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A resource may be abused if its users incur little or no cost. For example, e-mail abuse is rampant
because sending an e-mail has negligible cost for the sender. It has been suggested that such
abuse may be discouraged by introducing an artificial cost in the form of a moderately expensive
computation. Thus, the sender of an e-mail might be required to pay by computing for a few
seconds before the e-mail is accepted. Unfortunately, because of sharp disparities across com-
puter systems, this approach may be ineffective against malicious users with high-end systems,
prohibitively slow for legitimate users with low-end systems, or both. Starting from this obser-
vation, we research moderately hard functions that most recent systems will evaluate at about
the same speed. For this purpose, we rely on memory-bound computations. We describe and
analyze a family of moderately hard, memory-bound functions, and we explain how to use them
for protecting against abuses.

Categories and Subject Descriptors: C.Z0inputer-Communication Networks]: General—security and pro-
tectiont H.4.3 [Information Systems Applications: Communications Applications-efectronic mail

General Terms: Algorithms, Security

Additional Key Words and Phrases: Spam

1. INTRODUCTION

With the increase in the number of e-mail users and the proliferation of junk e-mail (spam),
several techniques for discouraging or filtering spam have been proposed (e.g., [Ahn et al.
2003; Cranor and LaMacchia 1998]). In particular, Dwork and Naor suggested in their
seminal paper that a way to discourage spam is to force senders of e-mail to pay by per-
forming a moderately expensive computation [Dwork and Naor 1992]. More recently,
Back rediscovered this idea and implemented it in the HashCash system [Back 1997] (see
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also [CAMRAM 2002]).

Their basic scheme goes as follows. Suppose that sender S is sending an\é-toail
recipient R. We assume thaf includes normal mail headers, in particular the time and
R’s address. If R has previously agreed to receive e-mail from S, Midés sent in the
normal way. Otherwise, they proceed:

—S computes some moderately-hard functigf/) and send$M, G(M)) to R.

—R verifies that what it receives from S is of the fof/, G(M)). If so, R accepts\/.
If not, R bouncesM, possibly indicating in the bounce message where S can obtain
software for computing=().

The functionG() is chosen so that the verification by R is fast, taking a millisecond, say,
and so that the computation by S is fairly slow, taking at least several seconds. Therefore,
S could be (somewhat) discouraged from sendifigFor a spammer that wishes to send
many millions of messages, the cost of computi#(g repeatedly can become prohibitive.

Such schemes, with refinements and extensions, have a variety of interesting applica-
tions. For example, moderately expensive computations also play a role in secure classifi-
cation [Gabber et al. 1998], another scheme for curbing spam. Beyond combating spam,
requiring moderately expensive computations can help in protecting against other abuses.
For example, Web indexes could require a computation each time a user tries to add a
URL to the index, thereby limiting additions; a server could require a computation each
time a client tries to establish a connection, thereby countering connection-depletion at-
tacks [Juels and Brainard 1999]. A paper by Jakobsson and Juels discusses several other
applications and develops a formalization of the concept of proof of work [Jakobsson and
Juels 1999].

In some cases, it is preferable that S apply a moderately hard function to a challenge
provided by R (rather than to a particular message or request):

—S contacts R, requesting permission to use some service.
—R returns a fresh challengeto S.
—S computes7(x) and returns it to R.

—R verifies that what it receives is a correct response. ttf so, R allows S to use the
service.

This variant enables S to compui¥z) well before actually using the service in question.

In previous work in this area, the emphasis is on CPU-intensive computations. In par-
ticular, Dwork and Naor suggest CPU-intensive candidates for the funGtiprsuch as
breaking the Fiat-Shamir signature scheme with a low security parameter. Back’s Hash-
Cash scheme relies on the brute-force search for partial collisions in a hash function.

The starting point for the present paper is a simple, new observation about a problem-
atic feature of such moderately hard computations. Fast CPUs run much faster than slow
CPUs—consider a 2.5GHz PC versus a 33MHz Palm PDA. Moreover, in addition to high
clock rates, higher-end computer systems also have sophisticated pipelines and other ad-
vantageous features. If a computation takes a few seconds on a new PC, it may take a
minute on an old PC, and several minutes on a PDA. That seems unfortunate for users of
old PCs, and probably unacceptable for users of PDAs. While it is conceivable that service
providers may (for a fee) perform computations on behalf of users of low-end machines,
such arrangements are not ideal. These arrangements would conflict with free e-mail, and

ACM Journal Name, Vol. V, No. N, Month 20YY.



Moderately Hard, Memory-bound Functions . 3

may be unstable: service providers could save money and trouble by making contracts to
pass e-mail between themselves without actually performing the computations. So, mod-
erately hard computations may be most appropriate when performed by clients. Therefore,
we believe that the disparity in client CPU speed constitutes one of the significant obstacles
to widespread adoption of any scheme based on a CPU-bound moderately hard function.

In this paper, we are concerned with finding moderately hard functions that most com-
puter systems will evaluate at about the same speed. We envision that high-end systems
might evaluate these functions somewhat faster than low-end systems, perhaps even 2—
10 times faster (but not 10-100 faster, as CPU disparities might imply). Moreover, the
best achievable price-performance should not be significantly better than that of a typical
legitimate client. We believe that these ratios are egalitarian enough for the intended appli-
cations: the functions should be effective in discouraging abuses and should not introduce
a prohibitive delay on legitimate interactions, across a wide range of systems.

Our approach is to rely on memory-bound functiéms memory-bound function is one
whose computation time is dominated by the time spent accessing memory. The ratios of
memory latencies of machines built in the last five years is typically no greater than two,
and almost always less than four. (Memory throughput tends to be less uniform, so we
focus on latency.) A memory-bound function should access locations in a large region of
memory in an unpredictable way, in such a way that caches are ineffectual. This strategy
can work only if the largest caches are significantly smaller than the smallest memories
across the machines of interest. Unfortunately, one can now buy machines with 8MB
caches, and some PDAs have only 8MB of memory or less, so perhaps there is little or no
room to manceuvre. On the other hand, at the time of this writing, machines with 8MB
caches are still expensive rarities, while PDAs with 64MB of memory are fairly common.
So we proceed by restricting our attention to machines with at least 32MB of available
memory. In light of technology commonalities, PDA memories may grow as fast as caches
over the next few years.

The next section, section 2, further describes our approach; it explores a particular class
of memory-bound computations related to inverting functions. Section 3 develops this ap-
proach into a complete method. Section 4 presents some variants of the method. Section 5
then investigates specific instances of the method. Section 6 gives experimental results.
Section 7 concludes, mentioning some other related work and some open questions.

In our presentation, we emphasize the application of memory-bound functions to dis-
couraging spam. However, memory-bound functions are immediately applicable in pro-
tecting against other abuses (for example, against abusive additions of URLs to Web in-
dexes and against connection-depletion attacks). In particular, a future release of Mi-
crosoft's Passport system may use our functions as one of the mechanisms for controlling
account creation. Memory-bound functions are also applicable for strengthening pass-
words. We explain this application, which is less straightforward, in section 4. Other
possible applications include establishing shared secrets over insecure channels and the
timed release of information, using memory-bound variants of Merkle puzzles [Merkle
1978] and of time-lock puzzles [May 1993; Rivest et al. 1996], respectively. We discuss
these also in section 4.

LIt appears that this approach has not previously been explored. However, in January 2003, after performing
much of this work, we discovered a brief mention of memory-bound functions in the camram mailing list [Astley
2001].
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2. MEMORY-BOUND COMPUTATIONS: INITIAL IDEAS

Our approach is to force the sender S to access an unpredictable sequence of locations in a
large array. The size of this array is chosen to be significantly larger than the largest cache
available; at present, the size of the array should be at least 16 MB.

