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Abstract. Software specifications are of great use for more rigorous software
development. They are useful for formal verification and automated testing, and
they improve program understanding. In practice, specifications often do not ex-
ist and developers write software in an ad-hoc fashion. We describe a new way to
automatically infer specifications from code. Our approach infers a likely spec-
ification for any method such that the method’s behavior, i.e., its effect on the
state and possible result values, is summarized and expressed in terms of some
other methods. We use symbolic execution to analyze and relate the behaviors of
the considered methods. In our experiences, the resulting likely specifications are
compact and human-understandable. They can be examined by the user, used as
input to program verification systems, or as input for test generation tools for val-
idation. We implemented the technique for .NET programs in a tool called Axiom
Meister. It inferred concise specifications for base classes of the .NET platform
and found flaws in the design of a new library.

1 Introduction

Specifications play an important role in software verification. In formal verification the
correctness of an implementation is proved or disproved with respect to a specifica-
tion. In automated testing a specification can be used for guiding test generation and
checking the correctness of test executions. Most importantly specifications summarize
important properties of a particular implementation on a higher abstraction level. They
are necessary for program understanding, and facilitate code reviews. However, spec-
ifications often do not exist in practice, whereas code is abundant. Therefore, finding
ways to obtain likely specifications from code is highly desired if we ever want to make
specifications a first class artifact of software development.

Mechanical specification inference from code can only be as good as the code. A
user can only expect good inferred specifications if the code serves its purpose most
of the time and does not crash too often. Of course, faithfully inferred specifications
would reflect flaws in the implementation. Thus, human-friendly inferred specifications
can even facilitate debugging on an abstract level.

Several studies on specification inference have been carried out. The main efforts can
be classified into two categories, static analysis, e.g., [16,15,14], and dynamic analysis,
e.g., [13,19]. The former tries to understand the semantics of the program by analyzing
its structure, i.e., treating the program as a white-box; the latter considers the implemen-
tation as a black box and infers abstract properties by observations of program runs. In
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this article we present a new technique to infer specifications which tries to combine the
strengths of both worlds. We use symbolic execution, a white box technique, to explore
the behaviors of the implementation as thoroughly as possible; then we apply observa-
tional abstraction to summarize explored behaviors into compact axioms that treat the
implementation as a black box.

We applied the technique to infer specifications for implementations of abstract data
types (ADTs) whose operations are given as a set of methods, for example, the public
methods of a class in C#. The technique infers a likely specification of one method,
called the modifier method, by summarizing its behavior, e.g. its effect on the state and
its result value, using other available methods, called observer methods. Interestingly,
our technique does neither require that the modifier methods changes the state nor that
observer methods do not change it.

The inferred specifications are highly abstract and human beings can review them.
In many cases, they describe all behaviors of the summarized method. For example, our
tool, called Axiom Meister, infers the following specification for the Add method of the
BCL Hashtable class using the observer methods ContainsKey, the property Count
and the indexer property [].

void Add(object key, object value)
requires key != null otherwise ArgumentNullException;
requires !ContainsKey(key) otherwise ArgumentException;
ensures ContainsKey(key);
ensures value == this[key];
ensures Count == old(Count) + 1;

Our technique obtains such a specification in three steps, illustrated in Figure 1.

Implementation
General
Axioms

Path Conditions
& States

Path Specific
Axioms

Symbolic 
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Abstraction

Axiom
Simplification

Fig. 1. Overview of the Specification Inference Process

Firstly, we symbolically execute the modifier method from an arbitrary symbolic
state with arbitrary arguments. We assume single-threaded, sequential execution. Sym-
bolic execution attempts to explore all possible execution paths. Each path is character-
ized by a set of constraints on the inputs called the path condition. The inputs include
the arguments of the method as well as the initial state of the heap. The number of paths
may be infinite if the method contains loops or employs recursion. Our approach selects
a finite set of execution paths by unrolling loops and unfolding recursion only a limited
number of times. A path may terminate normally or have an exceptional result.

Secondly, we evaluate observer methods to find an observational abstraction of the
path conditions which may contain constraints referring to the private state of the im-
plementation. Specifications must abstract from such implementation details. Observer
methods are used to obtain a representation of the path conditions on a higher abstrac-
tion level. This step yields many path-specific axioms, each describing the behavior of
the method under certain conditions, in terms of the observer methods.
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Thirdly, we merge the collected path-specific axioms (to build comprehensive de-
scriptions of behaviors from different cases), simplify them (to make the specification
more concise), and generalize them (to eliminate concrete values inserted by loop un-
folding).

The contributions of our paper are:

– We introduce a new technique for inferring formal specifications automatically. It
uses symbolic execution for the exploration of a modifier method and it summarizes
the results of the exploration using observer methods.

– In certain cases it can detect defective interface designs, i.e., insufficient observer
methods. We show an example in Section 5 that we found when we applied our
technique on code currently being developed at Microsoft.

– We can represent the inferred specifications as traditional Spec# [7] pre- and post-
conditions or as parameterized unit tests [26].

– We present a prototype implementation of our technique, Axiom Meister, which
infers specifications for .NET and finds flaws in class designs.

