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Abstract

Distributed systems and applications are often expected to enforce high-level
authorization policies. To this end, the code for these systems relies on lower-
level security mechanisms such as, for instance, digital signatures, local ACLs,
and encrypted communications. In principle, authorization specifications can be
separated from code and carefully audited. Logic programs, in particular, can
express policies in a simple, abstract manner.

We consider the problem of checking whether a distributed implementation
based on communication channels and cryptography complies with a logical au-
thorization policy. We formalize authorization policies and their connection to
code by embedding logical predicates and claims within a process calculus. We
formulate policy compliance operationally by composing a process model of the
distributed system with an arbitrary opponent process. Moreover, we propose a
new dependent type system for verifying policy compliance of implementation
code. Using Datalog as an authorization logic, we show how to type several exam-
ples using policies and present a general schema for compiling policies.
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1 Typing Implementations of Authorization Policies

Background Given a request to access a sensitive resource in a computer system,
anauthorization policydetermines whether the request is allowed. The conditions in
authorization policies typically involve the action (for example, writing a file), objects
(the file being accessed, its directory), and subjects (the requester, the owner of the
file). A system complies with the policy if these conditions hold whenever the action is
performed. Authorization and access control issues can be complex, even at an abstract
level. Some policies address security concerns for multiple actors and may involve
numerous concepts such as roles, groups, partial trust, and controlled delegation. Their
study has a long history [22, 28].

Authorization policies are often only expressed precisely in code, intermingled with
other functions and low-level enforcement mechanisms such as cryptography or sys-
tem calls. The result can be hard to analyze and audit. Hence, a reasonable guiding
principle is to express authorization policies in a high-level language, separate from
imperative code and independent of particular enforcement mechanisms. Specifically,
logic programming seems well suited for expressing policies precisely and concisely:
each authorization request is formulated as a logical request against a database of facts
and rules. Often, the policy itself carefully controls changes to the database. In par-
ticular, variants of Datalog have been usefully applied to design trust management
systems (e.g., PolicyMaker [6], SD3 [21], Binder [12]), to express complex policies
(e.g., Cassandra [4]), and to study authorization languages (e.g., SDSI/SPKI [1, 23],
XrML [ 11]).

Our Approach Given a target authorization policy, we consider the problem of ver-
ifying whether a particular system correctly implements the policy. In a distributed
setting, this refinement typically involves security protocols and cryptography. For
instance, when receiving a request, one may first verify an identity certificate, then au-
thenticate the message, and finally consider the privileges associated with the sender.

Since the whole system can be seen as a complex cryptographic protocol, we adopt
two ideas used to specify security protocols:

• First, annotations on the code of a system mark security-related events such as
access rights being granted and checked. In previous work, the relation between
imperative code and declarative policies is usually informal: theoretical stud-
ies rarely connect an authorization logic to an operational semantics. Our work
makes the connection explicit; we aim to show that every successful access con-
trol decision made by code actually conforms to the authorization policy.

• Second, we adapt the standard “network is the opponent” threat model, a con-
servative model first formalized by Dolev and Yao [13]. Hence, we aim to show
that active attacks on the underlying cryptographic protocols cannot bypass our
authorization policy; in particular, we want to prove the absence of man-in-the-
middle or impersonation attacks that often afflict cryptographic protocols.

Our formal development is within a typed version of the spi calculus [3], a pi calcu-
lus with abstract cryptographic operations. We use inert processes—called statements
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and expectations—as code annotations to state the global authorization policy, to mark
successful authorization checks, and to mark the pre-conditions for access to sensitive
resources.

• A statementrecords an arbitrary logical clause. For example, a statement

employee(alice)

records thatalicebelongs to the group of employees. Such an annotation would
follow code checking foralice in a suitable database, for example. A statement
of a logical clause

canRead(X,handbook) :− employee(X)

records that any employee can read a particular filehandbook. Such a statement
might be a top-level annotation on the whole system, stating a global policy.

• An expectationis a falsifiable claim that a particular fact or clause is logically
entailed by the set of active statements. For example, the following expectation
records thatcanRead(alice,handbook) should be entailed in the current context.

expectcanRead(alice,handbook)

Such an annotation would precede the code providingaliceaccess to the sensitive
resourcehandbook, for example. This expectation is justified if the two previous
statements are active. On the other hand, if those are the only active statements,
the expectation

expectcanRead(bob,handbook)

is unjustified. The presence of this expectation at runtime may reveal a coding
error that allowsbobaccess tohandbookwithout a preceding check forbob in
the employee database.

Our methodology is to insert statements after code performing dynamic checks,
and to insert expectations before code accessing sensitive resources, so that access
control errors result in unjustified expectations. The role of our type system is to check
statically that in all executions, all expectations are justified by previously executed
statements.

Statements and expectations generalize the begin- and end-events of a previous
embedding [17] of Woo and Lam’s correspondences [29] in a process calculus. Corre-
spondences are a common basis for specifying correctness of authentication protocols.
(Authentication should not be confused with authorization, although the former is of-
ten a prerequisite for the latter; authorization answers questions such as “is this request
allowed?” while authentication answers subsidiary questions such as “who sent this
request?”)

In contrast to several previous works, we use the authorization language as a stat-
ically enforced specification, instead of a language for programming dynamic autho-
rization decisions. The two approaches are complementary. The static approach is less
flexible in terms of policies, as we need to anticipate the usage of the facts and rules
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involved at runtime. In contrast, a logic-based implementation may dynamically accept
(authenticated) facts and rules, as long as they lead to a successful policy evaluation.
The static approach is more flexible in terms of implementations, as we can assemble
imperative and cryptographic mechanisms (for example, communications to collect re-
mote certificates), irrespective of the logic-based evaluation strategy suggested by the
policy. Hence, the static approach may be more efficient and pragmatically simpler to
adapt to existing systems. Non-executable policies may also be simpler to write and to
maintain, as they can safely ignore functional issues.

Summary of Contributions To our knowledge, our work is the first to relate autho-
rization logics to their cryptographic implementation in a process calculus. Specifi-
cally:

• We show how to embed a range of authorization logics within a pi calculus. (We
use Datalog as a simple, concrete example of an authorization logic.)

• We develop a new type system that checks conformance to a logic policy by
keeping track of logical facts and rules in the typing environment, and using log-
ical deduction to type authorization expectations. Our main result, Theorem3,
states that all expectations activated in a well-typed program follow from the
enclosing policy.

• As a sample application, we present two distributed implementations of a simple
Datalog policy for conference management featuring rules for filing reports and
delegating reviews. One implementation requests each delegation to be regis-
tered online, whereas the other enables offline, signature-based delegation, and
checks the whole delegation chain later, when a report is filed.

• As another application, we present a generic implementation of Datalog in the pi
calculus—well-typed in our system—which can be used as a default centralized
implementation for any part of a policy.

We built a typechecker and a symbolic interpreter for our language, and used them
to validate these applications. Our initial experience confirms the utility of such tools
for writing code that composes several protocols, even if its overall size remains modest
so far (a few hundred lines).

Related Work There is a substantial literature on type systems for checking security
properties. In the context of process calculi there are, for example, type systems to
check various information flow [2, 18, 26] and authenticity [14, 16] properties in the
pi calculus and the spi calculus, access control properties of mobile code in the boxed
ambient calculus [8], and discretionary access control [9] and role-based access con-
trol [7] in the pi calculus. Moreover, various experimental systems, such as JIF [24]
and KLAIM [25], for example, include types for access control. Still, there appears to
be no prior work on typing implementations of a general authorization logic.

In the context of strand spaces and nonce-based protocols, Guttmanet al. [20]
annotate send actions in a protocol with trust logic formulas which must hold when a
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message is sent, and receive actions with formulas which can be assumed to hold when
a message is received. Their approach also relies on logically-defined correspondence
properties, but it assumes the dynamic invocation of an external authorization engine,
thereby cleanly removing the dependency on a particular authorization policy when
reasoning about protocols. A more technical difference between our approaches is that
we attach static authorization effects to any operation (input, decryption, matching)
rather than just to message inputs.

Blanchet’s ProVerif [5] checks correspondence assertions in the applied pi calculus
by reduction to a logic programming problem. ProVerif can check complex disjunctive
correspondences, but has not been applied to check general clausally-defined autho-
rization policies.

Guelevet al. [19] also adopt a conference programme committee as a running ex-
ample, in the context of model checking the consequences of access control policies.

Contents The paper is organized as follows. Section2 reviews Datalog, illustrates
its usage to express authorization policies, and states a general definition of authoriza-
tion logics. Section3 defines a spi calculus with embedded authorization assertions.
Section4 presents our type system and states our main safety results. Section5 devel-
ops well-typed distributed implementations for our sample delegation policy. Section6
provides our pi calculus implementation of Datalog and states its correctness and com-
pleteness. Section7 concludes and sketches future work.

Appendixes contain the proofs of the theorems stated in the body of the paper.
AppendixA contains the proofs for Datalog, and a generic substitutivity property of
authorization logics useful for our main results. AppendixB contains the proofs of our
robust safety result for the spi calculus. AppendixC contains the formal definition of
syntactic sugar and the proofs for the encoding of Datalog in spi. AppendixD lists the
code of the example from Section5 in the form accepted by our typechecker.

2 A Simple Logic for Authorization

We briefly present a syntax and semantics for Datalog, and discuss its use in formu-
lating authorization policies. (For a comprehensive survey of Datalog, see [10].) The
results in subsequent sections are independent of many of the details of Datalog; we
formulate a notion ofauthorization logicto capture the properties we rely on.

2.1 Syntax of Datalog

A Datalog program consists offacts, which are statements about the universe of dis-
course, andclauses, which are rules that can be used to infer facts. In the following,
we interpret Datalog programs as authorization policies.

Syntax for Datalog:

X,Y,Z logic variable
u ::= term

X logic variable
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M spi calculus message (see Section3)
L ::= literal

p(u1, . . . ,un) predicatep holds for termsu1, . . . ,un

C ::= Horn clause
L :−L1, . . . ,Ln clause, withn≥ 0 andfv(L)⊆

⋃
i fv(Li)

S::= Datalog program (or policy)
{C1, . . . ,Cn} set of clauses

Convention: a clauseL :− with an empty body (afact) is denoted simply byL.
We letF range over facts.

Terms range over logic variablesX,Y,Z and messagesM; these messages are treated as
Datalog atoms, but they have some structure in our spi calculus, defined in Section3.

A clauseL :−L1, . . . ,Ln has ahead, L, and abody, L1, . . . ,Ln; it is intuitively read
as the universal closure of the propositional formulaL1∧ . . .∧ Ln → L. In a clause,
variables occurring in the body bind those occurring in the head. A phrase of syntax is
groundif it has no free variables. We require that each clause be ground. Afact F is a
clause with an empty body.

We use the following notations: for any phraseϕ, we let fn(ϕ) and fv(ϕ) col-
lect free spi calculus names and free variables, respectively. We writeϕ̃ for the tuple
ϕ1, . . . ,ϕt , for somet ≥ 0. We write{u/X} for the capture-avoiding substitution of
termu for variableX, and write{ũ/X̃} instead of{u1/X1} . . .{un/Xn}. We letσ range
over these substitutions. Similarly, we write{M/x} for capture-avoiding substitution
of messageM for namex.

2.2 Semantics of Datalog

We describe standard semantics for deriving facts and clauses from a Datalog program.
Facts can be derived using the rule below:

Logical Inference of Facts:S|= F

(Infer Fact)
L :−L1, . . . ,Ln ∈ S S|= Liσ ∀i ∈ 1..n

S|= Lσ
for n≥ 0

More generally, a clauseC is entailedby a programS, written S |= C, when we
have{F | S′ ∪ {C} |= F} ⊆ {F | S′ ∪S |= F} for all programsS′. Similarly, C is
uniformly contained in Swhen the inclusion above holds for all programsS′ containing
only facts. Entailment is a contextual property for programs: ifS|= C andS⊆ S′, then
S′ |= C. We rely on this property when we reason about partial programs. In Datalog,
entailment and uniform containment coincide, hence entailment is decidable [27] and
can be checked operationally using thechasetechnique.

Theorem 1 (Chase [27]) For all C and sets of clauses S, (1) and (2) are equivalent:

(1) for all sets of facts S′, {F | S′∪{C} |= F} ⊆ {F | S′∪S|= F};
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(2) S∪{L1σ , . . . ,Lnσ} |= Lσ , where C= L :−L1, . . . ,Ln and σ = {x̃/X̃} is an in-
jective substitution such that{x̃}∩ (fn(S)∪ fn(C)) = ∅ andX̃ = fv(L1, . . . ,Ln).

In light of the previous theorem, we generalize inference to clauses, as follows:

Logical Inference for Clauses (Entailment):S|= C

(Infer Clause)
S∪{L1σ , . . . ,Lnσ} |= Lσ σ mapsfv(L1, . . . ,Ln) to fresh, distinct atoms

S|= L :−L1, . . . ,Ln

We rely on the following monotonicity and substitutivity properties of Datalog in-
ference when developing our type system.

Proposition 1 (Monotonicity) If S |= C then S∪{C′} |= C.

Proposition 2 (Substitutivity) If S |= C andσ sends names to messages, Sσ |= Cσ .

2.3 Some Predicates for Authorization

Our main example application is a simplified conference management system, in charge
of assigning papers to referees and collecting their reports. For simplicity, we focus on
the fragment of the policy that controls the right to file a paper report in the system,
from the conference manager’s viewpoint. This right, represented by the predicate
Report(U,ID,R), is parameterized by the principal who files the report, a paper identi-
fier, and the report content. It means that principalU can submit reportR on paperID.
For instance, the factReport(alice,42,report42) authorizes a particular report to be filed.
Preferably, such facts should be deducible from the policy, rather than added to the pol-
icy one at a time. To this end, we introduce a few other predicates.

Some predicates represent the content of someextensionaldatabase of explicitly
given facts. In our example, for instance,PCMember(U) means that principalU is a
member of the programme committee for the conference;Referee(U,ID) means that
principalU has been asked to reviewID; andOpinion(U,ID,R) means that principalU
has written reportR on paperID. Other predicates areintensional; they represent views
computed from this authorization database. For instance, one may decide to specify
Report(U,ID,R) using two clauses:

Report(U,ID,R):−Referee(U,ID),Opinion(U,ID,R) (clauseA)
Report(U,ID,R):−PCMember(U),Opinion(U,ID,R) (clauseB)

These clauses state thatU can reportR on ID if she has this opinion and, moreover,
eitherU has been assigned this paper (clauseA), or U is in the programme committee
(clauseB)—thereby enabling PC members to file reports on any paper even if it has not
been assigned to them. Variants of this policy are easily expressible; for instance, we
may instead state that PC members can file only subsequent reports, not initial ones,
by using a recursive variant of clauseB:

Report(U,ID,R):−PCMember(U),Opinion(U,ID,R),Report(V,ID,S)
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Continuing with our example, we extend the policy to enable any designated refer-
ees to delegate their task to a subreferee. To this end, we add an extensional predicate,
Delegate(U,V,ID), meaning that principalU intends to delegate paperID to princi-
palV, and we add a clause to derive new factsReferee(V,ID) accordingly:

Referee(V,ID) :− Referee(U,ID),Delegate(U,V,ID) (clauseC)

Conversely, the policy{ A,B,C } does not enable a PC member to delegate a paper,
unless the paper has been assigned to her.

As can be seen from these clauses, our logical formalization adopts the subjec-
tive viewpoint of the conference system, which implicitly owns all predicates used to
control reports. In contrast, more sophisticated authorization languages associate facts
with principals “saying” them. Even ifOpinion(U, ) andDelegate(U,...) are implicitly
owned byU, these predicates represent the fact that the conference system believes
these facts, rather thanU’s intents. Also, the distinction between intensional and ex-
tensional predicates is useful to interpret policies but is not essential. As we illustrate
in Section5, this distinction in the specification does not prescribe any implementation
strategy.

2.4 A General Notion of Authorization Logic

Although Datalog suffices as an authorization logic for the examples and applications
developed in this paper, its syntax and semantics are largely irrelevant to our technical
developments. More abstractly, our main results hold for any logic that meets the
requirements listed below:

Authorization Logic: (C , fn, |=)

An authorization logic(C , fn, |=) is a set of clausesC ∈ C closed by substitutions
σ of messages for names, with finite sets offree names fn(C) such thatCσ = C if
dom(σ)∩ fn(C) = ∅ andfn(Cσ) ⊆ (fn(C)\dom(σ))∪ fn(σ); and with anentailment
relation S|= C, between sets of clausesS⊆ C and clausesC,C′ ∈ C , such that(Mon)
S|= C⇒ S∪{C′} |= C and(Subst) S|= C⇒ Sσ |= Cσ .

