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Abstract
Using coarse meshes with textures and/or normal maps to represent detailed meshes often results in poor visual
quality along silhouettes. To tackle this problem, we introduce silhouette texture, a new data structure for captur-
ing and reconstructing the silhouettes of detailed meshes.In addition to the recording of color and normal fields in
traditional methods, we sample information that represents the original silhouettes and pack it into a three dimen-
sional texture. In the rendering stage, our algorithm extracts relevant information from the texture to rebuild the
silhouettes for any perspective view. Unlike previous work, our approach is based on GPU and could achieve high
rendering performance. Moreover, both exterior and interior silhouettes are processed for better approximation
quality. In addition to rendering acceleration, our algorithm also enables detailed silhouette visualization with
minimum geometric complexity.

Categories and Subject Descriptors(according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture:
Graphics Processors; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism: Texture;

Keywords: silhouette, visibility, occlusion culling, graphics hardware, real-time rendering, image-based rendering

1. Introduction

Silhouette is arguably one of the most important visual cues
for conveying object shapes. However, rendering silhouettes
accurately can be expensive, especially for complex geomet-
ric models such as scanned sculptures [LPC∗00] or synthetic
gaming assets [UT04]. As a result, many interactive applica-
tions today such as games still utilize crude polygonal rep-
resentation of objects (e.g. see screen shots ofWorld of War-
craft or Grand Theft Auto), resulting in jagged edges around
silhouettes. This phenomenon is quite prevalent, even given
the computation power of today’s commodity graphics hard-
ware, capable of rendering models with pixel-sized triangles
in real time [LH04].

We present a technique to render complex polygonal mod-
els with accurate silhouettes with a fraction of cost for ren-
dering the original models. Our core idea is a new data struc-
ture for capturing and later reconstructing the silhouettes
of detailed meshes, calledsilhouette texture. In addition to
color and normal fields, our silhouette texture incorporates
information that represents the silhouettes of the original
mesh as a specialvisibility function, defined over every point
on a coarse outer hull around the original mesh. In the ren-
dering stage, we extract this visibility information from our

silhouette textures to rebuild the original silhouette accord-
ing to desired viewing parameters.

Our technique is inspired by silhouette clipping
[SGG∗00], but we utilize a completely different data
structure to allow a GPU-friendly implementation. In
particular, our visibility function representation is similar
to the one in horizon mapping [Max88, SC00], but instead
of self-shadowing, we re-create and apply the basic idea in
a novel way for storing visibility information. In addition,
our technique handles interior silhouettes which is not
considered in [SGG∗00].

An immediate application of our algorithm is fast ren-
dering of complex polygonal models, while preserving vi-
sual faithfulness of both silhouettes and interior shading. The
speed improvement of our algorithm comes from the follow-
ing simple observation. Most commodity GPUs today have
higher pixel than vertex processing power (with a perfor-
mance ratio about 10). The major reason behind this ratio
is that commercial GPUs are targeted for games and bench-
marks, which usually have∼10:1 ratios for rendered scene
pixels to vertices. Unfortunately, this ratio is sub-optimal for
high-resolution polygonal meshes which usually have more
rendered vertices than pixels. Our approach bridges this gap
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outer hull + normal map
1000 vertices

original mesh
40002 vertices 308 fps

our result
1000 vertices 725 fps

Figure 1: Silhouette texture rendering. Our silhouette texture significantly speeds up rendering speed while faithfully reproduce both interior
and exterior silouettes. All frame-rates reported in this paper are measured on a NVIDIA Geforce-7800-GT chip with a viewport size 512×512.

by reducing the number of rendered vertices at the expense
of more complex pixel shading, resulting in a more balanced
work load between vertex and pixel processing units.

In addition, our explicit knowledge of both interior and
exterior silhouettes enables additional applications, such as
silhouette-based visualizations. The major advantage of our
approach over previous visualization methods is that we are
able to draw high quality silhouettes from a coarse hull, in-
stead of requiring a detailed input mesh.

