

1

When Database Systems Meet the Grid

María A. Nieto-Santisteban
Alexander S. Szalay
Aniruddha R. Thakar
William J. O’Mullane

 Johns Hopkins University

Jim Gray

Microsoft Research

James Annis

Experimental Astrophysics, Fermilab

 August 2004
Revised December 2004

Technical Report
MSR-TR-2004-81

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

2

When Database Systems Meet the Grid

María A. Nieto-Santisteban1, Jim Gray2, Alexander S. Szalay1, James Annis3, Aniruddha R. Thakar1,
and William J. O’Mullane1

1. Johns Hopkins University, Baltimore, MD, USA
2. Microsoft Research, San Francisco, CA, USA

3. Experimental Astrophysics, Fermilab, Batavia, IL, USA
nieto, szalay, thakar, womullan@pha.jhu.edu, gray@microsoft.com, annis@fnal.gov

Abstract
We illustrate the benefits of combining database
systems and Grid technologies for data-intensive
applications. Using a cluster of SQL servers, we
reimplemented an existing Grid application that
finds galaxy clusters in a large astronomical
database. The SQL implementation runs an order
of magnitude faster than the earlier Tcl-C-file-
based implementation. We discuss why and how
Grid applications can take advantage of database
systems.

Keywords: Very Large Databases, Grid
Applications, Data Grids, e-Science, Virtual
Observatory.

1. Introduction
Science faces a data avalanche. Breakthroughs in
instruments, detector and computer technologies are
creating multi-Terabyte data archives in many disciplines.
Analysis of all this information requires resources that no
single institution can afford to provide. In response to
this demand, Grid computing has emerged as an important
research area, differentiated from clusters and distributed
computing. Many definitions of the Grid and Grid
systems have been given [17]. In the context of this paper,
we think of the Grid as the infrastructure and set of
protocols that enable the integrated, collaborative use of
high-end computer, networks, databases, and scientific
instruments owned and managed by multiple
organizations, referred to virtual organizations [18][27].

The need to integrate databases and database
technology into the Grid was already recognized, in order

to support science and business database applications as
well as to manage metadata, provenance data, resource
inventories, etc. [16]. Significant effort has gone into
defining requirements, protocols and implementing
middleware to access databases in Grid environments
[19][20][21][22][23]. Although database management
systems (DBMS) have been introduced as useful tools to
manage metadata, data, resources, workflows, etc [24]
[25][26], the presence of databases is minimal in science
applications running on the Grid. Today the typical data-
intensive science Grid application still uses flat files to
process and store the data and cannot benefit from the
power that database systems offer.

To evaluate the benefit of combining database and
Grid technologies, this paper compares an existing file-
based Grid application, MaxBCG [6], with an equivalent
SQL implementation. This paper describes the MaxBCG
algorithm and its relationship to the Sloan Digital Sky
Survey (SDSS) and the Virtual Observatory (VO) project.
Next, we describe in detail the file-based and database
implementations, and compare their performance on
various computer systems. Finally, we discuss how the
SQL implementation could be run efficiently on a Grid
system. We conclude by speculating why database
systems are not being used on the Grid to facilitate data
analysis.

2. Finding Galaxy Clusters for SDSS
Some Astronomy knowledge is needed to understand the
algorithm’s computational requirements [28]. Galaxies
may be categorized by brightness, color, and redshift.
Brightness is measured in specific wavelength intervals of
light using standard filters. Color is the difference in
brightness through two different filters. Due to the Hubble
expansion of the Universe, the Doppler redshift of light
from a galaxy is a surrogate for its distance from Earth.

Galaxy clusters are collections of galaxies confined
by gravity to a compact region of the universe. Galaxy
clusters are useful laboratories for studying the physics of
the Universe. Astronomers are developing interesting new

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 2005 CIDR Conference

 3

ways to find them systematically. The brightest galaxy in
a cluster (BCG) is typically the most massive and so tends
to be near the cluster center.

The Maximum-likelihood Brightest Cluster Galaxy
algorithm [1], MaxBCG, finds galaxy clusters. It has
been used to search the Sloan Digital Sky Survey (SDSS)
catalog for Cluster candidates [2]. MaxBCG was
originally implemented as Tcl scripts orchestrating the
SDSS Astrotools package [3] and ran on the Terabyte
Analysis Machine (TAM), a 5-node Condor cluster
specifically tuned to solve this type of problem [4][5].
The same application code was integrated with the
Chimera Virtual Data System created by the Grid Physics
Network (GriPhyN) project to test Grid technologies [6].
As is common in astronomical file-based Grid
applications, the TAM and Chimera implementations use
hundreds of thousands of files fetched from the SDSS
Data Archive Server (DAS) to the computing nodes.

SkyServer is the Web portal to the SDSS Catalog
Archive Server (CAS) – the relational database system
hosting the SDSS catalog data. All the data required to
run MaxBCG is available in the SkyServer database.
SDSS is part of the Virtual Observatory also known as the
World Wide Telescope. The Virtual Observatory is being
implemented in many countries [7]. It is developing
portals, protocols, and standards that federate and unify
many of the world’s astronomy archives into a giant
database containing all astronomy literature, images, raw
data, derived datasets, and simulation data integrated as a
single intelligent facility [8].

The World-Wide Telescope is a prototypical data Grid
application supporting a community of scholars
cooperating to build and analyze a data Grid that
integrates all astronomy data and literature. The
MaxBCG search for clusters of galaxies is typical of the
tasks astronomers will want to perform on this data Grid.

2.1 The Algorithm

The MaxBCG algorithm solves the specific
astronomical problem of locating clusters of galaxies in a
catalog of astronomical objects. It searches for galaxy
clusters over a wide range of redshifts and masses. The
search relies on the fact that the brightest cluster galaxies
(BCG) in most clusters have remarkably similar
luminosities and colors [9]. The MaxBCG algorithm
works on a 5-dimensional space and calculates the cluster
likelihood of each galaxy. The 5-space is defined by two
spatial dimensions, Right Ascension, ra, and Declination,
dec; two color dimensions, g-r and r-i; and one
brightness dimension, i. The algorithm includes six steps:

Get galaxy list extracts the five-dimensions of interest

from the catalog.
Filter calculates the unweighted BCG likelihood for each

galaxy (unweighted by galaxy count) and discards
unlikely galaxies.

Check neighbors weights the BCG likelihood with the
number of neighbors.

Pick most likely for each galaxy, determines whether it is
the most likely galaxy in the neighborhood to be the
center of the cluster.

Discard compromised results removes suspicious results
and stores the final cluster catalog.

Retrieve the members of the clusters retrieves the
galaxies that the MaxBCG algorithm determined are
part of the cluster.

2.2 The TAM Implementation

The MaxBCG algorithm was implemented as Tcl scripts
driving Astrotools, which is an SDSS software package
comprised of Tcl and C routines layered over a set of
public domain software packages [3]. The CPU intensive
computations are done by Astrotools using external calls
to C routines to handle vector math operations. The
algorithm ran on the TAM Beowulf cluster [4].