By Propositions1 and2, Datalog is an authorization logic.

3 A Spi Calculus with Authorization Assertions

The spi calculus [3] extends the pi calculus with abstract cryptographic operations in
the style of Dolev and Yao [13]. Names represent both cryptographic keys and com-
munication channels. The version of spi given here has a small but expressive range
of primitives: encryption and decryption using shared keys, input and output on shared
channel names, and operations on pairs. We conjecture that our results, including our
type system, would smoothly extend to deal with more complex features such as asym-
metric cryptography and communications, and a richer set of data types.
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The main new features of our calculus are authorization assertions represented by
inert processes called statements and expectations. These processes generalize the
begin- and end-assertions in previous embeddings of correspondences in process cal-
culi [17]. Similarly, statements and expectations track security properties, but do not
in themselves affect the behaviour of processes.

A statementis simply a clauseC (either a fact or a rule). For example, the following
process is a composition of clauseA of Section2.3with two facts:

A | Referee(alice,42) | Opinion(alice,42,report42) (processP)

An expectationexpectC represents the expectation on the part of the programmer
that the rule or factC can be inferred from clauses in parallel. Expectations typically
record authorization conditions. For example, the following process represents the
(justified) expectation that a certain fact follows from the clauses ofP.

P | expectReport(alice,42,report42) (processQ)

Expectations most usefully concern messages instantiated at runtime. In the fol-
lowing, the contentx of the report is received from the channelc:

P | out c (report42,ok) | in c(x,y); expectReport(alice,42,x) (processR)

(The distinguished messageok is an annotation to help typing, with no effect at run-
time.)

All the statements arising in our case studies fall into two distinct classes. One class
consists of unguarded, top-level statements of authorization rules, such as those in the
previous section, that define the global authorization policy. The other class consists
of input-guarded statements, triggered at runtime, that declare facts—not rules—about
data arising at runtime, such as the identities of particular reviewers or the contents of
reports. Moreover, all the expectations in our case studies are of facts, not rules.

The syntax and informal semantics of our full calculus is as follows. Binding occur-
rences of names have type annotations,T or U ; the syntax of our system of dependent
types is in Section4.

Syntax for Messages and Processes:

a,b,c,k,x,y,z name
M,N ::= message

x name: a key or a channel
{M}N authenticated encryption ofM with keyN
(M,N) message pair
ok distinguished message

P,Q,R ::= process
out M(N) asynchronous output ofN to channelM
in M(x:T);P input ofx from channelM (x has scopeP)
newx:T;P fresh generation of namex (x has scopeP)
P |Q parallel composition ofP andQ
!P unbounded parallel composition of replicas ofP
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0 inactivity
decrypt M as{y:T}N;P bindy to decryption ofM with keyN (y has scopeP)
split M as(x:T,y:U);P solve(x,y) = M (x has scopeU andP; y has scopeP)
match M as(N,y:U);P solve(N,y) = M (y has scopeP)
C statement of clauseC
expectC expectation that clauseC is derivable

Notations:(x̃:T̃) 4= (x1:T1, . . . ,xn:Tn) andnew x̃:T̃;P
4= newx1:T1; . . .newxn:Tn;P

Let S= {C1, . . . ,Cn}. We writeS| P for C1 | . . . |Cn | P.

Thesplit andmatch processes for destructing pairs are worth comparing. Asplit
binds names to the two parts of a pair, while amatch is effectively asplit followed
by a conditional; think ofmatch M as (N,y);P assplit M as (x,y); if x = N then P.
Taking match as primitive is a device to avoid using unification in a dependent type
system [16].

Next, we present the operational semantics of our calculus via standard structural
equivalence (P≡Q) and reduction (P→Q) relations. The following rules are standard.
Statements and expectations are inert processes; they do not have particular rules for
reduction or equivalence (although they are affected by other rules). The conditional
operationsdecrypt, split, andmatch simply get stuck if decryption or matching fails;
we could allow alternative branches for error handling, but they are not needed for the
examples in the paper.

Rules for Structural Equivalence: P≡Q

P≡ P (Struct Refl)
Q≡ P⇒ P≡Q (Struct Symm)
P≡Q,Q≡ R⇒ P≡ R (Struct Trans)

P≡ P′⇒ newx:T;P≡ newx:T;P′ (Struct Res)
P≡ P′⇒ P | R≡ P′ | R (Struct Par)
P≡ P′⇒ !P≡ !P′ (Struct Repl)

P | 0≡ P (Struct Par Zero)
P |Q≡Q | P (Struct Par Comm)
(P |Q) | R≡ P | (Q | R) (Struct Par Assoc)

!P≡ P | !P (Struct Repl Unfold)
!!P≡ !P (Struct Repl Repl)
!(P |Q)≡ !P | !Q (Struct Repl Par)
!0≡ 0 (Struct Repl Zero)

newx:T;(P |Q)≡ P | newx:T;Q (Struct Res Par) (forx /∈ fn(P))
newx1:T1;newx2:T2;P≡ (Struct Res Res)

newx2:T2;newx1:T1;P (for x1 6= x2,x1 /∈ fn(T2),x2 /∈ fn(T1))

Rules for Reduction: P→ P′

P→ P′⇒ P |Q→ P′ |Q (Red Par)
P→ P′⇒ newx:T;P→ newx:T;P′ (Red Res)
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P≡Q,Q→Q′,Q′ ≡ P′⇒ P→ P′ (Red Struct)

out a(M) | in a(x:T);P→ P{M/x} (Red Comm)
decrypt {M}k as{y:T}k;P→ P{M/y} (Red Decrypt)
split (M,N) as(x:T,y:U);P→ P{M/x}{N/y} (Red Split)
match (M,N) as(M,y:U);P→ P{N/y} (Red Match)

Notation: P →∗
≡ P′ is P≡ P′ or P→∗ P′.

In examples, we rely on derived notations forn-ary tuples and pattern-matching
via sequences of match and split operations. Forn > 2, (M1,M2, . . . ,Mn) abbreviates
(M1,(M2, . . . ,Mn)). For pattern matching, we writetuple M as(N1, . . . ,Nn);P, where
n> 0, M is a message (expected to be a tuple), and eachNi is an atomic pattern. Let an
atomic pattern be either a variable patternx, or a constant pattern, written=M, whereM
is a message to be matched. Each variable pattern translates to asplit, and each constant
pattern translates to amatch. For example,tuple (a,b,c) as(x,=b,y);P translates to
the processsplit (a,(b,c)) as (x,z);match z as (b,z);split (z,z) as (y,z);P, wherez
is fresh. The translation introduces a fresh temporary namez not occurring free inP,
and at the last step it duplicatesz in order to allow a match or split operation. When
using thetuple notation, we omit the types from variable patterns because they can be
inferred during typechecking. AppendixC includes the formal definition of this tuple
notation.

We enrich the syntax of inputs and decryption with the tuple notation as follows,
where in both translations the namey is chosen to not occur inN1, . . . ,Nn,P.

in M(N1, . . . ,Nn);P
4= in M(y); tuple y as(N1, . . . ,Nn);P

decrypt M as{N1, . . . ,Nn}N;P
4= decrypt M as{y}N;tuple y as(N1, . . . ,Nn);P

The notation does not translate to an atomic primitive; hence, in the case of input, a
message may be received, then silently discarded because it does not match the pattern.
This does not matter in our case because we are mostly interested in safety properties.

The presence of statements and expectations in a process induces the following
safety properties. Intuitively, an expectationexpectC is justifiedwhen there are suffi-
cient statements in parallel to deriveC. Then a process is safe if every expectation in
every reachable process is justified.

Safety:

A processP is safeif and only if whenever

P →∗
≡ new x̃:T̃;(expectC | P′)

we haveP′ ≡ new ỹ:Ũ ;(C1 | . . . |Cn | P′′) and{C1, . . . ,Cn} |= C with {ỹ}∩ fn(C) = ∅.

The definition mentions ˜x to allow fresh names inC, while it mentions ˜y to ensure
that the clausesC, C1, . . . , Cn all use the same names; the scopes of these names
are otherwise irrelevant in the logic. Were the definition to omit the outer restricted
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names ˜x, the following process would be judged safe:

newx; expectFoo(x)

Conversely, were the definition to omit the intermediate restricted names ˜y, the follow-
ing process would be judged unsafe:

Bar():−Foo(X) | expectBar() | newy; Foo(y)

Given a processP representing the legitimate participants making up a system, we
want to show that no opponent processO can induceP into an unsafe state, where some
expectation is unjustified. An opponent is any process within our spi calculus, except
it is not allowed to include any expectations itself. (The opponent goal is to confuse
the legitimate participants about who is doing what.) As a technical convenience, we
require every type annotation in an opponent to be a certain typeUn; type annota-
tions do not affect the operational semantics, so the use ofUn does not limit opponent
behaviour.

Opponents and Robust Safety:

A processO is anopponentif and only if it contains no expectations, and every type
annotation isUn.
A processP is robustly safeif and only if P |O is safe for all opponentsO.

As a consequence of this definition, in every run of a robustly safe processP in
parallel with some opponent, every expectation can be justified by statements activated
in P.

For example, the processQ given earlier is robustly safe, because the statements
in P suffice to inferReport(alice,42,report42), and they persist in any interaction with
an opponent. On the other hand, the processR is safe on its own, but is not robustly
safe. Consider the opponentout c (bogus,ok). We have:

R | out c (bogus,ok)→ P | out c (report42,ok) | expectReport(alice,42,bogus)

This is unsafe becauseReport(alice,42,bogus) is not derivable from the statements in
processP. We can secure the channelc by using thenew operator to make it private.
The processnewc; R is robustly safe; no opponent can inject a message onc.

4 A Type System for Verifying Authorization Assertions

We present a new dependent type system for checking implementations of authoriza-
tion policies. Our starting point for this development is a type and effect system by
Gordon and Jeffrey [15] for verifying one-to-many correspondences. Apart from the
new support for logical assertions, the current system features two improvements. First,
a new rely-guarantee rule for parallel composition allows us to typecheck a safe process
such asL | expectL; the analogous parallel composition cannot be typed in the orig-
inal system. Second, effects are merged into typing environments, leading to a much
cleaner presentation, and to the elimination of typing rules for effect subsumption.
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4.1 Syntax of Types and Environments

We begin by defining the syntax and informal semantics of message types.

Syntax for Types:

T,U ::= type
Un public data
Ch(T) channel for messages of typeT
Key(T) secret key for plaintexts of typeT
(x:T,U) dependent pair (scope ofx is U)
Ok(S) ok to assume the clausesS

T is generative(may be freshly created) if and only ifT is Un, Ch(U), or Key(U).
Notation:(x1:T1, . . . ,xn:Tn,Tn+1)

4= (x1:T1, . . . ,(xn:Tn,Tn+1))

A message of typeUn is public data that may flow to or from the opponent; for
example, all ciphertexts are of typeUn. A message of typeCh(T) is a name used as a
secure channel for messages of typeT. Similarly, a message of typeKey(T) is a name
used as a secret key for encrypting and decrypting plaintexts of typeT. A message of
type(x:T,U) is a pair(M,N) whereM is of typeT, andN is of typeU{M/x}. Finally,
the tokenok is the unique message of typeOk(S), provingSmay currently be inferred.

For example, the typeCh((x:Un,Ok(Report(alice,42,x)))) can be assigned toc in
processR, stating thatc is a channel for communicating pairs(M,ok) whereM : Un
andok : Ok(Report(alice,42,M)).

Next, we define typing environments—lists of name bindings and clauses—plus
two auxiliary functions. The functionenv(−) sends a process to an environment that
collects its top-level statements, with suitable name bindings for any top-level restric-
tions. The functionclauses(−) sends an environment to the program consisting of all
the clauses listed in the environment plus the clauses in top-levelOk(−) types.

Syntax for Environments, and Functions:dom(E), env(P), and clauses(E)

E ::= environment
∅ empty
E,x:T x has typeT
E,C C is a valid clause

Notation:E(x) = T if E = E′,x:T,E′′

E is generativeif and only if E = x1:T1, . . . ,xn:Tn and eachTi is generative.

dom(E,C) = dom(E) dom(E,x:T) = dom(E)∪{x} dom(∅) = ∅
env(P |Q)x̃,ỹ = env(P)x̃,env(Q)ỹ (where{x̃, ỹ}∩ fn(P |Q) = ∅)
env(newx:T;P)x,x̃ = x:T,env(P)x̃ (where{x̃}∩ fn(P) = ∅)
env(!P)x̃ = env(P)x̃ env(C)∅ = C env(P)∅ = ∅ otherwise

Convention:env(P) 4= env(P)x̃ for some distinct̃x such thatenv(P)x̃ is defined.

clauses(E,C) = clauses(E)∪{C} clauses(E,x:Ok(S)) = clauses(E)∪S
clauses(E,x:T) = clauses(E) if T 6= Ok(S) clauses(∅) = ∅
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4.2 Judgments and Typing Rules

Our system consists of three judgments, defined by the following tables. The judgments
define well-formed environments, types of messages, and well-formed processes.

Judgments of the Type System:

E ` � environmentE is well-formed
E `M : T in environmentE, messageM has typeT
E ` P in environmentE, processP is well-typed

Rules for Environments: E ` �
(Env∅)

∅ ` �

(Envx)
E ` � fn(T)⊆ dom(E) x /∈ dom(E)

E,x:T ` �

(EnvC)
E ` � fn(C)⊆ dom(E)

E,C ` �

Rules for Messages:E `M : T

(Msgx)
E ` � x∈ dom(E)

E ` x : E(x)

(Msg Encrypt)
E `M : T E ` N : Key(T)

E ` {M}N : Un

(Msg Encrypt Un)
E `M : Un E ` N : Un

E ` {M}N : Un

(Msg Pair)
E `M : T E ` N : U{M/x}

E ` (M,N) : (x:T,U)

(Msg Pair Un)
E `M : Un E ` N : Un

E ` (M,N) : Un

(Msg Ok)
E ` � fn(S)⊆ dom(E) clauses(E) |= C ∀C∈ S

E ` ok : Ok(S)

(Msg Ok Un)
E ` �

E ` ok : Un

The rule(Msg Ok)populates anOk(S) type only if we can infer each clause in the
Datalog programS from the clauses in the environmentE. For example, if

E = alice:Un,42:Un, report42:Un,
Referee(alice,42),Opinion(alice,42,report42)

thenE ` ok : Ok(Report(alice,42, report42)). The other message typing rules are fairly
standard. As in previous systems [16, 15], we need the rules(Msg Encrypt Un), (Msg
Pair Un), and(Msg Ok Un)to assignUn to arbitrary messages known to the opponent.
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Rules for Processes:E ` P

(Proc Nil)
E ` �
E ` 0

(Proc Rep)
E ` P

E ` !P

(Proc Res)
E,x:T ` P T generative

E ` newx:T;P

(Proc Par)
E,env(Q) ` P E,env(P) `Q fn(P |Q)⊆ dom(E)

E ` P |Q
(Proc Expect)
E,C ` � clauses(E) |= C

E ` expectC

(Proc Fact)
E,C ` �
E `C

(Proc Decrypt)
E `M : Un E ` N : Key(T) E,y:T ` P

E ` decrypt M as{y:T}N;P

(Proc Input)
E `M : Ch(T) E,x:T ` P

E ` in M(x:T);P

(Proc Decrypt Un)
E `M : Un E ` N : Un E,y:Un ` P

E ` decrypt M as{y:Un}N;P

(Proc Input Un)
E `M : Un E,x:Un ` P

E ` in M(x:Un);P

(Proc Match)
E `M : (x:T,U) E ` N : T E,y:U{N/x} ` P

E `match M as(N,y:U{N/x});P

(Proc Output)
E `M : Ch(T) E ` N : T

E ` out M(N)

(Proc Match Un)
E `M : Un E ` N : Un E,y:Un ` P

E `match M as(N,y:Un);P

(Proc Output Un)
E `M : Un E ` N : Un

E ` out M(N)

(Proc Split)
E `M : (x:T,U) E,x:T,y:U ` P

E ` split M as(x:T,y:U);P

(Proc Split Un)
E `M : Un E,x:Un,y:Un ` P

E ` split M as(x:Un,y:Un);P

There are three rules of particular interest.(Proc Expect)allowsexpectC provided
C is entailed in the current environment.(Proc Fact)allows any statement, provided
its names are in scope.(Proc Par)is a rely-guarantee rule for parallel composition; it
allowsP |Q, provided thatP andQ are well-typed given the top-level statements ofQ
andP, respectively. For example, by(Proc Par), ∅ ` Foo() | expectFoo() follows from
∅ ` Foo() andFoo() ` expectFoo(), the two of which follow directly by(Proc Fact)
and(Proc Expect).

