
NUTSS: A SIP-based Approach to UDP and TCP Network
Connectivity∗

Saikat Guha
Dept. of Computer Science

Cornell University
Ithaca, NY 14853

saikat@cs.cornell.edu

Yutaka Takeda
Panasonic Communications

San Diego, CA 92127

takeday@pcrla.com

Paul Francis
Dept. of Computer Science

Cornell University
Ithaca, NY 14853

francis@cs.cornell.edu

ABSTRACT
The communications establishment capability of the Session Initi-
ation Protocol is being expanded by the IETF to include establish-
ing network layer connectivity for UDP for a range of scenarios,
including where hosts are behind NAT boxes, and host are run-
ning IPv6. So far, this work has been limited to UDP because of
the assumed impossibility of establishing TCP connections through
NAT, and because of the difficulty of predicting port assignments
on certain common types of NATs. This paper reports on prelimi-
nary success in establishing TCP connections through NAT, and on
port prediction. In so doing, we suggest that it may be appropriate
for SIP to take a broader architectural role in P2P network layer
connectivity for both IPv4 and IPv6.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol architecture

General Terms
Algorithms, Design, Experimentation, Measurement

Keywords
NAT traversal, NUTSS, STUNT, IPv6 transition

1. INTRODUCTION
With the existence of NAT, and more recently the introduction

of IPv6 and its myriad transition mechanisms, establishing network
connectivity between IP hosts is more complex than originally en-
visioned by IPv4. The original IPv4 connectivity model of course
is that respondent hosts listen at transport addresses (IP address +
transport port number), and initiating hosts send packets to those
transport addresses. DNS may be used to discover the IP address
of the respondent. In some cases, the port numbers are well-known
(HTTP, SMTP, etc.), but in others there must be some way for the

∗This work is supported in part by National Science Foundation
grant ANI-0338750

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04 Workshops, Aug. 30+Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-942-X/04/0008 ...$5.00.

initiating host to know which port number to use. The IP suite of
protocols relegates this problem to each individual application.

The Session Initiation Protocol (SIP) [4] is a middleware sig-
nalling protocol that allows IP endpoints to negotiate whether and
how they wish to communicate. SIP negotiates various parame-
ters including port numbers, IP addresses, whether to use unicast
or multicast, IPv4 or IPv6 (or some other network protocol), and
details of the media stream such as type of encoding.

More recently the use of SIP has been extended to include infor-
mation required to establish direct UDP, and indirect TCP connec-
tivity between hosts behind NAT boxes and firewalls [2]. This ex-
tension of SIP, called ICE (Interactive Connectivity Establishment)
relies on two new protocols being developed in the IETF, STUN
and TURN. STUN [5] allows a host to learn the global IP address
and UDP port assigned by its outermost NAT box. This address
can be subsequently conveyed by SIP (under the ICE procedures)
to allow direct UDP connectivity between hosts. TURN [3] allows
a host to select a globally-addressable TCP relay, which can sub-
sequently be used to bridge a TCP connection between two NATed
hosts. Unlike STUN, TURN does not allow direct connectivity be-
tween NATed hosts.

To be clear, ICE is a usage profile for SIP—it is not a new proto-
col per se. ICE is used both to discover and convey a list of possible
modes of communications (IPv6, public IPv4, private IPv4, STUN,
TURN), and to test these modes.

SIP can serve this broader connectivity establishment role in part
because SIP uses URIs (e.g. user@domain) to identify and discover
end points, thus allowing SIP signalling messages to pass through
NATs and convey the necessary information (type of NAT box, pri-
vate and public addresses and ports, and so on).

We (the authors) have long been impressed with the broad abil-
ity of SIP to manage the intricacies and limitations of the network
layer, including its ability to maintain sessions across IP mobility
events to find users at multiple different machines, and now to deal
with NAT. Although SIP is designed for establishing media streams
(audio or video), it is general enough to operate with any kind of
data flow, and has been used, for instance, to negotiate and maintain
TCP connections across IP mobility events.

Given all this, an important question to ask is, why can’t SIP be
used broadly as the protocol to establish all kinds of P2P 1 commu-
nications, both data and media? Why can’t operating systems come
standard with a simple sockets-like network API that invokes SIP
to discover what type of network-layer communications is possible

1By P2P, we mean broadly those hosts and applications that are not
served well by the private-client/public-server model, for instance
because they are behind NATs or firewalls, or because they do not
wish to allow any host to communicate with them at any time.



and appropriate, and subsequently return a transport socket to the
application?