The contributions of this paper include:

• Reconstructing high quality, smooth silhouettes from a
silhouette texture for any perspective view, incorporating
both interior and exterior silhouettes.

• Compression from original 4D silhouette information into
3D via a novel single-lobe observation, with the addi-
tional benefit of allowing native hardware filtering and
anti-aliasing.

• The performance tuning ability of our silhouette texture
for load balancing between vertex and fragment units,
with high performance achieved via a GPU-based per-
pixel shading algorithm.

• Additional silhouette-based applications enabled by our
technique, such as contour visualization.

2. Previous Work

Silhouettes for perception and visualizationSilhouettes
have long been recognized as one of the most important
visual cues for shape perception [Koe84]. Mathematically,
silhouettes are points{p | ~n(p) ·~v(p) = 0} on a 3D object
where~n(p) is the normal and~v(p) the vector fromp to the
eye point. [DFRS03] recommended using suggestive con-
tours for shape illustration, incorporating points{p} where

~n(p) ·~v(p) is a positive local minimum instead of being
zero. This concept is further accelerated for real-time ren-
dering on graphics hardware [DFR04]. Our technique dif-
fers fundamentally from [DFRS03, DFR04] in that these
techniques, along with the majority of visualization work
[HZ00, Dur02], concentrate mainly on illustration quality
rather than rendering speed; in particular, they mostly rely
on detailed original geometry whereas our technique utilizes
a much simplified geometric representation.

Rendering acceleration via model simplification Due
to the advance of authoring and scanning technology
[LPC∗00], large and detailed geometric meshes have becom-
ing common, requiring proper LOD techniques for maintain-
ing performance and anti-aliasing [LWC∗02]. In particular,
rendering large meshes on CPU require sophisticated mem-
ory management [RL00, CMRS03], and the problem is more
challenging for GPU with even less storage. To make this
problem tractable, we have to concentrate on preserving the
most important visual cues; due to the importance of silhou-
ettes, a coarse visual hull approximating the original object
plus the necessary silhouette/visibility information is enough
to obtain faithful rendering reproduction, as demonstrated in
[SGG∗00, MPN∗02]. [SHSG01] further attests the feasibil-
ity of such approach via anti-aliasing silhouette edges.

[DDSD03] utilizes billboards for extreme model simpli-
fication. The technique is able to preserve silhouettes only
for geometry well-aligned with billboard planes; in contrast,
our technique preserves silhouettes uniformly over the entire
model similar to [SGG∗00].

Texture-based representation of geometry detailsWe are
certainly not the first to propose the idea of trading geomet-
ric complexity with extra texture storage + shader compu-
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tation on GPU, as this has been explored in various forms
including VDM [WWT∗03], GDM [WTL∗04], and relief
mapping [POC05]. However, to render accurate silhouettes,
these techniques would require a complex on-line procedure
to combine multiple prisms or tiles covering the 3D object
surface. Since our technique is designed primarily for sil-
houettes, our per-pixel computation is simpler and more effi-
cient, at the expense of less accurate interior self-shadowing
and occlusion. In addition, the explicit knowledge of sil-
houettes enables us to perform silhouette-based visualization
which is not possible via [WWT∗03, WTL∗04, POC05].

In particular, our basic data structure (as well storage and
computation requirement) is much more similar to horizon
mapping [Max88, SC00, HDKS00], but we apply this basic
representation in an entirely novel way for rendering silhou-
ettes/visibility instead of self-shadowing.

Occlusion/visibility information encoding There exists a
variety of previous work for encoding visibility or occlusion
information [AAM03, ZHL∗05, KL05]. A core part of our
silhouette texture is a visibility function, which is inspired by
these previous methods. A common problem for such visi-
bility information is the huge storage requirement, requiring
compression. A major novelty of our approach is that, in-
stead of a generic data-driven compression technique like
PCA, wavelet [NRH04], or spherical harmonics [SKS02],
our technique first reduces the visibility function from 4D
to 3D via a single-lobe observation, before applying another
step of PCA compression. Our single-lobe assumption is ob-
tained via empirical observations and works very well in
practice; to our knowledge, this has not yet been done be-
fore. In addition, this single-lobe assumption allows high
sampling precision of object silhouettes without consuming
excessive storage.