One possibility is to prescribe a computation on some large data structure, for example a
large graph, that would force the desired memory accesses. Unfortunately, with this strat-
egy, the definition of the function may itself become rather large and hard to communicate,
and checking S’s answer may be costly. Nevertheless, this strategy might be viable.

An alternative, which we adopt, is to prescribe a computation that could be done with
very little memory but which is immensely helped by memory accesses. More specifically,
let F'() be a function whose domain and range are integefs (2" — 1), where2” is the
number of entries in the array. This function will vary from time to time; for example, R
may choose a fresk() periodically. Suppose thdf()’s inverseF~!() cannot be evalu-
ated in less time than a memory access. If we ask S to confputé) many times, then it
becomes worthwhile for S to build a table f6r-!() and to rely on the table thereafter.

The table can be computed By applications ofF'(). Building the table also requires
memory accesses, for storing the table entries. However, these memory accesses can bene-
fit from batching, and their cost (like that of applyitf)) is not necessarily uniform across
machines. Therefore, the cost of building the table should not be dominant in S's work in
responding to R’s challenge. Rather, the dominant cost should be that of performing many
table lookups.

In order to develop these initial ideas, we first describe a haive embodiment and list some
of its problems (section 2.1). Then we make an interesting but imperfect improvement
(section 2.2). We design and study a complete method later in this paper.

2.1 A naive embodiment

A naive embodiment of our ideas consists in letting R challenge S mithluesxy, ...,
xi_1, and requiring S to respond with their immediate pre-images, that is, with vajues
o Yk—1 such thatF(yo) T ,F(ykfl) = Tk_1.-
This naive scheme is flawed, in at least four respects:

(1) The size of the challenge is x k. While n will not be very large, becaus®® will
be smaller than the memory size will need to be quite large so as to determine a
sufficiently difficult problem. The resulting size of the challenge could be on the order
of megabytes. Therefore, the challenge would be hard to transmit to S.

(2) If the valuesry, ..., x,—1 are all presented at once, a brute-force search can attempt
to find pre-images for all of them at once, by computifig) forward. This search
will require at mos2™ computations of'()—a large number, but probably not large

enough. Ifk is small enoughgy, ..., xx_1 will be cached rather than stored in mem-
ory, so this brute-force search will be CPU-bound and it will be faster than the expected
memory-bound computation. kfis large, sary, ..., x;_1 are stored in memory, the

brute-force search will require memory accesses, but these can be organized in such a
way that their cost is not uniform across machines.

On the other hand, if R presents, ..., z;_1 sequentially, waiting for S’s response to

x; before givingz; 1, the naive approach requires a prohibitively large numbgof

rounds of communication.
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(3) If R must present the challenge to S, then S is unable to prepare a message to be
sent to R without first contacting R. While this interaction may be acceptable in some
circumstances, we would like to have the option of avoiding it. One technique for
avoiding it, which we exploit in a system currently under development [Abadi et al.
2003], consists in letting a trusted third party present the challenge to S; but, in some
settings, a suitable trusted third party may not be easy to find.

(4) The ratio of the work done at S and R is the ratio in time between a memory access
and a computation of'(). This ratio is unlikely to be more than 10, and cannot be
more than 100 or so with present machines. (Here we ignore the cost of building a
table at S, since it should be dominated by the cost of the later lookups in the table, as
indicated above.) A higher ratio is desirable in order to limit R’s work.

2.2 Animprovement: chains

Chaining the applications df() helps in addressing shortcomings 1 and 2 of the naive
scheme. (We return to shortcomings 3 and 4 in later sections.) The chaining may go as
follows:

—R picks a valuer.
—R computes:;, by letting, for alli € 0..(k — 1),

Tiy1 = F(z;)
—R givesz to S and challenges S to fing.

The hope is that, as long 88 andk are large enough, the fastest approach for S would be
to performk accesses into a table to evaluate! () as many times. S should perform these
accesses in sequence, not because of interaction with R but because each access depends
on the previous one. The functidn() should be such that the sequence of accesses has
poor locality and is hard to predict, so S should not benefit from caches. Finally, the size
of the challenger;, (n bits) is smaller than in the naive scheme.

This straightforward use of chains is however unsatisfactory. In particular, if the se-
guence of values produced by successive invocatios ptontains cycles smaller than
2™, then S might be able to use those cycles as shortcuts. On the other hA&idjsfa
permutation with a single cycle of leng#¥, then S may findzy from x; with at most
k + 27*! forward computations of () and hardly using memory:

x = an arbitrary value;
y = F*(z);
while y # xy, {
x = F(x);
y=Fy);
¥

returnz;

In order to defeat this CPU-based solution and to eliminate cycles, we change the recur-
rence to depend on the step number. In what follows, we use:

Tiy1 = F(.’EZ) XOr ¢

ACM Journal Name, Vol. V, No. N, Month 20YY.



6 . Martin Abadi et al.

The xor with the step number permutes the values at each step; we have also experimented
with other permutations, for example xoring a function of the step number rather than the
step number itself.

Even after this correction, the design of a scheme based on chains requires further elab-
oration. In particular, when the functioR() is not itself a permutation, there may be
many valid responses to the challenge there may be many;, such that the recurrence
xj = F(z}) xor i yieldsz) = ;. We should specify which of thesg are acceptable
responses.

This difficulty can be addressed by generalizing from chains to trees, as we do next.
The generalization also allows us to avoid the other shortcomings of the naive scheme of
section 2.1.

3. A COMPLETE METHOD: TREES

Building on the ideas of the previous section, we design and study a method that relies on
trees.

3.1 The method

In trying to address the shortcomings of chains, we work with functions that are not per-
mutations, so we need to specify which are the acceptable responses to a challeige
least two approaches are viable:

—One approach is to accept not ondy but all 2;, such that the recurrence  , =
F(x}) xor ¢ yieldszj, = xy. Itis still useful to construct:, from z, rather than
completely at random, in order to ensure that at least one acceptable response exists.
This approach obviously adds to the cost of verifying a response, since rememkgring
does not suffice for the verification: R needs to follow a chain fagnto «,.

—Another approach, which we prefer, is to accept arjyforcing S to explore a tree of
pre-images rather than a chain of pre-images. The tree hasjad depthk. The
nodes of the tree are (immediate or iterated) pre-imageg.dDne of the leaves at depth
kis xQ.
This presents a further problem, namely that S does not know which of the many possible
leaves at depthk is R’s chosen one. S could perhaps send all of these leaves to R, but
this would add considerable communication cost. (The number of these leaves can be
fairly large.)
A solution is for R to provide S with a cheap checksum of the path frgrto z¢. This
checksum should be such that S can tell when it has fagnglet the checksum should
not allow S to prune the space of possibilities in advance of a search. The checksum
need not be cryptographically strong.

In summary, the resulting method is as follows:

—Let k andn be two integers, and leff() be a function whose domain and range are
integers in..(2" — 1). We suppose that()’s inverseF ~!() cannot be evaluated in less
time than a memory access. We assume that andF’() are known to both R and S,
possibly because R has chosen them and communicated them to S.

—R picks an integeg in 0..(2™ — 1) and computes, fare€ 0..(k — 1):
Tiy1 = F(SL’Z) XOr ¢

ACM Journal Name, Vol. V, No. N, Month 20YY.



Moderately Hard, Memory-bound Functions . 7

O, 0O, &, 0O O\O}O/O

O\ O\ N '
o O
0
0

ORNG)

Y !
O,/

N

&)

Fig. 1. Anexample tree

and a checksum of the sequengg. .., zx. R sends;, and this checksum to S.
—With this information, S should findy and return it to R.
—When R receives a response from S, it simply checks that.is

Figure 1 depicts an example tree with= 5; each arrow corresponds to an application of
F() and an xor with the appropriate step number.
We expect S to proceed as follows in order to find

—Construct a table foF () by applyingF() to all integers irD..(2" — 1).
—Build sequences, ...,y starting withy,, = x;, and such that

yi € F~ (y;41 xor i)

(sothaty; 11 = F(y;) xor ).
—Given such a sequence, retunif the checksum matches.