The TAM MaxBCG implementation takes advantage
of the parallel nature of the problem by using a divide-
and-conquer strategy which breaks the sky in 0.25 deg2
fields. Each field is processed as an independent task.
Each of these tasks require two files: a 0.5 x 0.5 deg2
Target file that contains galaxies that will be evaluated
and a 1 x 1 deg2 Buffer file with the neighboring galaxies
needed to test for the presence of a galaxy cluster. Ideally
the Buffer file would cover 1.5 x 1.5 deg2 = 2.25 deg2 to
find all neighbors within 0.5 deg of any galaxy in the
Target area and estimate the likelihood that a galaxy is
the brightest one in a cluster. But the time to search the
larger Buffer file would have been unacceptable because
the TAM nodes did not have enough RAM storage to hold
the larger files: the compromise was to limit the buffer to
cover only to 1 x 1 deg2 areas [Figure1].

Buffer

Target

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

deg

deg

Buffer

Target

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

deg

deg

Figure 1. Each galaxy in the Target area is
examined to calculate its BCG likelihood. The
computation then searches the neighborhood to see if
the galaxy is the center of a cluster. Ideally, Buffer
should be the 1.5 deg2 dashed area. In the TAM
implementation is limited to the smaller 1 deg2 area
due to performance issues.

 4

A Target field of 0.25 deg2 contains approximately
3.5 x 103 galaxies. Initially, every galaxy in the catalog is
a possible BCG. The observed brightness and color of
each candidate is compared with entries in a k-correction
table, which contains the expected brightness and color of
a BCG at 100 possible redshifts. This comparison yields a
(perhaps null) set of plausible redshifts for each candidate
BCG. If, at any redshift, a galaxy has even a remote
chance of being the right color and brightness to be a
BCG, it is passed to the next stage.

Given a candidate galaxy, the next stage uses the
Buffer file to compute the number of neighbor galaxies at
every redshift. This every redshift search is required
because the color window, the magnitude window, and
the search radius all change with redshift. The BCG
likelihood is computed at each redshift. The maximum
likelihood, over the entire range of redshifts for the object
with at least one neighbor, is recorded in the BCG
Candidates file, C. About 3% of the galaxies are
candidates to be a BCG.

In order to determine whether a candidate galaxy is a
BCG, rather than just a member of the cluster, the
algorithm compares it with the neighboring candidates
which are compiled into the BufferC file [Figure 2].
Ideally, each candidate should be compared with all
candidates within 0.5 deg as this corresponds to a
reasonable low redshift cutoff. However, as explained
earlier [Figure 1], TAM is restricted to 1 x 1 deg2 area to
meet its computation time and storage budget, leaving
only a 0.25 deg buffer surrounding the 0.5 x 0.5 deg2. The
algorithm finds approximately 4.5 clusters per target area
(0.13% of the galaxies are BCGs).

The last step is to retrieve the galaxies in the cluster. A
galaxy is considered to be part of the cluster if it is inside
a radius of 1 Mpc (3.26 million light years, converted into
degrees using the redshift) of the BCG and inside the
R200 radius containing 200 times the background mass
density. The R200 radius is derived from the cluster mass
(number of galaxies) using a lookup table. In the TAM

implementation these spherical neighborhood searches are
reasonably expensive as each one searches the Buffer file.

Once the Buffer and Target files are loaded into
RAM the algorithm is CPU-bound. The 600 MHz CPUs
of the TAM could process a Target field of 0.25 deg2 in
about a thousand seconds. Processing the many target
fields is embarrassingly parallel, so the time scales
lineally with the number of target areas being processed.
TAM is composed of 5 nodes, each one a dual-600-MHz
PIII processor nodes each with 1 GB of RAM. The TAM
cluster could process ten target fields in parallel.

2.3 SQL Server DBMS Implementation

We implemented the same MaxBCG algorithm using the
SDSS CAS database [10]. This new implementation
includes two main improvements. First, it uses a finer k-
correction table with redshift steps of 0.001, instead of
0.01. Second, it uses a 0.5 deg buffer on the target field.
Although these two improvements give better scientific
results, would have increased the TAM processing time
by a factor of about 25. The implementation is available
from [29].

As described in Section 2.2, the TAM approach builds
two files, Target and Buffer, for each 0.25 deg2 target
field. The SQL application processes much larger pieces
of the sky all at once. We have been using a target area of
11 deg x 6 deg = 66 deg2 inside a buffer area of 13 deg x
8 deg = 104 deg2; but, in principle the target area could be
much larger. Larger target areas give better performance
because the relative buffer area (overhead) decreases
[Figure 3]. Using a database and database indices allows
this much large area because the database scans the areas
using high-speed sequential access and spatial indices
rather than keeping all the data in the RAM.

The SQL application does not extract the data to files

prior to doing the processing. It uses the power of the

SELECT a1, a2 .. FROM P
FROM Galaxy g
WHERE g.ra between 172 and 185

and g.dec between -3 and 5

� �����������	
 �������	

� ����������	
���������	

SELECT a1, a2 .. FROM P
FROM Galaxy g
WHERE g.ra between 172 and 185

and g.dec between -3 and 5

� �����������	
 �������	

� ����������	
���������	

Figure 3. Selection of the galaxy parameters
required to solve the finding galaxy cluster problem.

BufferC

CandidatesT

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

deg

deg

C

C C

C

CC

C

C

C

BufferC

CandidatesT

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

deg

deg

C

C C

C

CC

C

C

C

Figure 2. Candidates in the target area,
CandidatesT, are compared with all candidates in
the buffer area, BufferC, to find the brightest
candidate of the cluster.

 5

database system to SELECT the necessary data and to do
some processing and filtering inside the database. The
processing requires basically one SELECT statement to
extract the 5 parameters of interest from the general
Galaxy table. Each of these rows or galaxies is JOINED
with the 1000-row redshift lookup k-correction table to
compute the BCG likelihood. This process eliminates
candidates below some threshold very early in the
computation.

These two steps are fairly simple and fast. The next
step, counting the number of neighbors to estimate the
BCG likelihood, is a bit more complex.

Neighborhood searches are usually very expensive
because they imply computing distances between all pairs
of objects in order to select those within some radius.
Relational databases are well suited to look for objects
meeting some criteria. However, when the searches are
spatial, they usually require a special indexing system.
We used the techniques described in [11] to perform the
neighborhood searches. We tried both the Hierarchical
Triangular Mesh (HTM) [12] and the zone-based
neighbor techiniques. As explained below, the Zone
index was chosen to perform the neighbor counts because
it offered better performance.

The concept behind the zone-indexing schema is to
map the celestial sphere into stripes of certain height
called Zones. Each object at position (ra, dec) is assigned
to a Zone by using the fairly simple formula Zone =
floor((dec + 90) / h), where h is the Zone height.

Zone-indexing has two benefits. First, using relational

algebra the algorithm performs the neighborhood searches
by joining a Zone with itself and discarding those objects
beyond some radius. This pure SQL approach avoids the
cost of using expensive calls to the external C-HTM

libraries to do the spatial searches. Second, the data and
computation partition very easily by assigning different
Zones to each SQL Server and running the MaxBCG code
in parallel.