The rest of this paper is organized as follows. Section 2 presents an illustrative ex-
ample describing our algorithm to infer axioms, and gives an overview of symbolic
execution. Section 3 describes the main steps of our technique. Section 4 discusses the
heuristics we have found useful in more detail. Section 5 discusses features and lim-
itations. Section 6 contains a brief introduction to Axiom Meister. Section 7 presents
our initial experience of applying the technique on various classes. Section 8 discusses
related work, and Section 9 future work.

2 Overview

We will illustrate our inference technique for an implementation of a bounded set of
nonzero integers (Figure 2). Its public interface contains the methods Add, IsFull,
and Contains. The nonzero elements of the repr are the elements of the set.

Here is a reasonable specification of the Add method in the syntax of Spec#’s pre-
and postconditions [7], using IsFull and Contains as observer methods.

void Add(int x)
requires x != 0 otherwise ArgumentException;
requires !Contains(x) && !IsFull() otherwise InvalidOperationException;
ensures Contains(x);

Each requires clause specifies a precondition. Violations of preconditions cause
exceptions of certain types. requires and ensures clauses are checked sequentially,
e.g., !IsFull() && !Contains(x) will only be checked if x!=0. Only if all precon-
ditions hold we can be sure that the method will not throw an exception and that the
ensures clause’s condition will hold after the method has returned.

We can also write an equivalent specification in the form of independent implica-
tions, which we call axioms:

x==0 ⇒ future(ArgumentException)
x!=0 ∧ (Contains(x) ∨ IsFull()) ⇒ future(InvalidOperationException)
x!=0 ∧ ¬Contains(x) ∧ ¬IsFull() ⇒ future(Contains(x))
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public class Set {
int[] repr;
public Set(int maxSize) { repr = new int[maxSize]; }

public void Add(int x) {
if (x == 0) throw new ArgumentException();
int free = -1;
for (int i = 0; i < repr.Length; i++)
if (repr[i] == 0) free = i; // remember index
else if (repr[i] == x) throw new InvalidOperationException(); // duplicate

if (free != -1) repr[free] = x; // success
else throw new InvalidOperationException(); // no free slot means we are full

}

public bool IsFull() {
for (int i = 0; i < repr.Length; i++) if (repr[i] == 0) return false;
return true;

}

public bool Contains(int x) {
if (x == 0) throw new ArgumentException();
for (int i = 0; i < repr.Length; i++) if (repr[i] == x) return true;
return false;

}
}

Fig. 2. Implementation of a set

Here we used the expression future( ) to wrap conditions that will hold and exceptions
that will be thrown when the method returns. We will later formalize such axioms.

It is easy to see that the program and the specification agree:

The Add method first checks if x is not zero, and throws an exception otherwise.
Next, the method iterates through a loop, guaranteeing that the repr array does not
contain x yet. The expression !Contains(x) checks the same condition. If the set
already contains the element, Add throws an exception.

As part of the iteration, Add stores the index of a free slot in the repr array. After
the loop, it checks if a free slot has indeed been found. !IsFull() checks the same
condition. If the set contains no free slot, Add throws an exception.

Finally, Add stores the element in the repr array’s free slot, so that Contains(x)
will return true afterwards.

2.1 Symbolic Exploration

Our automated technique uses symbolic execution [20] to obtain an abstract represen-
tation of the behavior of the program. A detailed description of symbolic execution of
object oriented programs is out of the scope of this paper, and we refer the interested
reader to [17] for more discussion. Here we only briefly illustrate the process by com-
paring it to normal execution.

Consider symbolic execution of a method with parameters. Instead of supplying nor-
mal inputs, e.g., concrete numeric values, symbolic execution supplies symbols that
represent arbitrary values. Symbolic execution proceeds like normal execution except
that the computed values may be terms over the input symbols, employing interpreted
functions that correspond to the machine’s operations. For example, Figure 3 contains
terms arising from during the execution of the Add method in elliptic nodes. The terms
are built over the input symbols me, representing the implicit receiver argument, and x.
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The terms employ the interpreted functions, including !=, ==, <, selection of a field,
and array access.

Symbolic execution records the conditions that determine the execution path. The
conditions are Boolean terms over the input symbols. The path condition is the con-
junction of all individual conditions along a path. For example, when symbolic exe-
cution reaches the first if-statement of the Add method, it will continue by exploring
two execution paths separately. It conjoins the if-condition to the path condition of the
then-path and the negated condition to the path condition of the else-path. Note that
some branches are implicit, for example, accessing an object member might raise an
exception if the object reference is null, and accessing an array element might fail if
the index is out-of-bounds.

Not all potential execution paths are feasible. For example, after successfully access-
ing an object member, any subsequent member access on the same object will never
fail. We use an automatic theorem prover to prune infeasible path conditions. Figure 3
shows a tree representing all feasible execution paths of Add up to a certain length. A
path condition has a conjunct c = v iff the path includes an arc labeled v from a node
labeled with condition c. The figure omits arcs belonging to infeasible paths. It also
omits nodes with only one outgoing arc.