S may build the sequencegs, ..., yo depth-first (hoping to find a match early, much
before building all sequences); or S may build them breadth-first (trying to hide some of
the memory latency). In either case, S should perform many accesses to the table for
F=1().

Of course, S may instead adopt alternative, CPU-intensive algorithms. However, when
F(), n, andk are chosen appropriately, we believe that S’s task is memory-bound. In other
words, those CPU-intensive algorithms will be slower than a memory-bound solution. We
do not unfortunately have a formal proof of this conjecture, and it may be quite difficult
to obtain one (see section 7 for a brief discussion of other approaches). Below, we give
calculations that support this conjecture focusing on particular CPU-intensive algorithms.

3.2 Trees and work

The ratio of the work done at S and R is greatly improved when we force S to explore a
tree as explained above. Thus, the use of trees also addresses problem 4 of section 2.1.
In this section we analyze that work ratio. We also calculate the expected performance of
S using alternative, CPU-intensive algorithms. We obtain some constraintsigrand

other parameters. Figure 2 shows some of the notation used in this section.
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F() afunction with domain and range.(2™ — 1)
z;  the value obtained aftérapplications off'()
n the size of each value
k the number of time& appliesF’() to generate a problem
f the cost of applying”()
fo  the cost of applying®() on a slow machine
fi the cost of applying”() on a fast machine
c a factor for work performed by
D the number of problems over whichamortizes a table foF —1()
r the cost of a memory read
w the cost of a memory write

Fig. 2. Notation

A quadratic factor.In order to characterize the work ratio, it is helpful to be more
specific on the basic functiof'(). An interesting possibility, which we discuss further
in section 5.1, is to leF'() be a random function. (Here, and in the rest of this paper,
we say thatF'() is a random function if and only if’(z) is uniformly distributed over
0..(2™ — 1), for eachz, and independent of all'(y) for y # x.)

When F'() is random and: < 2", the size of the tree explored by S is quadratijn
so S is forced to perform far more work than R even if it takes as long to conifiytas
F~1(). Basically, the size of the tree is approximatéRy/2, and S needs to explore half
of the tree on average (with depth-first search), so S needs to evaluatgroughly k2 /4
times on average. In contrast, R applie§ only & times.

More precisely, we have made the following observation. Suppose that the fuhtiion
on0..(2" — 1) israndom and << 2". Letxz, be a random value and le}, be defined by
the recurrence:

Tiy1 = F(LZ) XOr ¢

Construct a tree with roat;, and in which, ify is at depthy < & from the root, therr is a
child of y if and only if

y=F(z) xor (k—j—1)

The expected number of leaves of this tree at dépthapproximatelyt + 1. The expected
size of this tree is approximate{y + 1)(k + 2)/2. These numbers require that the tree in
guestion be constructed from a leaf, rather than from a random rooi.: the expected
size of a tree grown from a randam is considerably smaller.

We have noticed the quadratic size of trees in experiments, Idttihdpe various prac-
tical (not exactly random) functions. Section 6 discusses these experiments further. A
posteriori, we have sketched a proof of the quadratic size, there assuming an independent
random function at each tree level. (In short, our proof sketch inductively argues that the
expected number; of nodes at deptlj is almostj + 1 as long asj is much smaller
than2™: by construction;z;_; is a node at depth, and forj > 0, each of the™ — 1
other values maps to one of the_; nodes at depth — 1 with probabilityn,_,/2", so
n; =14+ 2"—-1)xn;j_1/2" =1+n,;_1 — (n;—1/2").) Amore sophisticated analysis
might be possible using tools from research on random functions, a rich field with many
theorems (see for instance [Flajolet and Odlyzko 1990]).

ACM Journal Name, Vol. V, No. N, Month 20YY.



Moderately Hard, Memory-bound Functions . 9

In light of the quadratic size of trees, it is tempting to use very deep trees, so as to
increase the work ratio between S and R. There are, however, important limitations on tree
depth. At each level in a tree, S may try to invert all the leaves simultaneously, somehow.
When there are enough leaves, S may benefit from cache behaviour. Specifically, when
several leaves land in the same cache line, the cost of inverting all of them is essentially
the cost of just one memory access. (A cache line is the unit of cache replacement, and is
typically around 64 bytes.) These issues are particularly clear winerars the size of the
space2”. We must therefore kedpmuch smaller thaB”—say, below2™ 5.

Some calculationsNext we derive a few simple formulas that (roughly) characterize the
work at R and—using several different algorithms—at S. We obtain some constraints on
n, k, and other parameters. We indicate some precise values for parameters in section 5.2.

For simplicity, we assume that R has chog&n and communicated it to S; sections 3.3
and 5.1 say more on the choice Bf). We also rely on the quadratic ratio established
above. We assume thiats “small enough” (in particular, so that this ratio applies). Finally,
we assume that checksumming is essentially free (partly because we do not require a strong
cryptographic checksum). We wrifefor the cost of one application df(), r for the cost
of one memory read (with a cache miss), antbr the cost of one memory write.

—R’s cost in making a challenge will essentially be thatapplications ofF'(), that is,
kx f.

—S’s cost for building a table foF —1() will be that of:
—2" applications ofF'();
—2" insertions into the table.
Naively, this cost appears to B8 x (f + w). However, for some functiong'(), the
cost of 2™ applications ofF'() may be substantially smaller th&ft x f. Similarly,
the cost of insertin@™ entries may be substantially smaller thzthx w, because the
necessary writes can be batched and completed asynchronously by the hardware. On the
other hand, if the table structure is similar to that of a hash table, then the insertions will
require reads in order to resolve collisions. These reads may make the cost of building
the table closer t@™ x (f + r). In the calculations below, we assume that the cost is
2" x (f + w) and we often assume that= 7.

—S’s cost for solving a challenge using a table for!() and depth-first search will be
approximately that of? /4 memory accesses without significant help from caches, that
is, (k2/4) x r.

—If S prefers not to use a table féi—!(), it may still follow the same search strategy by
pretending that it has a table and by invertifig) on the fly (by brute force) whenever
necessary. Provided that an inversionff) requires2™ applications ofF'(), the cost
of this CPU-intensive approach will i€ x 2" x f. With a little more trouble, a CPU-
intensive search may be done only once for each level in the tree of pre-images, with
total costk x 2™ x f.

—If S prefers not to use a table fér—*(), S may also guess, and check its guess by
applying F'(). For each guess, it has to apdy() k times, so the expected cost of this
CPU-intensive approach will be that2f~! x k applications of"(), thatis,kx 2"~ x f.

—Along similar lines, S may apply'() only /% times to each of the valuesin.(2" — 1);
because of collisions, rough®y**! /v/k distinct values will remain after this, and S may
then applyF () to them(k —+/k) times (terminating half way through these applications,
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on average). The expected cost of this more sophisticated (but realistic) CPU-intensive
approach will bev/k x 2" + 2711 /\/k x (k—/k)/2) x f, thatis,(2x VE—1) x 2" x f.

—S may be able to find other optimizations of the brute-force, CPU-intensive search for
xg. In particular, in order to minimize applications Bf), S may try to notice collisions
after each round of applications 6%) (rather than only once aftefk rounds). Thus, S
would applyF'() to each of the” values just once, then apply() only once to each of
their images, and so on. S may thus require) x 2™ applications ofF'(), wherec(k)
is an affine function of the logarithm @& Conceivably, this and other optimizations can
lead to a cost of x 2™ x f, wherec is a small integer (say, below 10). Note however that
this is a coarse bound on ambitious, speculative ideas, not a measurement of an actual
efficient implementation: we do not know how to realize these ideas without substantial
overhead.