The SQL MaxBCG algorithm works as follows. Given
a target area T, all objects inside T and up to 0.5 deg away
from T (buffer area B) are inspected to decide whether
they are candidates to be the brightest cluster galaxy
[Figure 4]. Searches for neighbors include all objects
inside P which guarantees 0.5 deg buffer for objects near
the border. This computation is therefore more accurate
than the TAM version which used only a 0.25 deg buffer
only. Area T differs from area B because deciding
whether a candidate is the brightest cluster galaxy
requires knowledge about candidate neighbors within 0.5
deg. To avoid unnecessary dependencies, we do in
advance what will be required later. This task generates a
Candidates table C.

In the next stage, all candidate galaxies in target area
T are inspected to decide whether or not they have the
maximum likelihood to be the brightest galaxy of their
cluster. This neighbor search is done only among objects
in the Candidate table, C [Figure 5]. This step creates a
Cluster catalog where the likelihood of all candidates has
been properly computed using 0.5 deg buffer around each
candidate.

Processing a target field of 66 deg2 as described

above, requires about 5 hours with a dual 2.6 GHz
machine running Microsoft SQL Server 2000. However,
SQL Server is usually I/O bound instead of CPU bound so
algorithm performance will not scale exactly with CPU
speed.

SELECT a1, a2 .. FROM C
WHERE c.ra between 173and 184

and c.dec between -2 and 4
For each of object in T selects the candidate with the
maximum likelihood to be the center of the cluster.

�

�

� �������	

SELECT a1, a2 .. FROM C
WHERE c.ra between 173and 184

and c.dec between -2 and 4
For each of object in T selects the candidate with the
maximum likelihood to be the center of the cluster.

�

�

� �������	

Figure 5. Candidate galaxies inside the target area,
T, are inspected to decide whether or not they have
the maximum BCG likelihood.

SELECT a1, a2 .. FROM P --- >objects in B
WHERE p.ra between 172.5 and 184.5

and p.dec between -2.5 and 4.5
For each object inside area B calculates the BCG
likelihood.

� ���
�������	
 ������	

� �����������	
 �������	

� ����������	
���������	

SELECT a1, a2 .. FROM P --- >objects in B
WHERE p.ra between 172.5 and 184.5

and p.dec between -2.5 and 4.5
For each object inside area B calculates the BCG
likelihood.

� ���
�������	
 ������	

� �����������	
 �������	

� ����������	
���������	

Figure 4. Objects inside T and 0.5 deg away from
T (Region B) are inspected to decide whether or not
they are candidates to be a BCG.

 6

Resolving the same target area of 66 deg2 with only
one of the TAM CPUs using the file-oriented approach
required about 73 hours (1000 s per each 0.25 deg2 field),
but that computation had only a 0.25 deg surrounding
buffer and only 100 redshift steps. TAM would require
about 25 times longer to do the equivalent SQL-
calculation with a 0.5 deg buffer and redshift steps of
0.001.

2.4 SQL Server Cluster

The SQL implementation can run either on a single
SQL Server or on a cluster of SQL Servers. As mentioned

before, the problem is intrinsically parallel; each target
area T can be processed in parallel. Using the Zone
strategy described in section 2.3, a single target area may
be processed in parallel by distributing the Zones among
several servers allowing parallel execution of MaxBCG
on different partitions of the target area [Figure 6].

When running in parallel, the data distribution is
arranged so each server is completely independent from
the others. We achieve this by duplicating some data and
processing on different servers. The duplicated
computations are insignificant compared to the total work
involved when processing big volumes of data, or
equivalently, big areas of the sky. We benchmarked this
partitioning approach using a Microsoft SQL Server 2000
cluster composed of 3 nodes, each one a dual 2.6 GHz
Xeon with 2 GB of RAM.

Table 1 shows the elapsed times, CPU times, and I/O
operations used by SQL Server when solving MaxBCG
with and without partitioning. SpZone is the task that
arranges the data in Zones so the neighborhood searches
are efficient. This task assigns a ZoneID and creates a
clustered-index on the data. fBCGCandidate is the main
task. It includes the BCG likelihood computations. Here is
where the main neighborhood searches are performed to
estimate properly the BCG likelihood. The fact that the
I/O density is low during fBCGCandidate indicates the
required data is usually in memory, which is always
highly desired. Finally, fIsCluster screens the
Candidates table and decides whether or not a candidate
is a BCG. Although not included in Table 1, we also have
the function that collects the galaxies that belong to a

Table 1. SQL Server cluster performance, with no partitioning and with 3-way partitioning.
 Task elapse (s) cpu (s) I/O Galaxies on each partition

No Partitioning spZone 563.7 210.2 102,144
 fBCGCandidate 15,758.2 15,161.0 562
 fIsCluster 2,312.7 6,58.5 16,043
 total 18,635 16,030 118,749 1,574,656

3-node Partitioning
P1 spZone 285.5 65.5 46,758
 fBCGCandidate 6,099.1 5,850.7 209
 fIsCluster 286.6 189.4 2,910
 total 6,671.2 6,105.6 49,877 729,234
P2 spZone 325.4 77.9 50,519
 fBCGCandidate 8,210.7 7,907.7 306
 fIsCluster 451.8 306 476
 total 8,987.9 8,291.6 51,301 898,916
P3 spZone 326.3 65.6 46,275
 fBCGCandidate 6,121.5 5,783.5 283
 fIsCluster 189.4 158.1 1,955
 total 6,637.2 6,007.2 48,513 719,900
Partitioning Total 8,988 20,404 149,691 2,348,050
Ratio 1node/3node 48% 127% 126%

Applying a zone strategy, P gets partitioned homogenously
among 3 servers.

• S1 provides 1 deg buffer on top
• S2 provides 1 deg buffer on top and bottom
• S3 provides 1 deg buffer on bottom

�
P3

Native to Server 2

P2

P1

Native to Server 1

Native to Server 3

Applying a zone strategy, P gets partitioned homogenously
among 3 servers.

• S1 provides 1 deg buffer on top
• S2 provides 1 deg buffer on top and bottom
• S3 provides 1 deg buffer on bottom

�
P3

Native to Server 2

P2

P1

Native to Server 1

Native to Server 3

Figure 6. Data distribution among 3 SQL Servers.
Total duplicated data = 4 x 13 deg2.

 7

cluster. This is a fairly simple and fast operation which
searches for neighboring galaxies within some radius for
each detected cluster.

The union of the answers from the three partitions is
identical to the BCG candidates and clusters returned by
the sequential (one node) implementation. Overall the
parallel implementation gives a 2x speedup at the cost of
25% more CPU and I/O (including the cost of rezoning).

2.5 Time Performance

Tables 2 and 3 present a side-by-side comparison showing
that the relational database solution is about 40 times
faster per node than the file-based approach. For the
specific cluster configurations considered here the 3-node
SQL Server approach is about 20 times faster than the 5-
node TAM.

Even if one were willing to wait 20 times longer,
TAM nodes do not have enough memory to handle z-
steps of 0.001 and a buffer of 0.5 deg. As mentioned
before, a single TAM CPU takes 1000 s to process a
target field of 0.25 deg2 with a buffer of 0.25 deg and z-
steps of 0.01 TAM performance is expected to scale
lineally with the number of fields.