4.3 Main Results

Our first theorem is that well-typed processes are safe; to prove it, we rely on a lemma
that both structural congruence and reduction preserve the process typing judgment.

Lemma 1 (Type Preservation) If E ` P and either P≡ P′ or P→ P′ then E` P′.
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Theorem 2 (Safety) If E ` P and E is generative, then P is safe.

Our second theorem is that well-typed processes whose free names are public, that
is, of typeUn, are robustly safe. It follows from the first via an auxiliary lemma that
any opponent process can be typed by assuming its free names are of typeUn.

Lemma 2 (Opponent Typability) If fn(O)⊆ {x̃} for opponent O theñx:Ũn `O.

Theorem 3 (Robust Safety)If x̃:Ũn ` P then P is robustly safe.

We conclude this section by showing our calculus can encode standard one-to-many
correspondence assertions. The idea of correspondences is that processes are annotated
with two kinds of labelled events: begin-events and end-events. The intent is that in
each run, for every end-event, there is a preceding begin-event with the same label.

For example, consider the (trivial) authorization logic(C , fn, |=), whereL ∈ C are
the labels used for the correspondence assertions,|= is defined as{L} |= L for each
L ∈ C , andfn is standard. In this setting, we can encode a particular syntax [15] as
follows:

begin !L;P
4= L | P endL;P

4= expectL | P

With this encoding and a minor extension to the type system (tagged union types), we
can express and typecheck all of the authentication protocols from Gordon and Jeffrey’s
paper [15], including WMF and BAN Kerberos.

The correspondences expressible by standard begin- and end-assertions are a spe-
cial case of the class of correspondences expressible in our calculus where the pred-
icates in expectations areextensional, that is, given explicitly by facts. Hence, we
refer to our generalized correspondence assertions based on intensional predicates as
intensional correspondences, to differentiate them from standard (extensional) corre-
spondences.

Finally, neither our operational semantics nor our type system handles one-to-one
correspondences, where each begin-event corresponds to at most one end-event. A
natural strategy for future work is to split the typing context into linear and classical
parts.

5 Application: Programme Committee Access Control

We provide two spi calculus implementations for the Datalog policy with delegation
introduced in Section2 (defining clausesA, B, andC). In both implementations, the
server enables enables those three clauses as part of its policy, and also maintains a
local database of registered reviewers on a private channelpwdb:

A | B | C | newpwdb: Ch( u:Un, Key(v:Un,id:Un,Ok(Delegate(u,v,id))),
Key(id:Un,report:Un,Ok(Opinion(u,id,report))));

Hence, each message onpwdbcodes an entry in the reviewer database, and associates
the nameu of a reviewer with two keys used to authenticate her two potential actions:
delegating a review, and filing a report. The usage of these keys is detailed below.
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Although we present our code in several fragments, these fragments should be read
as parts of a single process, whose typability and safety properties are summarized at
the end of the section. Hence, for instance, our policy and the local channelpwdbare
defined for all processes displayed in this section.

5.1 Online Delegation, with Local State

Our first implementation assumes that the conference system is contacted whenever a
referee decides to delegate her task. Hence, the system keeps track of expected reports
using another local database, each record noting a fact of the formReferee(U,ID).
When a report is received, the authenticated sender of the report is correlated with
the principal that appears in the corresponding record. When a delegation request is
received, the corresponding record is checked, then updated.

The following code defines the (abstract) behaviour of reviewerv; it is triggered
whenever a message is sent oncreateReviewer; it has public channels providing con-
trolled access to all her privileged actions—essentially any action authenticated with
one of her two keys. For simplicity, we proceed without checking the legitimacy of
requests, and we assume thatv is not a PC member—otherwise, we would implement
a third action for filing PC member reports.

(!in createReviewer(v);
newkdv: Key(z:Un,id:Un,Ok(Delegate(v,z,id)));
newkrv: Key(id:Un,report:Un,Ok(Opinion(v,id,report)));
( (!out pwdb(v,kdv,krv))
| (!in sendreportonline(=v,id,report);

Opinion(v,id,report) | out filereport(v,{id,report,ok}krv) )
| (!in delegateonline(=v,w,id);

Delegate(v,w,id) | out filedelegate(v,{w,id,ok}kdv) ))) |

In the code triggered bycreateReviewermessages, we first generate two new keyskdv
andkrv. The replicated output onpwdbassociates these keys withv. The replicated
input onsendreportonlineguards a process that filesv’s reports; in this process, the
authenticated encryption{id,report,ok}krv protects the report and also carries the fact
Opinion(v,id,report) stating its authenticity. The replicated input ondelegateonline
similarly guards a process that filesv’s delegations.

Next, we give the corresponding code that receives these two kinds of requests at
the server. (We omit the code that selects reviewers and sends messages onrefereedb.)
In the code guarded by !in filereport(v,e), the decryption “proves”Opinion(v,id,report),
whereas the input onrefereedb“proves”Referee(v,id): when both operations succeed,
these facts and clause A jointly guarantee thatReport(v,id,report) is derivable. Con-
versely, our type system would catch errors such as forgetting to correlate the paper
or the reviewer name (e.g., writing =v,id instead of =v,=id in refereedb), leaking the
decryption key, or using the wrong key.

The process guarded by !in filedelegate(v,sigd) is similar, except that it uses the
fact Delegate(v,w,id) granted by decrypting under keykdv to transformReferee(v,id)
into Referee(w,id), which is expected for typingok in the output onrefereedb.
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new refereedb: Ch( (u:Un,(id:Un,Ok(Referee(u,id)))));
(!in filereport(v,e);

in pwdb(=v,kdv,krv); decrypt eas{id,report, }krv;
in refereedb(=v,=id, ); expectReport(v,id,report)) |

(!in filedelegate(v,sigd);
in pwdb(=v,kdv,krv); decrypt sigdas{w,id, }kdv;
in refereedb(=v,=id, ); out refereedb(w,id,ok)) |

The code for processing PC member reports is similar but simpler:

newkp:Key(u:Un,Ok(PCMember(u)));
(!in createPCMember(u,pc);PCMember(u) | out pc({(u,ok)}kp) ) |
(!in filepcreport(v,e,pctoken);

in pwdb(=v,kdv,krv); decrypt eas{id,report, }krv;
decrypt pctokenas{=v, }kp; expectReport(v,id,report) ) |

Instead of maintaining a database of PC members, we (arbitrarily) use capabilities,
consisting of the name of the PC member encrypted under a new private keykp. The
code implements two services as replicated inputs, to register a new PC member and
to process a PC member report. The factOpinion(v,id,report) is obtained as above.
Although the capability sent back on channelpchas typeUn, its successful decryption
yields the factPCMember(v) and thus enablesReport(v,id,report) by clauseB.

5.2 Offline Delegation, with Certificate Chains

Our second implementation relies instead on explicit chains of delegation certificates.
It does not require that the conference system be contacted when delegation occurs;
on the other hand, the system may have to check a list of certificates before accepting
an incoming report. Moreover, we rely on self-authenticated capabilities under keyka
for representing initial refereeing requests, instead of messages on the private database
channelrefereedb.

The idea is that, when a refereev files a report for paperid, she also presents a
delegation chain showing she is authorized to file the report. In the implementation,
we let adelegation chain provingReferee(v,id) be a message in one of two forms:

• either an authenticated encryption{v,id,ok}ka whereka is the key used by the
PC chair to appoint referees directly, implyingReferee(v,id);

• or a tuple (t,{v,id,ok}kdt,ct), wheret is a principal with delegation keykdt, so
that {v,id,ok}kdt provesDelegate(t,v,id), andct is a (shorter) delegation chain
provingReferee(t,id).

Given clauseC governing delegation, an easy bottom-up argument establishes that
the existence of such a delegation chain does indeed proveReferee(v,id). The following
code for accepting and checking a delegation chain supports this inductive argument.

( Delegate(U,W,ID):−Delegate(U,V,ID),Delegate(V,W,ID) ) |
( Delegate(U,U,ID):−Opinion(U,ID,R) ) |
newka:Key((u:Un,(id:Un,Ok(Referee(u,id)))));
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(!in filedelegatereport(v,e,cv);
in pwdb(=v,kdv,krv); decrypt eas{id,report, }krv;
new link:Ch(u:Un,c:Un,Ok(Delegate(u,v,id))); out link(v,cv,ok) |
!in link(u,cu, );
( decrypt cuas{=u,=id, }ka; expectReport(v,id,report)) |
( tuple cuas(t,delegation,ct); in pwdb(=t,kdt, );

decrypt delegationas{=u,=id, }kdt; out link(t,ct,ok)) |

The two auxiliary clauses makeDelegatereflexive and transitive; these clauses give
us more freedom but they do not affect the outcome of our policy—one can check that
these two clauses are redundant in any derivation ofReport.

The process guarded by the replicated input on channelfiledelegatereportallocates
a private channellink and uses that channel recursively to verify, one certificate at a
time, that the messagecv filed with the report is indeed a delegation chain proving
Referee(v,id). The process guarded bylink has two cases: the base case (decrypt cu)
verifies an initial refereeing request and finally accepts the report as valid; the recursive
case (tuple cu) verifies a delegation step then continues on the rest of the chain (ct).
The type assigned tolink precisely states our loop invariant:Delegate(u,v,id) proves
that there is a valid delegation chain fromu (the current delegator) down tov (the report
writer) for paperid.

Proposition 3 Let EUn assign typeUn to createReviewer, createPCMember, sendre-
portonline, delegateonline, filereport, filedelegate, filepcreport, filedelegatereport, and
any other name in its domain.

Let EP assign the types displayed above topwdb, refereedb, kp, andka.
Let P be a process such that EUn,EP ` P.
Let Q be the process comprising all process fragments in this section followed by P.
We have EUn `Q, and hence Q is robustly safe.

This proposition is proved by typingQ then applying Theorem3. In its statement,
the processP has access to the private keys and channels collected inEP; this process
accounts for any trusted parts of the server left undefined, including for instance code
that assigns papers to reviewers by issuing facts onRefereeand using them to populate
refereedband generate valid certificates under keyka. We may simply takeP = 0,
or let P introduce its own policy extensions, as long as it complies with the typing
environmentsEUn andEP.

In addition, the context (implicitly) enclosingQ in our statement of robust safety ac-
counts for any untrusted part of the system, including the opponent, but also additional
code for the reviewers interacting withQ (and possiblyP) using the names collected
in EUn, and in particular the free names ofQ. Hence, the context may impersonate
referees, intercept messages on free channels, then send on channelfiledelegatereport
any term computed from intercepted messages. The proposition confirms that minimal
typing assumptions onP suffice to guarantee the robust safety ofQ.
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6 Application: A Default Implementation for Datalog

We finally describe a translation from Datalog programs to the spi calculus. To each
predicatep and arityn, we associate a fresh namepn with a channel typeTp,n. Unless
the predicatep occurs with different arities, we omit indexes and write justp andTp for
pn andTp,n. Relying on some preliminary renaming, we also reserve a set of namesV
for Datalog variables. The translation is given below:

Translation from Datalog to the Spi Calculus: [[S]]

Tp,n = Ch(x1:Un, . . . ,xn:Un,Ok(p(x1, . . . ,xn)))

[[S]] = ∏C∈S[[C]] [[∅]] = 0
[[L :−L1, . . . ,Lm]] = ![[L1, . . . ,Lm]]∅[[[L]]+] for m≥ 0
[[p(u1, . . . ,un)]]+ = out pn(u1, . . . ,un,ok)
[[L1,L2, . . . ,Lm]]Σ[·] = [[L1]]Σ

[
[[L2, . . . ,Lm]]Σ∪fv(L1)[·]

]
[[ε]]Σ[·] = [·]

[[p(u1, . . . ,un)]]Σ[·] = in pn(u1, . . . ,un,=ok); [·]
whereui is ui whenui 6∈ (V \ (Σ∪ fv(u j<i))) andui is =ui otherwise.

P⇓L when∃P′.P →∗
≡ P′ | [[L]]+

The process[[S]] represents the whole programS. The process[[L :−L1, . . . ,Lm]]
is a replicated process representing the clauseL :−L1, . . . ,Lm. The process[[L]]+ is
an output representing the conclusionL of a clause. The context[[L1,L2, . . . ,Lm]]Σ[·],
where[·] is a hole to be filled with a process, represents the body of a clause. Finally,
the predicateP ⇓L holds if the processP eventually produces an output representing
the factL.

For example, using the policy of Section2, the translation of predicateReportuses
a channelReportof typeTReport= Ch(U :Un, ID:Un,R:Un,Ok(Report(U,ID,R))) and
the translation of clauseA yields the process

[[Report(U,ID,R):−Referee(U,ID),Opinion(U,ID,R)]] =
!in Referee(U,ID,=ok); in Opinion(=U,=ID,R,=ok); out Report(U,ID,R,ok)

The next lemma states that a Datalog program, considered as a policy, is well typed
when placed in parallel with its own translation.

Lemma 3 (Typability of Encoding) Let S be a Datalog program using predicatesp̃n

and names̃y with fn(S)⊆ {ỹ}. Let E= ỹ:Ũn, p̃n:T̃n,p. We have È S| [[S]].

More precisely, the lemma also shows that our translation is compositional: one can
translate some part of a logical policy, develop some specific protocols that comply with
some other part of the policy, then put the two implementations in parallel and rely on
messages on channelspn to safely exchange facts concerning shared predicates.

Lemma3 establishes that our translation is correct by typing. The following theo-
rem also states that the translation is complete: any fact that logically follows from the
Datalog program can be observed in the pi calculus.

Theorem 4 (Correctness and Completeness)Let S be a Datalog program and F a
fact. We have S|= F if and only if[[S]] ⇓F .

19



To illustrate our translation, we sketch an alternative implementation of our confer-
ence management server. Instead of coding the recursive processing of messages sent
by subreferees, as in Section5, we set up a replicated input for each kind of certificate,
with code to check the certificate and send a message on a channel of the translation.
Independently, when a fact is expected, we simply read it on a channel of the transla-
tion. For instance, to process incoming reports, we may use the code

!in trivial filereport(v,id,report);
in Report(=v,=id,=report,=ok); expectReport(v,id,report)

The translation of clause A sends a matching message onReport, provided the sys-
tem sends matching messages onOpinionandReferee. This approach is correct and
complete, but also non-deterministic and very inefficient. As a refinement, since any
(well-typed) program can access the channels of the translation, one may use the trans-
lation as a default implementation for some clauses and provide optimized code for
others.

7 Conclusions and Future Work

We presented a spi calculus with embedded authorization policies, a type system that
can statically check conformance to a policy (even in the presence of active attackers),
and a series of applications coded using a prototype implementation.

In itself, our type system does not “solve” authorization: the security of a well-
typed program still relies on a careful (manual) review of the policy, on the discrimi-
nating statement of trusted facts (or even rules) in the program, and on the presence of
expectations marking sensitive actions—indeed, in our setting, every program is safe
for a sufficiently permissive policy. Nonetheless, our type system statically enforces a
discipline prescribed by the policy across the program, as it uses channels and crypto-
graphic primitives to process messages, and can facilitate code reviews.

As it stands, our calculus and type system are simple and illustrative, but have
many limitations that may be investigated. For example, we do not consider revocation
or temporary activation of authorization statements. From a logical viewpoint, many
authorization languages also extend Datalog with notions of locality and partial trust,
considering for examples facts and clauses relative to each principal. A first step will
be to consider a combination of the present system with ideas from a recent work [18]
on a type system for checking secrecy in a pi calculus despite the compromise of some
principals. We are also exploring extensions of our type system to support, for instance,
some subtyping, public-key cryptographic primitives, and linearity properties. More
experimentally, we plan to extend our typechecker and symbolic interpreter, and to
study their integration with other proof techniques.
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A Datalog Proofs

This section develops proofs of Theorem1 and Propositions1 and2.

Lemma 4 If S |= F then S∪{C} |= F.

Proof By induction on the depthd of the derivation tree forS|= F .

