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Abstract. This paper extends previous work on document retrieval and 
document type classification, addressing the problem of ‘typed search’. 
Specifically, given a query and a designated document type, the search system 
retrieves and ranks documents not only based on the relevance to the query, but 
also based on the likelihood of being the designated document type. The paper 
formalizes the problem in a general framework consisting of ‘relevance model’ 
and ‘type model’. The relevance model indicates whether or not a document is 
relevant to a query. The type model indicates whether or not a document 
belongs to the designated document type. We consider three methods for 
combing the models: linear combination of scores, thresholding on the type 
score, and a hybrid of the previous two methods. We take course page search 
and instruction document search as examples and have conducted a series of 
experiments. Experimental results show our proposed approaches can 
significantly outperform the baseline methods.  

1   Introduction 

Traditionally, the document search problem can be described as follows. The user 
submits a query to the search system and the search system attempts to return 
documents that the user will find relevant. In many cases, the user not only has an 
idea of what ‘document content’ they are looking for, but also what ‘type of 
document’. For example, sometimes users know that they want to search for 
information from technical papers, homepages, or instruction documents.  

In this paper we consider a setting for search, which we refer to as ‘typed search’. 
In typed search, we ask the user to enter a query as usual and at the same time allow 
them to designate the document type which they want. Then the system returns 
documents that are not only relevant to the query, but also likely to be of the 
designated type. Assuming the user indeed will be more satisfied by documents of the 
requested type, a typed search system is potentially more effective than a system 
where the user can not specify a document type. 

Web search engines like Google, MSN Search, and Yahoo! already provide search 
by type features, but usually in cases where a perfect distinction can be made between 
types. For example, by selecting scopes such as Image search or News search the user 
can specify the type of result that they require. Similarly there may be operators such 
as ‘filetype:pdf’. Not all document types are easily specified, and in some cases it 
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may even be difficult for humans.  In this paper we consider useful document types 
where it is not easy to make a perfect type classifier. 

A number of papers considered the need for document genre classification and the 
development of type classifiers[14],[15]. This paper considers the problem of typed 
search, assuming that a type has already been identified that is helpful to end-users 
and a classifier can be developed. For this specific search problem past research was 
limited to search on special types of documents such as homepage [1],[2],[7],[13]. 

This paper aims at being a thorough investigation of this search problem. We 
choose two document types as examples in our experiments, namely course page 
search (search for course web pages of colleges) and instruction document search 
(search for instruction documents). We try to answer the following three questions 
which we think are crucial for constructing typed search systems. (1) Is it possible to 
develop a general framework for typed search? (2) What is the best strategy for 
combining the relevance information and type information? (3) Is it possible to 
construct typed search systems that are easily to be extended to different types and are 
easily adapted to different domains?  

For our general framework, we propose the use of two probabilistic models for 
typed search: relevance model and type model. The former represents the relevance of 
documents to queries, and the latter represents the likelihood of documents of being 
the designated type. In our experiments we use BM25 as relevance model and 
Logistic Regression as type model.  

We propose three methods for combing the relevance and type models: linear 
combination, thresholding, and a hybrid method using both thresholding and linear 
combination. We found that linear combination and thresholding can work well with 
the default parameter settings. Hybrid can take advantage of the other two strategies 
and works best, but it needs parameter tuning. 

Our methods outperform the baselines on both instruction document search and 
course page search. It is also possible to conduct domain adaptation, applying a type 
model trained on one corpus to a separate corpus. Therefore, it is feasible to create 
generic typed search systems. 

2   Related Work 

Our work on document types is related to work on identifying and classifying 
documents by genre, such as [6],[10][14],[15]. We use the term ‘type’ to indicate 
maximum generality. Our framework can be applied for any given type of document, 
even if not everyone would agree that it constitutes a distinct ‘genre’.  Some authors 
use ‘genre’ and ‘type’ interchangeably, defining genre as: a document type based on 
similarity of form and purpose [4]. 