Table 2. Time scale factors for converting the TAM
test case to the SQL server test case.
 TAM SQL

Server Scale Factor

CPUs used 1 2 0.5
CPU 600 MHz 2.6 GHz ~ 0.25
Target
field 0.25 deg2 66 deg2 264

z- steps 0.01 0.001
Buffer 0.25 deg 0.5 deg

25

Total Scale Factor 825

Table 2 compares both configurations and provides

the scale factor to convert the TAM test case into the SQL
test case. We normalize for the fact that the TAM CPU is
about 4 times slower by dividing by 4 -- in fact much of
the time is spent waiting for disk so this is being generous
to the TAM system which had a comparable disk
subsystem. Even with that the ratio is about 2 hours to
about 2 days.

Table 3. Scaled TAM vs. Measured SQL Server
performance for a target field of 66 deg2.
Cluster Nodes Time(s) Ratio
TAM 1 825,000
SQL Server 1 18,635

44

TAM 5 165,000
SQL Server 3 8,988

18

2.6 Performance Analysis

What makes things run faste in SQL than in the file-based
application? We wish we knew but we can no longer run
the original code so we can only make educated guesses
(one of the authors wrote the original code).

First, the SQL implementation discards candidates
early in the process by doing a natural JOIN with the k-
correction table and filtering out those rows where the
likelihood is below some threshold. This reduces the
number of operations for subsequent INNER JOINs with
the k-correction table and other tables. The SQL design
uses the redshift index as the JOIN attribute which speeds
the execution. So, early filtering and indexing are a big
part of the answer. Second, the main advantage comes
from using the Zone [11] strategy to index the data and
speed up the neighborhood searches.

The SQL design could be further optimized. The
iteration through the galaxy table uses SQL cursors which
are very slow. But there was no easy way to avoid them.
Our tests used a galaxy table of roughly 1.5 million rows
(44 bytes each). About 1.2 million of those galaxies need
to be joined with the k-correction table (1000 rows x 40
bytes). Joining this in memory would require at least 80
GB. A possible optimization is to define some sort of sky
partitioning algorithm that breaks the sky in areas that can
fit in memory, 2 GB in our case. Once an area has been
defined, the MaxBCG task is scheduled for execution.
This approach would be similar to the cluster
implementation described in section 2.4 but at the level of
cluster nodes since different computer may have different
memory resources.

3. Discussion
This work demonstrates that using a relational database
management system and SQL can improve computational
performance on data-intensive applications. But
performance is not the only advantage of using general
database management systems rather than implementing
custom applications. There is no magic in a relational
DBMS; anything it does can also be done in a custom
application (e.g. one implemented in TCL and C!). In fact,
a quality custom solution should outperform a general-
purpose DBMS.

The SQL implementation of MaxBCG was
considerable simpler than the Tcl-Astrotools
implementation primarily because it leveraged the
features of the SQL system for data access, indexing, and
parallelism.

The scientist, in our case an astronomer, should be
free to focus on the science and minimize the effort
required to optimize the application. Database
management systems are designed to do fast searches,
workload balancing and manage large data volumes and
certainly will do a better job compared to what an average

 8

scientist could code. Database management systems allow
simultaneous data access from different applications
providing a good sharing environment.

So, the first lesson to learn for scientists working in
data-intensive disciplines like astronomy, biology, etc. is
that database systems are powerful tools to analyze big
volumes of data and share results with others. On the
other hand, the community researching database systems
should ask itself why scientists are so reluctant to use
database technologies.

As stated in the introduction, although the potential
benefits of using database systems on the Grid has been
recognized [16], their actual use as analysis tools is
minimal. To our knowledge, most of the data-intensive
applications that run on the Grid today focus on moving
hundreds of thousands of files from the storage archives
to the thousands of computing nodes. Many of these
applications, like the one described in this paper, could
solve the same problem more efficiently using databases.

We believe there is a basic reason for the absence of
database technology in the Grid science community.
While it is relatively easy to deploy and run applications
coded in C, Fortran, Tcl, Python, Java, etc.; it is difficult
to find resources to do the equivalent tasks using
databases. Grid nodes hosting big databases and facilities
where users can have their own database with full power
to create tables, indexes, stored procedures, etc. are
basically nonexistent. However, such facilities are needed
to minimize the distance between the stored data and the
analysis nodes, and in this way to guarantee that is the
code that travels to the data and not the data to the code.

With the motivation of minimizing the distance
between the SDSS CAS databases and analysis computing
nodes, we implemented the SDSS Batch Query System,
CasJobs [13][14]. The next section describes CasJobs and
our work to develop an efficient Grid-enabled
implementation of MaxBCG that instead of transferring
hundreds of thousands of files over the network [6],
leverages database technologies as parallel querying
processing and indexing.

4. CasJobs, MaxBCG and Data Grids
CasJobs is an application available through the SkyServer
site [15] that lets users submit long-running SQL queries
on the CAS databases. The query output can be stored on
the server-side in the user’s personal relational database
(MyDB). Users may upload and download data to and
from their MyDB. They can correlate data inside MyDB
or with the main database to do fast filtering and searches.
CasJobs allows creating new tables, indexes, and stored
procedures. CasJobs provides a collaborative environment
where users can form groups and share data with others.

MaxBCG can be run using CasJobs, but that
implementation is equivalent to the one described in
section 2.3, which uses only one server. We want to take

it one step further. Inspired by our SQL Server cluster
experience, we plan to implement an application able to
run in parallel using several systems. So for example
when the user submits the MaxBCG application, upon
authentication and authorization, the SQL code (about
500 lines) is deployed on the available Data-Grid nodes
hosting the CAS database system. Each node will analyze
a piece of the sky in parallel and store the results locally
or, depending on the policy, transfer the final results back
to the origin. We aim for a general implementation that
makes it easy to bring the code to the data, avoids big data
transfers, and extrapolates easily to solve other problems.

At the moment, two different organizations host the
CAS database and the CasJobs system; Fermilab (Batavia,
IL, USA) and The Johns Hopkins University (Baltimore,
MD, USA). In the near future, the Inter-University Centre
for Astronomy and Astrophysics (IUCCA) in Pune, India,
will also host the system. Other organizations have
showed interest in DB2 implementations of the CAS
database. These are institutions with different access
policies, autonomous and geographically distributed.
CasJobs is accessible not only through the Web interface
but also through Web services. Once the GGF DAIS
protocol [21] becomes a final recommendation, it should
be fairly easy to expose CasJobs Web services wrapped
into the official Grid specification. We are working on
issues of security, workflow tracking, and workload
coordination, which need to be resolved to guarantee
quality of service. Autonomy, geographical distribution,
use of standards and quality of service are the key
characteristics that a system requires in order to be
accepted as a Grid system [27].

5. Conclusion
This paper presents a typical astronomical data-

intensive application which aims to find galaxy clusters in
SDSS catalog data. It demonstrates that using a database
cluster achieves better performance than a file-based Tcl-
C implementation run on a traditional Grid system. It also
describes future work to “gridify” the implementation.

It points out that even though database systems are
great tools for data-intensive applications, and even
though one of the main goals of the Grid is providing
infrastructure and resources for such applications, the are
virtually no database management systems on the Grid to
do effective data analysis.