• (d = 1): SupposeS|= F becauseF ∈ S.

By set theory,F ∈ S∪{C}.
By (Infer Fact), S∪{C} |= F .

• (d = m+1): SupposeS|= Lσ becauseL :−L1, . . . ,Ln ∈Sand∀i ∈ 1..n S|= Liσ .

By set theory,L :−L1, . . . ,Ln ∈ S∪{C}.
By inductive hypothesis,∀i ∈ 1..n S∪{C} |= Liσ .

By (Infer Fact), S∪{C} |= Lσ . �

Lemma 5 If S |= F and S∪{F} |= F ′ then S|= F ′.

Proof By induction on the derivation ofS∪{F} |= F ′. �

Lemma 6 If S |= F andσ replaces names with messages, then Sσ |= Fσ .

Proof By induction on the depthd of the derivation tree forS|= F .

• (d = 1): SupposeS|= F becauseF ∈ S.

By F ∈ S, Fσ ∈ Sσ .

By (Infer Fact), Sσ |= Fσ .

• (d = m+1): SupposeS|= Lρ becauseL :−L1, . . . ,Ln ∈ Sand∀i ∈ 1..n S|= Liρ.

By L :−L1, . . . ,Ln ∈ S, Lσ :−L1σ , . . . ,Lnσ ∈ Sσ .

By inductive hypothesis,∀i ∈ 1..n Sσ |= Liρσ .

Sinceρ replaces variables with names andσ names with messages,ρσ = σρ ′

whereρ ′ is the result of applyingσ to ρ.

The hypotheses can be re-written as∀i ∈ 1..n Sσ |= Liσρ ′.

By (Infer Fact), Sσ |= Lσρ ′. �

Proof of Theorem 1. For all clauses C and sets of clauses S, (1) and (2) are equiv-
alent:

(1) For all sets of facts S′, {F | S′∪{C} |= F} ⊆ {F | S′∪S|= F};

(2) S∪{L1σ , . . . ,Lnσ} |= Lσ , where C= L :−L1, . . . ,Ln and σ = {x̃/X̃} is an in-
jective substitution such that{x̃}∩ (fn(S)∪ fn(C)) = ∅ andX̃ = fv(L1, . . . ,Ln).

Proof We prove the two implications separately.
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• ((2)⇒ (1)): By induction on the structure ofS′. LetC = L :−L1, . . . ,Ln.

– (S′ = ∅): By definition of|=, {F | {C} |= F}= ∅⊆ {F | S|= F}.
– (S′ = S′′∪{F ′}) By hypothesis,{F | S′′∪{C} |= F} ⊆ {F | S′′∪S|= F}.

We distinguish two cases.
Suppose{F | S′′∪{C} |= F}= {F | S′∪{C} |= F}.
By Lemma4, {F | S′′∪S|= F} ⊆ {F | S′∪S|= F}.
By transitivity,{F | S′∪{C} |= F} ⊆ {F | S′∪S|= F}.
Suppose instead{F | S′′∪{C} |= F} ⊂ {F | S′∪{C} |= F}.
We distinguish two further cases.

∗ {F | S′∪{C} |= F}= {F ′}∪{F | S′′∪{C} |= F}.
By (Infer Fact), S′∪S|= F ′.
By definition,{F ′} ⊆ {F | S′∪S|= F}.
By set theory,{F ′}∪{F | S′′∪{C} |= F} ⊆ {F | S′∪S|= F}.

∗ {F | S′∪{C} |= F}= {F ′′}∪{F | S′′∪{C} |= F}, whereF ′′ 6= F ′.
By F ′′ 6= F ′, an instance of(Infer Fact)must be used to deriveF ′′.
By construction,C is the only rule present.
By (Infer Fact), F ′′ = Lρ, for someρ such that∀i ∈ 1..n S′ ∪{C} |=
Liρ.
We show thatS′ ∪{C} |= Liρ ⇒ S′ ∪S |= Liρ, for a generici ∈ 1..n,
by induction on the depthd of the derivation tree.
· (d = 1): SupposeS′∪{C} |= Liρ.

By hypothesis,Liρ ∈ S′.
By (Infer Fact), S′∪S|= Liρ.

· (d = m+1): SupposeS′∪{C} |= Liρρ ′.
By hypothesis,∀i ∈ 1..n S′∪{C} |= Liρρ ′.
By inductive hypothesis,∀i ∈ 1..n S′∪S|= Liρρ ′.
By hypothesis of the theorem,S∪{L1σ , . . . ,Lnσ} |= Lσ , where
σ = {x̃/X̃} is an injective substitution,{x̃}∩ (fn(S)∪ fn(L :−L1,
. . . ,Ln)) = ∅ andX̃ = fv(L1, . . . ,Ln).
By definition ofσ , there existsσ ′ such thatσσ ′ = ρρ ′.
By Lemma6, Sσ ′∪{L1σσ ′, . . . ,Lnσσ ′} |= Lσσ ′.
By definition ofσ andσ ′, Sσ ′ = S.
By Lemma4 and Lemma5, S′ ∪S∪ {L1σσ ′, . . . ,Ln−1σσ ′} |=
Lσσ ′.
By iterating the argument on alln, we get toS′∪S|= Lσσ ′.
By definition ofσ ′, S′∪S|= Lρρ ′.

• ((1)⇒ (2)): Suppose that{F | S′∪{L :−L1, . . . ,Ln} |= F} ⊆ {F | S′∪S|= F}
for all S′.

Consider the case forS′ = {L1σ , . . . ,Lnσ} for σ in the hypothesis of the theorem.

By (Infer Fact), Lσ ∈ {F | S′∪{L :−L1, . . . ,Ln} |= F}.
By set theory,Lσ ∈ {F | S′∪S|= F}.
By definition ofS′, {L1σ , . . . ,Lnσ}∪S|= Lσ . �
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The next two lemmas prove monotonicity and closure under substitutions of Datalog,
which are the properties (Mon) and (Subst) needed to show that it is an authorization
logic.

Proof of Proposition 1 (Monotonicity) If S |= C then S∪{C′} |= C.

Proof By cases on the last rule used in the derivation ofS|= C, using Lemma4. �

Proof of Proposition 2 (Substitutivity) If S |= C andσ sends names to messages,
Sσ |= Cσ .

Proof By cases on the last rule used in the derivation ofS|= C.

(Infer Fact) By Lemma6.

(Infer Clause) SupposeS|= L :−L1, . . . ,Ln because, for some injective substitution
ρ, from fv(L1, . . . ,Ln) to fresh names,S∪{L1ρ, . . . ,Lnρ} |= Lρ.

By Lemma6, (S∪{L1ρ, . . . ,Lnρ})σ |= Lρσ .

By applying the substitution,(Sσ ∪{L1ρσ , . . . ,Lnρσ} |= Lρσ .

Sinceρ replaces variables with fresh names andσ replaces existing names with
messages,ρσ = σρ.

The hypotheses can be re-written as(Sσ ∪{L1σρ, . . . ,Lnσρ} |= Lσρ.

By (Infer Clause), Sσ |= Lσ :−L1σ , . . . ,Lnσ .

By factorizing the substitution,Sσ |= (L :−L1, . . . ,Ln)σ . �

The following is a strengthening property of authorization logics with respect to
sets of clauses equivalent up to fresh renamings. It will be used in the proofs of Ap-
pendixB.2.

Lemma 7 Let (C , fn, |=) be an authorization logic, and let C∈ C , S,S′ ⊆ C . If S∪
S{ỹ/x̃}∪S′ |=C where{ỹ}∩ fn(S∪S′∪{C}) = ∅ and thẽy are distinct, then S∪S′ |=C.

Proof Let σ = {ỹ/x̃}. By (Subst), (S∪Sσ ∪S′)σ |= Cσ .
By definition,(S∪Sσ ∪S′)σ = Sσ ∪S′σ , henceSσ ∪S′σ |= Cσ .
Since thẽy are fresh and distinct,ρ = {x̃/ỹ} is the inverse ofσ .
By (Subst), (Sσ ∪S′σ)ρ |= Cσρ.
By definition,(Sσ ∪S′σ)ρ = Sσρ ∪S′σρ = S∪S′ andCσρ = C.
We conclude withS∪S′ |= C. �

B Spi Calculus Proofs

This section has three parts. AppendixB.1 contains the definition of an alternative,
more explicit, type system for the spi calculus and the proof that it is equivalent to the
one given in the main body of the paper. AppendixB.2shows the main properties of the
type system—subject congruence and subject reduction, in particular. AppendixB.3
contains the proofs of opponent typability and of the main results of the paper concern-
ing safety.

All the results in this section are independent of the choice of authorization logics.
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B.1 An Alternative Type System

We define a type system for the spi calculus that usesguaranteesto represent the top
level, active statements from processes while maintaining invariance under renaming
of bound names. It is informative to capture these guarantees explicitly with typing
rules, rather than to capture them implicitly via the separate functionenv(P) as used
in the system in the main body of the paper. We show the equivalence of the two type
systems, and induce soundness of the main system from proofs about the alternative
system. Still, we expect that a direct proof of soundness for the main system would
proceed similarly to the proof for the alternative system.

Guarantees:

G,H ::= guarantee
0 no guarantee
G | H composition
newx:T;G restriction
C clauseC can be assumed

The functionenv(−) defined below, which given a guarantee extracts the corre-
sponding environment, is analogous to the one given in Section4 for processes.

From Guarantees to Environments:env(G)

env(0)∅ = ∅ env(C)∅ = C

env(G | H)x̃,ỹ = env(G)x̃,env(H)ỹ (where{x̃, ỹ}∩ fn(G | H) = ∅)

env(newx:T;G)x,x̃ = x:T,env(G)x̃ (where{x̃}∩ fn(G) = ∅)

Convention:env(G) 4= env(G)x̃ for some distinct̃x such thatenv(G)x̃ is defined.

Guarantee subsumption is a binary relation on guarantees characterized by the ax-
ioms(G Sub Idem)and(G Sub Order). If GvH then intuitivelyG contains fewer facts
thanH. Structural congruence for guarantees is defined in terms of subsumption.

Guarantee Subsumption:Gv H

GvG (G Sub Refl)
Gv H,H vG′⇒GvG′ (G Sub Trans)

Gv H ⇒ newx:T;Gv newx:T;H (G Sub Res)
GvG′⇒G | H vG′ | H (G Sub Par)
G | 0vG (G Sub Par Zero)
G | H v H |G (G Sub Par Comm)
(G |G′) | H vG | (G′ | H) (G Sub Par Assoc)

G |GvG (G Sub Idem)
GvG | H (G Sub Order)

newx:T;(G | H)vG | newx:T;H (G Sub Res ParL) (forx /∈ fn(G))
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G | newx:T;H v newx:T;(G | H) (G Sub Res ParR) (forx /∈ fn(G))
newx1:T1;newx2:T2;Gv (G Sub Res Res)

newx2:T2;newx1:T1;G (for x1 6= x2,x1 /∈ fn(T2),x2 /∈ fn(T1))

Structural Congruence for Guarantees:G≡ H

G≡ H
4= Gv H andH vG (G Struct)

Below we give the rules defining the type system with guarantees. The rules(ProcG
Res), (ProcG Par), and(ProcG Fact)grow the guarantee of a process,(ProcG Rep)
leaves it invariant, and all the other rules set it to0.

Additional Judgment:

E ` P : G good processP guaranteeingG

Good Processes:E ` P : G (in environment E, processP grants G).

(ProcG Nil)
E ` �

E ` 0 : 0

(ProcG Rep)
E ` P : G

E ` !P : G

(ProcG Res)
E,x:T ` P : G Tgenerative

E ` newx:T;P : newx:T;G

(ProcG Par)
E,env(G2) ` P : G1 E,env(G1) `Q : G2 fn(P |Q)⊆ dom(E)

E ` P |Q : G1 |G2

(ProcG Input)
E `M : Ch(T) E,x:T ` P : G

E ` in M(x:T);P : 0

(ProcG Input Un)
E `M : Un E,x:Un ` P : G

E ` in M(x:Un);P : 0

(ProcG Output)
E `M : Ch(T) E ` N : T

E ` out M(N) : 0

(ProcG Output Un)
E `M : Un E ` N : Un

E ` out M(N) : 0

(ProcG Decrypt)
E `M : Un E ` N : Key(T) E,y:T ` P : G

E ` decrypt M as{y:T}N;P : 0

(ProcG Decrypt Un)
E `M : Un E ` N : Un E,y:Un ` P : G

E ` decrypt M as{y:Un}N;P : 0

(ProcG Match)
E `M : (x:T,U) E ` N : T E,y:U{N/x} ` P : G

E `match M as(N,y:U{N/x});P : 0

(ProcG Match Un)
E `M : Un E ` N : Un E,y:Un ` P : G

E `match M as(N,y:Un);P : 0
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(ProcG Split)
E `M : (x:T,U) E,x:T,y:U ` P : G

E ` split M as(x:T,y:U);P : 0

(ProcG Split Un)
E `M : Un E,x:Un,y:Un ` P : G

E ` split M as(x:Un,y:Un);P : 0

(ProcG Query)
E,C ` � clauses(E) |= C

E ` expectC : 0

(ProcG Fact)
E,C ` �
E `C : C

Generic Judgment:J

J ::= � | M : T | P : G meta-syntax for the generic judgment

fn(�) = ∅ fn(M : T) = fn(M)∪ fn(T) fn(P : G) = fn(P)∪ fn(G)

�σ = � (M : T)σ = Mσ : Tσ (P : G)σ = Pσ : Gσ

We can show now that the two type systems are equivalent.

Lemma 8 E ` P and env(P)x̃ = E′ if and only if E` P : G, for some G such that
E′ = env(G)x̃.

Proof We split the proof in two parts:

(1) if E ` P andenv(P)x̃ = E′ thenE ` P : G, for someG such thatE′ = env(G)x̃;

(2) if E ` P : G, for someG such thatE′ = env(G)x̃ thenE ` P andenv(P)x̃ = E′.

(1) By induction on the derivation ofE ` P.

(Proc Nil) SupposeE ` 0.
By hypothesis,E ` �.
By definition, the onlyE′ such thatenv(0)x̃ = E′ is E′ = ∅, and necessarily
x̃ = ∅.
By (ProcG Nil), E ` 0 : 0.
By definition,env(0)∅ = ∅.

(Proc Par) SupposeE ` P |Q.
By hypothesis,E,env(Q)ỹ ` P, E,env(P)x̃ `Q, fn(P |Q)⊆ dom(E).
By inductive hypothesis,E,env(Q)ỹ ` P : G1 with env(P)x̃ = env(G1)x̃ and
E,env(P)x̃ `Q : G2 with env(Q)ỹ = env(G2)ỹ.
By (ProcG Par), E ` P |Q : G1 |G2.
By definition,env(P |Q)x̃,ỹ = env(P)x̃,env(Q)ỹ.
By definition,env(G1 |G2)x̃,ỹ = env(G1)x̃,env(G2)ỹ.
By transitivity,env(P |Q)x̃,ỹ = env(G1 |G2)x̃,ỹ.

(Proc Rep) SupposeE ` !P.
By hypothesis,E ` P.
By inductive hypothesis, ifenv(P)x̃ = E′ then there exists aG such that
E ` P : G andenv(G)x̃ = E′.

26



By (ProcG Rep), E ` !P : G.

By definition,env(!P)x̃ = env(P)x̃.

(Proc Res) SupposeE ` newx:T;P.

By hypothesis,E,x:T ` P.

By inductive hypothesis, ifenv(P)x̃ = E′ then there isG such thatE,x:T `
P : G andenv(G)x̃ = E′.

By (ProcG Res), E ` newx:T;P : newx:T;G.

By definition,env(newx:T;P)y,x̃ = y:T,env(P)x̃.

By definition,env(newx:T;G)y,x̃ = y:T,env(G)x̃.

By transitivity,env(newx:T;P)y,x̃ = env(newx:T;G)y,x̃.

(Proc Fact) SupposeE `C.

By hypothesis,E,C ` �.
By definition, the onlyE′ such thatenv(C)x̃ = E′ is E′ =C, and necessarily
x̃ = ∅.

By (ProcG Fact), E `C : C.

By definition,env(C)∅ = C.

The other cases are easy.

(2) By induction on the derivation ofE ` P : G, similarly to the previous point. �

B.2 Properties of the Type System

We proceed to show the main properties of the type system, in particular subject con-
gruence and subject reduction, which together give type preservation (Lemma1).