We arrive at the following constraints:

(1) Efficient table building:As indicated in section 2, the cost of building the table for
F~1() should not be dominant in the table-based solution. Suppose that S amortizes a
table overnp problems. (Section 3.3 says more on amortization.) Then we should have

px (k2/4) xr > 2" x (f +w)
that is,

k> 20/ 5 /1/p < /(f +w)/r
This lower bound can be reduced when, as suggested above, theZbapplications
of F() and2™ stores is smaller tha2* x (f + w).

(2) No fast CPU-intensive searchYe would like the table-based solution to be faster than
the CPU-intensive solutions. With the simpler CPU-intensive solutions, this condition
means roughly that

k< 2" x (f/r)

With the more sophisticated CPU-intensive solution described above, however, we
should have that

ko< (2718 x (f/r)¥3

Finally, fearing that one could eventually implement a CPU-intensive solution with
coste x 2" x f, we would want

k< 20/AF s/ r x Ve

(Here we simply ignore the cost of building a table for(), since it will be domi-
nated by other costs.)

(3) High work ratio: We would also like that setting a challenge is much cheaper than
solving it. In other words(k?/4) x r should be much larger thanx f, sok should
be much larger tha# x (f/r). This constraint is easily satisfied whers large.

(4) No fastinversion of7(): Another constraint follows from our requirement ti@t ()
cannot be evaluated in less time than a memory access. Obviéusly) can be eval-
uated with2™ applications ofF'(), so we must have that > r /2™, butr/2™ will be
tiny. A more sophisticated construction permits evaluafing () with a much smaller
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number of applications af'(). Since Hellman introduced this construction [Hellman
1980], it has been extended and improved in several respects (e.g., [Fiat and Naor
2000; Quisquater et al. 2003; Oechslin 2003]); we base the following discussion on
Fiat's and Naor’s variant [Fiat and Naor 2000], which is attractive because of its gen-
erality and rigorous analysis:

Forj = 1..I, S would precompute: pairs(z, hé (x)) whereh;(z) = g;(F(z)) and
eachg; () is an auxiliary function. The integers andl should be such thdt x m

is around2™ and such that x m pairs (z, hé-(x)) can be cached. Thereforewill

be at least 2; we can force it to be larger (at least 3, perhaps 6) by increasing the size
ratio between the smallest memory and the largest cache under consideration. In order
to find one immediate pre-image gf S would apply each functioh; () to y up tol

times, hoping to hit some precomputbzﬂx), then S would reach an immediate pre-
image ofy by working forward from the associated This process can be repeated

to find all immediate pre-images gf with some probability [Naor 2002]. Making the
conservative assumption that the applications of the functgfisare free and that
there is no other overhead, S may evalugite!() in time I?> x f. If S has a huge
cache, ther could conceivably be 2, so S could evaluate! () in time4 x f. On the

other hand, naively, S may keep half of a table for! () in a cache of the same size,

and thus S may evaluafé~!() in time /2 on average. Under these assumptions, we
should require that x f > r/2, thatis,f > r/8.

Although these assumptions may appear fairly extreme, we believe that it is safer to
keepf > r/8, and we may have to raise this bound in the future. Fortunately, this
bound is not particularly problematic, as we demonstrate below.

Fast computation of'(): On the other handf cannot be very large (or else some

of the CPU-intensive solutions can be sped up). If applyit{g naively is slower

than a memory read, then S may build a table fgj. Many of the accesses to the
table might be organized in big linear scans and might therefore be relatively cheap.
Moreover, part of the table might be cached, even across problems that use the same
or relatedF'()'s, thus further reducing the effective cost of calculatihg. Therefore,

we considerf < r.

In the lower bound ork (constraint 1), the value of should correspond to a slow
machine; in the upper bound (constraint 2) and in the other constraints, to a fast machine.
(We assume, pessimistically, that attackers have fast machines; we can also assume that
the challenges are set at fast servers.) In order to avoid ambiguities, let us call the values
of f on slow and fast maching and f;, respectively.

There exists a satisfactory value/oprovided that:

o(n/2+1 \/T SV (el R Y RNV F LN
D r r

In other words, we should have:

(1/p) x ((fo+w)/r) < (fr/r) xc

that is,

p > (fotw)/(f1xc)

For instance, when = 4, w = f1, andfy = 100 x f1, we require roughly > 25.
With these values; = w, andn = 22 (for a realistic memory size), we may letbe 2'3.
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The corresponding cost is that@¥ memory accesses for eachpaproblems. Section 5.2
says more on the setting of parameters and their consequences.
The constraints

r/8< filr

are easy to satisfy. In particular, as CPU speeds increase, we can modify or tBpjace
in order to slow it down and to preservé8 < f;. If slow machines are never upgraded,
this change will result in a largefy, so it may affect both the setting and the solving of
challenges on those machines, though in tolerable ways:

—Because of the quadratic factor in the work ratio, setting challenges will remain efficient
even on a fairly slow machine. Moreover, it seems reasonable to assume, as we do above,
that setting challenges will normally be done at fast machines such as mail servers.

—The modified functior¥'() may compute the images of a variable number of inputs at
the same time, as we describe in section 5.1. In this case, the building of a table for
F~1() need not be penalized by the modification: it can be as fast as with the original,
faster function.

Even without this technique, we can easily accommodate large disparities between the
speeds at which clients may build the table. The example settings in ihiehL 00 x f;

show that we can support clients that are much slower than those accepted by most users
and current applications.

3.3 Refinements

The description above focuses on defining a single problem with a given fungtipn
However, problems may be grouped, and the funcfigh should not be fixed. Next we
consider these important refinements.

Varying the functior¥'(). The functionF'() should vary from time to time. If the same
F() were used for many challenges, then CPU-intensive solutions would become attrac-
tive. In particular, the CPU-intensive forward searches of section 3.2 (which are described
there as thougl#'() is completely fresh) could solve several problems with the sAif)e
simultaneously. Therefore, the functiéi{) should ideally vary from problem to problem.
It may be freshly generated for each problem, at random from some family.

The variation ofF'() may simply consist in xoring a different quantity for each problem.
Thus, given a master functialF () and an integey € 0..(2" — 1), R may define a new
function F'() simply by:

F(x) = MF(x) xor j

The integer; may be a problem index (a counter) or may be generated at random. In either
case, if R and S know the master functibff' () in advance, then R needs to transmit only
j to Siin order to convey’(). Moreover, as long a&/F'() remains fixed, S may use a table
for MF~'() instead of a table for each derived functi&ir! (), thus amortizing the cost
of building the table forMF (). The master function itself should change from time to
time—we may not trust any one function for long.

Of course, there are many other ways of defining suitable families of functions. We
return to this matter in section 5.1.

Using multiple functions requires conventions for describing them, for example so that
R can tell S about a new function. K() is derived from a master function and an integer
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parameter (as if'(x) = MF(z) xor j), then the description df () might be a description

of the master function plus the parameter. The description of the master function might
simply be a short name, if it is well known, or it might be code or a table for the function.
The integer parameter can be omitted when it is clear from context, for instance when it is
a counter.

Using several problems as a challenge may ask S to solve several problems of the sort
described above, so that S has more work to do, without increasing the expected difficulty
of each problem. In addition to requiring more work, the use of several problems also gives
some valuable protection against variability in problem hardness.

We may be concerned that S could amortize some work across several problems and
solve them all in parallel with a CPU-intensive approach. Indeed, some flawed variants of
our method allow such undesirable amortizations. Two twists thwart these amortizations:

—As described above, the functidr() should vary from problem to problem. All the
problems in a group may share a master function. For instance, with functions of the
form F(z) = MF(x) xor j, the problems in a group may all shav& () but each may
have a differeny.

