value is prim- checks. W'hetht'ar a certain state in the actual model matches
itive i6, which only operates on values in registers. As a re- & certain idealized model state:
sult, storing the values to memory means at some point, the ¢ . ¢(Actual Model State, Idealized Model State)
adversary will have to load that encrypted value back from — {true, false}
memory to another register to do anything with it. Since, '
this is already modeled in action c14, modeling this func- We can verify tamper resistance by exploring both the ide-
tionality again is unnecessary. alized and actual model states simultaneously. This in-

In the description of the XOM architecture, attacks were volves concatenating the idealized model state with the ac-
classified into three categories: spoofing, splicing, and re-tual model to create the “joint” state. We also label every
play [14]. We will show how the primitive actions above action in the actual model as either a user action or an adver-
allow an adversary to at least implement all three of thesesary action. User actions are ones that would be performed
attacks. While, the adversary does not know the user’s keyby a user, and as a result, these actions have analogues in
and thus cannot insert chosen text into the user’'s compartthe idealized model. All other actions are considered adver-
ment, she can still attempt to randomly write values there. A sary actions and have no analogue in the idealized model.
spoofing attack can be performed by actions i1, i8 and i10. User actions affect the state of the idealized and actual por-
A splicing attack is one where the adversary tries to copy tions of the model state, while adversary actions only affect
valid, user encrypted values from one location to another.the actual portion of the joint state. We appfyto each
Actions c13, c14, and i7 allow an adversary splice regis- new joint state created to verify consistency. If this check
ters, memory locations and caches respectiveRinally, above holds for all the states found, then the adversary is not

2Note that actions i5 and i6 do not constitute splicing attacks since the able to mfake the actual state mCO.nSIStent from the idealized
copied values are inaccessible to the user due to the XOM ID tags on theState, which leads to the conclusion that the adversary was
registers. not able to tamper with the user’s data.

The merging of the models must be done in a way that structions either move data between registers and memory,
does not restrict the state exploration of either model, other-or they perform logical or arithmetic operations on register
wise this may result in the Myrfailing to find states where values. As such, from the point of view of a running pro-
the two models might have been inconsistent. Mules gram, the only state that needs to be consistent is the register
have a guard condition that states when a particular rule carstate since that is what is used to do any computation that
be applied. The idealized model is what the user shouldcould produce output. Because of this property, our func-
think she is running on, so user actions in the joint model de-tion f turns out to be very simple:
rive their guards from the idealized model. The one caveat

is all user actions can only execute when the actual model is f+ (Sactuat, Sideatized) — {true, false},
in usermode so this check is added to all user guards. The if V Sactual-ri-id = user/\
bodies of those rules are a combination of the actions that Sactual-Ti-data = Sideatized.Ti-data

modify the idealized model and the actual model in parallel.

Adversary actions have no corresponding actions in the
idealized model and so they are guarded by elements from
the actual state. Naturally, the adversary actions only mod-The XOM architecture only allows programs to read reg-
ify the actual state of the model. Because of this, we see thafsters that are tagged with their XOM ID. The abogés
adversary actions change the actual state but leave the ideyye if registers tagged with the user’s ID, and thus are ac-
alized state unchanged. As an example, we provide a seCgessible to the user, have the same data in both the actual
tion of the Mury description that combines the same user and idealized model. If a XOM machine was built on top
action from the actual and idealized models given in Sec- of 3 CISC machine, where arithmetic or logical operations
tions 3.2 and 3.3. Because the states of the models are nowhay pe performed directly on memory values, then values
combined into the same name space, elements from the idejy; memory and cache must always be consistent as well.
alized model are prefixed with an “i", while elements in the Tjs does not preclude a definition fér but would make
actual model are prefixed with an “a”: the definition more complex.

One of the limitations is that the model must approxi-
mate the real machine by scaling down the number of ele-
ments in the model to limit the state space. The verification
was performed on a scaled down model with 3 memory lo-
cations, 3 cache locations, 3 register elements, 2 user data
values and 1 adversary data value. All three attacks detailed

thenf = true
elsef = false

Rule "User secure store"
-- only guarded by idealized state
lisundefined(ireg_i.data) &
-- must be in user mode
mode = user_mode

==> . . . - .

vV in Section 3.4 require a minimum of two user data values, in
ar he | - h) the case of a splicing or replay attack, or a user value and an

Beg?nac e_l . cache_range, adversary value in the case of a spoofing attack. Thus, the

largest number of different data values we need to support in
our models is three. As a result, we require three elements
in each storage level so that the adversary can move all pos-
sible values around without overwriting some. While, this
is not proof that all cases will be covered in our approxi-
mated model, we believe that our model does cover all the
attacks capable by our adversary model. We were able to
run slightly larger models (with one of the storage levels in-
creased to 4) but did not find any more errors. With more
memory, larger models could be verified.