Lemma 9 If E ` � and x∈ dom(E) then fn(E(x))⊆ dom(E).

Proof By structural induction onE. �

Lemma 10 (Unique Types) If E ` x : T and E` x : U then T= U.

Proof By structural induction onE, noticing that sinceE ` x : T then rule(Msg x)
applies, and thereforeE(x) = T. �

Lemma 11 If E `M : T then fn(T)∪ fn(M)⊆ dom(E) and E` �.

Proof By induction on the derivation ofE `M : T.

(Msg x) SupposeE ` x : E(x).

By hypothesis,E ` � andx∈ dom(E).

By Lemma9, fn(E(x))⊆ dom(E).
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(Msg Encrypt) SupposeE ` {M}N : Un.

By hypothesis,E `M : T andE ` N : Key(T).

By definition,fn(Un) = ∅.

By inductive hypothesis,E ` �, fn(M)⊆ dom(E) andfn(N)⊆ dom(E).

By set theory and definition of free names,fn({M}N)⊆ dom(E).

(Msg Encrypt Un) SupposeE ` {M}N : Un.

By hypothesis,E `M : Un andE ` N : Un.

By definition,fn(Un) = ∅.

By inductive hypothesis,E ` �, fn(M)⊆ dom(E) andfn(N)⊆ dom(E).

By set theory and definition of free names,fn({M}N)⊆ dom(E).

(Msg Pair) SupposeE ` (M,N) : (x:T,U).

By hypothesis,E `M : T andE ` N : U{M/x}.
By inductive hypothesis,E ` �, fn(M)∪ fn(T)⊆ dom(E), and
fn(N)∪ fn(U{M/x})⊆ dom(E).

By definition,fn((x:T,U)) = fn(T)∪ (fn(U)\{x}).
By set theory and definition of free names,fn((M,N))∪ fn((x:T,U))⊆ dom(E).

(Msg Pair Un) SupposeE ` (M,N) : Un.

By hypothesis,E `M : Un andE ` N : Un.

By definition,fn(Un) = ∅.

By inductive hypothesis,E ` �, fn(M)⊆ dom(E), andfn(N)⊆ dom(E).

By set theory and definition of free names,fn((M,N))∪ fn((x:T,U))⊆ dom(E).

(Msg Ok) SupposeE ` ok : Ok(D).

By hypothesis,E ` �, fn(D)⊆ dom(E) andclauses(E) |= D.

By definition,fn(ok) = ∅.

(Msg Ok Un) SupposeE ` ok : Un.

By hypothesis,E ` �. By definition,fn(ok) = fn(Un) = ∅. �

Lemma 12 If E ` P : G then fn(G) ⊆ fn(P) ⊆ dom(E) and E,env(G)z̃ ` � for {z̃}∩
dom(E) = ∅.

Proof By induction on the derivation ofE ` P : G.

(ProcG Nil) Trivial.
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(ProcG Par) SupposeE ` P |Q : G1 |G2.

By hypothesis,E,env(G2)ỹ ` P : G1, E,env(G1)x̃ `Q : G2, fn(P |Q)⊆ dom(E).

By inductive hypotheses,
E,env(G2)ỹ,env(G1)x̃′ ` � where{x̃′}∩dom(E,env(G2)ỹ) = ∅, fn(G1)⊆ fn(P),
andE,env(G1)x̃,env(G2)ỹ′ ` � where{ỹ′} ∩ dom(E,env(G1)x̃) = ∅, fn(G2) ⊆
fn(Q).

Choosingz̃ = x̃, ỹ′, we haveE,env(G1 | G2)z̃ ` �, fn(G1 | G2) ⊆ fn(P | Q) ⊆
dom(E), and{z̃}∩dom(E) = ∅.

(ProcG Rep) SupposeE ` !P : G.

By hypothesis,E ` P : G.

By inductive hypothesis,fn(G)⊆ fn(P)⊆ dom(E) andE,env(G)z̃ ` � for {z̃}∩
dom(E) = ∅, and we conclude.

(ProcG Res) SupposeE ` newx:T;P : newx:T;G.

By hypothesis,E,x:T ` P : G.

By inductive hypothesis,fn(G) ⊆ fn(P) ⊆ dom(E,x:T) andE,x:T,env(G)z̃ ` �
for {z̃}∩dom(E,x:T) = ∅.

By definition,E,env(newx:T;G)x,z̃ = E,x:T,env(G)z̃, and we conclude.

(ProcG Query) SupposeE ` expectC : 0.

By hypothesis,E,C ` �. By (EnvC), fn(C)⊆ dom(E) and we conclude.

(ProcG Fact) SupposeE `C : C.

By hypothesis,E,C ` �. By (EnvC), fn(C)⊆ dom(E) and we conclude.

(ProcG Input) SupposeE ` in M(x:T);P : 0.

By hypothesis,E `M : Ch(T) andE,x:T ` P : G.

By inductive hypothesis,fn(G)⊆ fn(P)⊆ dom(E,x:T).

By set theory,fn(0)⊆ (fn(P)\{x})⊆ dom(E).

The remaining cases are similar to the case of(ProcG Input). �

Lemma 13 If env(G)x̃ s defined, then dom(env(G)x̃) = {x̃}.

Proof By structural induction onG. �

Lemma 14 If ỹ is a vector of distinct names and env(G)x̃ and env(G)ỹ are defined then
clauses(env(G)x̃) = clauses(env(G)ỹ){x̃/ỹ}.

Proof By structural induction onG. �

Lemma 15 (Unique Guarantees)If E ` P : G and E′ ` P : G′ then G= G′.

Proof By induction on the derivation ofE ` P : G.
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(ProcG Par) SupposeE ` P |Q : G1 |G2.

By hypothesis,E,env(G2)ỹ ` P : G1, E,env(G1)x̃ `Q : G2, fn(P |Q)⊆ dom(E).

Only (ProcG Par)can deriveE′ ` P |Q : G′, therefore we haveG′ = G′
1 | G′

2,
E′,env(G′

2)
ỹ′ ` P : G′

1, E′,env(G′
1)

x̃ `Q : G′
2, fn(P |Q)⊆ dom(E′).

By inductive hypotheses,G1 = G′
1 andG2 = G′

2.

We conclude withG1 |G2 = G′
1 |G′

2.

(ProcG Rep) SupposeE ` !P : G.

By hypothesis,E ` P : G.

Only (ProcG Rep)can deriveE′ ` !P : G′, so we haveE′ ` P : G′.

By inductive hypothesis,G = G′.

(ProcG Res) SupposeE ` newx:T;P : (x:T)G.

By hypothesis,E,x:T ` P : G.

Only (ProcG Res)can deriveE′ ` newx:T;P : G′, so we haveE′,x:T ` P : G′.

By inductive hypothesis,G = G′.

(ProcG Fact) SupposeE `C : C.

By hypothesis,E,C ` �.
Only (ProcG Fact)can deriveE′ ` C : G′, so we haveG′ = C = G, and we
conclude.

The other cases are trivial, because bothG andG′ in E ` P : G andE′ ` P : G′ are
always forced to be0. �

Lemma 16 (Strengthening) LetJ range over{�,M : T,P : G}. (i) If E ,x:U,E′ `J
and U is generative and x6∈ fn(J )∪ fn(E′) then E,E′ ` J . (ii) If E ,C,E′ ` � then
E,E′ ` �.

Proof Both cases follow by induction on the depths of the derivation. �

Lemma 17 If E,env(G)x̃,env(G)ỹ,E′ ` J and {x̃} ∩ (fn(E′) ∪ fn(J )) = ∅ then
E,env(G)ỹ,E′ `J .

Proof

• The case forE,env(G)x̃,env(G)ỹ,E′ ` � follows from Lemma16.

• The case forE,env(G)x̃,env(G)ỹ,E′ ` M : T is by induction on the derivation.
Let E1 = E,env(G)x̃,env(G)ỹ,E′ andE2 = E,env(G)ỹ,E′.

By the previous point, we have that ifE1 ` � thenE2 ` �.

(Msg x) SupposeE1 ` x : E1(x).
By hypothesis,E1 ` �.
By hypothesis of the lemma,x∈ (dom(E1)\{x̃}).
By (Msgx), E2 ` x : E2(x).
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(Msg Ok) SupposeE1 ` ok : Ok(S).
By hypothesis,E1 ` � andfn(S)⊆ (dom(E1)\{x̃}) and∀C∈ S
clauses(E1) |= C.

By definition,clauses(E1) = clauses(E2)∪clauses(env(G)x̃).
By E1 ` �, and by hypothesis of the lemma,
{x̃}∩ (fn(clauses(E2))∪ fn(S)) = ∅.

By Lemma14, clauses(env(G)ỹ) = clauses(env(G)x̃){ỹ/x̃}.
By Lemma7, ∀C∈ S.clauses(E2) |= C.

The others cases are easy.

• The case forE,env(G)x̃,env(G)ỹ,E′ ` P : H is by induction on the derivation.

Let E1 = E,env(G)x̃,env(G)ỹ,E′ andE2 = E,env(G)ỹ,E′.

By the first point of this lemma, we have that ifE1 ` � thenE2 ` �.

(ProcG Nil) SupposeE1 ` 0 : 0.

By hypothesis,E ` �.
By E2 ` � and(ProcG Nil), E2 ` 0 : 0.

(ProcG Par) SupposeE1 ` P |Q : G1 |G2.

By Lemma12, fn(G1 |G2)⊆ fn(P |Q).
By hypothesis,E1,env(G2)z̃` P : G1 andE1,env(G1)w̃ `Q : G2, andfn(P |
Q)⊆ dom(E1).
By inductive hypothesis,E2,env(G2)z̃ ` P : G1 andE2,env(G1)w̃ `Q : G2.

By (ProcG Par), E2 ` P |Q : G1 |G2.

(ProcG Rep) SupposeE1 ` !P : G′.

By hypothesis,E1 ` P : G′.

By inductive hypothesis,E2 ` P : G′.

By (ProcG Rep), E2 ` !P : G′.

(ProcG Res) SupposeE1 ` newx:T;P : newx:T;G′.

By hypothesis,E1,x:T ` P : G′.

By inductive hypothesis,E2,x:T ` P : G′.

By (ProcG Res), E2 ` newx:T;P : newx:T;G′.

(ProcG Query) SupposeE1 ` expectF : 0.

By hypothesis,E1,C ` �, clauses(E1) |= F .

By the first point of this lemma,E2,C ` �.
By definition,clauses(E1) = clauses(E2)∪clauses(env(G)x̃).
By E1,C ` �, and by hypothesis of the lemma,
{x̃}∩ (fn(clauses(E2))∪ fn(C)) = ∅.

By Lemma14, clauses(env(G)ỹ) = clauses(env(G)x̃){ỹ/x̃}.
By Lemma7, clauses(E2) |= C.

By (ProcG Query), E2 ` expectF : 0.
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(ProcG Fact) SupposeE1 `C : C.

By hypothesis,E1,C ` �.
By the first point of this lemma,E2,C ` �.
By (ProcG Fact), E2 `C : C.

(ProcG Input) SupposeE1 ` in M(x:T);P : 0.

By hypothesis,E1 `M : Ch(T), E1,x:T ` P : G′.

By the previous point of this lemma,E2 `M : Ch(T).
By Lemma12, fn(G′)⊆ fn(P).
By E1,x:T ` �, {x̃}∩ fn(G′) = ∅.

By inductive hypothesis,E2,x:T ` P : G′.

By (ProcG Input), E2 ` in M(x:T);P : 0.

The other cases are similar to the case for(ProcG Input). �

Lemma 18 (Exchange)If E1,E2,E3,E4 `J and dom(E2)∩ fn(E3) = ∅ and fn(E2)∩
dom(E3) = ∅ then E1,E2,E3,E4 `J .

Proof We split the proof depending onJ .

• By induction on the depth of the derivation ofE1,E2,E3,E4 ` �. Consider the
last rule.

(Env ∅) Trivial.

(Env x) SupposeE,x:T ` �.
By hypothesis,E ` �, fn(T)⊆ dom(E) andx /∈ dom(E).
If E = E1,E2,E3,E4 whereE4 = E′

4,x:T we conclude applying the induc-
tive hypothesis.

If E = E1,E2,E3 andE3 = E′
3,x:T, by inductive hypothesisE1,E′

3,E2 ` �.
By Lemma16, E1,E′

3 ` �.
By (Envx), E1,E3 ` �.
By Lemma22, E1,E3,E2 ` �.
The case forE = E1,E2 is trivial.

(Env C) Similar to the previous case.

• By a straightforward induction on the depth of the derivation ofE1,E,E′,E2 `
M : T, using point (1).

• By induction on the depth of the derivation ofE1,E,E′,E2 ` P : G.

(ProcG Nil) SupposeE1,E2,E3,E4 ` 0 : ∅.

By hypothesis,E1,E2,E3,E4 ` �.
By point (1),E1,E3,E2,E4 ` �.
By (ProcG Nil), E1,E3,E2,E4 ` 0 : ∅.
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(ProcG Input) SupposeE1,E2,E3,E4 ` in M(x:T);P : ∅.

By hypothesis,E1,E2,E3,E4 `M : Ch(T), E1,E2,E3,E4,x:T ` P : G.

By point (ii), E1,E3,E2,E4 `M : Ch(T).
By inductive hypothesis,E1,E3,E2,E4,x:T ` P : G.

By (ProcG Input), E1,E3,E2,E4 ` in M(x:T);P : ∅.

The other cases are similar. �

Lemma 19 (i) If G vG′ then fn(G)⊆ fn(G′). (ii) If G ≡G′ then fn(G) = fn(G′).

Proof (i) By induction on the length of the derivation ofGvG′.
(ii) By definition, of G≡G′ and by point (i). �

Lemma 20 If E,env(G)x̃,E′ ` J and Gv G′, fn(G) = fn(G′) and {x̃} ∩ (fn(E′)∪
fn(J )) = ∅, then E,env(G′)z̃,E′ `J and{z̃}∩ (fn(E′)∪ fn(J )) = ∅.

Proof By induction on the derivation ofGvG′.

(G Sub Refl) SupposeGvG.

By hypothesis of the lemma,E,env(G)x̃,E′ `J .

(G Sub Trans) SupposeGvG′.

By hypothesis,Gv H andH vG′.

By inductive hypotheses,E,env(H)w̃,E′ `J andE,env(G′)z̃,E′ `J for some
w̃ andz̃such that{w̃}∩ (fn(E′)∪ fn(J )) = ∅ and{z̃}∩ (fn(E′)∪ fn(J )) = ∅,
and we conclude.

(G Sub Res) Supposenewx:T;Gv newx:T;H. By hypothesis,Gv H.

By hypothesis of the lemma,E,env(newx:T;G)x̃,E′ `J .

By definition,env(newx:T;G)x̃ = x:T,env(G)ỹ for x̃ = x, ỹ.

By inductive hypothesis,E,x:T,env(H)w̃,E′ `J , where
{w̃}∩ (fn(E′)∪ fn(J )) = ∅.

By definition, env(new x:T;H)z̃ = x:T,env(H)w̃ where z̃ = x, w̃, and we con-
clude.

(G Sub Par) SupposeG | H vG′ | H.

By hypothesis,GvG′.

By hypothesis of the lemma,E,env(G | H)x̃,E′ `J .

By definition,env(G | H)x̃ = env(G)x̃1,env(H)x̃2, where{x̃1}∩ fn(H) = ∅.

By inductive hypothesis,E,env(G′)z̃1,env(H)x̃2,E′ `J , where
{z̃1}∩ fn(H) = ∅.

By definition,env(G′)z̃1,env(H)x̃2 = env(G′ | H)z̃, wherẽz= z̃1, x̃2, and we con-
clude.
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(G Sub Par Zero) SupposeG | 0vG.

By hypothesis of the lemma,E,env(G | 0)x̃,E′ `J .

By definition,env(G | 0)x̃ = env(G)x̃, and we conclude.

(G Sub Par Comm) SupposeG | H v H |G.

SupposeG | H v H |G.

By hypothesis of the lemma,E,env(G | H)x̃,E′ `J .

By definition,env(G | H)x̃ = env(G)x̃1,env(H)x̃2, where{x̃1}∩ fn(H) = ∅ and
{x̃2}∩ fn(G) = ∅.

By Lemma18, E,env(H)x̃2,env(G)x̃1,E′ `J .

By definition,env(H |G)x̃2,x̃1 = env(H)x̃2,env(H)x̃1, and we conclude.

