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Abstract. Data-centric business applications comprise an important
class of distributed systems that includes on-line stores, document man-
agement systems, and patient portals. However, their complexity makes
it difficult to design and implement them. We address these issues from
a model-driven perspective by developing a formal, compositional, and
domain-specific set of abstractions for the specification and analysis of
data-centric business applications. Our technique allows us to formally
analyze the specified system at design time; in particular we can ana-
lyze whether the system is resilient to abnormal conditions, i.e. that key
system invariants can always be re-established.

1 Introduction

Data-centric business applications comprise an important class of distributed
systems that includes on-line stores, document management systems, and pa-
tient portals. However, many foundational issues make the design of correct
business applications a non-trivial problem: Implementation technologies are di-
verse and problematic, e.g. the security of Web 2.0 applications is flawed [1].
Difficult non-functional requirements, such as privacy [2], are often overlooked.
Anecdotally, even mature and well-tested distributed systems still fail under
unexpected conditions [3].

A number of approaches have been suggested to address these issues: Model-
driven architecture (MDA) [4] attempts to disentangle the implementation plat-
form from the business logic, enterprise patterns [5] distill isolated kernels of
programmer wisdom, and formal work-flow models [6] focus on arrangement and
communication of processing tasks. Each approach addresses some aspect of the
overall design problem, but no existing approach combines the specification of
the business logic, its distributed implementation, and its formal analysis.

We address these issues from a model-driven perspective by developing a for-
mal, compositional, and domain-specific set of abstractions for the specification
and analysis of data-centric business applications. Our contributions are:

– We provide a new specification technique for modeling distributed and data-
centric business applications. This is accomplished by the specification and



composition of three models: A data model (Section 2) enumerates the essen-
tial data and data invariants of the system. An operation model (Section 3)
characterizes the set of data manipulation operations. A connectivity model
(Section 4) defines the agents of the system, the information flow between
agents, and the bindings of data to agents, thereby generalizing data and
operations over networks.

– We give these models a formal semantics based on term algebras and infer-
ence over terms using Horn logic extended with stratified negation [7]. With
this framework we can characterize the unstable states, which are those dis-
tributed states that temporarily violate invariants of the data model.

– We show in Section 5 that for any system specified with BAM there ex-
ists a finite set of equivalence classes of unstable states of finite size. This
allows the application of finite model checking to determine if a system
is self-stabilizing; i.e. that a BAM system has adequate operations for re-
establishing invariants.

We discuss related work in Section 6 and future work in Section 7.

1.1 Running Example: A Document Management System

The high-level requirements of data-centric applications are often straightfor-
ward. For example, the requirements for a document management system are:

1. Authorized users can view, create, and modify their documents, from a local
client.

2. Authorized users can manage their documents, even if not connected to a server.
3. One or more servers synchronize with clients to record the latest versions of

documents.

This example, while simple, still illustrates some important characteristics of
data-centric business applications. First, the key data elements are readily ap-
parent – e.g. servers contain copies. Second, data can be manipulated by some
small set of (simple) operations – e.g. clients create documents. Third, heteroge-
neous agents act upon the data, and different agents have different capabilities
– e.g. servers must synchronize with clients, while clients are free to modify the
documents they own.

2 Data Model

BAM data models capture the data states of a business application using meta-
models employing a notation similar to UML class diagrams [8]. Figure 1 shows
a data model for our document management system. For example, the Document

construct contains two pieces of information: The user who created it an its ti-

tle. A Snapshot contains a set of DocumentCopy items. The consistency between
Documents and DocumentCopies are specified with a set of formal invariants; these
appear in the gray boxes on the right-hand side. (The invariants will be described
in more detail later.)



Document

user: string
title: string

Field

name: string
data: any

DocumentCopy

user: string
title: string

Field

name: string
data: any

Snapshot

0..*

0..*

0..*

MissingCopy

malform(snapshot(X)) ⇐ snapshot(X), document(ID, U, T ),
¬copyof(X, ID)

MissingField

malform(documentCopy(ID2, U, T )) ⇐ document(ID1, U, T ), documentCopy(ID2, U, T ),
field(X, N, D), contains(ID1, X),¬copyofF ield(ID2, N, D)

ExtraField

malform(documentCopy(ID2, U, T )) ⇐ document(ID1, U, T ), documentCopy(ID2, U, T ),
field(X, N, D), contains(ID2, X),¬fieldInDoc(ID1, N, D)

Fig. 1. Data model for document management system

Our terminology and formalization of metamodels and model transformations
builds on previous work [9]. We briefly repeat necessary concepts below; for more
details consult the reference.