In current Grid projects, databases and database
systems are typically used only to access and integrate
data, but not to perform analytic or computational tasks.
Limiting usage in this manner neglects a strength of
database systems, which is their ability to efficiently
index, search, and join large amounts of data – often in
parallel. It is a mistake to move large amounts of data to
the query, when you can move the query to the data and
execute the query in parallel. For this reason, it would be

 9

useful for nodes on the Grid to support different Database
Management Systems so that SQL applications could be
deployed as easily as traditional Grid applications coded
in C, Fortran, etc.

6. Acknowledgments
This work is funded by the NASA Applied Information
Systems Research Program. Grant NRA0101AISR. The
paper benefited from comments by David DeWitt.

References
[1] J. Annis, S. Kent, F. Castander, D. Eisenstein, J. Gunn, R.

Kim, R. Lupton, R. Nichol, M. Postman, W. Voges, The
SDSS Collaboration, “The maxBCG technique for finding
galaxy clusters in SDSS data”, Bulletin of the American
Astronomical Society, Vol. 31, p.1391. December 1999.

[2] C. Stoughton, R. Lupton et al., “Sloan Digital Sky Survey:
Early Data Release”, The Astronomical Journal, Volume
123, Issue 1, pp 485-548. January 2002.

[3] G. Sergey, E. Berman, C. H. Huang, S. Kent, H.
Newberg, T. Nicinski, D. Petravick, C. Stoughton, R.
Lupton, “Shiva: an astronomical data analysis framework”,
ASP Conf. Ser. 101: Astronomical Data Analysis Software
and Systems V. 1996.

[4] The Terabyte Analysis Machine Project Publications.
http://tamhost.fnal.gov/Publications.html

[5] Condor: http://www.cs.wisc.edu/condor/
[6] J. Annis, Y. Zhao, J. Voeckler, M. Wilde, S. Kent, and I.

Foster, “Applying Chimera Virtual Data Concepts to
Cluster Finding in the Sloan Sky Survey”, Proceedings of
the 2002 ACM/IEEE conference on Supercomputing,
Baltimore, MD, USA, November 16 - 22, 2002, pp 1 – 14.

[7] International Virtual Observatory Alliance.
http://www.ivoa.net

[8] A. Szalay, J. Gray, “The World-Wide Telescope”. Science,
293, 2037-2040.

[9] Gladders, Michael D., Yee, H. K. C, “A New Method For
Galaxy Cluster Detection. I. The Algorithm”, The
Astronomical Journal, Volume 120, Issue 4, pp. 2148-2162.
October, 2000.

[10] J. Gray, A.S. Szalay, A. Thakar, P. Kunszt, C. Stoughton,
D. Slutz, J. vandenBerg, “The Sloan Digital Sky Survey
Science Archive: Migrating a Multi-Terabyte Astronomical
Archive from Object to Relational DBMS”, Distributed
Data & Structures 4: Records of the 4th International
Meeting, pp 189-210 W. Litwin, G. Levy (eds), Paris
France March 2002, Carleton Scientific 2003, ISBN 1-
894145-13-5, also MSR-TR-2002-01, January 2002.

[11] J. Gray, A. S. Szalay, A. R. Thakar, G. Fekete, W.
O'Mullane, G. Heber, A. H. Rots, “There Goes the
Neighborhood: Relational Algebra for Spatial Data
Search”, Microsoft Technical Report MSR-TR-2004-32.
April, 2004.

 ftp://ftp.research.microsoft.com/pub/tr/TR-2004-32.pdf
[12] P. Z. Kunszt, A. S. Szalay, I. Csabai, A. R. Thakar, “The

Indexing of the SDSS Science Archive”, ASP Conf. Ser.,
Vol 216, Astronomical Data Analysis Software and Systems

IX eds. Nadine Manset, Christian Veillet, and Dennis
Crabtree (San Francisco: ASP), 2000, pp 141- 145.

[13] W. O'Mullane, J. Gray, N. Li, T. Budavari, M. Nieto-
Santisteban, A. Szalay, “Batch Query System with
Interactive Local Storage for SDSS and the VO”, ASP
Conf. Ser., Vol 314, Astronomical Data Analysis Software
and Systems XIII. eds. Francois Ochsenbein, Mark G. Allen
and Daniel Egret (San Francisco: ASP), 2004, pp 372-375.

 http://adass.org/adass/proceedings/adass03/O4-4/
[14] CasJobs http://casjobs.sdss.org/CasJobs/
[15] SkyServer http://skyserver.sdss.org
[16] P. Watson. “Databases and the Grid”, UK e-Science

Programme Technical Report UKeS-2002-01, Natioanl e-
Science Centre.
http://www.nesc.ac.uk/technical_papers/PaulWatsonDataba
sesAndTheGrid.pdf

[17] M. L. Bote-Lorenzo, Y. A. Dimitriadis, and E. Gómez-
Sánchez. “Grid Characteristics and Uses: A Grid
Definition”, Across Grids 2003, LNCS 2970, pp 291-298,
2004. eds F. Fernández Rivera et al. (Springer-Verlag
Berlin Heidelberg 2004)

[18] I. Foster and C. Kesselman. The Grid: Blueprint for a
NewComputing Infrastructure. Morgan Kaufmann
Publishers, San Francisco, CA, USA, second edition, 2003.

[19] D. Pearson, “Data Requirements for the Grid”, Technical
Report, 2002. http://www.cs.man.ac.uk/grd-
db/papers/Requirements.pdf

[20] N. Paton, M. Atkinson, V. Dialani, D. Pearson, T. Storey,
and P. Watson, “Databases Access and Integration Services
on the Grid.” UK e-Science Programme Technical Report
UKeS-2002-03. National e-Science Centre.
http://www.nesc.ac.uk/technical_papers/dbtf.pdf

[21] DAIS-WG https://forge.gridforum.org/projects/dais-wg
[22] OGSA-DAI http://www.ogsa-dai.org.uk/
[23] OGSA-DQP http://www.ogsa-dai.org.uk/dqp/
[24] The Chimera Virtual Data System.

http://www.griphyn.org/chimera/
[25] Pegasus. http://pegasus.isi.edu/
[26] The Metadata Catalog Service.

http://www.isi.edu/~deelman/MCS/
[27] I. Foster , “What is the Grid? A Three Point Checklist”

Grid Today July 22, 2002: VOL. 1 NO. 6
http://www.gridtoday.com/02/0722/100136.html

[28] J. Binney, M. Merrifield , Galactic Astronomy, Princeton
University Press, ISBN: 0691004021 1998.