3. Silhouette Texture

Our silhouette texture framework consists of two stages: the
pre-processing stage and the rendering stage.

In the preprocessing stage, we first construct a coarse
outer hull entirely enclosing the original mesh by applying
offset surface generation [PKZ04] to the original mesh and
then using mesh simplification [GH97] to simplify the offset
mesh. (Although this process requires iterations to determine
the optimal offset value for a given hull resolution, we found
the resulting outer hull is typically better in approximating
quality compared with the result of the modified progressive
mesh construction algorithm described in [SGG∗00].) Next,
we parameterize the original mesh over this coarse outer hull
by sampling color, normal, as well the visibility information
from the original mesh, storing these sampled information as
texture maps. The outer hull and the sampled texture maps
serve as the only approximation of the original model, as we
discard the original model after pre-processing.

Original Mesh

Hull

p

Dp

q

Figure 2: Correspondence between the outer hull and the original
mesh. p is a point on the outer hull andq is p’s corresponding point
on the original mesh.Dp is the direction pointing fromp to q.

Original 

Mesh

p Dp

(a) (b)

Figure 3: Visibility function (a) A 2D VF and (b) a 3D VF. Red
region indicates the set of directions whose VF values are true.

In the rendering stage, we rasterize the outer hull, shaded
with the corresponding color and normal texture maps. We
employ a per-pixel algorithm to determine whether a screen-
space pixel would lie within the original object by query-
ing the visibility information recorded in the pre-processing
stage. We implement our per-pixel algorithm as a fragment
program in commodity graphics processing units (GPU), as
detailed in Appendix A.

3.1. Color and Normal Information

We associate with the coarse outer hull two texture maps
for storing the color and normal information of the original
mesh. This is standard practice for color/normal texture map
polygonal objects; the only minor difference in our tech-
nique is that we require the coarse hull to completely enclose
the original mesh, whereas traditional color/normal maps do
not have this restriction.

For each pointp on the outer hull, we define the principal
projection directionDp as the vector fromp to the pointq on
the original surface where the color/normal information atp
is sampled (Figure 2). Specifically, the location ofq can be
derived during the color/normal maps construction process
(e.g. [SGG∗00, COM98]). We will needDp for defining our
visibility function below.

3.2. Visibility Function

Basically, our algorithm can be thought of carving out “ex-
cessive” portions of the outer hull which lies outside the sil-
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A Hull

A

B

Original Mesh

Figure 4: Illustration of our algorithm. The hull is used to approxi-
mate the original mesh. Blue region is the portion of the hullactually
rendered. PointA is rendered and pointB is discarded according to
query results into their respective VFs.

houettes of the original mesh. A visibility function is em-
ployed to determine whether a point on the outer hull should
appear as if viewing the original mesh under the same view-
ing parameters.

Exterior Silhouettes Only

First, we focus on using visibility function to preserve
exterior silhouettes only. OurVisibility Function (VF) is a
spherical boolean function defined over an arbitrary pointp
on the outer hull, with respect to an objectM.

VFp(~v) =















true M is visible to p in direc-
tion~v

f alse M is invisible to p in direc-
tion~v

(1)

where~v indicates a viewing direction originated fromp.
(see Figure 3 forVF examples).

Given the visibility functions of all points on the outer
hull, the original exterior silhouettes are reconstructedby se-
lectively rendering the outer hull. We cast a ray from the eye
point towards each point on the outer hull and then use the
direction of the ray as variable to lookup the visibility func-
tion. We continue to shade the point if its visibility function
evaluates true at this direction. Otherwise, the point is dis-
carded for rendering (via fragment kill in shader program).
Figure 4 illustrates this process.