Formally, a data model expresses a four-tuple D = 〈Υ, ΥC , Σ,C〉 called a
domain, where Υ is a finite signature representing the data constructs, ΥC is
a finite signature for representing derived properties, Σ is a set of values, and
C is a set extended Horn axioms defined over Υ, ΥC , Σ for deriving properties.
These axioms are used to capture data invariants. The set of all possible data
states is the powerset of the term algebra over Υ generated by Σ. This is written
P(TΥ (Σ)). A member s ∈ P(TΥ (Σ)) is a concrete instantiation of data, and
describes the state of the management system at some time.

Returning to the example, Figure 2 shows a visualization for a particular
state s. It contains two documents, entitled EmailToBob and ExpenseReport. The
box labeled Snapshot contains several document copies, entitled EmailToBob and
Payroll. Under the title of each document/copy is the user who created the doc-
ument and the associated fields.

Table 1 shows the terms used to encode s, grouped by function symbol. For
example, a document is represented by a term document(ID,User, T itle), where
document(·, ·, ·) is ternary function symbol and {ID,User, T itle} ⊂ Σ are values
for the unique ID of the document, the user who created the document, and the
document’s title. The Field, DocumentCopy, and Snapshot occurrences are encoded
in a similar fashion. Containment of one occurrence within another is represented
by the function symbol contains(·, ·), where a term contains(ID1, ID2) denotes
that the data with ID1 contains the data with ID2.

The data invariants are expressed using the help of a standard function sym-
bol,malform(·). A data state s is inconsistent, violates invariants, if it is possible
to derive any malform(·) terms.

For example, the axiom below explains that it is possible to derive a term
of the form malform(contains(ID1, ID2)) if the state s has terms encoding the
containment of a Document within a Snapshot.

malform(contains(ID1, ID2))⇐ contains(ID1, ID2), snapshot(ID1),
document(ID2, U,N)

(1)



Snapshot

EmailToBob
Joe

SendTo: Bob
EmailSubject: Payroll

Payroll
Alice

BarkerTheDog: 500

EmailToBob
Joe

SendTo: Bob
EmailSubject: ExpenseReport

ExpenseReport
Bob

TripTo: Mars   Cost: 5000

Fig. 2. An example state of a management system

Signature Terms

document(·, ·, ·) document(1, Joe, EmailToBob), document(2, Bob, ExpenseRep)
field(·, ·, ·) field(3, SendTo, Bob), field(4, EmailSubject, ExpenseReport),

field(5, TripTo, Mars), field(6, Cost, 5000)
contains(·, ·) contains(1, 3), contains(1, 4), contains(2, 5), contains(2, 6)
snapshot(·) snapshot(7)

documentCopy(·, ·, ·) documentCopy(8, Joe, EmailToBob),
documentCopy(9, Alice, Payroll)

field(·, ·, ·) field(10, SendTo, Bob), field(11, EmailSubject, Payroll),
field(12, BarkerTheGuardDog, 100)

contains(·, ·) contains(7, 8), contains(7, 9), contains(8, 10), contains(8, 11),
contains(9, 12)

Table 1. Abstraction of document management state as a set of terms

Returning to the original data model, indeed we see that Documents cannot be
contained in Snapshots. This is a simple invariant, but the data model can capture
more complex invariants that are implied by the high-level requirements. These
invariants a shown on the right-hand side of Figure 1. For example, we require
that a Snapshot should contain a copy of any known Document. The invariant
labeled MissingCopy expresses this

malform(snapshot(ID1))⇐ snapshot(ID1), document(ID2, U, T ),
¬copyof(ID1, ID2)

(2)

using the auxiliary axiom:

copyof(ID1, ID2)⇐ snapshot(ID1), document(ID2, U, T ),
documentCopy(ID3, U, T ), contains(ID1, ID3)

(3)