[29] MaxBCG.
http://skyservice.pha.jhu.edu/develop/applications/MaxBC
G.aspx

 10

MaxBCG SQL code for MySkyServerDr1 (http://www.skyserver.org/myskyserver/)
Date: Nov / 23 / 2004

Note: If you wish to try this code using CasJobs (http://casjobs.sdss.org/casjobs),
substitute MySkyServerDr1.dbo for your target database (e.g: dr1, dr2, or dr3)
If you have MyDB or Interface problems please contact
 Nolan Li <nli@pha.jhu.edu>,
 Wil O'Mullane <womullan@skysrv.pha.jhu.edu>

General questions about the SQL code to Maria A. Nieto-Santisteban nieto@pha.jhu.edu

-- ********************************** Schema
CREATE TABLE Kcorr (--/D expected brightness and color of a BCG at given redshift
 zid int identity (1,1) PRIMARY KEY NOT NULL,
 z real, --/D redshift
 i real, --/D apparent i petro mag of the BCG @z
 ilim real, --/D limiting i magnitude @z
 ug real, --/D K(u-g)
 gr real, --/D K(g-r)
 ri real, --/D K(r-i)
 iz real, --/D K(i-z)
 radius float --/D radius of 1Mpc @z
)
-- Import the K-correction table into your database

CREATE TABLE Galaxy (--/D One row per SDSS Galaxy, extracted from PhotoObjAll
 objid bigint PRIMARY KEY, --/D Unique identifier of SDSS object
 ra float, --/D Right ascension in degrees
 dec float, --/D Declination in degrees
 i real, --/D Magnitude in i-band
 gr real, --/D color dimension g-r
 ri real, --/D color dimension r-i
 sigmagr float, --/D Standard error of g-r
 sigmari float --/D Standard error of r-i
)

CREATE TABLE Candidates (--/D The list of BCG candidates
 objid bigint PRIMARY KEY, --/D Unique identifier of SDSS object
 ra float, --/D Right ascension in degrees
 dec float, --/D Declination in degrees
 z float, --/D redshift
 i real, --/D magnitude in the i-band
 ngal int, --/D number of galaxies in the cluster
 chi2 float --/D chi-squared confidence in cluster
)

CREATE TABLE Clusters (--/D Selected BCGs from the candidate list
 objid bigint PRIMARY KEY, --/D Unique identifier of SDSS object
 ra float, --/D Right ascension in degrees
 dec float, --/D Declination in degrees
 z float, --/D redshift
 i real, --/D magnitude in the i band
 ngal int, --/D number of galaxies in the cluster
 chi2 float --/D chi-squared confidence in cluster
)

CREATE TABLE ClusterGalaxiesMetric (--/D Cluster galaxies inside 1 MPc at R200
 clusterObjID bigint, --/D BCG unique identifier (cluster center)
 galaxyObjID bigint, --/D Galaxy unique identifier (galaxy part of the cluster)
 distance float --/D distance between cluster and galaxy
)
GO

CREATE VIEW Zone AS --/D Primary Galaxy view of the zone table in SDSS database.
SELECT ZoneID, --/D Zone number based on 30 arcseconds
 objid, --/D Unique identifier of SDSS object
 ra, --/D Right ascension in degrees
 dec, --/D Declination in degrees
 cx, --/D x, y, z unit vector of object on celestial sphere
 cy, --/D
 cz --/D
FROM MySkyServerDr1.dbo.Zone --/D
WHERE mode = 1 and type = 3 --/D Primary and Galaxy
-- ********************************** End Schema
GO

 11

CREATE FUNCTION fGetNearbyObjEqZd(@ra float, @dec float, @r float)

--/H Returns a table of objects from the Zone view (here Primary Galaxies)
--/H within @r degrees of an Equatorial point (@ra, @dec)
--/A
--
--/T Table has format (objID bigint, distance float (degrees))
--/T <samp>
--/T
 select * from fGetNearbyObjEqZd(2.5, 3.0,0.5)
--/T </samp>

RETURNS @neighbors TABLE (ObjID bigint, distance float) AS
BEGIN
 DECLARE
 @zoneHeight float, --/D standard scale height of SDSS zone
 @zoneID int, --/D loop counter
 @cenZoneID int, --/D Zone where the input (@ra, @dec) belongs (central zone)
 @maxZoneID int, --/D Maximum zone
 @minZoneID int, --/D Minimum zone
 @adjustedRadius real, --/D Radius adjusted by cos(dec)
 @epsilon real, --/D Small value to avoid division by zero
 @r2 float, --/D squared radius
 @x float, --/D used in ra cut to minimize searches in upper and lower
 --/D zones within the search radius
 @dec_atZone float, --/D max dec for Zones below central zone
 --/D min dec for Zones above the central zone
 @delta_dec float, --/D distance between declination and dec_atZone,
 --/D necessary to compute @x
 @zoneID_x int, --/D zoneID to compute @x
 @cx float, --/D Input's Cartesian coordinates
 @cy float,
 @cz float,
 @d2r float; --/D PI()/180.0, from degrees to radians
 SET @zoneHeight = 30.0 / 3600.0; -- 30 arcsec in degrees
 SET @d2r = PI()/180.0 -- radian conversion
 SET @epsilon = 1e-9 -- prevents divide by zero
 SET @cx = COS(@dec * @d2r) * COS(@ra * @d2r) -- convert ra,dec to unit vector
 SET @cy = COS(@dec * @d2r) * SIN(@ra * @d2r)
 SET @cz = SIN(@dec * @d2r) -- radial distance measured in degrees is larger away from the equator
 SET @adjustedRadius = @r / (COS(RADIANS(ABS(@dec))) + @epsilon) -- adjustRadius corrects for this.
 SET @r2 = 4 * POWER(SIN(RADIANS(@r/2)),2) -- Assumes input radius in degrees

 -- loop over all zones that overlap the circle of interest looking for objects inside circle.
 SET @cenZoneID = FLOOR((@dec + 90.0) / @zoneHeight) -- zone holding ra,dec point
 SET @maxZoneID = FLOOR((@dec + @r + 90.0) / @zoneHeight) -- max zone to examine
 SET @minZoneID = FLOOR((@dec - @r + 90.0) / @zoneHeight) -- min zone to examine
 SET @zoneID = @minZoneID
 WHILE (@zoneID <= @maxZoneID) -- Loop through all zones from the bottom to the top
 BEGIN
 IF (@zoneID = @cenZoneID) -- first compute @x which further restricts the ra range
 SET @x = @adjustedRadius -- within a zone. The circle is narrower in
 ELSE -- zones away from the center zone, and x gives this
 BEGIN -- narrowing factor (measured in degrees)
 SET @zoneID_x = @zoneID
 IF (@zoneID < @cenZoneID)
 SET @zoneID_x = @zoneID_x + 1
 SET @dec_atZone = @zoneID_x * @zoneHeight - 90 -- Zones below the center zone will get
 -- the max dec in the zone, Zones above will get
 -- the ~min dec in the zone
 SET @delta_dec = ABS(@dec - @dec_atZone) -- how far away is the zone border?
 SET @x = SQRT(ABS(POWER(@r,2)-
 POWER(@delta_dec,2))) /
 (COS(RADIANS(ABS(@dec_atZone))) + @epsilon) -- adjust @x for declinations away
 END -- from the equator
 INSERT @neighbors -- now add in the objects of this zone that are inside circled
 SELECT objID, -- the id of the nearby galaxy
 SQRT(POWER(cx - @cx, 2) +
 POWER(cy - @cy, 2) +
 POWER(cz - @cz, 2)
) / @d2r AS distance -- in degrees
 FROM ZONE -- ZONE View of primary galaxies
 WHERE zoneID = @zoneID -- using zone number and ra interval
 AND ra BETWEEN @ra - @x AND @ra + @x
 AND dec BETWEEN dec - @r AND dec + @r
 AND @r2 > POWER(cx - @cx, 2) + POWER(cy - @cy, 2) + POWER(cz - @cz, 2)