Interior Silhouettes

Our visibility function defined above correctly renders ex-
terior silouettes; unfortunately, it is not sufficient for inte-
rior silouettes, as illustrated below. As shown in Figure 5
(a), point p1 on the outer hull has color/normal associated
with point q1 on the smaller bump of the original mesh (de-
termined during color/normal map construction). However,

A

Original Mesh

Hull

p1

q1

p2

q2

(a)

A

Original Mesh

Hull

p1

q1
q2

p2
q3

(b)

A
Original Mesh

Hull

p1

q1

(c)

Figure 5: Processing interior silhouettes. (a) The preliminary defi-
nition of VF does not preserve interior silhouettes. (b) Modified VF
reconstructs correct interior silhouettes. Note the greenportion in
(a) is now carved out. (c) A case where interior silhouettes cannot
be processed by our framework.

under case (a), our definition in Equation 1 would render
the color ofp1 incorrectly; specifically, the color/normal in-
formation should come from pointq2 on the bigger bump,
instead of the stored color/normal information atq1. This
phenomenon is often termed incorrect self-occlusion in the
vision literature.

To resolve this problem, we need to modify our visibil-
ity function definition. Figure 5 (b) illustrates the basic idea.
Note that forVFp1(p2 − p1), it should really be classified
as invisible, since it missed the smaller bump. In particular,
if we declareVFp1(p2− p1) as invisible, then we could ob-
tain correct color/normal information for this ray by query-
ingVFp2(p2− p1). This improvement in our visibility func-
tion can be formalized as follows:
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VFp(~v) =















true
dM(~v) < ∞ and
dM(~v) < dH(~v)

f alse Otherwise

(2)

wheredH (~v) denotes the distance fromp to the nearest
outer hull polygon (not including the one containingp itself)
along direction~v, anddM(~v) represents the distance fromp
to M (If no hit occurs along the direction, we defined =
∞. ). Essentially, what this equation says is that we classify
VFp(~v) as visible only if the ray~v (1) intersects the original
mesh (hence the termdM(~v) < ∞) and (2) does not intersect
any portion of the outer hull prior to intersecting the original
mesh (hence the termdM(~v) < dH(~v)).

However, the correctness of our visibility function formu-
lation in Equation 2 depends on the closeness between outer
hull and the original mesh. As illustrated in Figure 5 (c),
when the outer hull is too coarse to follow the original geom-
etry, we will not be able to render the self-occusion effects
correctly as in case (b), where the outer hull has enough res-
olution. This is a tradeoff between quality and storage, and
is an inherent limitation of any similar silouette clippingal-
gorithms based on color/normal texture maps [SGG∗00].

Limitations As shown in Figure 5 (b), even though the dis-
occlusion effect is correct forp2, it is color/normal informa-
tion should really come fromq3, not q2. This information
cannot be obtained by our data structure since we only as-
sociate one pair of color/normal information per outer hull
point. However, this is not unique to our technique, as any
color/normal mapped polygonal models will have similar
problems. In fact, if a normal-mapped model is constructed
in exactly the same method as our outer hull, we would ob-
tain identical shading results for pixels lying within the ex-
terior silhouettes; the only difference is that our approach
would correctly carve out the silhouettes while the normal-
mapped model would not, as demonstrated in Figure 6.

Another limitation of our approach is that since our tech-
nique produces z values of the outer hull instead of the orig-
inal geometry, we will not be able to correctly render any
other object intersecting the outer hull but not the original
geometry. But this is a relatively rare case.

3.3. Sampling

We have described the high level mathematical definition of
our visibility function as summarized in Equation 2. We now
present how to actually sample and representVF for practi-
cal implementation. A naive sampling method would require
a uniform dense sampling across the sphere around eachp
on the outer hull, resulting in a 2D array for a singleVF. We
propose a sampling method allowing us to represent each
VF as a 1D array. This not only significantly reduces stor-
age, but also allows us to store the entireVF field as a 3D

Normal map Our technique Difference

Figure 6: Comparison of normal-map with our technique. With an
identical normal-mapped mesh and our outer hull, these two tech-
niques produce indentical results within object silhouettes; the only
difference is that our technique correctly renders the silhouettes. The
right-most image indicates differences in gray; as shown, all differ-
ences lie on the silhouettes.

