
Utilizing spare network bandwidth to improve TCP performance

Manpreet Singh Saikat Guha Paul Francis

Cornell University

{manpreet, saikat, francis}@cs.cornell.edu

It is well-known that TCP Reno represents a performance bottleneck as the delay-bandwidth product
increases. On high-bandwidth-delay links, the additive increase policy of one packet every RTT necessitates
thousands of RTTs to reach full link utilization. This severely affects short TCP flows (most of the flows in
the internet) as they cannot acquire bandwidth faster than “slow start” and waste precious RTTs ramping
up even when bandwidth is available. XCP [2] addresses this problem by heavily modifying routers to
explicitly tell the end-hosts about their fair share of network bandwidth. Fast-TCP [1] backs-off proactively
without incurring any loss but cannot quickly ramp-up as the fair share increases.

We propose an approach where a TCP stream can quickly use the full available link bandwidth without
requiring modifications to router software. Our approach rapidly fills the bandwidth-delay pipe while being
just as cautious as TCP in avoiding causing losses to existing streams. This is accomplished by sending a
large number of low-priority packets in addition to the conservative number of normal-priority TCP packets.
Routers would be configured for strict priority queuing (already supported by routers) where low priority
packets are routed only when no normal priority packets are in the queue, and normal priority packets are
dropped only when there are no low priority packets in the queue. A diffserv-style packet marking scheme
can be used to distinguish between normal-priority and low-priority packets.

Consequently, the low-priority part of the stream immediately utilizes unused network capacity while the
more cautiously sent normal-priority packets engage in TCP congestion control. For example, a short 30-
packet TCP flow would send 1 normal-priority packet (as per slow-start) and 29 low-priority packets. If
enough bandwidth is available, the flow will terminate after only one RTT, instead of 5 RTTs as with regular
TCP. For long lived flows, as more normal-priority packets are sent, fewer low-priority packets need to be
sent to keep the pipe full. Feedback from the receiver governs the number of low and normal priority packets
to be sent. When a normal-priority packet is lost (i.e. the network is truly congested), the normal-priority
part scales back exponentially as mandated by TCP. Correspondingly, the low-priority part scales up to
fill the potentially larger-than-necessary void created. Low-priority packets never increase congestion since
they are preferentially dropped. In the worst case, all low-priority packets are dropped and the approach is
identical to regular TCP. The overall performance, therefore, is strictly no-worse (and almost always better)
than regular TCP; most strikingly so for short-lived TCP flows in high-bandwidth-delay networks.

While this idea of using “low-priority” packets to opportunistically utilize spare bandwidth is novel in
itself, the key technical challenge lies in designing a new congestion control algorithm for the low-priority
packets that maximize the overall goodput. Such an algorithm would utilize all the unused capacity, and
automatically adapt itself to variations in the available bandwidth. It would have to be robust enough
to do so despite high latencies for low-priority packets. Finally, it would enforce fairness among multiple
low-priority streams competing for the spare bandwidth. We need to design a more aggressive scheme
where efficiency and quick adaptivity (to changes in available bandwidth) take higher priority over fairness.
Overall, this approach would speed up most flows in the internet and make full use of the over-provisioning
in today’s networks without causing more congestion. This opens up an interesting space to explore with
non-trivial solutions. So, it might be worth considering various schemes like AIMD, AIAD, MIMD, MIAD,
etc with different parameters.

References

[1] Jin, C., Wei, D. X., and Low, S. H. Fast tcp: motivation, architecture, algorithms, performance. In Proceedings of The
23rd Conference of the IEEE Communications Society (INFOCOM) (Hong Kong, Mar. 2004).

[2] Katabi, D., Handley, M., and Rohr, C. E. Congestion control for high bandwidth-delay product networks. In Proceedings
of the Special Interest Group on Data Communications (SIGCOMM) (Pittsburgh, PA, Aug. 2002), pp. 89–102.