—Each problem’s challenge and function description (except the first) may be presented
encrypted under a key derived from the path to the solution of the immediately preceding
problem.

3.4 Making problems even harder

In addition to grouping problems, other techniques may contribute to making challenges
harder. We briefly sketch and speculate on two such techniques in this section.

Omitting bits from problemsOne can often make problems harder by omitting some
bits from them. In particular, R could omit some bits of the challengef the description
of the functionF'(), or both, and S would need to guess or reconstruct the missing bits in
finding z¢. For instance, R could present the full and a checksum of the path fram
to z, and R could tell S thak'() has a definition of the form

F(z) = MF(x) xor j

where S knows\/F () but not the integey; then S may need to try many possible values
of j in order to findx,.

Omitting bits slows down S’s memory-bound search. On the other hand, omitting bits
does not always slow down CPU-intensive alternatives. For example, CPU-intensive for-
ward searches are not affected when R omits bits fignbut not 7'(). Therefore, such
variants should be used with caution.

Mixing functions. Another way to make problems harder is to interleave applications
of multiple functionsFy(), ..., F,(). When R constructs the challengg from x¢, at
each step, it may apply any of those functions. Thus, foi al 0..(k — 1), we have
ziy1 = Fj(x;) xor i for somej € 0.m. S knowsEy(), ..., Fi,(), but not in which
sequence R applies them, or not entirely. For instance, S may know that R always applies
Fy() except that every 10 steps R applies eitfgf) or F1 (). Therefore, S basically has to
guess (part of) the sequence of function choices when it tries tafind

This technique seems viable. It helps in thwarting certain CPU-intensive attacks and it
may yield an improvement in work ratios, at the cost of some complexity.
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4. VARIANTS

The tree-based method can also be adapted to scenarios in which the parties or their in-
teractions are somehow constrained. Next we describe variants of the tree-based method
that address such constraints. Some of them have to do with the secure communication of
secrets or their timed release, rather than with protection against spam and other abuses.

4.1 Forgetting the challenge

Relying on a standard technique, we can save R from remembegiadter it sends it
to S. Specifically, R can produce a keyed has{¥, ) of x¢, using a cryptographically
strong keyed hash functiol () [Menezes et al. 1996] and a kéy known only to R, and
give H(K, x) to S along with the challenge. S should return haftand H (K, z(), so R
can check that S’s response is correct by recomputiGg, =) from K andz,. Further
refinements of this method can include a proof of freshness, a descriptif),aind other
information withz.

4.2 A non-interactive variant

Going further, we return to problem 3 of section 2.1, that is, we show how to avoid requir-
ing R to interact with S before S can send its mesgege

If R (or a trusted third party) cannot present a challenge to S, then the challenge can be
defined by the messadé, as follows.

—S is required to apply a one-way hash functiodfoor selected parts a¥/ that suffice
for preventing replays, for example R’s address and a message identifier).

—Using the result of that hash as the seed to a cryptographic random number generator, S
then generates a functidr() and a start positiom for its tree search.
(If R or a trusted third party can provide a small, partial challenge to S, then S should
use it in the choice of'() andz.)

—S computes;;, by evaluatingF'() & times, with the recurrence:

Tip1 = F(l’7) XOr ¢

—S must supply a valug; other thanz, such thate], , = F(x;) xor i yieldsz) = xy,
and that some other, sufficiently rare property holds.
An example of such a property might be that the checksum of the pathefydma|, be
0 mod2™ for a sufficiently largen. When2™ is smaller thark, it is likely that such an
x(, exists. When no such exists, S can pick a nemy and F'() and try again.
If R verifies that thex{, presented by S has the property, and that S did not discard
too many functions, then R can be reasonably certain that S had to search a substantial
fraction of the tree rooted atj,.

We may choose a property that is quite hard to satisfy, so as to increase the work that
S has to do in finding a suitabl€,. Despite S's additional effort, its response can remain
small.

Alternatively, should S need to do more work than that represented by solving a single
problem, S may solve several problems. The problems may all be independently derived
from M (each with its own functior’() and its ownz, andz}), or they can be linked
together (so the answey, for one problem may be used in computing the functio(f)
and the start position, for the next problem). In either case, S should supply all the
valueszy.
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4.3 Strengthening passwords

Interestingly, some of the same ideas can be used for strengthening passwords. In this
application, S and R interact before S does its work, but S need not respond to R.

In outline, a method for strengthening passwords goes as follows [Manber 1996; Abadi
et al. 1997]. Suppose that two parties, S and R, initially share a pasgw{pdssibly a
weak password). In order to suppleméhtR picks ann-bit password extensiof), where
n IS an integer parameter. Then R poses a problem with sol@ioa S. The problem
should be such that S can solve it, with moderate effort, by uBirgut such tha€) is hard
to find without P. Afterwards, S and R share not oniy/but alsoQ. In particular, S may
useP and@ without further interaction with R, for instance in order to decrypt files that R
has previously encrypted. For password extensions longertbhés, eachn-bit fragment
may be communicated separately, withas base password, or sequentially, witrand
previous fragments as base password; the latter choice limits parallel attacks, so it seems
preferable.

The previous instances of this method require a CPU-intensive computation from S.
Unfortunately, this computation may need to be long in orderAaand Q to be secure
against attackers with faster CPUs.

Next we describe an alternative instance of the method in which S performs a memory-
bound computation instead.

—R derives a function?’() from the password® (and possibly a salt and some other,
public data), chooses anbit password extensiof), and letszy be Q.

—R computes:; by evaluatingF'() & times, with the recurrence:
Tip1 = F(l’7) XOr ¢

R also finds some(, other thanc, that also maps tay, in this way.
—R then gives to S a checksum of the path fregto x (but neitherzy norz;), andzxy,.

—Using P, S derivesF(), builds a table fo"~1(), usesz{, and () to computery, then
usesr, and the table to find,, that is,Q.

An attacker that tries to fin@ by guessing possible values Bfwill have to do a memory-
bound computation for each such value. Ha@ been independent d?, this property

would of course not hold. Had R transmittegd rather than, this property would prob-

ably not hold either: an attacker with a wrong guessPofvould use a wrong() in
constructing a tree of pre-images feg, the resulting tree rooted at, would probably

be small, so the attacker would probably get stuck and eliminate the wrong guess rather
quickly. That is why R should provide),. Although findingz}, is a non-trivial burden, R

may explore only a fraction of the tree of pre-images pfor this purpose. Alternatively,

R may be able to guess, and verify that it maps to; if the tree that contains, has!

leaves at depth, then R will succeed after approximatey /I guesses.

An attacker that guessésincorrectly may detect that this guess is incorrect, with some
probability, when it fails to find a path with the expected checksum. This possibility may
be undesirable, although the attacker may have other, cheaper ways of detecting that its
guess is incorrect. So it is attractive to use only weak checksums, so that paths with the ex-
pected checksums will always be found, or to drop checksums entirely as in the following
alternative protocol:
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—S and R derive a functiof'() from the password (and possibly a salt and some other,
public data), and both build a table fér—1().

—S and R choose random values andx g, respectively, exchange them, anddgt=
(xg XoOr zR).

—S and R computey, by evaluatingF'() k times, again with the recurrence:
Tiy1 = F(ZL’Z) XOr ¢

They then find alke{, that map tay, in this way. The password extensi@nis a function
of all thesexy, (for example, a hash of all of them excep).

Here, both S and R perform the same (expensive) steps to compute a password extension.
Undoubtedly, other protocols of this form are viable.

As usual, the cost of building tables can be amortized over multiple searches. The multi-
ple searches might be unrelated to one another; or they might all be part of the same search
for ann-bit password extension (for instance, if some bits are omitted from problems); or
each search might serve to findaibit fragment of a longer password extension.