-- actual model part

if (areg_i.tag != user) then
reset();

endif;

acache_| = find_data(addr_j);

if (lisundefined(acache_I)) then
acache_l.data := areg_i.data;
acache l.addr := addr_k;
acache_l.tag := areg_i.tag;

else h . d t sh With this method that combines our two models in a spe-
(—j—lf.cac e miss (code not shown) cific way, we were able to verify the XOM architecture and
endit, find errors that we will detail in the next section.
-- idealized part
imem_j.data := ireg_i.data;
endrule: 5. Results

In performing our verification, we found a way for an ad-
We have outlined the method for combining the two models versary to perform replay attacks on memory values. With
—allthatis left is to defined. Our XOM CPU is basedona our tool, we were able to verify that our solution to the er-
RISC-like load/store architecture. As a result, assembler in-ror is correct. We then searched the XOM architecture for

extraneous actions and were able to find one. Finally we | Action [$[M] H |
checked for liveness guarantees and were able to show that| 1. User writes4 to cache. Al o {2}
when certain constraints were placed on the operating sys- [2. Cache is flushed to memory. @ | A | {h(A)}
tem, the user could be guaranteed forward progress. The [3. User writesB to cache. B | A | {h(A)}
models ran for approximately 4-6 hours on a Sun Worksta- "4 "Adversary invalidates caché. @ | A | {h(A)}
tion with 8GB of memory and 1Ghz UltraSparc 3 proces-
sors. Table 3. Updates of the hash cannot be de-
layed as shown here with $is the contents of
5.1. Replay attacks on memory the cache, M is the contents of memory, and

H is the value of the hash.

We were able to find an exact sequence of events that
allow adversary to replay values in memory. This existence
of this attack was also suggested in [7, 14, 21]. Our method
also helped us find and implement a safe solution to the
memory replay problem.

We start by noting that [14] proposes that a hash of a
memory region can be used to protect that region from re-
play. We model this hash by creating a second memory
array that shadows the memory in the actual model. Be-
cause the hash is meant to be kept in a replay-proof register
we make this shadow memory inaccessible to any of the
adversary actions. Aalculate hashfunction models the
calculation of the hash by copying the contents of memory

in the actual model into the shadow.v&rify hashfunction : . ;

. were able to find a weakness. Essentially, Mexploited
then checks the cont_ents of the shadow memory agamst t.h?he fact that when we read in the old value to remove it, we
fr?r r(])tf/::tisf g::ﬁ:gg’:\g:?:;g;ual model and an exception Sdo not actually verify that the old value is the correct value.

H 141d i y v defi h dwh A clever adversary can insert a different value at this point
th 0\;ve\|/etr, [h]haoijs no prheCL?](]::-y t‘? iné Wh enldar; WNET€45 create havoc. For example, the adversary could insert a
€ cajcu’ate hasian verify hashfunctions s OUId e IN- 'y /alue that will cancel out the value that the user is about
voked. Since the hash updates would be expensive in realltyto write, thus leaving the hash unchanged. The adversary

we decided to try to reduce the frequency of the updates.is then free to replay an old value, since the hash was not
We take advantage of the fact that cache locations are Orhpdated as shown in Table 4 '

chip and thus cannot be modified by the adversary without
detection. We implemented a model where the hashis only again, though the last value written is actually the
updated when a cache line is flushed to memory and verifiedyash for B validates correctly. It seems that the only way
when a memory location was read into the cache. While thisg gefeat this is to verify that the value being removed is the
appears to be all right at first glance, Muwas able to find correct value, which requires reading in all of memory when

an attack where the adversary would invalidate cache linesypdating the hash. Unfortunately, this negates the benefit of
before they were flushed to memory so that the old value inipe incremental hash.