Homepage search can be regarded as a specific typed search. Much research work 
was conducted on that issue. For instance, TREC had a task called ‘home/named page 
finding’[2]. Many systems were developed for the task [1],[7],[13]. In homepage 
search, both relevance information and type information are needed in web pages 
ranking.  For example, information about the URL can be used to indicate type [13], 
because homepages tend to have shallow URLs ending in ‘/’. In [16], users have the 
option of specifying some concepts (e.g., a catalog, a call for paper, etc.) of interest 
when submitting a query. 
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Table 1. Two views of documents 

 Relevant Irrelevant 

Designated type A B 

Not designated type C D 

Our experiments apply BM25[11] and Logistic Regression[5]. BM25 was 
introduced as part of Okapi, a system for document retrieval with a probabilistic 
approach. Specifically, BM25 attempts to rank documents in order of decreasing 
probability of relevance. Logistic Regression (LR) is one model for classification. LR 
outputs probability values rather than confidence scores in classification. 

3   Problem Description 

The search system has a mechanism allowing users to designate the types of 
documents which users can search. The type of a document (or web page) represents 
the genre or the functional category of the document. Users can use a menu or a 
special search operator to designate document types. 

If the user knows what type of document they wish to find, they can select that 
type. They then type a search query as usual. The search system receives the query 
and the document type. It automatically retrieves and ranks documents on the basis of 
not only relevance but also likelihood of being the specified type. 

Typed search is useful for helping users to find information. Traditional 
information retrieval conducts search on the basis of relevance of documents to the 
query [8],[9][12]. Similarly, typed search needs to assure that the retrieved documents 
are relevant to the query. However, typed search also needs to assure that the 
retrieved documents belong to the designated document type. Table 1 shows two 
views of documents. From Table 1, we see that A is the set of documents that we 
want to collect in typed search. By introducing types into search, one can drastically 
reduce the numbers of documents returned to users. 

Various document types can be considered such as resume, blog, homepage, email, 
etc. For a recent example of a detailed study of document types, see [4].  Here, we 
assume that the search provider (e.g., librarian, search engine designer) can identify 
typed searches that are valuable to users, and apply our typed search approach. 

4   Our Approach 

4.1   General Framework 

We propose a general framework for ranking in typed search. Given a query q and a 
document d, we rank the documents with the conditional probability Pr( , | , )r t q d  , 
where r and t take 1 or 0 as values and they denote ‘relevant or not’ and ‘in the same 
type or not’. In instruction document search, for example, 1t =  means that a document 
is an instruction document. In typed search, we rank documents using the probability 
scores of documents. 

Here, we assume that r and t are conditionally independent given q and d. We 
further assume that t is only dependent on d, not on q.  Hence we have,  
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Pr( , | , ) Pr( | , ) Pr( | , ) Pr( | , ) Pr( | )r t q d r q d t q d r q d t d≈ ⋅ ≈ ⋅  (1) 

We take Equation (1) as a general model for typed search. We call the two sub-
models ),|Pr( dqr  

and )|Pr( dt  
‘relevance model’ and ‘type model’, respectively. 

The relevance model judges whether or not a document is relevant to the query. The 
type model judges whether or not a document is in the designated document type.  

4.2   Relevance Model and Type Model 

Given a query and a document, the relevance model outputs a relevance score. In 
typed search, for a given query, we create a list of <document, relevance_score> pairs 
using the relevance model. 

In this paper, we employ BM25[11] as the relevance model. In practice, for 
indexing, we index the title and the body of a document separately, calculate a BM25 
score for each, then linearly combine the scores. We view this combination of scores 
for the title and the body as the relevance_score.  

Given a document, the type model outputs a type score. In typed search, we create 
a list of <document, type_score> pairs using the type model. 

We take a statistical machine learning approach to constructing a type model. More 
specifically, given a training data set 

1{ , }n
i iD x y= , we construct a model Pr( | )y x  that 

can minimize the number of errors when predicting y given x (generalization error). 
Here

ix X∈ and {1, 1}iy ∈ − . x represents a document and y represents whether or not a 

document is a document in the designated type. When applied to a new document x,  
the model predicts the corresponding y and outputs the score of the prediction. In this 
paper, we adopt Logistic Regression[5] as our type model. Logistic Regression 
calculates the ‘type probability’ of Pr( 1| )y x=  a document.  