Figure 7: Sampling a VF by recording the shape of itstrue re-
gion. Angular distances from~Cp to the boundary oftrue region are
recorded at different azimuth angles (eight angles in this figure) in
counter-clockwise order. The first azimuth angle is the samedirec-
tion as~Tp.

texture and utilize native hardware filtering/anti-aliasing. In
addition, our sampling representation incurs negligible qual-
ity degradation in reconstructed silhouettes.

Our VF sampling representation is based on one crucial
experimental observation: the majority ofVF contains a sin-
gle connected region oftrue, as illustrated in Figure 3(b).
This peculiar property allows us to describe eachVF as a
1D array by the circumference of thetrue region, as follows
(see Figure 7 for an illustration). First, we select a direction
~Cp which roughly sits in the middle of the entiretrue re-
gion by taking the arithmetic mean of{~v | VFp(~v) = true}.
We then record in counter-clockwise order the angular dis-
tance from~Cp to the boundary of thetrue region at discrete
azimuth angles, the first of which lies in the same direction
with ~Tp, a vector tangent to~Cp, and store these distances into
a 1D array.

For allVFs over the entire outer hull, we sample them us-
ing the above method and pack the result into a 3D texture,
which is denoted as aSilhouette Texture(Figure 8). First,
we parameterize the hull into a 2D texture atlas via standard
techniques (e.g. UVAtlas in the D3DX library [ZSGS04]).
We then store the 1D array of angular distances correspond-
ing to eachVF in the angular dimension of the 3D texture.
One nice property of this organization is that ourVF sam-
ples can be linearly interpolated in all three dimensions us-
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Figure 8: Silhouette texture encoding and decoding. Our silhou-
ette texture is encoded as a 3D texture on GPU, with spatial texture
atlas in the 1st/2nd dimensions and angular resolution in the 3rd di-
mension. For illustration purpose, we use a small angular resolution
of 4. To encode a singleVFp, we store angular distance samples
along various azimuth angles, with the 1st angular sample aligned
with Tp. For decoding, we use the combination of spatial coordi-
nates(pu, pv) and azimuth angleθ of viewing direction atp to index
the silhouette texture. In this example, we determineVFp(~v) = true
andVFp(~v′) = f alseby comparing their fetched texture values with
their angular distances fromCp, respectively.

ing native hardware, producing smooth silhouettes with high
rendering performance.

In addition to angular distance samples,~Cp and ~Tp over
the hull also need to be stored explicitly in order to aid de-
coding of silhouette texture during rendering. In our imple-
mentation, we store them as per-vertex attributes of the outer
hull and perform interpolation during rendering. (This is cor-
rect for decoding when every interpolated~Cp lies in thetrue
region of its correspondingVF, as are most cases in our ex-
periments. However, if this condition cannot be met due to
the low density of vertices of the outer hull which is not suffi-
cient to capture the drastically changingVFs across the sur-
face, one may choose to store~C and~T as separate high res-
olution texture maps.) Since~Cp is solely determined by the
hull and the original mesh, we only need to compute corre-
sponding~Tp, using some standard method; in our implemen-
tation, we utilize D3DXComputeTangentFrameEx function
call in D3DX library.

The major limitation of our sampling method is that it can
only handle one lobe, as described above. Several typical
cases where our one-lobe assumption would fail are shown
in Figure 9. Nevertheless, this limitation can be alleviated
by constructing an outer hull which reflects major features
of the original mesh. Actually, the definition ofVF roughly
records the shape of the nearest "bump" which is generally
far less complicated than the entire original mesh.

Figure 9: Examples of VFs which cannot be properly sampled by
our method.