The diamond nodes S2, S8, S15, S16, S23, and S24 are ends of paths that throw ex-
ceptions, and S4 and S6 represent paths terminating with errors caused by the accesses
of an object member using a null reference. The rectangular node S14 represents a
path with normal termination of the Add method.

2.2 Discovering Specifications from Paths

For each path, symbolic execution derives the path condition and a final program state.
We could declare this knowledge as the method’s specification. However, it would not
be a good specification: While some of the conditions shown in Figure 3 are simple
expression, e.g., x!=0, most expressions involve details that should be hidden from the
user, like the repr array. And even though there are many different cases with detailed
information, it is not even a complete description of the Add method’s behavior, be-
cause symbolic exploration stopped unfolding the loop at some point. While the partial
execution tree might be useful for the developer of the Set class, the information is
simply at the wrong level of abstraction for a user of the class, who is only interested in
the public interface of the ADT.

We use observational abstraction to transform the information obtained by symbolic
execution into a specification, i.e., we will try to express the implementation-level con-
ditions of the explored paths with equivalent observations that we can make on the level
of the class interface. Before we discuss the general process, we will go through the
steps of our technique for our example.

Consider the paths to S4 and S6 in Figure 3. They terminate with a null dereference
error, because either me or me.repr was null. Symbolic execution found these paths
because it started with no assumptions about the me argument or the values of fields.
However, C# semantics preclude a call to an instance-method using a null-receiver,
and the constructor of the Set class will initialize the repr field with a proper array.
Thus, we can safely ignore the paths S4 and S6.
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Fig. 3. Tree representation of feasible execution paths of Set.Add up to a certain length. See
Subsection 2.1 for a detailed description.

Consider the path to S2. If x is zero, Add throws an exception. Since x is not private
to the class, no further abstraction is necessary. We get the following precondition.

requires x != 0 otherwise ArgumentException;

Consider the paths to S15, S23 and S24. They all terminate with the same exception.
In each path, the last condition establishes that x is equal to some element of the repr
array. For all such x, Contains(x) clearly returns true. Using this characteristic be-
havior of Contains, we can summarize the paths as follows

requires !Contains(x) otherwise InvalidOperationException;

Consider the path to S8. Along the way we have me!=null, me.repr!=null and
0>=me.repr.Length. It is easy to see that under these conditions the IsFull method
returns true. Later, we will obtain this result automatically by symbolically execut-
ing IsFull under the constraint of path S8. The conditions along the path to S16 are
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more involved; they describe the case where the repr array has length one and its ele-
ment is nonzero. Again, IsFull also returns true under these conditions. Using this
characteristic behavior of IsFull, we deduce:

requires !IsFull() otherwise InvalidOperationException;

We can combine the last two findings into a single requires clause since they have
the same exception types:

requires !Contains(x) && !IsFull() otherwise InvalidOperationException;

Finally consider S14, the only normally terminating path. Its path condition implies
that the repr array has size one and contains the value zero. Under these conditions,
IsFull and Contains return false. (Note that when inferring preconditions, we only
impose the path conditions, but do not take into account any state updates that the Add
might perform.)

We can also deduce postconditions. Consider Contains under the path condition of
S14 with the same arguments as Add, but starting with the heap that is the result of the
updates performed along the path to S14. In this path the loop of Add finds an empty
slot in the array in the first loop iteration, and then the method updates me.repr[0]
to x, which will be reflected in the resulting heap. Operating on this resulting heap,
Contains(x) returns true: the set now contains the added element. Consider IsFull
under the path condition of S14 with the resulting heap. It will also return true, because
the path condition implies that the array has length one, and in the resulting heap we
have me.repr[0]==x where x is not zero according to the path condition.

After the paths we have seen so far, we are tempted to deduce that the postcondi-
tion for the normal termination of me.Add(x) is Contains(x) && IsFull(). How-
ever, when symbolic execution explores longer paths, which are not shown in Figure 3,
we will quickly find another normal termination path whose path condition implies
x!=0, with the repr array of size two and containing only zeros. Under these con-
ditions, IsFull and Contains return false initially, the same as for S14. But for
this new path, IsFull will remain false after Add returns since Add only fills up the
first element of the array. Thus, the deduced postcondition will be Contains(x) &&

(IsFull() || !IsFull()), which simplifies to Contains(x), in Spec#:
ensures Contains(x);

Combined, we obtain exactly the entire specification of Add given at the beginning.
In our experiments on the .NET base class library the inferred specifications are often
as concise and complete as carefully hand-written ones.

3 Technique

We fix a modifier method and a set of observer methods for this section.

3.1 Exploration of Modifier Method

As discussed in Section 2.1, we first symbolically explore a finite set of execution paths
of the modifier method. Since the number of execution paths might be infinite in the
presence of loops or recursion, we unroll loops und unfold recursion only a limited
number of times.
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3.2 Observational Abstraction

The building stones of our specifications are observations at the level of the class in-
terface. The observations we have constructed for our example in Section 2 consisted
of calls to observer methods, e.g., Contains, with certain arguments, e.g., me and x.
In this subsection, we introduce the concepts of observer terms and observer equations
which represent such observations, and we describe how we build path-specific axioms
using observations.