Note that this expresses the synchronization between documents and copies in
a data-centric manner, without explaining the protocols and services necessary
to implement this synchronization. The remaining invariants, MissingField and
ExtraField, define those states with discrepancies between the fields of documents



iDocument

Document
user: string
title: string

iField

Field
name: string
data: any

iCopy

DocumentCopy
user: string
title: string

iNoField

Field
name: string
data: any

iCopyField

Field
name: string
data: any

iDocument

Document
user: string
title: string

iNewField

Field
name: string
data: any

userParam = iDocument.user

userParam

titleParam = iDocument.title

titleParam

nameParam = iNewField.name

nameParam

dataParam = iNewField.data

dataParam

B. CopyFields

A. CreateField

Fig. 3. Two BAM operations used by the document management system.

and copies. For notational convenience, let models(D) denote the set of data
states that satisfy invariants.

3 Operation Model

Data-centric business applications inevitably require some basic operations on
data, and the BAM operation model captures these essential operations as model
transformations. A model transformation changes the current data state s by
adding new terms to s and/or deleting existing terms from s.

Formally, a model transformation λ = (t+λ , t
−
λ ) is comprised of two sets of

Horn axioms. The axioms of t+λ derive the terms that should be added to s, and
the axioms of t−λ derive the terms that should be removed. If the data state is
s, then an operation λ changes the state to sλ according to the state update
equation:

sλ =
(
s ∪ JsKt

+
λ

)
− JsKt

−
λ (4)

where J Kt is the map that takes a set of terms s to the set of new terms derivable
from s by axioms t.

3.1 Parameterless Operations

Figure 3.B shows a parameterless BAM operation, called CopyFields, that finds all
the fields contained in a document that are not contained in its corresponding
copy. This operation then adds these missing fields to the copy so that it is
consistent with the original document. Formally, the CopyFields operation has



the following axioms in t+λ :

field(new(ID3), N,D), contains(ID2, new(ID3))⇐ document(ID1, U, T ),
documentCopy(ID2, U, T ), field(ID3, N,D),
contains(ID1, ID3),¬copyofF ield(ID2, ID3)

(5)

copyofF ield(ID2, ID3)⇐ documentCopy(ID2, U, T ), field(ID3, N,D),
contains(ID2, ID3)

(6)

where new(·) creates new identifiers that are not currently in the state s. 1

3.2 Parameterized Operations

Some operations must take input from the external environment. A user U may
wish to create a new document with title T that does not exist in the current
state. This issue can be addressed by parameterizing the transformation axioms
of λ to create a family of concrete operations. A parameterized transformation
λ(p1, p2, . . . , pn) has n parameters and is concretized by assigning each pi = σi ∈
Σ. The concrete transformation is a model transformation formed by replacing
every occurrence of pi with σi in the transformation axioms of λ(p1, . . . , pn).

The CreateField operation in Figure 3.A illustrates a parameterized operation.
This operation has four parameters: pu, pt, pn, pd. The parameters pu, pt are used
to find an existing document created by user pu titled pt. If such a document is
found, then a new field named pn with data pd is created within this document.
The parameterized axiom for CreateField is as follows:

field(new(ID1), pn, pd), contains(ID1, new(ID1))⇐ document(ID1, pu, pt), (7)

For example, the operation CreateField(Bob,ExpenseReport,Taxi,50) adds a field to
Bob’s expense report indicating that he spent 50 dollars on a taxi.

4 Connectivity Model

The data and operation models specify the core functionality of data-centric busi-
ness applications. The third BAM model, called the connectivity model, describes
how data an operations interact across logical networks. The formal semantics
of BAM uses this information to generalize the satisfaction of data invariants
and calculation of state updates over arbitrary network topologies.

Formally, a connectivity model is a triple Gconn = 〈A,F, ρ〉 where A is the
set of agent types, F ⊆ A × A is the information flow between agent types,
and ρ : A → P(Υ ) is a mapping from agent types to function symbols of the
data model. The mapping ρ provides an access control mechanism, i.e. agents
of type a ∈ A can only access data of types ρ(a). This access control respects

1 Formally, new(·) is a state-dependent bijection new : Σ → Σ such that for each
element σ appearing in s, new(σ) is not in s.
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user: string
title: string

Snapshot

ClientType ServerType

(A)

EmailToBob
Joe

SendTo: Bob
EmailSubject: Payroll

Payroll
Alice

BarkerTheDog: 500

Snapshot 1

Snapshot 2

EmailToBob
Joe

SendTo: Bob
EmailSubject: ExpenseReport

ExpenseReport
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TripTo: Mars   Cost: 5000

C1
SA

SB
C2

(B)

Fig. 4. (A) Connectivity model of document management system (B) Example of a
composite state

containment relationships between data: If f ∈ ρ(a) and occurrences of f can
contain occurrences of g then g ∈ ρ(a).