4.4 More on communicating and releasing secrets

More generally, there are several settings in which computation is supposed to introduce
delays in the release of information. (The schemes for strengthening passwords provide
one family of examples; there are others.) In this section we briefly consider two possible

applications of memory-bound computations in this area, for establishing shared secrets
over insecure channels and for the timed disclosure of information.

Memory-bound Merkle puzzletn the early days of public-key cryptography, Merkle
invented an ingenious technique that allows two parties S and R to establish a shared secret
in the presence of eavesdroppers [Merkle 1978]. In outline, Merkle defined the following
procedure. S generates some number of puzzles. Solving each of these puzzles should be
moderately hard. In addition, each puzzle has a name (or index), and finding this name
from the puzzle should be moderately hard. S should know how to map puzzle names to
the corresponding solutions. For instance, S may generate the puzzles from their names
and solutions, and may keep a table with those names and solutions. Upon receipt of the
puzzles, R picks one, solves it, and sends back the corresponding puzzle name—but not
the solution—to S. Afterwards, S and R may rely on the solution as a shared secret. An
attacker who eavesdrops and who wishes to learn the secret should have to solve many of
the puzzles before discovering which one R picked.

Thus, S and R should spend considerably less time setting and solving puzzles than the
attacker. In particular, the ratio of work between R and the attacker is determined by the
number of puzzles. If this number is sufficiently large (2%}, as Merkle suggested) then
we may be comfortable ignoring any disparities in computational power between R and
the attacker. On the other hand, a large number of puzzles may result in a high cost of
generating puzzles for S and in a high communication overhead.

The use of memory-bound computations should reduce the effect of computational dis-
parities, and should therefore enable the use of a smaller number of puzzles. AFféw as
or even2'® puzzles may yield a reasonable advantage for R over the attacker, even if the
attacker has more computational power than R, provided the resulting shared secret is not
long-lived.
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In particular, the memory-bound computations for Merkle puzzles may consistin finding
particular leaves in trees defined as in section 3. By now, Merkle’s technique appears to
be of historical interest only; we therefore do not elaborate on this memory-bound variant
(for example, on how to tune its parameters concretely).

Memory-bound time-lock puzzleSimed-release cryptography is concerned with how
to encrypt a message so that it cannot be decrypted by anyone until a pre-determined
amount of time has elapsed [May 1993; Rivest et al. 1996]. Its goal is to “send infor-
mation into the future”, for example enabling the sealing of auction bids and of sensitive
historical records. In these applications, the pre-determined amount of time may be a few
weeks or months, but it may also be many years.

It is usually envisioned that the expected delay would be enforced by requiring CPU-
bound computations with care that these computations should not be parallelizable. Of
course, CPU power is far from constant over the years, and it may also vary widely across
the parties that are expected to solve a particular time-lock puzzle.

It therefore seems attractive to consider the possibility of basing time-lock puzzles on
memory-bound computations. In order to realize a memory-bound time-lock puzzle, we
may for instance specify memory-bound tree searches, like those of section 3, and let their
results serve as one-time pad for the sensitive information in question.

However, we have yet to devise a variant of our problems with the required properties
and degrees of hardness—there is a large gap between the few seconds of computation
that may suffice for discouraging spam and the years of computation that should delay the
release of sensitive historical records.

5. INSTANTIATING THE METHOD

In this section, we describe a concrete instantiation of our method of section 3.1. We
discuss the choice of a basic functiélf). We also discuss settings for other parameters,
and their motivations and effects.

5.1 Choosing the function F()

We would like a functionF'() that can be evaluated efficiently, but which nevertheless
cannot be inverted in less time than a memory cache miss. These two constraints are not
too hard to satisfy; next we explore some particular choicds(¢fand their features.

Random functionsWe would like F'() to approximate a random function, in order to
defeat caches and to obtain reasonable work ratios. An appealing possibility iFtg let
be a random function. In this case, we envision that could simply be given by a table
(without much attention to the random process that generated the table).

The use of a random functiaR() gives rise to performance issues. Specifically, eval-
uating a random function may not always be cheap enough. In general, each computation
of F() may require a memory access, just like each computatididf). The ratio be-
tween the work done at S and R will still be quadratijrbut without the constant factor
that represents the difference between the respective costs of evalHafiagd £~ ().
Although the tree search performed by S forces S to perform substantially more work than
R, we may want to increase this difference by our choice of the funétignOn the other
hand, we may also increase this difference by raigintpe upper bound ohin section 3.2
is greater wher¥'() is slower.
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The use of a random functiof() also gives rise to a storage problem. In general, R
will need to have a table faF (). This requirement may be inconvenient.

Finally, the use of a random functiafi() gives rise to a communication problem. If
the choice of function should change from time to time, then it is helpful for the function
to have a succinct description, so that it can be communicated efficiently. True random
functions do not in general have such succinct descriptions. Therefore, we may not gen-
erate and transmit a brand new, randéif) for each challenge. Instead, we may derive
a challenge-specific functiofi() from a random master functial/F (), with a definition
like

F(z) = MF(x) xor j

(as discussed in section 3.3). In this case, assumingdg?) is known in advance, only
j needs to be transmitted.

Approximations.More generally, we may define:
F(r) = G(t,x)

whereG() is a suitable master function (random, or random enough); &nd parameter.

For such functions, describing() amounts to giving the corresponding G() is known

in advance. In addition, evaluating() and thereforeF’() may well be cheap. These
functionsF'() may share many of the advantages of true random functions. However, they
complicate analysis.

We have investigated several candidate functibiisof this form. Some are based on
functionsG() from the cryptography literature: one-way hash functions such as MD5 and
SHA, or variants of fast encryption algorithms such as TEA [Menezes et al. 1996]. For
instance, given a value, we may apply SHA to a key and g then extrac#'(z) from the
result.

Since our main intended applications do not require much cryptographic strength, we
have also investigated some faster functiéti$ of the same form. One is as follows:

—Assuming thatr is even, lett, andt; be two tables o2"/2 random 32-bit numbers.
Together¢, andt; play the role oft above.

—Let the bitstring representing be formed from the concatenation of the bitstrings
anda;, each of lengtm /2 bits.

—Then letF'(x) be the middle bits of the 64-bit product of the two 32-bit numbers indexed
by a¢ anda; in tablest, andty:

F(x) = middle-bits (to[ao] * t1[a1])

This function is depicted in Figure 3.

The tableg,, andt; have only2"/? entries, so they will fit in the cache on most ma-
chines. Thus, the evaluation 6%) will take only a few cycles. In fact, this function is so
fast that it conflicts with the conditiofi > /8 of section 3.2; it is easy to define slower
variants of this function that satisfy the condition.

In an early version of our work, the two tablgsandt¢; were identical. That saves space
for R, but enables S to use a smaller table For' () because(aq | a1) = F(a1 | ao).
(Here, we writeng | a; for the concatenation afy anda,.) So lettingt, and¢; be identical
is not attractive. In that early version of our work, we also used tables of 32-bit primes,
rather than tables of arbitrary 32-bit numbers. Primes seem to yield a somewhat better
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Fig. 3. A candidate functiod’()

F(), but the tables are a little harder to compute. These and other variations may be worth
exploring further.

Assuming that we defin€'() by letting F'(x) = G(¢, z) for some functiorz() (either
by letting F'(ag | a1) = middle-bits (to[ao] * t1[a1]) or in some other way), we may still
use a trivial definition such a8'(z) = F'(x) xor j to generate other functions, or we may
generate other functions by varying

The definitionF (z) = G(t,z) can be generalized in useful ways.df) yieldsn x 2°
bits, whereb is a small integer, we may apply() to a parameter and to then — b high-
order bits ofz, then extract’(x) from the result, as well a&'(z’) for everyz’ that differs
from z only in theb low-order bits. Interestingly, this definition makes the cost of applying
F() to all values inD..(2" — 1) be the cost o2 single applications divided IB/; this cost
reduction helps in building a table fét—().