memory became the current value. It is possible to exploit
this vulnerability as shown in Table 3. From these two failed hash implementations, we were
Even though the hash matches the memory valuthe able to create a successful hash implementation. The first
last value written wa$3, so the adversary has successfully optimization failed because hash calculations are not atomic
performed a replay attack. This problem arose because thavith updates to memory. Thus we call thalculate hash
write to an address, which occurs when the value is written function every time the user writes values to the cache. Sim-
into the cache, is not atomic with the update of the hash,ilarly, we must callverify hashevery time a value is read
which occurs when the value is flushed to memory. With into the cache from memory and before we recalculate a
Mury we are able to show that against an adversary whonew hash as shown by the second failed optimization. Un-
cannot invalidate cache lines, delaying the update of thefortunately, this method may be inefficient because the en-
hash in this way is safe. However, since many architecturestire memory region must be read each time the hash is cal-
support his operation, this optimization is generally unsafe. culated or verified. Some techniques, such as hash trees and
As a result, we must be sure the hash is updated whenevecaching may be applied to this problem to help mitigate its
a value is written to the cache. performance impact [7].

Since of reducing the frequency of hash operations
failed, we try instead to reduce the cost of each hash calcu-
lation by using an incremental hash. An incremental hash
uses a function to add and remove elements from a hash ef-
ficiently. An example of an incremental hash that uses the
exclusive-or function is given in [3] and an implementation
appears in [7]. Such a hash would make updates to the hash
more efficient as we would not need to read all memory lo-
cations to recalculate the hash. Instead, we simply remove
the old value from the hash, and add the new one. Again, we

[Action [$[M] H
1. User writesA to cache. Al @ {h(A)}
2. Cache is flushed to memory. o | A {h(A)}
3. User writesB to cache. B| A | {h(A)—h(A)+h(B)} ={h(B)}
4. Cache is flushed to memory. o | B {h(B)}
5. Adversary replayst inmemory. | @ | A {h(B)}
6. User writesA to cache. Al A {h(B)}
7. Cache is flushed to memory. g | A | {h(B)—-h(A)+h(A)}={h(B)}
8. Adversary replay® in memory.|| @ | B {h(B)}

Table 4. An incremental hash cannot be used as shown here with $is the contents of the cache, M is

the contents of memory, and H is the value of the hash.

5.2. Extraneous actions able to guarantee forward progress. A properly working op-
erating system must demonstrate two things. First, it must
We removed actions from the model to see if they were show that the user is always able to make forward progress.
necessary for security. With Murwe found one action in ~ Second, the operating system must show that it is able to
the model that appeared to be extraneous. When the useperform all functions it needs to perform.
loads data from memory, it is not necessary to check thatthe The first condition can be met by modifying the condi-
data is actually encrypted with the user’s key. It is sufficient tions under which the operating system actions will execute.
to simply tag the register that the data is stored to with the Note that the functiorf, defined in Section 4, still evaluates
key that the data was encrypted with. In other words we canto true even if data that exists in the idealized model is not
change the user action to: present in the actual model. This means that the verification
will not catch the case where the operating system either de-
stroys user data or moves user data without moving it back.
In such a case, when the user tries to access data, she will
find that it has been overwritten with operating system data,

4. Read memory addregsnto registeri:
if j is in the cache such thatc;.a = j
then load from cache; = {d = ¢.d,t = ¢.t,k =

o, h =0} _ and the machine will reset because of an XOM ID tag vio-
else load from memory ifn;.h # j lation.
thenreset

To find the constraints that must be placed on the operat-
ing system to guarantee user forward progress, we redefine
the reset action to be a violation of a safety property so that
Mure will report it as an error. From the counter example,

)) we can deduce additional guards on adversary actions that
Later, when the user tries to use the data withsa op- \yould prevent that particular sequence of actions from hap-
eration in Table 1, the machine will check the tag any- pening. In effect, these guards, turn the adversary from a

way. Though unnecessary for security, specifying the key majicious operating system to a properly working one. The
in the instruction does make the hardware more efficient. yeneral constraints are:

The XOM architecture allows encrypted programs to select

whether data stored to memory should be encrypted or in 1. If the operating system moves the user’s data away, the
plain text. Having the program specify the whether the data ~ operating system must move it back before returning to
it loads is encrypted or not, saves the hardware from having the user.

to maintain that information.

elsepickan € [0...y]: qpa =2 —
C| = {d = mj.d,a :j,t = mj.k:},
ri={d=mj.d,t = mj.k, k=0, h=a}