Figure 4.A shows the connectivity model for the document management sys-
tem. There are two types of agents: ClientType and ServerType agents. Each agent
has some data structures bound to it. For example, only ClientType agents con-
tain Document items, while Snapshot items are only present in ServerType agents.
The double-headed edges (J−−I) define which types of agents can communicate
with each other, e.g. ClientType and ServerType agents can communicate. Notice
that information flow must be explicitly defined, even for flow between agents of
the same type. In this example information can pass between ServerType agents,
but not ClientType agents. The connectivity model for the document management
system is:

A = {ClientType, ServerType},
F = {(ClientType, ServerType), (ServerType, ServerType), . . .}
ρ(ClientType) =

{
document(·, ·, ·), field(·, ·, ·), contains(·, ·)

}
ρ(ServerType) =

{
snapshot(·), documentCopy(·, ·, ·), field(·, ·, ·), contains(·, ·)

}

4.1 Composite States

Instead of viewing the system behaviors as a sequence of transitions through data
states (s0 → s1 → . . .), we can now view the system as transitioning through
composite states (C0 → C1 → . . .), which take into account the distributed state
of the network.

Let D be a domain (as given by the data model) and Gconn be the connec-
tivity model, then C(D,Gconn) is a composite state parameterized by D,Gconn.

Definition 1. A composite state C(D,Gconn) = 〈V,E, type, δ, Λ〉 is a quintuple
where:

1. (V,E) is a finite undirected graph, where V is the set of agents and E is the
information flow between agents. We call this the connectivity state.

2. type : V → A is a mapping from agents to agent types, denoting the type of
each agent.



3. δ : V → P(TΥ (Σ)) is mapping from agents to data states. If u ∈ V is an
agent, then δ(u) is its local data state. We call δ the global data state.

4. Λ is the set of operations available from the current state; it is called the
operation state.

In order for a structure C to be a valid composite state it must respect the
various models that parameterize it. First, the connectivity state must respect
the connectivity model Gconn. This holds if the logical connectivity between
agents respects the information flow:

∀(v, u) ∈ E, (type(v), type(u)) ∈ F (8)

Also, the local data state of each agent must respect the access control of the
connectivity model:

∀v ∈ V, δ(v) ⊂ Tρ(type(v))(Σ) (9)

In other words, the terms of the data state are a subset of a smaller term alge-
bra created over the smaller signature ρ(type(v)). Finally, the operations of the
operation state must defined over the signature Υ and alphabet Σ of the domain
D.

Composite states have a preorder ≤ with respect to the data contained by
the vertices. We say that C′ ≤ C if the states have the same topology, but each
vertex in C′ contains the same or less data than the corresponding vertex in C.

Definition 2. Let ≤ be an ordering over composite states where C′ ≤ C if:

1. (V ′, E′) ∼= (V,E); the graphs are isomorphic as witnessed by π.
2. type(π(v)) = type(v); the types are preserved between states.
3. δ(π(v)) ⊆ δ(v); vertices in C′ contain the same or less data.

This ordering over composite states will become important in the latter sections.

4.2 Stability in Composite States

The invariants of the data model must also be extended to composite states. One
solution might be to consider invariants over the union of the global data state⋃
v∈V δ(v). Figure 4.B shows a composite state for the document management

system that illustrates why this approach fails. This state has two ServerAgent

nodes SA, SB and two ClientAgent nodes C1, C2. Information flows between SA

and C1, as well as between SA and C2. Attached to each vertex v is its data state
δ(v). Consider server SB, which does not contain any copies of documents. If
invariants were checked over the union of the data state, then SB would fail the
requirement that snapshots contain copies of existing documents. However, no
information can flow between the clients C1, C2 and SB; this should alleviate SB

from the burden of satisfying this invariant. Information flow naturally induces
a relaxation of the invariants. This suggests that invariants should be checked
over the data models formed by connected components. However, this assumes
a transitive flow of information that usually does not hold. For example, the two



clients are not connected and will not be able to observe each others documents,
even though they are transitively connected through the server.