(G Sub Par Assoc)Suppose(G |G′) | H vG | (G′ | H).

By definition,env((G |G′) | H)x̃ = env(G |G′ | H))x̃, and we conclude.

(G Sub Idem) SupposeG |GvG.

By hypothesis of the lemma,E,env(G |G)x̃,E′ `J .

By definition,env(G |G)x̃ = env(G)ỹ,env(G)z̃, where{ỹ}∩ (fn(E′)∪ fn(J )) =
∅.

By Lemma17, E,env(G)z̃,E′ `J .

(G Sub Order) SupposeGvG |H. By hypothesis of the lemma,E,env(G)x̃,E′ `J .

By definition,env(G | H)z̃ = env(G)x̃,env(H)ỹ choosing̃z= x̃, ỹ.

By hypothesis of the lemma,fn(G) = fn(G′).

By Lemma12, E,env(G)x̃,E′ ` �, and thereforefn(G)∩dom(E′) = ∅.

By repeatedly applying Lemma22, E,env(G)x̃,env(H)ỹ,E′ ` J and we con-
clude.

The remaining cases are analogous to the one for(G Sub Par Comm). �

Lemma 21 If E,env(G)x̃,E′ `P : G and{x̃}∩(fn(P)∪ fn(E′)) = ∅ then E,E′ `P : G.

Proof By induction on the derivation ofE,env(G)x̃,E′ ` P : G.

(ProcG Par) SupposeE,env(G1 |G2)x̃,ỹ,E′ ` P |Q : G1 |G2.

By hypothesis,E,env(G1 |G2)x̃,ỹ,E′,env(G2)z̃ ` P : G1 and
E,env(G1 |G2)x̃,ỹ,E′,env(G1)w̃ `Q : G2, andfn(P |Q)⊆ dom(E).

By definition,env(G1 |G2)x̃,ỹ = env(G1)x̃,env(G2)ỹ.

By inductive hypotheses,
E,env(G2)ỹ,E′,env(G2)z̃ ` P : G1 andE,env(G1)x̃,E′,env(G1)w̃ `Q : G2.

By Lemma18,
E,env(G2)ỹ,env(G2)z̃,E′ ` P : G1 andE,env(G1)x̃,env(G1)w̃,E′ `Q : G2.

By Lemma17, E,E′,env(G2)z̃ ` P : G1 andE,E′,env(G1)w̃ `Q : G2.

By (ProcG Par), E,E′ ` P |Q : G1 |G2.
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(ProcG Rep) SupposeE,G,E′ ` !P : G.

By hypothesis,E,G,E′ ` P : G.

By inductive hypothesis,E,E′ ` P : G.

By (ProcG Rep), E,G,E′ ` !P : G.

(ProcG Res) SupposeE,env(newx:T;G)y,x̃,E′ ` newx:T;P : newx:T;G.

By hypothesis,E,env(newx:T;G)y,x̃,E′,x:T ` P : G.

By definition,env(newx:T;G)y,x̃ = y:T,env(G)x̃.

By inductive hypothesis,E,y:T,E′,x:T ` P : G, wherey 6∈ fn(P)∪ fn(E′).

By Lemma16, E,E′,x:T ` P : G.

By (ProcG Res), E,E′ ` newx:T;P : newx:T;G.

(ProcG Fact) SupposeE,C,E′ `C : C.

By hypothesis,E,C,E′,C ` �.
By Lemma16, E,E′ ` �.
By (ProcG Fact), E,E′ `C : C.

All the other cases are trivial, asenv(0)∅ = ∅. �

Lemma 22 (Weakening) (i) If E ,E′ `J and fn(C)⊆ dom(E) then E,C,E′ `J . (ii)
If E,E′ `J , fn(T)⊆ dom(E) and x 6∈ dom(E,E′), then E,x:T,E′ `J .

Proof We split the proof of each point depending onJ .

(i) (1) If E,E′ ` � andfn(C)⊆ dom(E) thenE,C,E′ ` �.
By induction on the depth of the derivation ofE,E′ ` �.

(2) If E,E′ `M : T andfn(C)⊆ dom(E) thenE,C,E′ `M : T.

By induction on the depth of the derivation ofE,E′ `M : T.

The most interesting case is the base case for(Msg Ok).

SupposeE,E′ ` ok : Ok(S).
By hypothesis,E,E′ ` � andfn(S)⊆ dom(E,E′), and for anyC′ ∈ S,
clauses(E,E′) |= C′.

By (i).1, we haveE,C,E′ ` �.
By definition ofdom, fn(S)⊆ dom(E,C,E′).
By property(Mon) of the authorization logic, for anyC′ is S,
clauses(E,C,E′) |= C′.

By (Msg Ok), E,C,E′ ` ok : Ok(S).

(3) If E,E′ ` P : G andfn(C)⊆ dom(E) thenE,C,E′ ` P : G.

By induction on the depth of the derivation ofE,E′ ` P : G.

The case for(ProcG Query)uses property(Mon) of the authorization logic.
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(ii) (1) If E,E′ ` �, fn(T)⊆ dom(E) andx 6∈ dom(E,E′), thenE,x:T,E′ ` �.
By induction on the depth of the derivation ofE,E′ ` �.

(2) If E,E′ `M : T, fn(T)⊆ dom(E) andx 6∈ dom(E,E′), thenE,x:T,E′ `M :
T.

By induction on the depth of the derivation ofE,E′ `M : T.

(3) If E,E′ `P : G, fn(T)⊆ dom(E) andx 6∈ dom(E,E′), thenE,x:T,E′ `P : G.

By induction on the depth of the derivation ofE,E′ ` P : G.

The most interesting case is the inductive case for(ProcG Res).

SupposeE,E′ ` newy:U ;P : newy:U ;G.

By alpha conversion, consider an instance ofy such thaty 6∈ dom(E,E′)∪
{x}.
By hypothesis,E,E′,y:U ` P : G.

By hypothesis of the lemma,x 6∈ dom(E,E′)∪{y}.
By inductive hypothesis,E,x:T,E′,y:U ` P : G.

By (ProcG Res), E,x:T,E′ ` newy:U ;P : newy:U ;G.

�

Lemma 23 (Substitution) If E1,x:T,E2 ` J and E1 ` M : T then E1,E2{M/x} `
J {M/x}.

Proof We split the proof depending onJ .

(1) By induction on the depth of the derivation ofE1,x:T,E2 ` �. Consider the last
rule used.

(Env x) SupposeE,y:U ` �.
By hypothesis,E ` �, fn(U)⊆ dom(E) andx /∈ dom(E).
SupposeE = E1,x:T,E2 whereE2 = E′

2,y:U .

By inductive hypothesis,E1,E′
2{M/x} ` �.

By hypothesis of the lemma,E1 `M : T.

By Lemma11, fn(T)∪ fn(M)⊆ dom(E1).
By definition,dom(E1,E′

2{M/x}) = dom(E1,E′
2)\{x}.

Applying the substitution,fn(U{M/x})⊆ dom(E1,E′
2{M/x}).

By (Envx), E1,E′
2{M/x},y:U{M/x} ` �.

(Env C) Similar to the previous case.

(2) By induction on the depth of the derivation ofE1,x:T,E2 ` N : U . Let E =
E1,x:T,E2.

(Msg x) SupposeE ` y : E(y) becauseE ` � andy∈ dom(E).
By point (1),E1,E2{M/x} ` �.
We distinguish two cases. Supposey 6= x.
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Sincey 6= x, y∈ dom(E1,E2{M/x}).
By (Msgx), E1,E2{M/x} ` y : E{M/x}(y).
Suppose insteady = x.

By hypothesis of the lemma,E1 `M : T.

By Lemma22, E1,E2{M/x} `M : T.

Sincey = x, by definition,E(y) = T.

By substitution,(y : E(y)){M/x}= M : T, and we conclude.

(Msg Ok) SupposeE ` ok : Ok(S) becauseE ` �, fn(S) ⊆ dom(E) and∀C ∈
S.clauses(E) |= C.

By point (1),E1,E2{M/x} ` �.
By definition,fn(S{M/x})⊆ dom(E1,E2{M/x}).
By E ` �, x 6∈ fn(clauses(E1)).
By definition,clauses(E1) = clauses(E1){M/x} and therefore
clauses(E1,E2{M/x}= clauses(E1,E2){M/x}.
By property(Subst)of the authorization logic,
∀C∈ S.clauses(E1,E2){M/x} |= C{M/x}.
By (Msg Ok), E1,E2{M/x} ` ok : Ok(S{M/x}).

The other cases are easy, and follow using the inductive hypothesis and point (1).

(3) By induction on the depth of the derivation ofE1,x:T,E2 ` P : G, in particular
using point (1), point (2) and property(Subst)of the authorization logic. �

Lemma 24 (Subject Congruence)If E ` P : G and P≡ P′ then there exists a G′ such
that E` P′ : G′ and G≡G′.

Proof By induction on the derivation ofP≡ P′ we show:

(1) if E ` P : G thenE ` P′ : G′;

(2) if E ` P′ : G′ thenE ` P : G.

(Struct Refl) SupposeP≡ P.

Both (1) and (2) are immediate.

(Struct Symm) SupposeP≡Q.

By hypothesis,Q≡ P.

Both (1) and (2) follow immediately applying the inductive hypotheses (2) and
(1).

(Struct Trans) SupposeP≡ R.

By hypothesis,P≡Q,Q≡ R.

Both cases follow easily from transitivity of implication and the inductive hy-
potheses.
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(Struct Res) Supposenewx:T;P≡ newx:T;P′.

By hypothesis,P≡ P′.

By hypothesis of (1),E ` newx:T;P : G.

By (ProcG Res), E,x:T ` P : G′ whereG = newx:T;G′.

By inductive hypothesis,E,x:T ` P′ : G′′ ≡G′.

By (ProcG Res), E ` newx:T;P′ : newx:T;G′′.

By definition of≡ and(G Sub Res), G≡ newx:T;G′′.

The proof for (2) is symmetric.

(Struct Par) SupposeP |Q≡ P′ |Q.

By hypothesis,P≡ P′.

By hypothesis of (1),E ` P |Q : G.

By (ProcG Par), E,env(G2)ỹ ` P : G1 andE,env(G1)x̃ `Q : G2 andfn(P |Q)⊆
dom(E) whereG = G1 |G2.

By inductive hypothesis,E,env(G2)ỹ ` P′ : G′
1 ≡G1.

By Lemma19, fn(G1) = fn(G′
1).

By Lemma20, E,env(G′
1)

x̃ `Q : G2.

By (ProcG Par), E ` P′ |Q : G′
1 |G2.

By definition of≡ by (G Sub Par), G≡G′
1 |G2.

The proof for (2) is symmetric.

(Struct Repl) Suppose !P≡ !P′.

By hypothesis,P≡ P′.

By hypothesis of (1),E ` !P : G.

By (ProcG Rep), E ` P : G.

By inductive hypothesis,E ` P′ : G′ ≡G.

By (ProcG Rep), E ` !P′ : G′.

The proof for (2) is symmetric.

(Struct Par Zero) SupposeP | 0≡ P.

By hypothesis of (1),E ` P | 0 : G.

By (ProcG Par), E,env(G2) ` P : G1 andE,env(G1) ` 0 : G2 and fn(P | 0) ⊆
dom(E) whereG = G1 |G2.

By (ProcG Nil), E,env(G1) ` 0 : 0, G2 = 0 andG = G1 | 0.

By definition ofenv(0), E ` P : G1.

By (G Sub Par Zero), G≡G1.

The proof for (2) is similar.
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(Struct Par Comm) SupposeP |Q≡Q | P.

By hypothesis of (1),E ` P |Q : G.

By (ProcG Par), E,env(G2) ` P : G1 andE,env(G1) ` Q : G2 and fn(P | Q) ⊆
dom(E) whereG = G1 |G2.

By (ProcG Par), E `Q | P : G2 |G1.

By (G Sub Par Comm), G≡G2 |G1.

The proof for (2) is symmetric.

(Struct Par Assoc) Suppose(P |Q) | R≡ P | (Q | R).

By hypothesis of (1),E ` (P |Q) | R : G.

By (ProcG Par), E,env(G2)z̃ ` P | Q : G1 andE,env(G1) ` R : G2, fn((P | Q) |
R)⊆ dom(E), andG = G1 |G2.

By (ProcG Par), E,env(G2)z̃,env(G4)ỹ ` P : G3 andE,env(G2)z̃,env(G3)x̃ `Q :
G4, fn(P |Q)⊆ dom(E,env(G2)), andG1 = G3 |G4.

By Lemma18, E,env(G4)ỹ,env(G2)z̃ ` P : G3 andE,env(G3)x̃,env(G2)z̃ ` Q :
G4.

By (ProcG Par), E,env(G3)x̃ `Q | R : G4 |G2.

By (ProcG Par), E ` P | (Q | R) : G3 | (G4 |G2).

By (G Sub Par Assoc), G = (G3 |G4) |G2 ≡G3 | (G4 |G2).

The proof for (2) is similar.

(Struct Repl Unfold) Suppose !P≡ P | !P.

By hypothesis of (1),E ` !P : G.

By (ProcG Rep), E ` P : G.

By Lemma22, E,env(G) ` !P : G andE,env(G) ` P : G.

By (ProcG Par), E ` P | !P : G |G.

By (G Sub Idem), G |G≡G.

By hypothesis of (2),E ` P | !P : G.

By (ProcG Par), E,env(G2) ` P : G1 andE,env(G1) ` !P : G2, whereG = G1 |
G2.

By (ProcG Rep), E,env(G1) ` P : G2.

By Lemma15, G1 = G2.

By Lemma21, E ` !P : G2.

By (G Sub Idem), G≡G2.

(Struct Repl Repl) Suppose !!P≡ !P.

By hypothesis of (1),E ` !!P : G.

By (ProcG Rep), E ` !P : G.

The proof for (2) is similar.
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(Struct Repl Par) Suppose !(P |Q)≡ !P | !Q.

By hypothesis of (1),E ` !P |Q : G.

By (ProcG Rep), E ` P |Q : G.

By (ProcG Par), E,env(G2)`P : G1 andE,env(G1)`Q : G2, whereG= G1 |G2.

By (ProcG Rep), E,env(G2) ` !P : G1 andE,env(G1) ` !P : G2.

By (ProcG Rep), E ` !P | !Q : G.

The proof for (2) is similar.

(Struct Repl Zero) Suppose !0≡ 0.

By hypothesis of (1),E ` !0 : G.

By (ProcG Rep), E ` 0 : G, where by(ProcG Nil)G = 0.

The proof for (2) is similar.

(Struct Res Par) Supposenewx:T;(P |Q)≡ P | newx:T;Q.

By hypothesis,x /∈ fn(P).

By hypothesis of (1),E ` newx:T;(P |Q) : G.

By (ProcG Res), E,x:T ` P |Q : G′ whereG = newx:T;G′.

By (ProcG Par), E,x:T,env(G2)ỹ ` P : G1 andE,x:T,env(G1)x̃ ` Q : G2 where
G′ = G1 |G2.

By (ProcG Res), E,env(G1)x̃ ` newx:T;Q : G2.

Sincex /∈ fn(P), by Lemma16, E,env(G2)ỹ ` P : G1.

By (ProcG Par), E ` P | newx:T;Q.

The proof for (2) is similar, using Lemma22 instead of Lemma16.

(Struct Res Res)Supposenewx1:T1;newx2:T2;P≡ newx2:T2;newx1:T1;P.

By hypothesis,x1 6= x2,x1 /∈ fn(T2),x2 /∈ fn(T1).

By (ProcG Res), E,x1:T1 ` newx2:T2;P : G.

By (ProcG Res), E,x1:T1,x2:T2 ` P : G.

Sincex1 6= x2,x1 /∈ fn(T2),x2 /∈ fn(T1), by Lemma18, E,x2:T2,x1:T1 ` P : G.

By two applications of(ProcG Res), E ` newx2:T2; ,newx1:T1;P : G.

The proof for (2) is symmetric. �

Lemma 25 (Subject Reduction) If E ` P : G and P→ P′ then there exists a G′ such
that E` P′ : G′ and GvG′.

Proof The proof is by induction on the derivation ofP→ P′.
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(Red Comm) Supposeout a(M) | in a(x:T);P→ P{M/x}.
By hypothesis of the lemma,E ` out a(M) | in a(x:T);P : G.