There are two important criteria for determining whether a given
transport or middleware protocol should be standardized, given a
standard API, and perhaps even commonly supported by the OS.
First, the protocol should provide basic functionality that is useful
to a wide range of applications. Second, the protocol should be
difficult enough that it is not trivial to provide it separately by each
application.

Perhaps one answer to our question is that the socket-listen, DNS,
let-each-application-solve-the-problem model has generally been
adequate. Whereas this might have once been true, we believe it
is no longer true. Establishing connectivity between NATed hosts,
or between IPv4 and IPv6 hosts, or for that matter between IPv6
hosts that are connected to IPv4 networks and behind NAT boxes,
is both difficult and broadly needed by all kinds of applications. We
don’t think it is appropriate to have separate distinct solutions for
all of these connectivity problems.

Another possible answer to our question, and one that we con-
front in this paper, is that there is no known solution that provides
enough functionality to justify a standard approach to all P2P con-
nectivity establishment. In particular, there is a widespread percep-
tion that it is impossible in the vast majority of cases to establish
direct TCP connections through NAT, and that there are too many
cases where even UDP cannot be established through NAT because
of the difficulty of knowing what port number the NAT box will
assign. We believe both of these answers to be overly pessimistic.
Indeed the authors have had preliminary success in the lab in estab-
lishing TCP connections through NATs and firewalls using a tech-
nique that we believe applies broadly. We also have broad success
in the field in predicting NAT port assignments in order to estab-
lish UDP connectivity, and we believe that this success will apply
equally well to TCP.

The purpose of this paper is to report these specific results, to
suggest to the networking community that SIP be used generally as
the standard means for negotiating and establishing network con-
nectivity for P2P, including in support of transition to IPv6, and
to discuss research issues associated with this model. Note we
are not suggesting SIP for general public client-server communi-
cations. That model works more-or-less just fine as is—SIP would
only add unnecessary overhead.

The remainder of this paper is structured as follows: The next
section briefly describes this architectural approach, which we dub
NUTSS. The following two sections describe the NUTSS com-
ponents not already described by the ICE/STUN/TURN suite of
protocols, namely how to do port prediction for NATs that assign
different ports for every outgoing connection (so-called Symmet-
ric NATs), and how to establish direct TCP connections through
NATs. We close by discussing issues and open problems in the
NUTSS architecture.

2. NUTSS ARCHITECTURE
If we are going to suggest an architecture to support a standard

approach to connectivity establishment, it seems appropriate to give
it a name (even if we are not responsible for the majority of its com-
ponent parts). We like to call the architecture NUTSS, which stands
for what we consider to be its main architectural components: NAT,
URI, Tunnel, SIP, and STUNT2.

NAT effectively extends the address space, though ideally some-
day IPv6 becomes ubiquitous and the architecture can be called
UTSS. Indeed, when a host selects among the possible commu-

2Simple Traversal of UDP through NATs and TCP too

nications methods that ICE presents to it (i.e. IPv6, native IPv4,
STUN, STUNT, TURN), the host selects IPv6 in preference to the
others, if it is available. Therefore, as IPv6 usage spreads, it will
naturally become the default method of communications. In this
sense, NUTSS supports a natural exit strategy away from NAT.

The URI is the end-to-end naming scheme. The Tunnel compo-
nent refers to the need to encapsulate some low-level protocols in
UDP, specifically Mobile IP, IPsec, and even IPv6 itself. As stated
already, SIP is the protocol used by hosts to negotiate network-level
communications. NUTSS’s usage of SIP will certainly include
ICE, but will also include mechanisms to convey the TCP/UDP
application to be run.

STUNT is a protocol that extends STUN to include TCP. STUN
is the protocol that a host uses to determine what global address
and UDP port has been assigned to it by its outermost NAT box,
and to determine what kind of NAT the box is.