We propose evaluating invariants over the maximal cliques of the connectivity
state. These maximal cliques are the maximal subgraphs where information can
flow between all agents in the subgraph. 2 A composite state C is stable if the data
state formed by each maximal clique is consistent (i.e. satisfies the invariants):

∀m ∈maxcliques(C), (
⋃
v∈m

δ(V )) ∈ models(D) (10)

Figure 4.B shows the maximal cliques outlined in blue. Under this interpretation
SB does not cause the state to be unstable. Mathematically, our maximal clique
semantics partitions the network into symmetric subgraphs where information
flow is universal within the subgraph. We shall see that this symmetry provides
a powerful foundation for reasoning about distributed systems. Returning to
Figure 4.B, notice that this state is still unstable because SA does not have
a copy of the ExpenseReport document in client C2. (See Figure 2 for a larger
view of the snapshot on server SA.) This situation can be rectified by applying
an operation that copies new documents from the client to the server. However,
this requires generalizing operations over arbitrary topologies, which we describe
in the next section.

4.3 Operations over Composite States

Two issues must be addressed when operations are performed over arbitrary
topologies. First, how many nodes in the network are involved in an operation?
Second, how is distributed data state aggregated to form the input to an op-
eration, and how are the effects of an operation propagated across nodes? To
address these issues, we define the notion of an information extent.

The information extent of an operation λ, written iext λ, describes the data
types it must access to operate. In particular, iext λ is a multiset of function
symbols found in the transformation axioms. 3 The cardinality of a symbol f
in iext λ determines the lower bound on the number of distinct network nodes
that participate in the distributed operation.

For example, the operations of Figure 3 have information extent:

iext CreateField =
{
document(·, ·, ·), field(·, ·, ·)

}
iext CopyFields =

{
document(·, ·, ·), documentCopy(·, ·, ·), field(·, ·, ·)

} (11)

where each function symbol has cardinality 1.

2 Formally, a clique is a set m ⊆ V such that ∀v, u ∈ m, (v, u) ∈ E. The clique m is
maximal if for every w ∈ (V −m) then m ∪ {w} is not a clique.

3 By a multiset, we mean a set X equipped with a function # : X → N assigning
a positive non-zero cardinality to each element in X. We write #(f,X) to denote
the cardinality of function symbol f in multiset X. Given two multisets X,Y , then
X ≤ Y if ∀f ∈ X, (f ∈ Y ) ∧ (#(f,X) ≤ #(f, Y )).



A set of nodes V ′ in the network also has an information extent, which is
the multiset of data types collectively accessible by those nodes. (The notation
] denotes multiset union.)

iext V ′ =
⊎
v∈V ′

ρ(type(v)) (12)

A node n can execute operation λ, if there is some “reasonable” set of nodes
V ′ such that (iext λ) ≤ (iext V ′). We calculate this set by growing a horizon
from the node n out through the network until the information requirements
are satisfied. This information horizon depends on the node n executing the
operation, the operation λ, and the composite state C:

ihr0(n, λ, C) =

{
{n} if (iext n) ∩ (iext λ) 6= ∅
∅ otherwise

ihri+1(n, λ, C) =
{
u ∈ N(ihri)

∣∣∣∣ ∃f ∈ (iext u)
(

#(f, iext ihri) <
#(f, iext λ)

)}
ihr(n, λ, C) =ihr∞(n, λ, C)

where N(ihri) denotes the neighbors of the set ihri in the connectivity graph.
Effectively, the information horizon ihr is the least k such that ihrk = ihrk+1.

The information horizon has several important properties. First, every node
in the information horizon must have access to some of the data types accessed
by the operation. This prevents a node from calling operations that are not
related to data on that node, effectively extending access control to operations.
Second, the information horizon stops growing once all the nodes in the horizon
satisfy the requirements of the operation. This limits the effects of the operation
to a small horizon beyond n.

Figure 5 illustrates some information horizons generated by certain nodes
in a composite state. The horizons in the left of the figure result from clients
creating new documents. As one might expect, these operations are localized
around the clients and do not involve any other nodes in the network. On the
other hand, if a client wishes to reconcile documents with a server by calling
the CopyFields operation, then this only involves the client and the server (center
of the figure). However, if a server calls CopyFields it effects all the clients in
its immediate horizon (right-hand side of the figure). All of these behaviors fall
naturally from our characterization of the information horizon.