5.2 Setting parameters

In order to instantiate our method, we need to pick values for various parametérsf(

p, ...). These choices are constrained by the available technology, and they are informed
by several preferences and goals. Next we discuss some settings for these parameters and
their consequences; many other similar settings are possible. All these settings are viable
with current machines, and they all lead to seconds or minutes of memory-bound work
for S, as intended.

Suppose that we want the table fBr1() to fit in 32MB memories, but not in 8MB
caches. These constraints determine the possible valuesodbe 22 or 23. One might
imagine that each entry in the table will take only 3 bytes, but such a compact encoding
would probably be impractical. It is more realistic to allocate 4 or 6 bytes per entry to
allow for collisions. Withn = 22, a table forf~!() will occupy around 16MB (with 4
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bytes per entry) or 24MB (more comfortably, with 6 bytes per entry). With 23, a table
for F~1() will occupy around 32MB (with 4 bytes per entry) or 48MB (more comfortably,
with 6 bytes per entry), sa = 23 may not be viable. In what follows, we proceed
with n = 22 because that appears to be the appropriate value for current machines. We
recommend increasingas soon as cache sizes require it.

We have some choice in the cgisbf applying F(), within the constraints of section 3.2.
A larger value will result in more work for R if it sets problems or checks solutions by
applying F'(). A larger value should also result in more work for S if it adopts a CPU-
intensive algorithm, so a larger value leaves room for a more expensive memory-bound
solution (through a largéet). However, these effects cease whereaches the costof a
memory read on a fast machine, because S could replace many applicatiisveith
lookups at that point. Thus S will pay at medior applyingF'() on average, perhaps much
less with caching and other optimizations. In what follows, we consider three possible
values forf on a fast machinef = r, f = /2, andf = r/8.

In light of constraints 1 and 2 of section 3.2, we should set the nuinloéiiterations
around2'2. We have some freedom in the settingkofA largerk will lead to more work
per problem, for both parties S and R, but with a better (larger) ratio between the work of
S and the work of R. Conversely, a smallewill result in less work per problem, with a
smaller work ratio. Therefore, we tend to prefer larger valuegfoNhenk is too large,
CPU-intensive solutions become competitive with the table-based approach, and their cost
is not uniform across machines. Whieis too small, the cost of building a table f&r! ()
becomes dominant in the table-based approach, and this cost is not necessarily uniform
across machines. In what follows, we proceed wiite= 213 if f = r, with & = 212 if
f=r/2,and withk = 21 if f =r/8.

Finally, we have some choice in the numbpesf problems over which a table fdr—*()
should be amortized. Generally, a largeis better, primarily because it gives us more
freedom in setting other parameters. The numbeould be huge if we used a fixed
function (or a fixed master function) forever. However, it is prudent to use a different
function for each problem, and also to change master functions at least from time to time.
An obvious possibility is to group problems and to adopt a new master function for each
group (see section 3.3). We can usually describe the master function concisely, by a short
name plus the seed to a random number generator or a cryptographic key, in approximately
20 bytes. We can usually describe each derived function in 0-2 bytes. We can present
each problem in 6 bytes (including the required checksum), and each solution in 3 bytes.
Forp = 128, each group of problems occupies up to 1KB, giving rise to a visible but
reasonable communication cost. The communication cost can be drastically reduced with
the non-interactive variant of section 4, if we so wish. For the sake of definiteness, we
proceed withp = 32. Each group of 32 problems occupies only 192 bytes without function
descriptions, and a little more with them.

We expect that a machine can do rougly reads per second from memory (within a
small factor). On the basis of this data, we can calculate the cost of setting and solving
problems:

—With f = r andk = 2'3, we intend that S perforr2?* reads per problem, so S should
take 2 seconds per problem.
The setting of a problem will requirg'® applications off’(), which will take one mil-
lisecond on a fast machine.
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—With f = r/2 andk = 22, we intend that S perfori2?? reads per problem, so S should
take .5 seconds per problem.
The setting of a problem will requirg'? applications ofF'(), which will take .25 mil-
liseconds on a fast machine.

—With f = r/8 andk = 2!, we intend that S perfori2?® reads per problem, so S should
take .125 seconds per problem.
The setting of a problem will requirg!! applications ofF(), which will take 32 mi-
croseconds on a fast machine.

When we multiply these costs by the number of problems (32), we obtain costs for
solving groups of problems: 64, 16, and 4 seconds, respectively. We now check that these
costs dominate the cost of building a table #6r'(). The cost of building a table is
roughly that of22? applications off’() and writes. On a fast machine, the writes account
for a substantial part of the cost; the cost should be under one second, in any case. On a
slow machine, the applications &f() account for most of the cost; the cost may go up
considerably, but no higher than the cost of solving a group of problems. Even if each
application of F'() were to cost as much d$ x r on a slow machine, building a table
would take under 10 seconds. Thus, the total cost for building a table and solving a group
of problems remains within a small factor across machines.

These costs compare favourably to those of solving problems with a CPU-intensive al-
gorithm. Suppose that some CPU-intensive algorithm could solve each problem with just
4 x 2™ applications ofF'(), that is, with just2?* applications ofF’() (letting ¢ = 4, in
the notation of section 3.2). Depending on whetfiet r, f = r/2, or f = /8, those
applications will cost as much &84, 223, or 22! reads, respectively. In comparison, the
memory-bound approach requirg®, 222, and2?° reads, respectively.

Relying on an 8MB cache and a compact encoding, S might be able to evaluate
with only 4 applications off’() (see section 3.2). Thus, S might replace each read with
4 applications ofF'() and otherwise perform the same search as in the memory-bound
approach. Wherf = r or f = r/2, this strategy does not beat a CPU-intensive algorithm
that could solve each problem wii* applications ofF(), and a fortiori it does not beat
the memory-bound algorithm. Wheh= /8, this strategy may produce a solution at the
same cost ag'? reads, so it might appear to be faster than the memory-bound algorithm.
However, the memory-bound algorithm will have that same cost if S has an 8MB cache
and holds there half of a table fér—! () with a compact encoding.

6. EXPERIMENTS

In this section we report on several experiments related to our method. First, we give
evidence for the claims about tree sizes made in section 3.2. Then we show that memory
latencies vary far less than CPU speeds. Finally we show that the speed of our memory-
bound functions varies significantly less across machines than the speed of CPU-bound
functions proposed for similar purposes.

Tree sizes.For two functions on 22-bit integers, we found the mean number of leaves
and nodes in trees formed using the procedure given in section 3.2. One of the functions
was derived by calling the system (UNIX) random number genepdfotimes. The other
was the functiorf'(ag | a;) = middle-bits (¢q[ap] *t1[a1]) discussed in section 5.1, where
the elements ofy and¢; were obtained from the system random number generator.

ACM Journal Name, Vol. V, No. N, Month 20YY.



22 . Martin Abadi et al.
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Fig. 4. Mean numbers of leaves and nodes in trees of depth

The results are indistinguishable for the two functions. We expect similar results for
other pseudo-random functions.

We averaged over all possible starting poings and varied the depth of the trees.
Figure 4 shows that the mean number of leaves in such trees closely mat¢hesand
that the mean number of nodes in such trees closely matéhed ) (k + 2)/2.

Timings. Next we give experimental results for five modern machines that were bought
within a two-year period in 2000-2002, and which cover a range of performance charac-
teristics. All of these machines are sometimes used to send e-mail—even the settop box,
which is employed as a quiet machine in a home. Table | lists the machines; Table Il gives
their CPU clock frequencies, memory read times, and approximate prices.