STUNT has not yet been specified in detail, but its TCP usage
would be very similar to STUN’s UDP usage. More details are
given later, but the basic idea is this. The host establishes multiple
TCP (or UDP) connections with a globally reachable server (the
STUNT Server). The STUNT Server records the global addresses
(GA) and ports (GP) assigned by the NAT, and conveys them back
to the host. Using SIP, the host in turn conveys to the remote host
the expected GA and GP (and any other addresses and ports it may
be able to communicate with), and likewise receives the addresses
and ports of the remote hosts. Both hosts then send an initial outgo-
ing packet through the NAT addressed to the remote hosts GA and
GP. The purpose of this initial packet is to establish the mapping
at the NAT box, thus allowing incoming packets from the remote
host. This is sometimes called punching a hole in the NAT box.
Subsequently bidirectional packet exchange can take place.

While this approach is ugly (and some specific ugly details are
discussed in this paper), much of the ugliness stems from the fact
that NAT behavior is unstandardized and therefore ad hoc and un-
necessarily complex. In any event, such ugliness cannot be avoided
if we are to transition to IPv6 (and therefore have to deal with IPv4-
IPv6 translating “NAT” boxes) so in our minds NUTSS is simply
something that has to be done, and we ought to make it as painless
and functional as possible. Over time, the ugly parts will disappear
as NATs disappear and IPv6 takes hold. On the other hand, if IPv6
never takes hold, there will at least exist better functionality than
we have today.

Finally, it is easy to imagine a socket-like NUTSS-based network
API. Such an API could have the standard bind(), listen(), con-
nect(), accept(), and close() calls, but could substitute URIs for IP
addresses, and application names for port numbers. Indeed we have
implemented such an API, though it has not been tested broadly.

3. PORT PREDICTION
The key to successful NAT traversal (for TCP or UDP) is of

course that the remote host know which global port (GP) and global
IP address (GA) has been assigned by the NAT for a given flow.
The problem here is that STUNT knows what GP and GA has been
assigned by the NAT for the flow between the host and the STUNT
Server, but STUNT can only make guesses about what GP and GA
will be assigned for a subsequent flow to the remote host.

Unfortunately, different NAT boxes take different approaches to
port assignment (no doubt in part because the IETF for many years
refused to accomodate NATs and standardize their behavior). Some
NATs will repeatedly assign the same GP to a given host using
a given local port (LP), even if that host has flows with multiple
remote hosts. This kind of NAT is called a Cone NAT in [5], and
its behavior is shown in Figure 1. Here we see that the host has



LP GP0

p

q

p

q

ip=x

ip=y

STUNT Server

Host
NAT

ip=z

Figure 1: Cone NAT Type

p

q

p

q

ip=x

ip=y

STUNT Server

LP GP4

Host

NAT

ip=z

GP0
GP1
GP2
GP3

Figure 2: Symmetric NAT Type

established four flows with the STUNT server, each using the same
LP, but to different IP addresses (x and y) and different ports (p and
q) at the STUNT Server. The STUNT Server sees that the NAT
box has assigned the same GP each time, and so it is a good bet
that the NAT box will do so again when the host establishes a flow
with the remote host at address z. Note that NAT boxes virtually
always assign the same global address GA, so for simplicity this is
not shown in Figure 1. Note also that many Cone NATs assign GP
= LP if LP is not already assigned to another flow. These are called
Port Preserving Cone NATs.

While it is easy to traverse Cone NATs, traversing so-called Sym-
metric NATs is more difficult. Symmetric NATs assign a different
port for every new flow, as shown in Figure 2. This can be detected
by the NAT box, because it sees a different port assignment for each
flow.

Fortunately, most Symmetric NATs assign port numbers in uni-
form increments δp, typically of 1 or 2, and so it is possible to
predict the next port number assignment [6]. For example, if GP0
through GP3 each increment by 1, GP4 is likely to be GP3+1.
Some Symmetric NATs randomly choose global port values, mak-
ing port prediction impossible, but these are quite rare.

3.1 Issues with Port Prediction
The correct operation of port prediction relies on a single host

getting an uninterrupted series of port assignments from the NAT.
Unfortunately, other hosts may be getting ports assigned at the
same time. For instance, a host H may get assignments GP0 and
GP1, but a different host may get port assignment GP2 before H
does, with H subsequently getting assignments GP3 and GP4. Note
that we get the same effect if a different host obtained GP2 long ago
and hadn’t relinquished it yet.