In our approach, we actually use the type_score of a document:  

Pr( 1| )
_ log

1 Pr( 1| )

y x
type score

y x

==
− =

 (2) 

4.3   Combining Strategy 

We propose three strategies for combing the scores calculated by the relevance and 
type models. They are linear combination, thresholding, and hybrid respectively. We 
rank documents using the combined scores in typed search. 

In linear combination, we calculate ranking_score by linearly interpolating 
relevance_score and type_score.  

_ _ (1 ) _ranking score type score relevance scoreλ λ= ⋅ + − ⋅ ,  (3) 

where [0,1]λ ∈ is a parameter. In thresholding, we calculate ranking_score by 

descretizing type_score to 1 or 0 based on a predetermined threshold. 

_   if r( 1| )
_

0  otherwise 

relevance score P y x
ranking score

θ= >⎧
= ⎨
⎩

. (4) 

Here [0,1]θ ∈  is threshold.  In cases where we are certain of our type_score we can 
apply a strict threshold, as is the case for News search on the Web (all pages that are 
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not news are strictly filtered out).  If we are less confident about our type_score we 
can apply a lower threshold or try the linear combination strategy. 

In hybrid method, we calculate ranking_score using both linearly combination and 
thresholding. Here [0,1]λ ∈  and [0,1]θ ∈  are parameters.  

⎩
⎨
⎧ >=⋅−+⋅

=
 otherwise  0

)|1r( if  _)1(_
_

θλλ xyPscorerelevancescoretype
scoreranking

 
(5) 

How to determine the parameter values (λ and θ) is an issue we need to consider. In 
linear combination, by default  can be set as 0.5, since Equation (3) is equivalent to 
Equation (1), when λ=0.5. In thresholding, θ can also be set as 0.5 by default, since 
the document is likely to belong to the type when  Pr(y=1|x)>0.5. In our experiments, 
we found that nearly best search performances can be achieved when λ and θ are 0.5. 
In the hybrid method, however, λ and θ have to be tuned empirically.  

5   Experiments 

In our first experiment, the document type is ‘course page’, a page describing a 
course, as would be available on a university website. In the second experiment, the 
document type is ‘instruction document’, for example an online manual. 

As the first baseline method, we solely use the scores of BM25 to conduct ranking. 
This can also be seen as an extreme case of our proposed approach in which the 
parameter λ  in Equation (3) equals 0.  

As the second baseline method, we solely use the scores of Logistic Regression in 
ranking, as explained in Section 4.2. This baseline is the other extreme case of our 
proposed approach, when the parameter λ  in Equation (3) equals 1.  

As the third baseline method, we add keywords to queries and employ BM25. For 
course search, we combine the original query words with the keyword ‘course’ to 
generate a new query. (We tried to use other keywords, but they did not work well). 
For instruction document search, we combine the query with ‘howto’ and ‘how to’.  

As the fourth baseline method, we use BM25 to conduct ranking, then employ 
rules to filter the results. As rules, we implement the major features in the type model.  

The third and fourth baselines are the simplest ways of combining type information 
and relevance information in typed search ranking. Hereafter, we denote the four 
baseline methods as ‘BM25’, ‘Logistic Regression’, ‘BM25 + Keyword’, and ‘BM25 
+ Heuristics’. (We denote our methods as ‘Combined (linear)’, ‘Combined 
(thresholding)’, and ‘Combined (hybrid)’.) 

We make use of MAP (Mean Average Precision) and MRR (Mean Reciprocal 
Rank) for evaluation of typed search.  

5.1   Course Page Search  

Data Set 
We used ‘Four Universities Data Set’1 in the experiment. The 8,282 WWW-pages in 
the data set were assigned to six category labels (Course, Student, Staff, Department, 
Project, and Other). In our case, course pages are positive examples. 
                                                           
1 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/ 
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Fig. 1. Performance linear combination 
w.r.t.   λ for course page search. 