By (ProcG Par), E ` out a(M) : 0 andE ` in a(x:T);P : 0, andG= 0 | 0 because
the only rules applicable to the premises are(ProcG Output)or (ProcG Output
Un) for the first sub-term, and(ProcG Input)or (ProcG Input Un)for the second.

We distinguish two cases.

• If E ` out a(M) : 0 is derived by(ProcG Output)thenE ` a : Ch(U) and
E ` M : U , and by Lemma10, E ` in a(x:T);P : 0 is derived by(ProcG
Input), andT = U andE,x:U ` P : G′ for someG′.

By Lemma23, E ` P{M/x} : G′{M/x}.
• If E ` out a(M) : 0 is derived by(ProcG Output Un)thenE ` a : Un and

E ` M : Un, and by Lemma10, E ` in a(x:T);P : 0 is derived by(ProcG
Input Un), andT = Un andE,x:Un ` P : G′ for someG′.

By Lemma23, E,x:Un ` P{M/x} : G′{M/x}.

(Red Decrypt) Supposedecrypt {M}k as{y:T}k;P→ P{M/y}.
If E ` decrypt {M}k as{y:T}k;P : G is derived by(ProcG Decrypt)thenG= 0,
E `M : T, E ` k : Key(T), andE,y:T ` P : G′.

By Lemma23, E ` P{M/y} : G′{M/y}.
The case for rule(ProcG Decrypt Un)is similar.

(Red Split) Supposesplit (M,N) as(x:T,y:U);P→ P{M/x}{N/y}.
If E ` split (M,N) as (x:T,y:U);P : G is derived by(ProcG Split)thenG = 0,
E ` (M,N) : (x:T,U) andE,x:T,y:U ` P : G′.

By (Msg Pair), E `M : T andE ` N : U{M/x}.
By Lemma23, E,y:U{M/x} ` P{M/x} : G′{M/x}.
By Lemma23, E ` P{M/x}{N/y} : G′{M/x}{N/y}.
The case for rule(ProcG Split Un)is similar.

(Red Match) Supposematch (M,N) as(M,y:U);P→ P{N/y}.
If E `match (M,N) as(M,y:U);P : G is derived by(ProcG Match)thenG= 0,
E ` (M,N) : (x:T,U), E `M : T andE,y:U{M/x} ` P : G′.

By (Msg Pair), E ` N : U{M/x}.
By Lemma23, E ` P{N/y} : G′{N/y}.
The case for rule(ProcG Match Un)is similar.

(Red Par) SupposeP |Q→ P′ |Q.

By hypothesis,P→ P′.

By hypothesis of the lemma,E ` P |Q : G. By (ProcG Par), E,env(G2) ` P : G1,
E,env(G1) `Q : G2, fn(P |Q)⊆ dom(E), andG = G1 |G2.
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By inductive hypothesis,E,env(G2) ` P′ : G′, for someG′ such thatG1 vG′.

By Lemma22, E,env(G′) `Q : G2.

By (ProcG Par), E ` P |Q : G′ |G2.

By definition of(GSubPar), G1 |G2 vG′ |G2.

(Red Res) Supposenewx:T;P→ newx:T;P′.

By hypothesis,P→ P′.

By hypothesis of the lemma,E ` newx:T;P : G.

By (ProcG Res), E,x:T ` P : G′ andG = newx:T;G′.

By inductive hypothesis,E,x:T ` P′ : G′′ andG′ vG′′.

By (ProcG Res), E ` newx:T;P′ : newx:T;G′′.

By (G Sub Res), (x:T)G′ v (x:T)G′′.

(Red Struct) SupposeP→ P′.

By hypothesis,P≡Q,Q→Q′,Q′ ≡ P′.

By Lemma24onE ` P : G, E `Q : G1 whereG1 ≡G.

By inductive hypothesis onE `Q : G1, E `Q′ : G2 andG1 vG2.

By Lemma24, E ` P′ : G3 ≡G2.

By definition of≡ and by(G Sub Trans), GvG3. �

Proof of Lemma 1 (Type Preservation). If E ` P and either P≡ P′ or P→ P′ then
E ` P′.

Proof By definition ofE ` P and Lemmas24and25. �

B.3 Type Safety

We describe the proofs of opponent typability and of the main results of the paper
concerning safety.

B.3.1 Properties of the Opponent

Lemma 26 For any M, if fn(M) = {x̃} thenx̃:Un `M : Un.

Proof By structural induction onM.

• (M = x) Let E = x:Un, wherefn(M) = {x}.
By (Envx) and(Env∅), E ` �.
By (Msgx), E `M : Un.
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• (M = {M}N) Let E = x̃:Ũn, ỹ:Ũn, z̃:Ũn, where{x̃} = fn(M)∩ fn(N), {ỹ} =
fn(M)\{x̃}, and{z̃}= fn(N)\{z̃}.
By inductive hypothesis,̃x:Ũn, ỹ:Ũn `M : Un andx̃:Ũn, z̃:Ũn ` N : Un.

By Lemma22, E `M : Un andE ` N : Un.

By (Msg Encrypt Un), E ` {M}N : Un.

• (M = (M,N)) Let E = x̃:Ũn, ỹ:Ũn, z̃:Ũn, where{x̃} = fn(M)∩ fn(N), {ỹ} =
fn(M)\{x̃}, and{z̃}= fn(N)\{z̃}.
By inductive hypothesis,̃x:Ũn, ỹ:Ũn `M : Un andx̃:Ũn, z̃:Ũn ` N : Un.

By Lemma22, E `M : Un andE ` N : Un.

By (Msg Pair Un), E ` (M,N) : Un.

• (M = ok) We havefn(M) = ∅.

By (Env∅), ∅ ` �. By (Msg Ok Un), ∅ ` ok : Un. �

Lemma 27 (Opponent Typability) For any opponent P,̃x:Ũn ` P : G, where fn(P)⊆
{x̃}.

Proof The proof is by induction on the structure of the opponentP, which by defi-
nition cannot contain queries, and assigns typeUn to every name. LetE = x̃:Ũn.

• (P = 0) By construction,E is well-formed.

By (ProcG Nil), E ` 0 : 0.

• (P = Q | R) By inductive hypothesis, assumeE ` Q : G1 andE ` R : G2, where
env(G1)ỹ = ỹ:Ũn andenv(G2)z̃ = z̃:Ũn.

By hypothesis,fn(Q | R)⊆ dom(E).

By Lemma22, E, z̃:Ũn`Q : G1 andE, ỹ:Ũn` R : G2.

By (ProcG Par), E `Q | R : G1 |G2.

• (P = !P′) By inductive hypothesis, assumeE ` P′ : G.

By (ProcG Rep), E `!P : G.

• (P = newx:Un;P′)
By inductive hypothesis (and Lemma18or Lemma22where needed),E,x:Un `
P′ : G.

By (ProcG Res), E ` P : newx:Un;G.

• (P = in M(x:Un);P′) Let {z̃,x}= {x̃}∪{x}.
By inductive hypothesis, assumez̃:Ũn,x:Un ` P′ : G.

By Lemma26, E `M : Un.

By (ProcG Input Un), E ` P : 0.

43



• (P = out M(N)) By Lemma26, E `M : Un andE ` N : Un.

By (ProcG Output Un), E ` P : 0.

• (P = decrypt M as{y:Un}N;P′) Let {z̃,y}= {x̃}∪{y}.
By inductive hypothesis, assumez̃:Ũn,y:Un ` P′ : G.

By Lemma26, E `M : Un andE ` N : Un.

By (ProcG Decrypt Un), E ` P : 0.

• (P = match M as(N,y:Un);P′) Let {z̃,y}= {x̃}∪{y}.
By inductive hypothesis, assumez̃:Ũn,y:Un ` P′ : G.

By Lemma26, E `M : Un andE ` N : Un.

By (ProcG Match Un), E ` P : 0.

• (P = split M as(x:Un,y:Un);P′) Let {z̃,x,y}= {x̃}∪{x,y}.
By inductive hypothesis, assumez̃:Ũn,x:Un,y:Un ` P′ : G.

By Lemma26, E `M : Un.

By (ProcG Split Un), E ` P : 0.

• (P = C) By construction,fn(C) = dom(E).

By (EnvC), E,C ` �.
By (ProcG Fact), E ` P : C. �

Proof of Lemma 2. For any opponent P,̃x:Ũn ` P, where fn(P)⊆ {x̃}.

Proof Follows directly from Lemma27and Lemma8. �

B.3.2 Safety and Robust Safety

Lemma 28 (Normal Form) If E ` P : G and clauses(env(G)x̃) = {C1, . . . ,Cn} then
there exists a P′ such that P≡ new x̃:T̃;(C1 | . . . |Cn | P′).

Proof By induction on the derivation ofE ` P : G.

(ProcG Fact) SupposeE `C : C.

ProcessP = P′ = C is in the required form.

(ProcG Res) SupposeE ` newx:T;P : newx:T;G.

By hypothesis,E,x:T ` P : G.

By inductive hypothesis,P≡ new x̃:T̃;(C1 | . . . |Cn | P′) where
clauses(env(G)x̃) = {C1, . . . ,Cn}.
By (Struct Res), newx:T;P≡ newx:T, x̃:T̃;(C1 | . . . |Cn | P′).
By definition,clauses(env(newx:T;G)x,x̃) = {C1, . . . ,Cn}.
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(ProcG Rep) SupposeE ` !P : G.

By hypothesis,E ` P : G.

By inductive hypothesis,P≡ new x̃:T̃;(C1 | . . . |Cn | P′) where
clauses(env(G)x̃) = {C1, . . . ,Cn}.
By (Struct Repl)and(Struct Res Par), !P≡ new x̃:T̃;(C1 | . . . | Cn | P′) |!P≡
new x̃:T̃;(C1 | . . . |Cn | (P′ |!P)).

(ProcG Par) SupposeE ` P |Q : G1 |G2.

By hypothesis,E,env(G2) ` P : G1, E,env(G1) `Q : G2.

By inductive hypotheses,P≡ new x̃:T̃;(C1 | . . . |Cn | P′) where
clauses(env(G1)x̃) = {C1, . . . ,Cn} andQ≡ new ỹ:Ũ ;(C′

1 | . . . | C′
m | Q′) where

clauses(env(G2)ỹ) = {C′
1, . . . ,C

′
m}.

By α-conversion and commutativity,P | Q≡ new x̃:T̃, ỹ:Ũ ;(C1 | . . . | Cn | C′
1 |

. . . |C′
m | (P′ |Q′)).

By definition,clauses(env(G1 |G2)x̃,ỹ) = {C1, . . . ,Cn,C′
1, . . . ,C

′
m}

All the other cases are trivial, asG = 0, clauses(env(0)∅) = ∅, andP = P′. �

Proof of Theorem2. If E ` P and E is generative then P is safe.

Proof We need to show that wheneverP →∗
≡ new x̃:T̃;(expectC | P′), we can

refactorP′ so thatP′ ≡ new ỹ:Ũ ;(C1 | . . . |Cn | P′′), and{C1, . . . ,Cn} |= C, with {ỹ}∩
fn(C) = ∅.
By hypothesis,E ` P.
By Lemma25and Lemma24, if P →∗

≡ new x̃:T̃;(expectC | P′) then
E ` new x̃:T̃;(expectC | P′) : G, for someG.
This must follow from repeatedly applying(ProcG Res)from the premiseE, x̃:T̃ `
expectC | P′ : G1, whereG = new x̃:T̃;G1.
This must follow from(ProcG Par)and(ProcG Query), from the premises
(i) E, x̃:T̃,env(G1)ỹ ` expectC : ∅ and
(ii) E, x̃:T̃ ` P′ : G1, wherefn(expectC) = fn(C)⊆ dom(E) and
clauses(E, x̃:T̃,env(G1)ỹ) |= C, and{ỹ}∩ fn(C) = ∅.
Assume, without loss of generality, thatclauses(env(G1)ỹ) = {C1, . . . ,Cn}.
By generativity ofE and by definition,{C1, . . . ,Cn} |= C.
By Lemma28on (ii), P′ ≡ new ỹ:Ũ ;(C1 | . . . |Cn | P′′). �

Proof of Theorem3. If x̃:Ũn ` P then P is robustly safe.

Proof Consider an arbitrary opponentO, and let{z̃}= fn(O)∪{x̃}.
By hypothesis̃x:Ũn ` P : G, for someG.
By Lemma27, z̃:Ũn `O : G′, for someG′.
By Lemma22, z̃:Ũn,env(G) `O : G′ andz̃:Ũn,env(G′) ` P : G.
By (ProcG Par), z̃:Ũn ` P |O : G |G′.
By Theorem2, P |O is safe. �
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C Encodings for Patterns and Datalog

In this section we first introduce the formal definition of syntactic sugar. We show that
a derived typing rule is admissible. We then prove correctness and completeness of
the implementation of Datalog. The results of this section assume that we are using
Datalog as the underlying authorization logic.

C.1 Syntactic Sugar

The syntactic sugar for input and decryption consists in a straightforward translation
into the syntactic sugar for tuple matching. The definition of the latter is given by
induction on the length of the tuple, by cases depending on whether the first parameter
is used for binding or for matching.

Syntactic Sugar: Input, Decryption and Pattern-Matching

in M(M̃);P = in M(y:TyC(M)); tuple y as(M̃);P (S Input)
(wherey 6∈ fn(M̃)∪ fn(P))

decrypt M as{Ñ}N;P = decrypt M as{y:TyK(N)}N;tuple y as(Ñ);P (S Decrypt)
(wherey 6∈ fn(M̃)∪ fn(P))

tuple M as(z,M̃);P = split M as(z:TyL(M),y:TyR(M)); tuple y as(M̃);P(S Split)
(wherey 6∈ fn(M̃)∪ fn(P)∪{z})
tuple M as(z);P = split (M,M) as(z:Ty(M),y:Ty(M));P (S Split 0)
(wherey 6∈ fn(P)∪{z})
tuple M as(=N, Ñ);P = match M as(N,y:TyR(M)); tuple y as(Ñ);P (S Match)
(wherey 6∈ fn(M̃)∪ fn(P))

tuple M as(=N);P = match (M,M) as(N,y:Ty(M));P (S Match 0)
(wherey 6∈ fn(P))

When an environmentE is fixed, the macroTy[C/K/L/R](M) can be translated toT

if E `M : T ′ whereT ′ is respectivelyT,Ch(T),Key(T),(x : T,U) or (x : U,T).

In the encoding of Datalog each predicate of arityn corresponds to a channel of
arity n+1 carrying a tuple of names of typeUn, together with anok token guaranteeing
that the predicate holds for all the communication parameters. To simplify the typing
of the encoding, we derive a dedicated typing rule for this very common case.

Derived Typing Rule:

(ProcG Input Der)
E ` p : Tn,p E, ũ:Ũn,y : Ok(p(u1, . . . ,un)) ` P : G

E ` in p(u1, . . . ,un,=ok);P : 0

whereũ are theui occurring as input patterns;y 6∈ fn(P).

Lemma 29 Rule(ProcG Input Der)is admissible.
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Proof We show that ifE ` p : Tn,p andE, ũ:Ũn,y : Ok(p(u1, . . . ,un)) ` P : G, then
E ` in p(u1, . . . ,un,=ok);P : 0.
By (S Input), in p(u1, . . . ,un,=ok);P is translated as
in p(y:Ty(p)); tuple y as(u1, . . . ,un,=ok);P.
By definition of encoding,Tn,p = Ch(u1:Un, . . . ,un:Un,Ok(p(u1, . . . ,un))).
We can conclude by(ProcG Input)if we can show that
E,y:(u1:Un, . . . ,un:Un,Ok(p(u1, . . . ,un))) ` tuple y as(u1, . . . ,un,=ok);P : 0.
We prove it by induction on the number of parameters left to parsei.

• (i = 0): We need to show thatE,y:Ok(p(u1, . . . ,un)) ` tuple y as(=ok);P : 0.

By (S Match 0), tuple y as(=ok);P = match (y,y) as(ok,y : Ty(y));P.

By hypothesis,E, ũ:Ũn,y : Ok(p(u1, . . . ,un)) ` P : G.

By (ProcG Match)and Lemma22we conclude.

• (i = j +1): We need to show thatE,y:(un−i+1:Un, . . . ,un:Un,Ok(p(u1, . . . ,un)))
` tuple y as(un−i+1, . . . ,un,=ok);P : 0.

We split the proof in two cases, depending onun−i+1.