There are two scenarios where port assignment interruption can
cause a problem. One is when the host is probing the STUNT
Server to determine what kind of NAT it is behind (i.e. Cone or
Symmetric, and if Symmetric, the value of δp). This case is not
so bad for two reasons. First, the host can establish its TCP flows
(or UDP packets) in immediate succession, thus minimizing the
chance of interruption. The host doesn’t need to wait for one con-
nection to complete before starting the next connection. Second,

Open
socket

Host Nat STUNT

Re-open
socket

Probe(s)

Mapping

Predicted mapping

TCP/UDP Packet

Remote host’s mappingW
i
n
d
o
w

Figure 3: Window of vulnerability for port predictions

inconsistencies in the series of assignments can usually be detected
(i.e. different δp for different probes).

The far more difficult scenario is where the host probes the STUNT
box in order to predict the GP of the subsequent flow to to a remote
host. The main problem here is that in some cases there is nec-
essarily a gap in time between the probe flow to the STUNT box
and the subsequent flow to the remote host. There are two cases
to consider. In the first case, the host knows the GP and GA of
the remote host before probes the STUNT Server. This is possible
when the remote host’s NAT is Cone, or when it is Symmetric but
there are very few hosts using the NAT box (and so very unlikely
that a port sequence interruption will take place). In this case, the
gap is due to the time it takes for the host to receive an answer from
the STUNT Server and establish the flow to the remote host. This
gap is roughly equal to the RTT between the host and its STUNT
Server, and so could easily be on the order of 100ms.

In the second case, the host cannot know the GP and GA of the
remote host before it probes the STUNT Server. This would be the
case where the remote host is also behind a heavily utilized Sym-
metric NAT. In this case, the host has to wait for both the answer
from the STUNT Server conveying its own GP and GA, and a mes-
sage from the remote host conveying the remote host’s GP and GA.
Essentially, both hosts must, at the same time, probe the STUNT
Server, get an answer, inform the other host of the answer, and then
establish the flow. This requires two round trips even where the two
hosts are synchronized (i.e. start their probes at the same time), and
longer to the extent that they are not synchronized as illustrated in
Figure 3. Thus it is easy to imagine 300ms or greater gap between
the two port assignments.

Given this, there are going to be cases (medium to large enter-
prise networks) where port prediction is simply not possible. Cor-
nell, which has over 20,000 students, faculty, and staff, has 10’s of
outgoing TCP connections per second.

3.2 Likelihood of Failure
Given that there are failure modes, we would like to get a sense

of how often failures may occur. While we don’t have hard num-
bers, we can look at the percentage of commercial NAT boxes that
are Cone, Symmetric, and so on. We looked at 9 different NAT
boxes from 5 manufacturers (Netgear, Linksys, Dlink, Hawking,
and Speedstream). Regarding UDP behavior, eight of the nine are
Cone type, and of these, five are port preserving. For TCP, six of
the nine are Cone type, with five of these being port preserving (the
same five as with UDP). Of the Symmetric NATs, all of them have
a δp = 1.

Given this, we can guess that port prediction may work for the
large majority of home or small office NAT users (because none of
these NATs have random port assignment, and because small net-
works don’t have the port series interruption problem). Indeed in
tests run by Panasonic Communications Corp., UDP port predic-
tion through home/small office NATs worked virtually 100% of the
time.

We can guess that many large enterprise users may be able to



establish connectivity through NAT because they use Cone type
NATs. Nevertheless, there will be significant numbers of large en-
terprise users that still will not be able to establish connectivity.

We should keep in mind, however, that large institutions often
block most applications at the firewall anyway. In other words, the
connectivity problem is often not with NAT per se, but rather is a
feature desired by the enterprise’s IT organization. In addition, if
an institution does want to allow P2P flows, it has the option of
using a Cone NAT.

There are two points we are trying to make here to applica-
tion developers who may consider using the NAT technologies de-
scribed in this paper. First, while port prediction is not foolproof,
it adds significantly to the population of users who could connect
through NAT compared with no port prediction. Second, even if
port prediction were foolproof, there would still be connectivity
issues, because of firewall policy. In other words, if the P2P appli-
cation developer expects fault-free P2P operation, he or she is out
of luck in any event.

4. NAT TCP SOLUTION
The basic problem with establishing TCP through NATs is that,

with TCP, normally one host listens while the other host initiates
the connection (with a SYN packet). Unfortunately, NAT requires
that there be an outgoing packet to assign the NAT port mapping
(punch a hole) before any incoming packets can be received. A
listening host never sends such a packet, and therefore can never
receive the SYN from the initiating host.