In our experiments with many different real-world
meshes, our single-lobe assumption has hold pretty well and
so far we have encountered very few such pathological cases
as illustrated in Figure 9; we have observed the appearances
of such failures only when the outer hull is very coarse, such
as the 22 vertex case in Figure 13. To quantify the error in-
curred by our single-lobe assumption, we utilize the follow-
ing equation as error metric:

e(a,b) =

{

1 a 6= b
0 a = b

E(VF1,VF2) = 1
4π

∫

~v∈R3,‖~v‖=1
e(VF1(~v),VF2(~v))d~v

(3)

whereVF1 andVF2 indicate the original and our approxi-
matedVF at the same pointp. We have measured the aver-
age errors across all hull points of the meshes we utilized in
this paper, as detailed in Table 1.

3.4. Rendering

We now describe how we render each pixel covered by a
silhouette-textured object, as implemented in a pixel shader
program (see Appendix A). For every screen space pixelp,
we use its world space position~Op, the sampling center~Cp

(not surface normal), and tangent vector~Tp to establish a
local tangent space. We calculate the viewing vector~v at p
as the normalized vector pointing from eye position toOp,
expressed inp’s local tangent frame. We then lookup~v in
the silhouette texture to determine whetherVFp(~v) equals
true (Figure 8). Specifically, we compute the azimuth angle
θ of ~v with respect to~Tp, and useθ along with the spatial
texture coordinates(pu, pv) of p to index into the silhouette
texture, returning a valueφ representing the angular distance
to ~Cp. Note that we allowφ to be linearly filtered by the
texturing hardware, as discussed above. Finally, we compare
φ against the angular distance between~v and~Cp to determine
the visibility of p, as formalized in Equation 4. Ifp is not
visible, we simply discard it via fragment kill.

VFp(~v) = acos(~v · ~Cp) ≤ φ (4)

Note that Equation 4 renders only hard silhouettes without
any alpha-antialiasing. This feature could be easily addedto
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our algorithm, but it would involve the tricky issue of trans-
parency ordering. In our experience, hard silhouettes ren-
dered by Equation 4 is perceptually smooth, especially af-
ter full-screen anti-aliasing enabled by commodity graphics
chips.

3.5. Compression

Throughout this paper, unless explicitly specified, all exper-
imental models are rendered using silhouette textures with
a spatial resolution of 512×512 and an angular resolution
of 64. As we use 8-bit to store each angular distance sam-
ple, the total size for one such silhouette texture is 16MB.
Although this is not a huge amount considering the average
video memory size of today’s graphics cards, the high cor-
relation of distance samples in silhouette texture opens up
possibility for further compression without sacrificing too
much rendering quality.

To perform such a compression, we employ singu-
lar value decomposition (SVD) to process the silhouette
texture. First, we reorganize the silhouette texture as a
262144(=512×512)×64 matrix A, one row of which rep-
resenting all 64 angular distance samples for a particular
VF. SVD decomposition is then applied toA to get A =
UλVT = WVT , whereV contains the eigen functions ofA
andW = Uλ contains weights of the eigen functions. Ex-
ploiting the correlation among samples ofVF, we can keep
only a few eigen-functions of the greatest eigenvalues and
omit the rest. In our experiments, 16 eigen functions are
enough to maintain a rendering quality close to that using the
original data (Figure 10(b)). Thus, the size of the silhouette
texture is reduced from 16MB to 512×512×16 + 16×64≈
4MB.

However, rendering from compressedVF texture is about
5 to 8 times slower than rendering from uncompressedVF
due to the need to perform custom bilinear/trilinear filtering
via fragment program; in contrast, as discussed earlier, for
uncompressedVF our algorithm exploits the graphics hard-
ware for native filtering. All timing reported in this paper are
measured from rendering with uncompressedVF texture.

4. Results and Applications

Quality, speed, and anti-aliasing

Figure 1 and Figure 16 demonstrate the rendering results
of our algorithm; note that even though our technique uti-
lizes a very coarse mesh, we are still able to reproduce
detailed silhouettes of the original object. This quality is
achieved with a higher frame rate than rendering the detailed
original model, due to proper load balancing between vertex
and fragment processors enabled by our technique. See Ta-
ble 1 for detailed timing and mesh statistics. (For fair com-
parison, we have performed all renderings in Figure 1 and

(a) (b)

(c) (d)

Figure 10: Compression quality. (a) uncompressed data (b) 16
term, PSNR = 45.99db (c) 8 term, PSNR = 39.52db (d) 4 term,
PSNR = 30.91db

Figure 16 so that no geometry aliasing occurs, i.e. the pro-
jected vertex density roughly equals to the pixel grid spac-
ing.)