We described in Section 2.1 how symbolic execution derives terms to represent state
values and branch conditions. Consider Figure 3. While it mentions me explicitly, it
omits another essential implicit argument: the heap. The (updated) heap is also an im-
plicit result of each method. We view the heap as a mapping of object references to
the values of their fields or array elements. Every access and update of a field or array
element implicitly involves the heap. We denote the initial heap by h, and the updated
heap after the method call by h′.

We extend the universe of function symbols by functions for observer methods. We
write the function symbol of a method in italics. For example, the term representing the
invocation me.Contains(x) in the initial heap h is Contains(h,me, x). We write all
input symbols in cursive.

The arguments are not necessarily plain input symbols, but can be terms them-
selves. Consider for example a method int f(int x), then we can construct arbitrar-
ily nested terms of the form f (h,me, f (h,me, . . .)). We call terms over the extended
universe of function symbols observer terms, as opposed to ordinary terms.

Observer equations are equations over observer terms. A proper observer equation
does not contain heap-access subterms, e.g., field selection terms or array update terms.
An example of a proper observer equation is Contains(h,me, x) = true. In the fol-
lowing, we use shorthand notations for simple equations, e.g. x for x = true, ¬x for
x = false, and x �= y for (x == y) = false.

For each explored path of the modifier method, we select a finite set of proper ob-
server equations that is likely equivalent to the path condition. We will discuss our
selection strategies in Section 4. We call those equations that do not mention the up-
dated heap h′ (likely) preconditions, and all other remaining equations (likely) postcon-
ditions. The implication from a path’s preconditions to its postconditions is a (likely)
path-specific axiom. For example, here is the axiom for path S14 in Figure 3:

x �= 0 ∧ ¬IsFull(h,me) ∧ ¬Contains(h,me, x) ⇒
Contains(h′,me, x) ∧ IsFull(h′,me)

3.3 Summarizing Axioms

For each explored path of the modifier method we compute a likely path-specific axiom.
However, in most cases, the number of explored paths and thus the number of axioms is
large. Obviously a human reader prefers a compact description to hundreds of such ax-
ioms. So the final step of our specification inference technique is to merge and simplify
the path-specific axioms as follows:
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1. Disjoin preconditions with the same postconditions
2. Simplify merged preconditions
3. Conjoin postconditions with the same preconditions
4. Simplify merged postconditions

This algorithm computes and simplifies the conjunctions of implications. The order
of step 1 and 3 is not strict; changing it might result in equivalent axioms in different
representations.

If a path terminates with an exception, we add a symbol representing the type of the
exception to the postcondition. Section 5 discusses some exceptions to this rule.

x = 0 ⇒ ArgumentException
x �= 0 ∧ IsFull(h, me) ∧ ¬Contains(h, me, x) ⇒ InvalidOperationException
x �= 0 ∧ ¬IsFull(h, me) ∧ ¬Contains(h, me, x) ⇒ IsFull(h′, me) ∧ Contains(h′, me, x)
x �= 0 ∧ Contains(h, me, x) ⇒ InvalidOperationException
x �= 0 ∧ IsFull(h, me) ∧ ¬Contains(h, me, x) ⇒ InvalidOperationException
x �= 0 ∧ ¬IsFull(h, me) ∧ Contains(h, me, x) ⇒ InvalidOperationException
x �= 0 ∧ Contains(h, me, x) ⇒ InvalidOperationException

Fig. 4. All Path-Specific Axioms for Set.Add

x = 0 ⇒ ArgumentException
x �= 0 ∧ (IsFull(h, me) ∨ Contains(h,me, x)) ⇒ InvalidOperationException
x �= 0 ∧ ¬IsFull(h, me) ∧ ¬Contains(h, me, x) ⇒ IsFull(h′, me) ∧ Contains(h′, me, x)

Fig. 5. Merged and Simplified Axioms for Set.Add

Figure 4 shows all path-specific axioms of Figure 3. Figure 5 shows the equivalent
merged and simplified axioms. As we discussed in Section 2.2, only when exploring
longer execution paths the spurious consequence IsFull(h′,me) will disappear from
the summarized implications in Figure 5.

public class Set {
...
public int Count() {

int count=0;
for (int i = 0; i < repr.Length; i++) if (repr[i] != 0) count++;
return count;

}
}

Fig. 6. Implementation of Set.Count

Unrolling loops and unfolding recursion sometimes causes a series of concrete val-
ues in our axioms. Consider the extension of the bounded set class by a new observer
method Count, given in Figure 6. The number of execution paths of the Add method de-
pends on the number of loop unrollings that also determines the return value of Count.
As a consequence, our technique infers many path-specific axioms of the following
form, where α appears as a concrete number.

. . . ∧ Count(h,me) = α ⇒ . . . ∧ Count(h′,me) = α + 1
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Before we can merge and simplify these concrete conditions we need to generalize
them into more abstract results. In this example, we are able to generalize this series of
path-specific axioms by substitution:

. . . ⇒ . . . ∧ Count(h′,me) = Count(h,me) + 1

We have also implemented the generalization of linear relations over integers.