Now it so happens that the TCP protocol specification allows
both ends to behave as initiators by simultaneously sending SYN
packets. This simultaneous operation will work with NATs as long
as each SYN packet exits its respective NAT outgoing before the re-
mote host’s SYN packet arrives. This is actually not hard to achieve
as long as the path between NATs is longer than the paths between
each host and its NAT. The point is moot, however, because Mi-
crosoft does not allow simultaneous TCP in its implementation.
Thus this isn’t a meaningful option unless Microsoft changes its
TCP.

Another broad approach is to allow the host to explicitly estab-
lish an address mapping or firewall rule in the NAT/firewall through
some out-of-band protocol exchange. This is the approach taken,
for instance, by Universal Plug-and-Play (UPnP) [1], and by the
IETF midcom working group (which is also the group that pro-
duced STUN). The downside of this type of approach is that they
require that these protocols exist and are enabled in the NAT/Firewall.
An application developer cannot depend on either of these, and so
for the time being they are not an attractive option. Something more
incrementally deployable (i.e. does not require explicit cooperation
from the NAT/Firewall) is preferable.

4.1 Our Approach
In this section we describe our approach of establishing TCP

connections when each end-point is behind a NAT as shown in Fig-
ure 4. One design principle we followed in this approach is that,
from the perspective of the NAT boxes on both ends, the TCP con-
nection setup appears to be a normal three-way handshake (with
both hosts appearing to be the initiator). This approach minimizes
the chance that a NAT box (or firewall) will disallow the connection
because it looks non-standard.

For simplicity, in Figure 4 we show only NATs N and M which
are the border NATs that connect the private networks to the public
internet. Additional NATs that may be present between the border
NAT and the respective end host do not effect the protocol. Though
only a single STUNT Server is shown, each host A and B may

Internet

Stunt

Proxy

Host 
B

IP: b
Port: q

Nat M

IP: B
<b,q>=<B,Q>

Host 
A

IP: a
Port: p

Nat N

IP: A
<a,p>=<A,P>

Figure 4: Network Configuration

have separate independent STUNT Servers. The STUNT Server(s)
must be placed in the public internet and must be able to spoof IP
source addresses. The Proxy shown in Figure 4 is required to pass
messages between hosts A and B to coordinate the establishment
of TCP. The Proxy could be a single box that both A and B have
established communications with, or it could represent an infras-
tructure, for instance composed of SIP proxies, through which A
and B can exchange messages.

The TCP connection setup protocol that we describe is symmet-
ric for A and B. We describe it from A’s perspective as depicted in
Figure 5. Both A and B use the standard TCP stack and API pro-
vided by the OS. Note that the solid lines represent the actual TCP
packets issued by the OS. The dashed lines represent messages sent
between the hosts and their respective STUNT Servers, or between
themselves via one or more Proxies.

At startup, Hosts A and B establish their intent to communicate
with each other via a proxy. Each then predicts its global mappings
GA and GP as outlined in Section 3. If either NAT is cone then the
respective end point can predict its global mapping prior to step #1
and use it for multiple TCP connections later. Each host must also
open a RAW socket so that it can see a copy of the first SYN the
OS TCP sends. Host A sends its GA and GP to B via the proxy
and likewise receives B’s global mappings. Upon receiving B’s
global mapping, A initiates a TCP handshake with it. The SYN
sent as part of the 3-way handshake must have a sufficiently low
TTL that the packet is dropped between N and M. The reason for
this is that NAT M might close the hole created by Host B if it sees
an unexpected SYN arrive from outside. The TTL is set using the
IPHDRINCL option. The low TTL may cause an ICMP error to
be generated in the network, though the ICMP packet itself doesn’t
hurt (or help) the connection setup (see Section 4.2.1 and 4.2.2).

Host A sends the contents of the TCP SYN (packet 3) that it
heard via the RAW socket in a message to Host B (via the Proxy,
packet 5). This message could certainly be a SIP message. Like-
wise, it receives the contents of Host B’s TCP SYN via a mes-
sage. Host A then constructs a message containing both its and
Host B’s SYN packets, and sends the message to its STUNT Server.
From these two SYNs, the STUNT Server is able to construct the
SYNACK that Host A and NAT N expect to see (i.e. containing
the sequence number that Host B generated, and the ACK number
that Host B would have produced had it received Host A’s SYN.
This SYNACK is transmitted from the STUNT Server to NAT N,
spoofing the source address so that it appears to have come from
Host B via NAT M (this can be done with a RAW socket).