 SET @zoneID = @zoneID +1 -- next zone
 END -- bottom of the loop
 RETURN
END -- ********************************** fGetNearbyObjEqZd
GO

 12

CREATE FUNCTION fBCGCandidate(--D Calculates the BCG likelihood
 @objid bigint, --/D Unique identifier of SDSS object
 @ra float, --/D Right ascension in degrees
 @dec float, --/D Declination in degrees
 @imag real) --/D i-band magnitude

--/H Returns a table of BCG candidate likelihoods of neighbors of a given object
--/A
--
--
--/H If the input galaxy is likely to be a BCG at any resdshift
--/H this function returns the position, redshift, number of galaxies,
--/H and best chisquare estimation.
--/H The table returned may have zero or one rows

RETURNS @t TABLE (
 objid bigint, --/D Unique identifier of SDSS object
 ra float, --/D Right ascension in degrees
 dec float, --/D Declination in degrees
 z float, --/D estimated redshift from the K-correction
 ngal int, --/D number of galaxies in the neighborhood
 chi2 float --/D chi square estimate
)
AS
BEGIN
 DECLARE
 @rad float, --/D Search radius
 @imin real, --/D minimum magnitude in the i-band
 @imax real, --/D maximum magnitude in the i-band
 @grmin real, --/D minimum g-r color magnitude
 @grmax real, --/D maximum g-r color magnitude
 @rimin real, --/D minimum r-i color magnitude
 @rimax real, --/D maximum r-i color magnitude
 @chi float, --/D minimum estimated chi square error
 @grPopSigma real, --/D g-r constant to estimate chi square
 @riPopSigma real --/D r-i constant to estimate chi square

 SET @grPopSigma = 0.05;
 SET @riPopSigma = 0.06

 DECLARE @chisquare TABLE (--/D This temporary table contains an object, at all redshifts,
 --/D where is likely to be a BCG (may have more than one row)
 --/D It is the result of JOIN with the k_correction table and
 --/D further filtering
 zid int PRIMARY KEY NOT NULL,
 z real, --/D redshift
 i real, --/D i-band magnitude
 chisq float, --/D chisq estimate
 ngal int --/D number of galaxies
)

 DECLARE @friends TABLE (--/D Neighbors of the object being processed
 objid bigint, --/D Unique identifier of SDSS object
 distance float, --/D Distance in degrees
 I real, --/D i-band magnitude
 gr real, --/D g-r color
 ri real --/D r-i color
)

 DECLARE @counts TABLE (--/D Keeps record of number of galaxies per redshift
 zid int PRIMARY KEY NOT NULL, --/D redshift ID
 ngal int --/D Number of galaxies
)

 13

 -- body of fBCGCandidate() function
 --===================================
 -- Filter step: Calculates the unweighted BCG likelihood and discards unlikely BCGs
 INSERT @chisquare
 SELECT k.zid, -- the redshift ID
 k.z, -- the flux in z and i bands
 g.i, -- and the chi squared estimator
 POWER(g.i-k.i,2) / POWER (0.57,2) +
 POWER (g.gr - k.gr,2) / (POWER (sigmagr,2) + POWER (@grPopSigma,2)) +
 POWER (g.ri - k.ri,2) / (POWER (sigmari,2) + POWER (@riPopSigma,2)) AS chisq,
 0 AS ngal
 FROM Galaxy g CROSS JOIN Kcorr k
 WHERE objid = @objid
 AND(POWER (g.i-k.i,2) / POWER (0.57,2) + -- 0.57 is the population dispersion of BCG magnitudes
 POWER (g.gr - k.gr,2) / (POWER (sigmagr,2) + POWER (@grPopSigma,2)) +
 POWER (g.ri - k.ri,2) / (POWER (sigmari,2) + POWER (@riPopSigma,2))
) < 7
 --===================================
 -- If the galaxy passed the filter at some redshift, then evaluate it.
 IF @@rowcount > 0
 BEGIN
 -- Calculate window values for magnitudes and colors from the k-correction table
 SELECT @imin=@imag;
 SELECT @rad = MAX (k.radius), -- the maximum angular radius of 1 Mpc
 @chi = MIN (chisq), -- the chi squared estimator
 @imax = MAX (k.ilim), -- add correct shift
 @grmin = MIN (k.gr) - 2*@grPopSigma,
 @grmax = MAX (k.gr) + 2*@grPopSigma,
 @rimin = MIN (k.ri) - 2*@riPopSigma,
 @rimax = MAX (k.ri) + 2*@riPopSigma
 FROM @chisquare c JOIN Kcorr k ON c.zid = k.zid
 -- Look for neighbors in the Zone table with similar magnitudes and colors.
 -- Retrieves other attributes by joining with Galaxy
 INSERT @friends
 SELECT n.objid, n.distance, g.i, g.gr, g.ri
 FROM fGetNearbyObjEqZd(@ra,@dec,@rad) n JOIN Galaxy g ON g.objid = n.objid
 WHERE n.objid != @objid
 AND g.i BETWEEN @imin AND @imax
 AND g.gr BETWEEN @grmin AND @grmax
 AND g.ri BETWEEN @rimin AND @rimax
 -- Count the number of galaxies with similar magnitudes and colors grouped by redshfit
 INSERT @counts
 SELECT c.zid, COUNT(*) AS ngal
 FROM @chisquare c JOIN Kcorr k ON c.zid = k.zid
 CROSS JOIN @friends f
 WHERE f.distance < k.radius
 AND f.i BETWEEN @imag AND k.ilim
 AND f.gr BETWEEN k.gr - @grPopSigma AND k.gr + @grPopSigma
 AND f.ri BETWEEN k.ri - @riPopSigma AND k.ri + @riPopSigma
 GROUP BY c.zid
 -- Update the counts in the chisquare table
 UPDATE @chisquare
 SET ngal= q.ngal
 FROM @chisquare c, @counts q
 WHERE c.zid = q.zid

 -- Weight the chisquare and select the maximum
 -- It must have at least one neighbor
 SELECT @chi = MAX (LOG(ngal+1) - chisq)
 FROM @chisquare
 WHERE ngal>0
 -- Return estimated redshift, number of neighbors and likelihood
 IF @chi IS NOT NULL
 BEGIN
 INSERT @t
 SELECT
 @objid AS objid, @ra AS ra, @dec AS dec,
 z, -- redshift
 ngal+1 AS ngal, -- number of neighbors
 @chi AS chi2 -- likelihood
 FROM @chisquare
 WHERE ABS (LOG(ngal+1) - chisq - @chi) < 0.00000001
 END
 END
 RETURN
END
-- ********************************** fGetCandidate
GO

 14

CREATE FUNCTION fBCGr200(@ngal float)

--/H Returns the r200 radius in Mpc.
--/H The mean density inside the r200 radius is 200 times the mean galaxy density of the sky
RETURNS float
AS
BEGIN
 RETURN 0.17 * POWER(@ngal,0.51);
END
--********************************** fBCGr200
GO
--
CREATE FUNCTION fIsCluster(@objid bigint,
 @ra float, @dec float, @z real, @ngal int, @chi2 float)
--
--/H returns 1 if this is a cluster center, 0 else