4 Observational Abstraction Strategies

This section discusses our strategies to select proper observer equations which are likely
equivalent to a given path condition. Developing these strategies is a nontrivial task and
critical to the quality of inferred specifications. What we describe in this section is the
product of our experience.

Since observer equations are built from observer terms, we choose the latter first.

4.1 Choosing Proper Observer Terms

A term representing an observer method call, m(h, me, x1, . . ., xn), involves a
function symbol for the observer method, a heap, and arguments including the receiver.
In the following we describe our strategies to select such proper observer term.

Choosing observer methods. Intuitively, observer methods should be observationally
pure [8], i.e., its state changes (if any) must not be visible to a client. Interestingly,
this is not a requirement for our technique since we ignore state changes performed
by observer methods. However, if the given observer methods are not observationally
pure, the resulting specifications might not be intuitive to users, and they might vio-
late requirements of other tools that want to consume our inferred specifications. For
example, pre- and postconditions in Spec# may not perform state updates. Automatic
observational purity analysis is a non-trivial data flow problem, and it is a problem or-
thogonal to our specification inference. Our tool allows the user to designate any set of
methods as observer methods (Figure 7). By default, it selects all property getters and
query methods with suggestive names (e.g. Get...), which is sufficient in many cases.
Since it is well known that the problem of determining a minimal basis for an axiomatic
specification [12] is undecidable, we do not address this problem in our current work. In
our experience, the effort of manually selecting a meaningful subset from the suggested
observer methods is reasonable with the help of the GUI provided in our interactive tool
which requires only a few clicks to remove or add observer methods and re-generate the
specification. Our tool also allows the user to include general observer methods that test
properties like = null which have been found useful [13,19].

Choosing heaps. We are not interested to observe intermediate states during the execu-
tion of the modifier method since the client can only make observations before calling
the modifier method and after the modifier method has returned. Therefore, we choose
only the initial heap h or the final heap h′. The final heap represents all updates that the
modifier method performs along a path.

Choosing arguments. Recall that we use symbols representing arbitrary argument val-
ues to explore the behaviors of the modifier method. A naive argument selection strategy
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for an observer method is to also simply choose fresh symbols for all arguments. The
following example shows when this strategy fails to detect relationships. Let x and y

be two unrelated symbols, then Contains(x) does not provide any useful information
about the behavior of Add(y). As a consequence, the only symbols we use to build ob-
server terms are the input symbols of the modifier method. And the constructed terms
should be type correct.

However, for some classes this strategy is still too liberal. For example, legacy code
written before generic types were available often employs parameters and results whose
formal type is object, obscuring the assumptions and guarantees on passed values.
Similarly, the presented Set class uses values of type int for two purposes: As el-
ements of the set, e.g. in void Add(int x) and bool Contains(int x), and to
indicate cardinality, e.g. in int Count().

To reduce the set of considered observer terms, we introduce the concept of observer
term groups, or short groups. We associate each formal parameter and method result
with a group. By default, there is one group for each type, and each parameter and
result belongs to its type group. Intuitively, groups refine the type system in a way such
that the program does not store a value of one group in a location of another group, even
if allowed by the type system.

Lackwit [23] is a tool which infers such groups, called extended types, automatically
for C programs. We want to implement such an analysis for .NET programs in future
work. Currently, our tool allows the user to manually annotate parameters and results
of methods with grouping information.

We only build group-correct observer terms: The application of an observer-method
function belongs to the group of the result of the observer method, all other terms belong
to the groups that are compatible with the type of the term, and the argument terms of
an observer-method function must belong to the respective formal parameter group.

For example, we can assign the int parameters of Add and Contains to a group
called ELEM, and the result of Count to a group CARD. When we instantiate the parame-
ter of Addwith x, then we will build Contains(h, me, x) as an observer term. However,
we will not consider Contains(h, me,Count(h, me)).

Also, our tool only builds single-nested observer terms, i.e., f(g(x)), and negations
and equations over such terms. This has been sufficient in our experience.

4.2 Choosing Proper Observer Equations

It is easy to see how symbolic execution can reduce observer terms to ordinary terms:
Just unfold the observer method functions from a given state. For example, the ob-
server term Contains(x) reduces to true when symbolically executing Contains(x)
after Add(x). The reduction is not unique if there is more than one execution path.
For example, before calling Add(x), we can reduce Contains(x) to both true and
false.

We fix a path p of the modifier method for the remainder of this subsection. We
reduce each chosen proper observer term t relative to p as follows. We symbolically
execute the observer method under the path condition of p, i.e. we only consider those
paths of the observer method which are consistent with the path condition of p. Again,
we only explore a limited number of execution paths. We ignore execution paths of
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observer methods which terminate with an exception, and thus the reduction may also
result in the empty set, in which case we omit the observer term.

For each execution path of the observer method, we further simplify the resulting
term using the constraints of the path condition. For example, if the resulting term is
x = 0 and the path condition contains x > 0, we reduce the result to false.

