

Appearance Manifolds for Modeling Time-Variant Appearance of Materials

Jiaping WangInstitute of Computing Technology, CASXin TongMicrosoft Research AsiaStephen LinHeung-Yeung ShumMinghao Pan
Hujun BaoZhejiang UniversityChao WangTsinghua University

Motivation

Modeling and editing of time-variant surface appearance

Related Work

- Visual simulation of weathering distribution
 - [Miller94, Hsu95, Wong97, Chen05]
 - Focus on global distribution
- Physically-based simulation
 - [Dorsey96, Dorsey99, Merillou01, Paquette02, Lu05]
 - Only for some specific materials
- Directly capture images of real samples
 - [Georghiades05, Gu06]

Related Work: Image Capture

Georghiades05:

Observing and Transferring Material Histories

Gu06:

Time-Varying Surface Appearance: Acquisition, Modeling, and Rendering

Frame-by-frame capture over time

- ③ Realistic appearance from real samples
- Section Laborious capture of full time sequences

Our Contributions

An easy-to-use technique for modeling time-variant appearance of materials

- Capture at a single time instant
- Generate realistic appearance
 - spatially-variant BRDFs
 - surface texture patterns evolve over time
- Visual simulation technique
 - not necessarily physically accurate

An Example

. . .

Weathering Degree

Material Sample

Material Sample

High-dimensional Appearance Space

Material Sample

High-dimensional Appearance Space

Appearance Manifold

Material Sample

System Overview

Material Sample

Appearance Manifold

Time-variant Appearance

System Overview

Construct Appearance Manifold

Appearance Space Projection

Material Sample

Construct Appearance Manifold

Material Sample

Appearance Space

Construct Appearance Manifold

Material Sample

Appearance Space

Material Sample

Material Sample

Material Sample

Appearance Space

Weathering degree of x is —

Weathering Degree Map

Appearance Space

System Overview

Synthesize Time-variant Appearance

- Similarity: texture elements similar to source
- Monotonic: monotonic change of appearance

Naïve Approach I

Similarity: texture elements similar to source
Monotonic: monotonic change of appearance

Naïve Approach I

- Ignore monotonic change of appearance
- Independently synthesize each frame

Result Sequence

Naïve Approach II

X Similarity: texture elements similar to source
Monotonic: monotonic change of appearance

Naïve Approach II

- Ignores patterns in texture
- Pixel-wise extrapolation of one frame

Naïve Approach II

- Ignores patterns in texture
- Pixel-wise extrapolation of one frame

Pixel-wise Extrapolation

Similarity: texture elements similar to source
Monotonic: monotonic change of appearance

Xn

en

Extrapolated Frames

e1

Multi-scale Refinement

Consistency Constraint

Target Frame **x**_t

Source Texture

Source Degree Map

Monotonicity Constraint

Comparison to Naïve Approaches

Only Monotonicity

Frame-Coherent Synthesis

Only Texture Consistency

Synthesis Result on 3D Surface

Weathered Bananas

Weathering/Deweathering

Weathering/Deweathering

Weathered Leaf

Weathering Transfer

Input Weathered Object

Transferred Object

Another Time-variant Appearance

Rendering Results

.

Conclusion

- An easy-to-use tool for modeling time-variant appearance of materials
 - Acquisition at a single point in time
 - Realistic spatially-variant BRDFs
 - Plausible temporal variations
- Frame-coherent texture synthesis
- Tool for editing weathered appearance of existing objects

Acknowledgements

- Kun Zhou , Dong Xu
 - Helpful discussions
- Yuan Tian, Rui Jin
 - Geometry models and photography
- Paul Debevec
 - Linear light source reflectometry
 - HDR environment maps

Thanks