We obtained the memory read times by measuring the time taken to follow a long linked
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machine [ model | processor type |
server Dell PowerEdge 2650 Intel Pentium 4
desktop | Compaq DeskPro EN| Intel Pentium 3
laptop Sony PCG-C1VN Transmeta Crusoeg

settop GCT-Allwell Nat. Semi.
STB3036N Geode GX1
PDA Sharp SL-5500 Intel SA-1110

Table . The machines used in our experiments.

machine | CPU clock | memory read| approximate
frequency time price (US$)
server 2.4GHz 0.1%us $3000
desktop 1GHz 0.14us $600
laptop 600MHz 0.25us $1000
settop 233MHz 0.23us $300
PDA 206MHz 0.5%s $500

Table Il.  Machine characteristics.

machine CPU-bound memory-bound
(HashCash) (trees)
seconds ratio seconds ratio
server=1 desktop=1
server 110 1.0 24 11
desktop 140 1.3 22 1.0
laptop 330 3.0 42 1.9
settop 1430 13.0 91 4.1
PDA 1920 17.5 100 4.5

Table IlI. The performance of HashCash and of our tree searches on the machines listed in Table I. The absolute
times are of less interest than the range of times for a given function.

list; the list entries were scattered widely through memory, and positioned so as to ensure
that each access missed in the cache. Thus, these times include TLB miss overhead. This
overhead is substantial on our PDA and it explains the high latency on that machine, where
there seems to be an additional memory reference for most reads from the list. None of the
machines have huge caches—the largest was on the server machine, which has a 512KB
cache. Although the clock speeds of the machines vary by a factor of 12, the memory read
times vary by a factor of only 4.2. This measurement confirms our premise that memory
read latencies vary much less than CPU speeds.

Although the settop box might appear to have an attractive performance for its price,
it is actually slower than its clock speed and memory access time might suggest, partly
because it has a fairly simple pipeline. At the high end, the server has lower performance
than one might expect, because of a complex pipeline that penalizes branching code. In
general, higher clock speeds correlate with higher performance, but the correlation is far
from perfect.

Table 11l shows the performance of a CPU-bound task (HashCash [Back 1997]) and
of our memory-bound computations on the machines listed in Table I. The times are
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machine | table build time
seconds

server 0.9

desktop 1.1

laptop 3.2

settop 6.1

PDA 5.6

Table IV. Times to build the inverse table used in the memory-bound functions.

rounded to two significant figures. The HashCash times are for minting 100 20-bit Hash-
Cash tokens—that is, finding 100 independent 20-bit partial collisions in SHA-1. The
memory-bound times are the means over 10 runs, each consisting of 128 depth-first tree
searches, using the parameters: 22 andk = 2!!. These results do not include the time
taken to build the table foF'~*(), which we consider next.

Table 1V shows the time taken to build the table for!(). We used a straightforward
implementation in which each insertion of an entry into the table requires at least one read
for resolving collisions, followed by a write to store the entry. We Mty | a1) =
middle-bits (¢o[ao] * t1]a1]). EvaluatingF() is cheap compared to a memory access; thus,
most of the cost of building the table is due to the memory accesses needed for insertions
into the table. For this function, the cogtis underr/8, but increasing it ta-/8 does
not substantially affect these results. On each machine, the time taken to build the table
is insignificant when compared with the corresponding number in Table Ill. The latter
number corresponds to 128 problems. If instead each table were amortized over just 32
problems, building the table would contribute no more than 25% of the total time of solving
a group of problems. In any case, the ratio across machines remains under 5.

The same executables were used on the desktop, laptop, and settop machines. The
code was compiled with the Intel C compiler. The executables for the server machine
were compiled with optimization for the Pentium 4; performance without this specialized
optimization was poor. The executables for the PDA were compiled with gcc. We used
less memory (20MB) for the inverse table on the PDA, in order to make it fit in the limited
space available—the Sharp SL-5500 provides only 32MB of its memory to applications
and the operating system. On the other machines, we used 24MB.

These experiments demonstrate several points. First, the effective performance of the
machines varies more than clock speed alone might indicate. This variation is the result
of the faster, more expensive processors having more elaborate pipelines. Second, the
desktop machine is the most cost-effective one for both CPU-bound and memaory-bound
computations; in both cases, attackers are best served by buying the same type of machines
as ordinary users. Finally, the memory-bound functions succeed in maintaining a perfor-
mance ratio between the slowest and fastest machines that is not much greater than the
ratio of memory read times.

The experiments also provide validation of the approximate calculations of section 5.2
in which we discuss settings for our parameters. In that section, we assume a machine with
a memory read time a2~—22 seconds, while these real machines have somewhat slower
memories. Once this difference is taken into account, the experimental results are largely
consistent with the calculations.
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7. CONCLUSIONS AND OPEN ISSUES

This paper is concerned with finding moderately hard functions that most recent com-
puter systems will evaluate at about the same speed. Such functions can help in protecting
against a variety of abuses. The uniformity of their cost across systems means that they
need not inconvenience low-end, legitimate users in order to deter high-end attackers. We
define and study a family of moderately hard functions whose computation can benefit
crucially from accesses to a large table in memory. Our experimental results indicate that
these memory-bound functions are much more egalitarian across machine types than CPU-
bound functions.

It is possible that technology changes will result in more diverse memory systems in the
future, and then memory-bound functions would no longer provide an egalitarian protec-
tion against abuses. However, we have identified several parameters that can be tuned as
technology evolves. We have also found a number of ideas and tricks that should help in
adapting our approach to different circumstances and applications.

The literature contains many papers that treat the space requirements of particular al-
gorithms, cache-miss rates, and tradeoffs between time and space. Some of that work
has been a source of inspiration for us in seeking memory-bound functions. In particular,
we remembered the classic meet-in-the-middle attacks on double DES; using large tables,
these attacks are much faster than naive CPU-intensive algorithms [Menezes et al. 1996].
However, these attacks can be implemented with multiple passes over the key space and
smaller tables, so they are not necessarily limited by memory latency. We have not come
across any previous results that we could directly exploit for our purposes, though we may
still find some. More generally, it is desirable to investigate alternative memory-bound
computations; some are studied in the recent work of Dwork, Goldberg, and Naor [Dwork
et al. 2003].

The literature also contains some models of memory hierarchies (e.g., [Aggarwal et al.
1987]). An interesting subject for further work is to use such models in order to develop
a foundation for memory-bound computations, if possible proving that particular com-
putations (such as ours) are inherently memory-bound. Dwork, Goldberg, and Naor are
making substantial progress in this direction, so far relying on “random oracles” [Dwork
et al. 2003].

Many considerations may affect the acceptance of moderately hard functions, and of
memory-bound functions in particular. The problems of large-scale deployment, such as
software distribution and handling legacy systems, may be the most challenging. In addi-
tion, as the price of computer time falls, one must prescribe longer computations in order
to impose a given cost. For example, in order to impose a cost of one cent (well under
the current cost of physical bulk mail in the US), a computation of at least several minutes
is required today; half an hour may be needed in the not-too-distant future. Moreover,
memory-bound functions can interfere with concurrently running applications in a multi-
tasking environment, both because they consume memory and because they can displace
the applications’ code and data from caches. For these reasons, users may not tolerate
moderately hard functions, not even egalitarian ones. On the other hand, even costs below
one cent might be effective against some abuses, such as spam. Cache interference can be
reduced by arranging that the inverse table map to a subset of the cache lines, and it can
be avoided by accessing memory with instructions that bypass the caches. Furthermore,
users may tolerate, and perhaps not even notice, long computations done asynchronously

ACM Journal Name, Vol. V, No. N, Month 20YY.



26 . Martin Abadi et al.

when their machines are otherwise idle. We rely on such asynchronous computations in an
ongoing project [Abadi et al. 2003].
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