If all considered execution paths of the observer method yield the same reduced term,
we call the resulting term the reduced observer term of t, written as tR.

Given a finite set T of observer terms, we define the basic observer equations as
{t = tR : t ∈ T where tR exists}. This set characterizes the path p of the modifier
method by unambiguous observations. For example, the basic observer equations of
S14 in Figure 3 are:

{ x = 0, IsFull(h,me) = false,Contains(h,me, x) = false,

Contains(h′,me, x) = true, IsFull(h′,me) = true }

However, the reductions of the observations may refer to fields or arrays in the heap,
and a specification should not contain such implementation details. Consider for exam-
ple a different implementation of the Set class where the number of added elements is
tracked explicitly in a private field count, and the Countmethod simply returns count.
Then the observer term Count(h,me) reduces to the field access term me.count.

We substitute internal details by observer terms wherever possible, and construct the
completed observer equations as follows. Initially, our completed observer equations
are the basic observer equations. Then we repeat the following until the set is saturated:
For two completed observer equations t = t′ and u = u′, we add t = t′[u′/u] to the set
of completed observer equations if the term t′[u′/u] contains less heap-access subterms
than t.

For example, let h′ be equal to the heap for a path where Add returns successfully and
increments the private field count by one, then Count(h,me) reduces to me.count
and Count(h′,me) to me.count+1 in the initial heap h. Then the completed observer
equations will include the equation Count(h′,me) = Count(h,me) + 1 which no
longer refers to the field count.

We select the set of observer equations likely equivalent to p’s path condition as
follows: the completed observer equations less all tautologies and all equations which
still refer to fields or arrays in a heap. (This way, all the remaining equations are proper
observer equations.)

5 Further Discussion

Detecting insufficient observer methods. When we applied our tool to a code base that
is currently under development (a refined DOM implementation [3]), our tool inferred
a specification for the method XElement.RemoveAttribute that we did not expect.

void RemoveAttribute(XAttribute a)
requires HasAttributes() && a!=null;
ensures false;
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This axiom is contradictory. The reason is the set of available observer methods:
For some paths, RemoveAttribute assumes that the element contains only one at-
tribute, then after removal, HasAttributes will be false. For other paths, it assumes
that the element contains more than one attribute, which makes HasAttributes true
after removal. The existing observer methods of the class XElement cannot distinguish
these two cases. Therefore, for the same preconditions, we may reach two contradictory
postconditions. This actually indicates that the class should have more observer meth-
ods. We call a set of observer methods insufficient if they cause our analysis to derive
contradictory postconditions.

Indeed, after adding a new observer method called AttributesCount to the class
XElement, we obtain the following consistent specification where old(e) denotes the
value of e at the entry of the method.

void RemoveAttribute(XAttribute a)
requires HasAttributes() && a!=null;
ensures old(AttributesCount() > 1) => HasAttributes();
ensures old(AttributesCount() < 2) => !HasAttributes();

This way, our tool examines if a class interface provides sufficiently many observer
methods for the user to properly use the class.

Pruning unreachable states. Since we explore the modifier method from an arbitrary
state, we might produce some path-specific axioms that have preconditions which are
not enabled in any reachable state.

For example, for the .NET ArrayList implementation the number of elements in
the array list is at most its capacity; a state where the capacity is negative or smaller than
the number of contained elements is unreachable. Symbolic execution of a modifier like
Add will consider all possible initial states, including unreachable states. As a conse-
quence, we may produce specifications which describe cases that can never happen in
concrete sequences of method calls. These axioms are likely correct but useless.

Ideally, the class would provide an observer method which describes when a state is
reachable. Fortunately, our experiments show that this is usually not necessary. Explo-
ration from unreachable states often results in violations of contracts with the execution
environment, e.g., null dereferences. Since our approach assumes that the implemen-
tation is “correct,” our tool prunes such error cases.

Computing the set of reachable states precisely is a hard problem. A good approx-
imation of reachable states are states in which the class-invariant holds. If the class
provides a Boolean-valued method that detects invalid program states, our tool will use
it to prune invalid states.

Redundancy. Two observations might be equivalent, e.g., IsEmpty() is usually equiv-
alent to Size()==0. While this may cause some redundancy in the generated speci-
fications, it does not affect the soundness of the specifications. We do not provide an
automatic analysis to find an expressive and minimal yet sufficient set of observer meth-
ods but leave it to the user to select an appropriate set. As we discussed in Section 4,
the required effort of manually selecting observer methods has been reasonable in our
experiences.
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Limitations. There is an intrinsic limitation in any automatic verification technique
of nontrivial programs: there cannot be an automatic theorem prover for all domains.
Currently, our exploration is conservative for the symbolic exploration: if the theorem
prover cannot decide a path condition’s satisfiability, exploration proceeds specula-
tively. Therefore, it might explore infeasible paths. The consequences for the generated
axioms are similar to the ones for unreachable, unpruned states.