NAT N finds the SYNACK it is expecting to see and translates
the destination address to A’s private address and routes it accord-
ingly. The packet is then received by A’s OS which acknowledges
the SYNACK with an ACK therefore completing the 3-way hand-
shake. The final ACK has the default TTL and makes its way to B,



Re-open
socket

A N STUNT Proxy M B

4: SYN (low TTL) SYN (low TTL)

7: SYNACK (spoofed)

SYNACK (spoofed)

8: TCP ACK

TCP ACK

Encapsulated SYN

Encapsulated SYNACK

5: Encapsulated SYN

6: Encapsulated SYNACK

Global mapping

3: Global mapping

Open
socket 2: Port prediction

Port prediction

1: Intent to connect

Accept

Figure 5: TCP Connection Setup

# Source Dest. Contents
1 over Proxy Intent to establish connection
2 STUNT port prediction
3 over Proxy A’s global mapping A:P
4 a:p

(A:P)1
B:Q SYN, low TTL, Seq# SA

5 over Proxy Encapsulated SYN, default TTL,
source A:P

6 from A to STUNT Encapsulated packet 7 (below)
7 B:Q

(spoofed)
A:P

(a:p)1
SYNACK, Seq#SB, ACK#SA+1,
default TTL

8 a:p
(A:P)1

B:Q
(b:q)2

ACK, Seq#SA+1, Ack#SB+1, de-
fault TTL

Table 1: TCP Connection Setup

thus completing the three-way handshake.

4.2 Issues
In addition to the port prediction of the global mapping discussed

earlier, the NAT TCP solution has its own fair share of issues.
This section discusses some of these issues including NAT char-
acteristics, host requirements and the spoofing requirement for the
STUNT Server.

4.2.1 NAT Characteristics
The scheme would fail if the NAT releases the port mapping in

response to an ICMP TTL Exceeded message that may be gener-
ated as a result of packet 4 in Figure 5. This, however, is unlikely
since it would make the NAT box highly susceptible to a DoS at-
tack where any host could silence outgoing connections by sending
ICMP packets. In addition, ICMP errors are considered transient
and the NAT box should let the host’s stack determine whether or
not to retry. Of the two NAT boxes we tested TCP establishment
with, both ignored the ICMP unreachable.

A second issue relates to the separation between the two NATs
N and M. If M is one hop away from N then it is not possible to
determine a sufficiently low TTL, such that the packet will be dis-
carded after it traverses N but before it reaches M. If M receives
this SYN packet, it may respond by either silently dropping it, by
returning an ICMP error or by returning a TCP RST packet. The
first case would be ideal since neither A nor N sees any packets that

1After NAT by N
2After NAT by M

cause them to deviate from the 3-way handshake. The second case
is addressed in the previous paragraph. The third case, would re-
sult in N releasing the port mapping and A aborting the handshake
causing the scheme to fail.

The scheme suggested above would also fail if the NAT unpre-
dictably changes the Seq# of outbound TCP packets. Certain NATs,
in particular BSD’s pf module, can be configured to add a fixed off-
set to all outbound Seq# and subtract the same offset from inbound
Ack#s. If this offset is picked at random for every connection then
A will be unable to make the necessary changes to packet 5 in Fig-
ure 5. As a result, B’s encapsulated SYNACK will have A’s original
Seq#, but packet 8 which traverses the NAT will have A’s translated
Seq# and will be considered by B’s stack as a stray packet.

4.2.2 Other Requirements
The requirements for a STUNT end-point depends on the im-

plementation. Our implementation is a user-space library that is
source compatible with the BSD-style socket API. This imposes
some limitations, for instance, the API depends on the kernel to
construct network packets and send them on the physical medium.
In order to reclaim a copy of packet 4 (Figure 5) created by the
kernel, the API need to snoop for it using RAW sockets. While
most OSs support RAW sockets at an application level, some OSs
require super-user permissions to grant access to them. The second
point of concern is that different OSs respond differently to ICMP
errors received during connection setup, like the possible ICMP
TTL exceeded message generated as a result of packet 4 having a
low TTL. If the particular host OS considers this ICMP error non
transient and aborts the connection setup, then the user-space API
needs to block the ICMP message from propagating up the stack
by temporarily inserting an appropriate rule in the OS’s packet fil-
ter module. In our tests, we had to do this for the Linux hosts.