– (un−i+1 = un−i+1): By (S Split), tuple y as(un−i+1, . . . ,un,=ok);P =
split y as(un−i+1:TyL(y),y:TyR(y)); tuple y as(un− j+1 . . . ,un,=ok);P.
By definition,TyR(y) = (un− j+1:Un, . . . ,un:Un,Ok(p(u1, . . . ,un))) and
TyL(y) = Un.
By (ProcG Split)and by the inductive hypothesis, we conclude.

– (un−i+1 = =un−i+1): similar to the previous case, using(S Match)and
(ProcG Match)instead of(S Split)and(ProcG Split). �

C.2 Correctness and Completeness

In this section we show that the encoding of Datalog is both correct and complete. It is
correct in the sense that if we can derive a factF in the encoding of a Datalog program
S([[S]]⇓F ), then the we can also derive it in the original program (S|= F). It is complete
in the sense that if we can derive a fact in Datalog (S|= F) then we can also derive it in
the encoding ([[S]] ⇓F ).

Predicates of a Datalog Program:pred(S)

pred(∅) = ∅ pred({C}∪S) = pred(C)∪pred(S) pred(p(u1, . . . ,un)) = {pn}
pred(L1, . . . ,Ln) =

⋃
i∈1..npred(Li) pred(L0 :− L̃) = pred(L0)∪pred(L̃)

Notation: L̃ = L1, . . . ,Ln

Extracting Bindings from Literals: envΣ(L1, . . . ,Ln)

envΣ∪fv(Ln−1)(L1, . . . ,Ln) = envΣ(L1, . . . ,Ln−1),envΣ∪fv(Ln−1)(Ln)
envΣ(p(u1, . . . ,un)) = envΣ(u1, . . . ,un),y:Ok(p(u1, . . . ,un)) (wherey is fresh)
envΣ(u1, . . . ,un) = envΣ(u1, . . . ,un−1),envΣ∪fv(u1,...,un−1)(un)
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envΣ(X) = X:Un if X 6∈ Σ envΣ(X) = ε if X ∈ Σ envΣ(M) = ε

The next two lemmas show that any process obtained by encoding a Datalog pro-
gram, in parallel with the clauses of the program itself is typable in an environment
formed according to the rules of the encoding.

Lemma 30 Consider a clause C= L :−Lm, . . . ,L1, and letp̃n = pred(C) and fn(C)⊆
{ỹ}. Let E= ỹ:Ũn, p̃n:T̃n,p. We have E,C ` [[C]] : 0.

Proof Let Σm = ∅ andΣi = Σi+1∪ fv(Li+1). By induction on the number of literalsi
that remain to be considered, we show that

E,L :−Lm, . . . ,L1,envΣi+1(Lm, . . . ,Li+1) ` [[Li , . . . ,L1]]Σi [[[L]]+] : 0

• i = 0: E,C,envΣ1(Lm, . . . ,L1) ` [[L]]+ : 0 easily follows from(ProcG Output)and
(Infer Fact).

• i = j +1: We are to showE,C,envΣi+1(Lm, . . . ,Li+1) ` [[Li ,L j , . . . ,L1]]Σi [[[L]]+] :
0.

Suppose, without loss of generality, thatLi = p(u1, . . . ,uh).

By definition of encoding,
[[Li ,L j , . . . ,L1]]Σi [[[L]]+] = in p(u1, . . . ,uh,=ok); [[L j , . . . ,L1]]Σi∪fv(Li)[[[L]]+].

By definition ofΣ j , Σ j = Σi ∪ fv(Li).

By inductive hypothesis,E,C,envΣi (Lm, . . . ,Li) ` [[L j , . . . ,L1]]Σ j [[[L]]+] : 0.

By (ProcG Input Der),
E,C,envΣi+1(Lm, . . . ,Li+1) ` in p(u1, . . . ,uh,=ok); [[L j , . . . ,L1]]Σ j [[[L]]+] : 0.

By definition of encoding and by(ProcG Rep)we conclude. �

Proof of Lemma 3 Let S be a Datalog program using predicatesp̃n and names̃y
with fn(S)⊆ {ỹ}. Let E= ỹ:Ũn, p̃n:T̃n,p. We have È S| [[S]].

Proof By induction on the structure ofS.

• (S= ∅): We conclude with∅ ` 0.

• (S= S′ ∪{C}): By definition of encoding, we need to show thatE ` S′ | [[S′]] |
C | [[C]].

By inductive hypothesis and weakening, we haveE,C ` S′ | [[S′]].
By Lemma30and weakening,E,S′,C ` [[C]] : 0.

By (ProcG Fact)and weakening,E,S′ `C : C.

By (ProcG Par), E,S′ `C | [[C]] : C.

By (ProcG Par)and weakening, we conclude. �
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Lemma 31 Let L= p(u1, . . . ,un) be a Datalog literal, letσ ,ρ be substitutions (with
disjoint domains) of messages for Datalog variables, and letΣ be a set of Datalog
variables such that dom(σ) = Σ. Then,([[L]]Σ[P])σ | [[Lσρ]]+ →n+1 Pσρ.

Proof By induction on the arityn of the predicatep and by definition of syntactic
sugar, following the structure of the proof of Lemma29. �

Lemma 32 Let C= L0 :−L1, . . . ,Ln be a Datalog clause, and letσ be a substitution
of messages for Datalog variables such that all the Liσ are ground facts. There exists
a process P such that[[C]] | [[L1σ ]]+ | . . . | [[Lnσ ]]+ →∗

≡ P | ([[L0]]+)σ .

Proof By definition of encoding,
[[C]] | [[L1σ ]]+ | . . . | [[Lnσ ]]+ ≡ [[C]] | [[L1, . . . ,Ln]]∅[[[L0]]+] | [[L1σ ]]+ | . . . | [[Lnσ ]]+. We
show, by induction onn, that([[L1, . . . ,Ln]]Σ[[[L0]]+])σ | [[L1σρ]]+ | . . . | [[Lnσρ]]+ →∗

≡
[[L0]]+σρ wheredom(σ) = Σ, which implies the thesis.

• (n = 0): By hypothesis,C is a ground fact.

By definition of encoding,([[ε]]Σ[C])σ = ([[C]]+)σ and we conclude, withρ = ∅.

• (n = m+1): Suppose, without loss of generality, thatLm+1 = p(u1, . . . ,uh).

By definition of encoding,[[Lm+1,L1, . . . ,Lm]]Σ[[[L0]]+] = Q where

Q = in p(u1, . . . ,uh,=ok); [[L1, . . . ,Lm]]Σ∪fv(Lm+1)[[[L0]]+].

By Lemma31, Qσ | [[L1σρ]]+ | . . . | [[Lmσρ]]+ | [[Lm+1σρ]]+ →h+1

([[L1, . . . ,Lm]]Σ∪fv(Lm+1)[[[L0]]+])σρ | [[L1σρ]]+ | . . . | [[Lmσρ]]+,
wheredom(ρ) = fv(Lm+1).

By inductive hypothesis,
([[L1, . . . ,Lm]]Σ∪fv(Lm+1)[[[L0]]+])σρ | [[L1σρ]]+ | . . . | [[Lmσρ]]+ →∗

≡ [[L0]]+σρ.
�

The lemma below shows that an encoded program is not consumed by reductions.

Lemma 33 If [[S]] →∗
≡ P then there exists P′ such that P≡ [[S]] | P′.

Proof By definition of encoding, structural congruence and reduction. �

Finally, we can show correctness and completeness for the encoding. Completeness
follows by induction on the derivations of|=; correctness follows by subject reduction.

Proof of Theorem 4 Let S be a Datalog program and F a fact. We have S|= F if
and only if[[S]] ⇓F .

Proof

(⇒) By induction on the depth of the derivation tree forS|= F .

• (d = 1): By hypothesis,F ∈ S. Let S= S′∪{F}.
By definition of encoding,[[S]] = [[S′]] |![[F ]]+ ≡ [[S]] | [[F ]]+.
By definition of⇓, [[S]] ⇓F .
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• (d = m+ 1): By hypothesis,F = Lσ for some grounding substitution of
messages for variablesσ and for some clauseC = L :−L1, . . . ,Ln such that
S= S′∪{C}. Moreover,S|= Liσ for all i, and eachLiσ is ground.

By inductive hypothesis,[[S]] ⇓Liσ for all i.

By definition of⇓, ∃Pi .[[S]] →∗
≡ Pi | [[Liσ ]]+ for all i.

By Lemma33, for eachi there existsP′i such thatPi ≡ [[S]] | P′i .
By reordering the reductions, we have that[[S]] →∗

≡ Q= [[S]] |P′′1 | [[L1σ ]]+ |
. . . | P′′n | [[Lnσ ]]+, where eachP′i = P′′i | [[Liσ ]]+.

By definition of encoding,Q = [[S′]] | [[L :−L1, . . . ,Ln]] | P′1 | [[L1σ ]]+ | . . . |
P′n | [[Lnσ ]]+.

By Lemma32, there existsP′ such thatQ →∗
≡ P′ | [[Lσ ]]+.

By definition of⇓, [[S]] ⇓Lσ .

(⇐) By Lemma3, there exists a generative environmentE such thatE ` S| [[S]].

By definition of⇓, ∃P.[[S]] →∗
≡ P | [[F ]]+.

By Lemma1, E ` S| P | [[F ]]+.

Without loss of generality, supposeF = p(u1, . . . ,un).

By definition of encoding,[[p(u1, . . . ,un)]]+ = out p(u1, . . . ,un,ok) andTp,n =
Ch(u1:Un, . . . ,un:Un,Ok(p(u1, . . . ,un))).

The judgmentE ` S | P | [[F ]]+ implies that rule(ProcG Par)has been applied
twice, with premises:E,env(G2),env(G3) `S: G1 andE,env(G1),env(G3) `P :
G2 andE,env(G1),env(G2) ` [[F ]]+ : G3.

By construction,G1 = S, G2 = G3 = ∅, since the process[[S]] contains no state-
ments.

Simplifying, the premises become:E ` S: G1 andE,S` P : ∅ andE,S` [[F ]]+ :
∅.

The last judgment must follow by rule(ProcG Output)for channel typeTp,n, and
some applications of message rules ending with an instance of(Msg Ok)for type
Ok(F).

SinceE is generative we have thatclauses(E) = ∅.

We conclude because the necessary premise of the rule isS|= F . �

D Listing of Programme Committee Example

The following shows the sample application from Section5 as processed by our type-
checker and symbolic interpreter. The syntax accepted by our implementation is slightly
more verbose than in the paper; we require square brackets around statements, and we
require additional round brackets in the syntax of terms.

The symbolic interpreter simulates each of the processes introduced intrace state-
ments in a context consisting of the clauses declared byglobal statements, and the
process abbreviations declared byprocessstatements. Beforehand, the typechecker
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tests that each of the processes mentioned intrace statements is well-typed in an en-
vironment consisting of all typed names and clauses declared byglobal statements,
and given the process abbreviations declared byprocessstatements. We deem global
names of typeUn to be public, and available to the attacker, whereas we deem global
names of channel or key types to be private, and not initially available to the attacker.
Suppose we compose each such process with statements of the global clauses, and
enclose the result in a series of restrictions for each of the global names with a type
other thanUn (the namespwdb, refereedb, kp, andka). By Theorem3, the outcome is
robustly safe.

global [Report(U,ID,R):−Referee(U,ID),Opinion(U,ID,R)]. // clause A
global [Report(U,ID,R):−PCMember(U),Opinion(U,ID,R)]. // clause B
global [Referee(V,ID) :− Referee(U,ID),Delegate(U,V,ID)]. // clause C

// Section 5.1: Online Delegation, with Local State

global pwdb: Ch((u:Un,
(Key((v:Un,(id:Un,Ok(Delegate(u,v,id))))),
Key((id:Un,(report:Un,Ok(Opinion(u,id,report)))))))).

global refereedb: Ch((u:Un,(id:Un,Ok(Referee(u,id))))).

global createReviewer:Un, sendreportonline:Un, delegateonline:Un.
global filereport:Un, filedelegate:Un.
processCreateReviewer() =
!in createReviewer(v);
newkdv: Key((z:Un,(id:Un,Ok(Delegate(v,z,id)))));
newkrv: Key((id:Un,(report:Un,Ok(Opinion(v,id,report)))));
( (!out pwdb(v,kdv,krv))
| (!in sendreportonline(=v,id,report);

[Opinion(v,id,report)] | out filereport(v,{(id,(report,ok))}krv) )
| (!in delegateonline(=v,w,id);

[Delegate(v,w,id)] | out filedelegate(v,{(w,(id,ok))}kdv) )).

processFileReport() =
!in filereport(v,e);
in pwdb(=v,kdv,krv); decrypt eas{id,report, }krv;
in refereedb(=v,=id, ); expectReport(v,id,report).

processFileDelegate() =
!in filedelegate(v,sigd);
in pwdb(=v,kdv,krv); decrypt sigdas{w,id, }kdv;
in refereedb(=v,=id, ); out refereedb(w,id,ok).

global Alice:Un,Bob:Un. // Two reviewers
global Paper058:Un. // A paper identifier
global delta:Un,milestone:Un,breakthrough:Un. // Some grades

// Example 1: Direct reporting via online database of referees
trace CreateReviewer() | FileReport() |

out createReviewer(Alice) |
[Referee(Alice,Paper058)] | out refereedb(Alice,Paper058,ok) |
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out sendreportonline(Alice,Paper058,delta).

// Example 2: Delegation and reporting via online database of referees
trace CreateReviewer() | FileReport() | FileDelegate() |

out createReviewer(Alice) |
[Referee(Alice,Paper058)] | out refereedb(Alice,Paper058,ok) |
out createReviewer(Bob) | out delegateonline(Alice,Bob,Paper058) |
out sendreportonline(Bob,Paper058,milestone).

// Reviews from PC members, using capabilities

global createPCMember:Un,filepcreport: Un.

processCreatePCMemberAndFilePCReport() =
newkp : Key((u:Un,Ok(PCMember(u))));

(!in createPCMember(u,pc);[PCMember(u)] | out pc({(u,ok)}kp))|
(!in filepcreport(v,e,pctoken);

in pwdb(=v,kdv,krv); decrypt eas{id,report, }krv;
decrypt pctokenas{=v, }kp; expectReport(v,id,report)).

// Example 3: PC member registering review via appointment capability
trace CreateReviewer() | CreatePCMemberAndFilePCReport() |

// PC chair appoints Alice as a PCMember
out createReviewer(Alice) | newk:Un; out createPCMember(Alice,k) |

// Alice uses the capability pctoken to register a review
in k(pctoken); in pwdb(=Alice, ,krAlice);
[Opinion(Alice,Paper058,milestone)] |
out filepcreport(Alice,{(Paper058,(milestone,ok))}krAlice,pctoken).

// Section 5.2: Offline Delegation, with Certificate Chains

global [Delegate(U,W,ID):−Delegate(U,V,ID),Delegate(V,W,ID)].
global [Delegate(U,U,ID):−Opinion(U,ID,R)].
global ka : Key((u:Un,(id:Un,Ok(Referee(u,id))))), filedelegatereport:Un.
processFileDelegateReport() =
!in filedelegatereport(v,e,cv);
in pwdb(=v,kdv,krv); decrypt eas{id,report, }krv;
new link:Ch((u:Un,(c:Un,Ok(Delegate(u,v,id))))); out link(v,cv,ok) |
!in link(u,cu, );
( decrypt cuas{=u,=id, }ka; expectReport(v,id,report)) |
( tuple cuas(t,delegation,ct); in pwdb(=t,kdt, );

decrypt delegationas{=u,=id, }kdt; out link(t,ct,ok)).

// Example 4: Offline delegation.
trace CreateReviewer() | FileDelegateReport() |

// PC chair appoints Alice and Bob as reviewers.
out createReviewer(Alice) | out createReviewer(Bob) |

// PC chair uses ka to appoint Alice as reviewer of Paper058
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[Referee(Alice,Paper058)] |
newm1:Un; out m1 ({(Alice,(Paper058,ok))}ka) |

// Alice delegates Paper058 to Bob
in m1 (cAlice:Un); in pwdb(=Alice,kdAlice, );
[Delegate(Alice,Bob,Paper058)] |
newm2:Un; out m2 ((Alice,({(Bob,(Paper058,ok))}kdAlice,cAlice))) |

// Bob sends in his review
in m2(cBob:Un); in pwdb(=Bob, ,krBob);
[Opinion(Bob,Paper058,milestone)] |
out filedelegatereport(Bob,{(Paper058,(milestone,ok))}krBob,cBob).
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