Moreover, as mentioned, our technique considers only an exemplary subset of ex-
ecution paths and observer terms. In particular, we unroll loops and recursion only a
certain number of times, but the axioms in terms of the observer methods often abstract
from that number, pretending that the number of unrollings is irrelevant. Without pre-
cise summaries of loops and recursion, e.g., in the form of annotated loop invariants,
we cannot do better. The generalization step introduces another source of errors, since
it postulates general relations from exemplary observations using a set of patterns.

While our implementation has the limitations discussed above, in our experience
the generated axioms for well-designed ADTs are comprehensive, concise, sound and
actually describe the implementation.

6 Implementation

We have implemented our technique in a tool called Axiom Meister. It operates on the
methods given in a .NET assembly.

We built Axiom Meister on top of XRT [17], a framework for symbolic execution of
.NET programs. XRT represents symbolic states as mappings of locations to terms plus
a path condition over symbolic inputs. XRT can handle not only symbols for primitive
values like integers, but also for objects. It interprets the instructions of a .NET method
to compute a set of successor states for a given state. It uses Simplify [11] or Zap [6] as
automatic theorem provers to decide if a path condition is infeasible.

Corresponding to the three steps of the inference process, Axiom Meister consists
of three components: the observer generator, the summarization engine, and the sim-
plification engine. The observer generator manages the exploration process. It creates
exploration tasks for the modifier and observer methods which it hands down to the
XRT framework. From the explored paths it constructs the observation equations, as
discussed in Section 4.1. The simplification engine uses Maude [4].

Axiom Meister is configurable to control the execution path explosion problem: The
user can control the number of loop unrollings and recursion unfoldings, and the user
can control the maximum number of terminating paths that the tool considers. By de-
fault, Axiom Meister will terminate the exploration when every loop has been unrolled
three times, which often achieves full branch coverage of the modifier method. So far,
we had to explore at most 600 terminating paths of any modifier method to create com-
prehensive axioms.

Axiom Meister can output the inferred specifications as formulas, parameterized unit
tests [26], or as Spec# specifications.

The user can control Axiom Meister from the command line and it has a graph-
ical user interface (Figure 7). The user can choose the modifier method to explore,
Hashtable.Add in this example, and a set of observer methods on the left panel. The
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Fig. 7. Screenshot of Axiom Meister

right window shows the generated axioms, here as parameterized unit tests. It also pro-
vides views of the modifier exploration tree (Figure 3), and the code coverage of the
modifier and observer methods.

7 Evaluation

We have applied Axiom Meister on a number of nontrivial implementations, including
several classes of the .NET base class library (BCL), classes from the public domain,
as well as classes currently under development by a Microsoft product group.

Table 1. Example Classes for Evaluating Axiom Meister

Class Modifiers Observers LOC Source
Stack 3 3 200 .NET BCL
BoundedStack 2 4 160 Other
ArrayList 7 6 350 .NET BCL
LinkedList 6 4 400 Other
Hashtable 5 4 600 .NET BCL
XElement 2 3 800 MS internal

Table 1 shows some of the investigated classes along with the numbers of the cho-
sen modifier and observer methods. The LOC column gives the number of lines of
non-whitespace, non-comment code. We took Stack, ArrayList and Hashtable

from the BCL; BoundedStack is a modified version of Stack with a bounded size;
LinkedList from [1] implements a double linked list with an interface similar to
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ArrayList; XElement is a class of a refined DOM model [3], which is currently under
development at Microsoft. We did not change the implementations with the exception
of Hashtable: we restricted the size of its buckets array; this was necessary to improve
the performance due to limitations of the theorem prover that we used.

In addition to the regular observer methods, we included a general observer method
which checks if a value is null.

Table 2 gives the evaluation results of these examples. The first two columns show
the number of explored paths and the time cost to infer specifications for multiple modi-
fier methods of the class. Both measurements are obviously related to the limits imposed
on symbolic exploration: exploration unrolls loops and recursion only up to three times.
We inspected the inferred specifications by hand to collect the numbers of the last three
columns. They illustrate the number of merged and simplified axioms generated, the
number of sound axioms, the number of methods for which complete specifications
were generated, and the percentage of methods for which full branch coverage was
achieved during symbolic execution.

Table 2. Evaluation Results of Axiom Meister

Class Paths Time(s) Axioms Sound Complete Coverage
Stack 7 1.78 6 6 3 100%
BoundedStack 17 0.84 12 12 2 100%
ArrayList 142 28.78 26 26 7 100%
LinkedList 59 9.28 16 13 6 100%
Hashtable 835 276.48 14 14 5 100%
XElement 42 2.76 14 13 2 100%

Most BCL classes are relatively self-contained. They provide sufficient observer
methods whereas new classes under development, like XElement, as discussed in Sec-
tion 5, often do not. In these examples branch coverage was always achieved, and the
generated specifications are complete, i.e., they describe all possible behaviors of the
modifier method. However, some of the generated specifications are unsound. A miss-
ing class invariant causes the unsound axioms for LinkedList, and we discussed the
unsound axioms for XElement in Section 5. After adding additional observer methods,
we infer sound axioms only.

8 Related Work

Due to the importance of formal specifications for software development, many ap-
proaches have been proposed to automatically infer specifications. They can be roughly
divided into static analysis and dynamic detection.