RETURNS int
AS
BEGIN
 DECLARE @rad float, @chi float;
 -- the r200 radius is, at ngal=100, 1.78 degree which, at z=0.05, is 0.74 degrees.
 -- So, the maximum size needed for chiSq (BCG) calculations is 0.75 degrees
 -- from the edge of the region to be coalesced.
 SELECT @rad = radius
 FROM Kcorr
 WHERE ABS(z - @z) < 0.0000001
 -- Select the best chi2 from candidate neighbors
 SELECT @chi = MAX(c.chi2)

FROM fGetNearbyObjEqZd(@ra, @dec,@rad) n
JOIN Candidates c ON n.objid = c.objid

 WHERE c.z BETWEEN @z - 0.05 AND @z + 0.05;
 -- If the best chi2 corresponds to the input object then it is selected as the center
 RETURN
 CASE WHEN abs(@chi - @chi2) < 0.00001 THEN 1 ELSE 0 END
END
--********************************** fIsCluster
GO

CREATE FUNCTION fGetClusterGalaxiesMetric(@objid bigint,
 @ra float, @dec float, @z real, @imag real, @ngal float)

RETURNS @t TABLE (clusterObjID bigint, galaxyObjID bigint, distance float
)
AS
BEGIN

DECLARE
@rad float,

 @gr real,
 @ri real,
 @ilim real,
 @grPopSigma real,
 @riPopSigma real
 SET @grPopSigma = 0.05;
 SET @riPopSigma = 0.06;
 --
 SELECT @rad = radius * dbo.fBCGr200(@ngal),
 @ilim = ilim,
 @gr = gr, @ri=ri
 FROM Kcorr
 WHERE ABS (z - @z) < 0.0000001
 -- insert central galaxy first
 INSERT @t
 SELECT @objid AS clusterObjID, @objid AS galaxyObjID, 0 AS distance
 -- insert all the other "friends"
 INSERT @t
 SELECT @objid AS clusterObjID, n.objid AS galaxyObjID, n.distance
 FROM fGetNearbyObjEqZd(@ra,@dec,@rad) n

 JOIN Galaxy g ON g.objid = n.objid
 WHERE n.objid != @objid
 AND n.distance < @rad
 AND g.i BETWEEN @imag - 0.001 AND @ilim
 AND g.gr BETWEEN @gr - @grPopSigma AND @gr + @grPopSigma
 AND g.ri BETWEEN @ri - @riPopSigma AND @ri + @riPopSigma
 RETURN
END
--********************************** fGetClusterGalaxies
GO
-- ********************************** End Functions

 15

-- ********************************** Stored Procedures

CREATE PROCEDURE spImportGalaxy (

--/H Import the data from the main Galaxy table into the MyDB Galaxy Table

 @minRa float,
 @maxRa float,
 @minDec float,
 @maxDec float
)
AS
BEGIN
 TRUNCATE TABLE Galaxy
 INSERT Galaxy
 SELECT objid,
 ra,
 dec,
 dered_i AS i,
 dered_g - dered_r AS gr,
 dered_r - dered_i AS ri,
 CAST(2.089 * POWER(10.000, 0.228 * dered_i-6.0) AS float) AS sigmagr,
 CAST(4.266 * POWER(10.0000,0.206 * dered_i-6.0) AS float) AS sigmari
 FROM MySkyServerDR1.dbo.Galaxy
 WHERE ra BETWEEN @minRA AND @maxRa
 AND dec BETWEEN @minDEc AND @maxDec
END
--********************************** spImportGalaxy
GO

CREATE PROCEDURE spMakeCandidates(

--/H Calls the fGetBCGCandidate function for each galaxy
--/H inside the limits @minRa, @maxRa, @minDec, @maxDec
--/H Fills Candidates table with BCG candidates
 @minRa float, -- the region of interest
 @maxRa float, -- ra and dec boundaries
 @minDec float,
 @maxDec float
)
AS
BEGIN
 SET NOCOUNT ON;
 TRUNCATE TABLE Candidates -- empty the candidate table
 --
 DECLARE @objid bigint,
 @ra float,
 @dec float,
 @imag real
 -- loop over all galaxies in the specified region, applying the fBCGCandidate() function to them
 DECLARE c CURSOR READ_ONLY
 FOR SELECT g.objid, g.ra, g.dec, g.i
 FROM Galaxy g
 WHERE g.ra BETWEEN @minRa AND @maxRa
 AND g.dec BETWEEN @minDec AND @maxDec
 OPEN c

 WHILE (1 = 1)
 BEGIN
 FETCH NEXT FROM c INTO @objid, @ra, @dec, @imag
 IF (@@fetch_status < 0) BREAK
 INSERT Candidates
 SELECT objid, ra, dec, z,
 @imag AS i,ngal, chi2
 FROM fBCGCandidate(@objid, @ra, @dec, @imag);
 END
 CLOSE c
 DEALLOCATE c
END
--********************************** spMakeCandidates
GO

 16

CREATE PROCEDURE spMakeClusters

--/H Inserts BCG candidates into the Clusters table if they are the center of their cluster.
AS
BEGIN
 SET NOCOUNT ON;
 TRUNCATE TABLE Clusters -- empty the cluster table
 INSERT Clusters -- insert candidates
 SELECT *
 FROM Candidates
 WHERE dbo.fIsCluster(objid, ra, dec, z, ngal, chi2) = 1
END
--********************************** spMakeClusters
GO

CREATE PROCEDURE spMakeGalaxiesMetric

-- /H Creates the ClusterGalaxiesMetric table with centers and cluster members.
AS
BEGIN
 TRUNCATE TABLE ClusterGalaxiesMetric
 DECLARE
 @objid bigint,
 @ra float,
 @dec float,
 @z real,
 @imag real,
 @ngal float

 DECLARE c CURSOR
 FOR SELECT objid, ra, dec, z, i, ngal
 FROM Clusters
 -- Loop over all clusters building the members from the center.
 OPEN c
 --
 WHILE (1 = 1)
 BEGIN
 FETCH NEXT FROM c INTO @objid, @ra, @dec, @z, @imag, @ngal
 IF (@@fetch_status < 0) BREAK
 INSERT ClusterGalaxiesMetric
 SELECT *
 FROM fGetClusterGalaxiesMetric(@objid,@ra, @dec, @z, @imag, @ngal)
 END
 --
 CLOSE c
 DEALLOCATE c
END
-- ********************************** spMakeGalaxies
GO
-- ********************************** End Stored Procedures

--**********************************
-- MySkyServerDr1 covers about 2.5 x 2.5 deg^2 centered in 195.163 and 2.5
EXEC spImportGalaxy 190, 200, 0, 5 -- This will import the whole galaxy table
EXEC spMakeCandidates 194, 196, 1.5, 3.5

-- Our target 66 deg^2 inside 104 deg^2 buffer
-- EXEC spImportGalaxy 172, 185, -3, 5
-- EXEC spMakeCandidates 172.5, 184.5, -2.5, 4.5

EXEC spMakeClusters
EXEC spMakeGalaxiesMetric
--**********************************