Fig. 2. Performance of thresholding w.r.t.  
θ for course page search. 
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Fig. 3. Performance of hybrid w.r.t. λ and θ 
for course page search 

Fig. 4. Performance of course page search 

As search queries, we collected the course names from the web sites of the Computer 
Science department of CMU2 and MIT Open Courseware, Electrical Engineering and 
Computer Science3.For each query, we retrieved at most top 100 course web pages. The 
retrieved web pages were judged manually by human annotators whether they are really 
relevant to the query one by one. In this way, all the retrieved documents for each query 
got the labels A, B, or C-D as in Section 3. Our final query set contains 52 queries. On 
average, a query has 7.8 relevant web documents.  

Experiment on Typed Search 
We compared the performances of the typed search ranking methods. We randomly 
divided queries into four even subsets and carried out 4-fold cross-validation. The 
result reported below are thus those averaged over the four trials.  

We tried various values for the parameter λ and θ in our methods of linear 
combination, thresholding and hybrid. Fig. 1, Fig. 2, and Fig. 3 show the performance 
curves when the parameters changes. The best result is accomplished by hybrid, if we 
happen to know the parameter values. 

Fig. 4 shows the results of our proposed methods (linear combination, thresholding, 
and hybrid method) together with baseline methods. Our methods perform much  
 

                                                           
2 https://acis.as.cmu.edu/gale2/open/Schedule/SOCServlet?Formname=ByDept 
3 http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/index.htm 
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Fig. 5. Performance of instruction search Fig. 6. Performance of domain adaptation. 

better than baselines. The results indicate that the traditional information retrieval 
approach cannot solve the problem of ‘typed search’ well. Our approach of combing 
type information and relevance information is effective. 

It is not surprising to see that the baseline ‘BM25’ cannot work well for the task, 
because it is designed for search of relevant documents. As we have discussed in 
Section 3, typed search needs consider both relevance and document type. For a 
similar reason, it is also not surprising to observe that the baseline ‘Logistic 
Regression’ cannot achieve good result.  

For ‘BM25+Keyword’, it is hard to construct a query that can filter out documents 
that not belong to the desired type. For ‘BM25+Heuristics’, it is hard to make a 
combination between BM25 and rules. Thus, employing probabilistic models for both 
relevance and type ranking, as in our approach, appears to be a reasonable choice. 

5.2   Instruction Document Search 

In the experiment, we investigated typed search applied to instruction document. We 
created a document set by crawling from the intranet of an international company.  
We also collected all the real queries about instruction document search from the 
query log of a search engine on the intranet.   

We created a dataset which contains 50 queries, similar to Section 5.1. 61 
documents are labeled with A, 352 with B, and the others with C-D. We conducted 
experiment with 5-fold cross-validation. The results are reported in Fig. 5. Our 
methods outperform baseline methods for instruction document search.  

5.3   Domain Adaptation for Instruction Document Search 

In the experiment, we tested whether a generic model can be constructed for typed 
search. Specifically, we investigated whether a type model trained on intranet can still 
work well on TREC W3C corpus [3].  

We created a data set which contains 50 queries, similar to Section 5.1. Among the 
documents, 74 are labeled with A, 361 with B and others with C-D. Fig. 6 shows 
the results. The experimental results show that our method achieves good result on the 
TREC W3C corpus, although the type model is trained on a different domain.  
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6   Conclusions 

In the paper, we have studied ‘typed search’ – search of documents based not only on 
relevance, but also document type. Our typed search framework combines two 
models: a relevance model and type model. We employed BM25 and Logistic 
Regression as the relevance model and the type model, respectively. Three methods 
are proposed for combining the models to obtain a final ranking score. Using course 
page search and instruction document search as examples, we have conducted 
experiments with real-world data. Experimental results indicate that our proposed 
approaches are effective for typed search and perform significantly better than the 
baselines. Experimental results also indicate that our proposed approach can perform 
consistently well across different domains.  
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