8.1 Static Analysis

For reverse engineering Gannod and Cheng [16] proposed to infer detailed specifica-
tions by computing the strongest postconditions. But as mentioned, pre/postconditions
obtained from analyzing the implementation are usually too detailed to understand and
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too specific to support program evolution. Gannod and Cheng [15] addressed this defi-
ciency by generalizing the inferred specification, for instance by deleting conjuncts, or
adding disjuncts or implications. This is similar to the merging stage of our technique.
Their approach requires loop bounds and invariants, both of which must be added man-
ually. There has been some recent progress in inferring invariants using abstract in-
terpretation. Logozzo [22] infers loop invariants while inferring class invariants. The
limitation of his approach are the available abstract domains; numerical domains are
best studied. The resulting specifications are expressed in terms of the fields of classes.
Our technique provides a fully automatic process. Although loops can be handled only
partially, in many cases, our loop unrolling has explored enough behavior to deduce
reasonable specifications.

Flanagan and Leino [14] present another lightweight verification based tool, named
Houdini, to infer ESC/Java annotations from unannotated Java programs. Based on spe-
cific property patterns, Houdini conjectures a large number of possible annotations and
then uses ESC/Java to verify or refuse each of them. This way it reduces the false alarms
produced by ESC/Java and becomes quite scalable. But the ability of this approach is
limited by the patterns used. In fact, only simple patterns are feasible, otherwise Hou-
dini generates too many candidate annotations, and consequently it will take a long
time for ESC/Java to verify complicated properties. Our technique does not depend on
patterns and is able to produce complicated relationship among values.

Taghdiri [25] uses a counterexample-guided refinement process to infer over-appro-
ximate specifications for procedures called in the function being verified. In contrast to
our approach, Taghdiri aims to approximate the behaviors for the procedures within the
caller’s context instead of inferring specifications of the procedure.

There are many other static approaches that infer some properties of programs,
e.g., shape analysis [24] specifies which object graph the program computes, termi-
nation analysis decides which functions provide bounds to prove that a program termi-
nates [10]. All these analyses are too abstract for us; we really wanted to have axioms
that describe the precise input/output behavior.

8.2 Dynamic Analysis

Dynamic detection systems discover general properties of a program by learning from
its execution traces.

Daikon [13] discovers Hoare-style assertions and loop invariants. It uses a set of in-
variant patterns and instruments a program to check them at various program points.
Numerous applications use Daikon, including test generation [30] and program verifi-
cation [9]. Its ability is limited by patterns which can be user-defined. We use observer
methods instead: they are already part of the class may carry out complicated compu-
tations that are hard to encode as patterns, e.g., membership checking. Also, Daikon
is not well-suited for automatically inferring conditional invariants. The Java front end
of Daikon, Chicory [2], can make observations using pure methods. However, it only
supports pure methods without arguments, which are essentially derived variables of
the class state. Daikon and our technique have different goals. We focus on inferring
pre- and postconditions for methods, whereas Daikon infers invariants.
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Groce and Visser [18] recently integrated Daikon [13] into JavaPathFinder [27].
Their main goal is to find the cause of a counterexample produced by the model checker.
Their approach compares invariants of executions that lead to errors and those of similar
but correct executions. They use Daikon to infer the invariants.

Henkel and Diwan [19] have built a tool to discover algebraic specifications for in-
terfaces of Java classes. Their specifications relate sequences of method invocations.
The tool generates many terms as test cases from the class signature. It generalizes
the resulting test cases to algebraic specifications. Henkel and Diwan do not support
conditional specifications, which are essential for most examples we tried.

Dynamic invariant detection is often restricted by a fixed set of predefined patterns
used to express constraints and the code coverage achieved by test runs. Without using
patterns, our technique can often detect relationships between the modifier and observer
methods from the terms over the input symbols that symbolic execution computes. We
also do not need a test suite.

Xie and Notkin [29] recently avoid the problem of inferring preconditions by infer-
ring statistical axioms. Using probabilities they infer which axiom holds how often. But
of course, the probabilities are only good with reference to the test set; nevertheless,
the results look promising. They use the statistical axioms to guide test generation for
common and special cases.

Most of the work on specification mining involves inferring API protocols dynami-
cally. Whaley et al. [28] describe a system to extract component interfaces as finite state
machines from execution traces. Other approaches use data mining techniques. For in-
stance Ammons et al. [5] use a learner to infer nondeterministic state machines from
traces; similarly, Evans and Yang [31] built Terracotta, a tool to generate regular pat-
terns of method invocations from observed program runs. Li et al. [21] mine the source
code to infer programming rules, i.e., usage of related methods and variables, and then
detect potential bugs by locating violations of these rules. All these approaches work
for different kinds of specifications and our technique complements them.

9 Future Work

Although this paper focuses on examples of classes implementing ADTs, we believe
that our technique can be adopted to work for cooperating classes, like collections and
their iterators, or subjects and their observers. We intend to address these challenges
next. Other future work includes inferring specifications for sequences of modifier
methods, inferring grouping information automatically, and inferring class invariants.
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