The requirement for a STUNT Server, which answers global
mapping queries and generates the SYNACK (packet 7, Figure 5),
is that it be able to spoof packets from arbitrary source IPs. This is
because the encapsulate SYNACK sent by A to the STUNT Server
which the server then inserts into the routing infrastructure has B’s
address as the source IP address. Sometimes ISP edge routers filter
out packets with spoofed source addresses. Since STUNT Servers
can be deployed in a controlled fashion, however, it should gener-
ally be possible to have the ISP turn off this filter at the STUNT
Server’s edge router (if indeed it is turned on in the first place).

A different approach to TCP connection setup through NATs is
possible that does not require spoofing packets. In this scheme,
hosts A and B discover their global mappings as before but only
Host A sends the low TTL SYN packet (packet 4 in Figure 5).
This establishes a mapping for A in NAT N. Host A then closes
the socket it used to send the SYN and reopens another socket on
the same local port listening for incoming connections. It signals
B through the proxy when it is ready to receive connections. Upon
receiving this signal, B, initiates a 3-way TCP handshake with the
default TTL. The SYN sent by B is NAT’ed twice, first by M and
then by N before it reaches A, who then replies with a SYNACK
as expected. This scheme is less general than the one outlined in
Section 4.1 since N may expect to see only an inbound SYNACK
in response to packet 4. In addition, aborting the connection at A
prior to opening a listen socket may result in a RST being sent out
by A’s stack which would close the mapping at N.

5. CONCLUSIONS AND THOUGHTS
This paper presents two hacks (important hacks, we believe, but

hacks just the same) which expand the scope of connectivity estab-
lishment through NATs. This report is preliminary in that we don’t



have a lot of field experience with these techniques. One goal of
this paper is to encourage experimentation.

Because these techniques expand the scope of NAT connectivity
to include TCP and Symmetric NATs, this paper additionally sug-
gests that it is appropriate to ask whether the ICE/STUN/TURN
style of NAT traversal should be expanded beyond its focus on me-
dia to include all data communications between P2P users, includ-
ing easing the way towards transition to IPv6.

We certainly don’t answer this question—indeed we haven’t fully
implemented the NUTSS architecture, much less experimented with
it on a broad scale. We do believe, however, that NUTSS is an ap-
proach that deserves debate within the research community.

6. ACKNOWLEDGEMENTS
The authors would like to acknowledge Ian Yuan for contributing

a key idea to the TCP traversal scheme. We would also like to thank
Jeanna Matthews and Shashi Bhushan for their help.

7. REFERENCES
[1] Microsoft Corporation. UPnP – Universal Plug and Play

Internet Gateway Device v1.01, Nov. 2001. Available online
http://www.upnp.org/standardizeddcps/
documents/UPnP_IGD_1.0.zip. 30 April 2004.

[2] J. Rosenberg. Internet draft: ICE – Interactive Connectivity
Establishment, Feb. 2004. Available online
ftp://ftp.isi.edu/internet-drafts/
draft-ietf-mmusic-ice-01.txt. 30 April 2004.

[3] J. Rosenberg, R. Mahy, and C. Huitema. Internet draft: TURN
– Traversal Using Relay NAT, Feb. 2004. Available online
ftp://ftp.isi.edu/internet-drafts/
draft-rosenberg-midcom-turn-04.txt. 30 April
2004.

[4] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. RFC
3261: SIP Session Initiation Protocol, June 2002. Available
online
http://www.rfc-editor.org/rfc/rfc3261.txt.
30 April 2004.

[5] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. RFC
3489: STUN – Simple Traversal of User Datagram Protocol
(UDP) Through Network Address Translators (NATs), Mar.
2003. Available online
http://www.rfc-editor.org/rfc/rfc3489.txt.
30 April 2004.

[6] Y. Takeda. Internet draft: Symmetric NAT Traversal using
STUN, June 2003. Available online
http://community.roxen.com/developers/
idocs/drafts/draft-takeda-symmetr%
ic-nat-traversal-00.txt. 10 May 2004.