Figure 11 provides a more detailed performance anal-
ysis, comparing frame rates of the original model versus
our algorithm under different number of projected pixels.
For complex models such as Lucy, the curve for the origi-
nal model remains flat (indicating a geometry-bound work-
load), whereas our technique runs significant faster, espe-
cially when the projection area is small. This indicates an
important advantage of our technique, as it automatically
performs geometry LOD as the model distances away from
the camera. However, for simple models such as Bunny,
our technique might run slower than rendering the original
model when the projection area is big enough.

To emphasize the quality of reconstructed silhouettes, we
have utilized a simple shading model via normal maps; since
the shading model is orthogonal to silhouette/visibility deter-
mination, a more complex shader can be easily swapped in
for higher rendering quality.

In addition, our technique creates smoothly interpolated
silhouettes by taking advantage of native 3D hardware filter-
ing duringVF look up (discussed in Section 3.3). As demon-
strated in Figure 12, we do not need a very high resolution
sampling to reconstruct smooth silhouettes; when the screen-
projected silhouette-texture sample spacing is large (e.g. 10
pixels), our method can still produce faithful and smooth sil-
houettes via proper interpolation of existingVF samples.
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# original # outer hull viewport fps fps average VF
mesh name

vertices vertices size (original mesh) (siltex) sampling error

Armadillo 40002 1000 512×512 308 725 0.426%
Bunny 34834 500 512×512 411 638 0.402%

Gargoyle 30002 500 512×512 460 762 0.309%

Dragon 40525 970 512×512 523 674 0.409%
Lucy 1000000 10000 1024×1024 1.5 273 0.805%

Table 1: Performance timing and mesh statistics. Please refer to Figure 1 and Figure 16 for quality comparison. All reported frame-rates are
measured on a NVIDIA Geforce-7800-GT chip.

Bunny Lucy

Figure 11: Performance comparison of rendering original model and ourtechnique with different number of projected pixels (by varying
the distance between the camera and the object). The frame-rate for rendering the original Lucy model is about 1.5 fps. The viewport size is
1024×1024 for all cases.

entire mesh VF texture our rendering

Figure 12: Smooth interpolation during silhouette reconstruction.
Left: a mesh with a local region marked by a red rectangle. Middle:
VF texture in that region with texels visualized in green grid. Right:
Our rendering result. Note that our technique performs smooth in-
terpolation even within a coarse silhouette texture.

In our current implementation we utilize only one mipmap
level; even though in theory a full mipmap texture ought to
be adapted for storing our silhouette texture, we have not
found it necessary. In our experiments, we have found that
our single mipmap approach produces smooth and continu-
ous silhouettes even when the object is viewed far away. We
conjecture that this is caused by the fact that under perspec-
tive projection, the set of viewing rays are more coherent
when the object is zoomed out, making mipmap unneces-
sary.

Another related issue is cache coherence; when the ob-

ject is viewed from far away, our single resolution ap-
proach might suffer from incoherence cache access due to
the spreading-out of texture footprints at adjacent pixels.
Fortunately, experimentally we have not found this to be a
major issue.

Parameters

The quality, performance, and storage of our algorithm
depend on a number of parameters, including the size of the
outer hull as well the 3D silhouette texture resolution.

Figure 13 illustrates the impact of outer hull on our ren-
dering quality. As expected, if the outer hull is too coarse,it
will fail to follow the silhouettes properly, resulting in obvi-
ous visibility errors (such as holes) at our rendering. As the
outer hull becomes finer, so improves our rendering result.
This figure also demonstrates the major limitation of our ap-
proach: we rely on the closeness of the outer hull with re-
spect to the original mesh in order to faithfully reproduce in-
terior silhouettes (as explained in Figure 5). This makes our
algorithm unsuitable for highly self-occluded objects, such
as trees or bushes.