2. The operating system must not destroy any user data

5.3. Liveness by overwriting it.

These constraints ensure that the operating system does not
We were also able to show that the user can be guar-destroy any of the user’s data or render it inaccessible by
anteed forward progress given that a set of constraints arenoving it to a place that the user is not aware of.
placed on the operating system. Because the operating sys- By adding more detail to the model we were also able to
tem is untrusted in a XOM machine, the machine does notfind another constraint on the operating system. This is a
ensure that users are always able to make forward progressace that can cause the user to inadvertently lose data. To
However, a “properly working” operating system should be cause this error to happen, we must model the caches in

more detail. Modern processor cache lines usually containin the form of equivalence or related approximation order-
multiple register words, while our simple model hash cache ings on processes [19, 20].

lines that are one register word long. Longer cache lines Lastly, none of the techniques presented in this paper are
also have single XOM ID tag associated with them. They Mury specific. A variety of other model checkers such as
also have valid bits that indicate which words in the cache SPIN, TLA+, or SMV could have been used [9, 12, 16].

line belong to the XOM ID tag. When the XOM ID tag of a

cache line changes, all previous data in that cache line is in-7. Conclusion

validated. The race occurs if the user writes data to a cache

line and then the operating system writes data to the same \yie have given a formal specification of the XOM ar-

cache line. Even if the operating system’'s data is written chjtecture that supports tamper-resistant software. We then
to a different address in the same cache line, the write by ageyeloped a method to verify the specifications. In this ver-
different XOM ID causes the old data to be destroyed. AS jsication, we used the Myr model checker to perform the
a result, the operating system is constrained from sharings;mtaneous state exploration of an actual and an idealized
any cache lines with user_appllcanons. This constraint falls ,ogel. We verified two safety properties. The first ensures
under the second constraint listed above. _that an adversary was never able to read data that belongs
The second requirement, that the operating system is, the user. This is done by making sure that user data is
able to perform all functions despite the above constralnts,ah,\,ays either tagged in the XOM hardware with the user’s
is more difficult to prove. Essentially this shows that the |p or encrypted and hashed with the user’s key. The second
operating system is still able to mterrupt_ apphcatlons and safety property ensures that the adversary can never tam-
manage system resources amongst applications. At the ender yyith the user's data without the user's execution being
of a state exploration, Myrdisplays a list of all actions €x- pajted. This is done by splitting all transitions in the XOM
ecuted along with the number of times they were executedmqgels into user caused actions and adversary caused ac-
in the state exploration. With this information, we can show tjons. We then simultaneously explore two models of the
that the operating system is still able to execute all the ac-y oM architecture — one that only the user could affect and
tions it needs to, despite the additional constraints on wheny,e other that both the adversary and the user could affect.
they can execute. We note, however, that this does not necit one model ever becomes inconsistent with the other, than
essarily show that the operating system can execute actiongye adversary will have successfully tampered with the user
whenit needs to — it simply shows that there exist condi- gate.

tions within the model for the operating system to execute afier successfully detecting design errors by model

allit's required actions. checking, we corrected the errors and found no further prob-
lems. With this, we were able to show how a replay-proof
6. Related work register can be used to protect memory from replay. We

were also able to find one action in the specification that

Theorem proving is a formal verification alternative to Was not necessary for security, but is required to make the
model checking. The design of IBM 4758 Secure Copro- |mplementat|qn practical. Last_ly, we were also gble to put
cessor [23] used theorem proving techniques to verify its SOMe constraints on what actions in the operating system
security. While theorem proving is not restricted to a fi- ¢an perform so as to guarantee the user forward progress.
nite number of states, it significantly more difficult and time I this way, we were able to show that it is possible to build
consuming to use. a well behaved operating system.

The idea of performing verification by checking for con-
sistency between a higher level model and a lower level ACknowledgements
model has been detailed in work on refinement maps [2].
Our technique differs from refinement maps in that we en- We would like to acknowledge Yuan Yu for his helpful
sure that every transition in the idealized model has an ex-comments. The research presented in this paper was per-
isting transition in the actual model, while a refinement map formed with the support of DARPA F29601-01-2-0085 and
specifies the converse. There has also been some work thaiISF CCR-0121403.
verified security by asserting an equivalence between an
idealized model and a model with certain actions available References
to the adversary. One specification method using equiv-
alence between a realistic model and an idealized attack- (1] \. Abadi and A. Gordon. A calculus for cryptographic
impervious model is outlined in [15], with related ideas pre- protocols: the spi calculusinformation and Computatign
sented earlier in [1]. Prior work on CSP and security proto- 143:1-70, 1999. Expanded version available as SRC Re-
cols, also uses process calculus and security specifications search Report 149 (January 1998).

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]
(10]

(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

M. Abadi and L.Lamport. The existence of refinement map- [19] A. W. Roscoe. Modelling and verifying key-exchange pro-

pings.Theoretical Computer Scienc&2(2):253—-284, 1991. tocols using CSP and FDR. @SFW VII| page 98. IEEE

M. Bellare, R. Guerin, and P. Rogaway. XOR MAC's: New Computer Soc Press, 1995.

methods for message authentication using finite pseudoran-[20] S. Schneider. Security properties and CSHEEBE Sympo-
dom functions. CRYPTQO'95, Lecture Notes in Computer sium on Security and Privac$996.

Science963, 1995. [21] W. Shapiro and R. Vingralek. How to manage persistent
D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol state in DRM systems. IDigital Rights Management Work-
verification as a hardware design aid.IEEE International shop pages 176-191, 2001.

Conference on Computer Design: VLSI in Computers and [22] V. Shmatikov and J. Mitchell. Analysis of a fair exchange
Processorspages 522-5, 1992. protocol. InSeventh Annual Symposium on Network and
D. Dolev and A. Yao. On the security of public-key pro- Distributed System Securjtyages 119-128, 2000.

tocols. IEEE Transactions on Information Theorg(29), [23] S. Smith, R. Perez, S. Weingart, and V. Austel. Validating
1983. a high-performance, programmable secure coprocessor. In
S. Freund and J. Mitchell. A type system for object ini- Proceedings of the22nd National Information Systems Secu-
tialization in the java bytecode languagdACM Transac- rity ConferenceOct. 1999.

tions on Programming Languages and Syste2fi¢6):1196— [24] S. W. Smith, E. R. Palmer, and S. Weingart. Using a high-
1250, Nov. 1999. performance, programmable secure coprocessoFinian-

B. Gassend, E. Suh, D. Clarke, M. van Dijk, and S. De- cial Cryptography pages 73-89, Feb. 1998.

vadas. Caches and merkle trees for efficient memory authen-[25] U. Stern and D. Dill. Automatic verification of the SCI cache
tication. InNinth International Symposium on High Perfor- coherence protocol. I@orrect Hardware Design and Verifi-
mance Computer Architecturpages 295-306, 2003. cation Methods: IFIP WG10.5 Advanced Research Working
P. Gutmann. The design of a cryptographic security archi- Conference Proceeding$995.

tecture. InThe Usenix Security Symposiub899. [26] The Trusted Computing Platform Alliance, 2000.
G. Holzmann. The spin model checkelEEE Trans. on http://www.trustedpc.com .

Software Engineering23(5):279-295, May 1997. [27] J. Tygar and B. Yee. Dyad: A system for using physically
A. Huang. Keeping secrets in hardware: The mi- secure coprocessors. Technical Report CMU-CS-91-140R,
crosoft XBox case study. Technical Report 2002-008, Carnegie Mellon University, May 1991.

Massachusetts Institute of Technology, May 2002.
http://web.mit.edu/bunnie/www/proj/anatak/AIM-2002-
008.pdf.

M. Kuhn. The TrustNo1 cryptoprocessor concept. Technical
Report CS555, Purdue University, Apr. 1997.

L. Lamport. Specifying System#\ddison-Wesley, Boston,
2002.

D. Lie, A. Chou, D. Engler, and D. Dill. A simple method
for extracting models from protocol code. Rroceedings
of the 28th International Symposium on Computer Architec-
ture, July 2001.

D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for
copy and tamper resistant software. Rroceedings of the
9th International Conference Architectural Support for Pro-
gramming Languages and Operating Systepages 168—
177, Nov. 2000.

P. Lincoln, M. Mitchell, J. Mitchell, and A. Scedrov. A
probabilistic poly-time framework for protocol analysis. In
M. Reiter, editorProc. 5-th ACM Conference on Computer
and Communications Securjtpages 112-121, San Fran-
cisco, California, 1998. ACM Press.

K. McMillan and J. Schwalbe. Formal verification of the
gigamax cache consistency protocol. Aroceedings of the
International Symposium on Shared Memory Multiprocess-
ing, pages 242-51. Tokyo, Japan Inf. Process. Soc., 1991.
J. Mitchell, M. Mitchell, and U. Stern. Automated analysis
of cryptographic protocols using murphi. IREE Sympo-
sium on Security and Privacpages 141-153, 1997.
Microsoft palladium initiative - technical FAQ.
http://www.microsoft.com/technet/treeview/def-
ault.asp?url=/technet/security/news/PallFAQ2.asp.