Figure 14 demonstrates the effect of angular + spatial res-
olution of our 3D silhouette texture on rendering quality.
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22 vertices 102 vertices 500 vertices

Figure 13: The effect of outer hull quality on rendering. Top row:
outer hull + normal map. Bottom row: our rendering.

Figure 14: The effect of VF texture resolution on rendering. From
top to bottom: spatial resolutions in 5122, 1282, and 322. From left
to right: angular resolutions in 64, 16, and 4.

As expected, the higher the resolution, the better quality;
at extremely low spatial or angular resolutions, our render-
ing would exhibit holes around silhouettes due to grossly
inaccurate visibility sampling. Since current graphics hard-
ware imposes a maximum resolution (5123) on 3D textures,
this might not be sufficient to captureVF for more complex
models such as the Lucy model in Figure 16. (Notice the
holes around her ear and hair similar to the artifacts in Fig-
ure 14.) We believe this restriction can be alleviated by using
multiple 3D textures, but we have not explored this yet.

In addition to samplingVF, sufficient resolution for the
normal and texture maps is also important for maintaining
rendering quality. Insufficient sampling of normal maps can
cause artifacts as shown in the Lucy model (around her nose
and mouth) in Figure 16.

787 fps 802 fps 753 fps

Figure 15: Silhouette visualization by our technique. Each column
shows the same model in three different views.

Silhouette Visualization

Due to its ability to recover silhouette information, our
algorithm has additional applications beyond just rendering
speed-up.

One such possible applications is silhouette visualization,
as shown in Figure 15. Unlike previous methods which reply
on additional processing to render silhouettes, our algorithm
can sketch out the silhouettes directly by a simple modifi-
cation of our fragment program. Instead of knocking out all
pixels withVFp(~v) == f alseas evaluated in Equation 4, we
determine the intensityIp(~v) at each pixelp with viewing
direction~v by the closeness ofacos(~v · ~Cp) andφ (see Equa-
tion 4 for the meaning of these symbols):

Ip(~v) =







true | acos(~v · ~Cp)−φ |≤ σ∗Zp

f alse otherwise
(5)

whereσ is a user threshold parameter deciding the thick-
ness of the lines andZp denotes the depth value at pointp.
(We need to scaleσ by Zp to take perspective projection into
account, in order to generate roughly uniform thick lines.)

Despite the simplicity of our visualization algorithm, we
are able to effectively visualize both interior and exterior
silhouettes in real-time, as demonstrated in Figure 15. Our
current algorithm does not take into account suggestive con-
tours [DFRS03, DFR04]. We believe this is can be achieved
by slight perturbation of view points via a multi-pass a-
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buffer like algorithm; we intend to explore this possibility
as a future work.

5. Conclusions and Future Work

We presentsilhouette texture, a new data representation
that allows real-time rendering of high quality interior
and exterior silhouettes on graphics hardware. Our algo-
rithm achieves faster rendering speed for detailed polygonal
meshes due to its load balancing ability between vertex and
fragment processors. We also utilize native texture hardware
filtering for proper anti-aliasing. We have also presented an
additional application of our technique, silhouette visualiza-
tion, beyond high speed and high quality rendering.

For future work, we plan to extend our technique to han-
dle dynamic, articulated objects. In principle, we could pre-
compute silhouette textures for each individual body parts
(head, torso, and limbs) and combine them in a novel way
during rendering. The challenges include how to perform
proper visibility sorting and how to incorporate vertex skin-
ning. We are also interested in exploring additional applica-
tions that require silhouette information, which is naturally
provided by our silhouette texture representation.
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Appendix A: Pixel Shader

To facilitate reproduction of our technique, we have attached
our pixel shader in Table 2.
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Figure 16: Rendering quality comparison for various meshes. Please refer to Table 1 for performance timing and mesh statistics.
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