CreateField

C1
SA

SB
C2

CopyFields

C1
SA

SB
C2

CopyFields

C1
SA

SB
C2

Fig. 5. Information horizons generated by various nodes and operations.



Once an information horizon has been determined, the nodes in the horizon
must communicate their data state to aggregate data and calculate the result of
an operation. Again, it may be both dangerous (from the security perspective)
and inefficient (from the implementation perspective) to aggregate all of the
data from all the nodes in the entire horizon. Instead, we reuse the approach
from the previous section, and apply multiple instances of the operation over
the maximal cliques of the information horizon. This limits communication to
those nodes that are logically nearby and have explicit information paths. Let
C[n, λ] denote the induced subgraph of ihr(n, λ, C) and maxcliques(G,n) =
{m|m ∈maxcliques(G), n ∈ m} be the set of all maximal cliques in a graph G
containing a vertex n. For a maximal clique m, the aggregate data state formed
by the nodes in the clique is s(m) =

⋃
v∈m δ(m). Thus, an operation yields a set

of state updates similar to Equation 4. For each vertex v ∈ ihr(n, λ, C) the local
data state changes to δ′(v) according to:

δ′(v) =
⋃

m∈maxcliques(C[n,λ],v)

((
Js(m)Kt

+
λ ∪ δ(v)

)
− Js(m)Kt

−
λ

)
∩Tiext v(Σ) (13)

This semantics dispatches a copy of λ to each maximal clique. The expression(
Js(m)Kt

+
λ ∪δ(v)

)
−Js(m)Kt

−
λ denotes λ applied to a maximal clique m containing

a vertex v. Finally, the results of the operations are projected against the data
types that v is allowed to access: (. . .) ∩ Tiext v(Σ).

5 Finitization

Distributed systems exhibit global behaviors that emerge from interacting local
agents; predicting these global behaviors is key to validating correctness. In this
section we show that the unstable states of the system can be understood in terms
of a finite set of composite states. Understanding how instability occurs gives a
basis for calculating if the operations are sufficient to correct these instabilities.

We introduce the notion of acceptors to represent the ways that invariants
can be violated. Formally, an acceptor α = (p, n) is a pair such that p and n are
sets of terms from some term algebra TΥ (Σ). The data state s is accepted by α
(written s |= α) if:

1. There exists some term automorphism π where π(p) ⊆ s.
2. If n 6= ∅ then for all term automorphisms π′ it holds:
π(p) = π′(p)⇒ π′(n) * s

Returning to our example, an acceptor for MissingField invariant is shown
below:

p = {document(7, 2, 3), documentCopy(1, 2, 3), field(8, 9, 10), contains(7, 8)}
n = {field(38, 9, 10), contains(1, 38)}

(14)
The numerical arguments to the function symbols are just placeholder constants.
Consider once again the data state s in Figure 2 where there exists a document



called EmailToBob containing a field EmailSubject: ExpenseReport. There is a copy
of this document, but the copy does not have a field matching this one. Thus,
this state is accepted by the MissingField acceptor as witnessed by the following
renaming function π:

π(1) 7→ 8, π(2) 7→ Joe, π(3) 7→ EmailToBob, π(7) 7→ 1,
π(8) 7→ 4, π(9) 7→ EmailSubject, π(10) 7→ ExpenseReport

(15)

The reader may confirm that π(p) ⊂ s and that there is no renaming function
π′ that agrees with π(p) and has π′(n) ⊆ s.

The set of acceptors I expresses the invariants as a set of scenarios. Each set
of positive terms p from any acceptor α ∈ I describes one scenario of instability.
In another words, if we take the data state s to be exactly equal to some p,
then this state is unstable. By calculating the set of acceptors I from the in-
variants, we derive a special set of data states that characterize all the possible
forms of instability. If some arbitrary state s′ is unstable, then there must be
an embedding of some p in s′, and the scenarios causing s′ to be unstable can
be identified. Thus, the acceptors provide a finite description of the unstable
data states; we now carry this result over to the more complex composite states.
(Note that a term automorphism π (renaming) can be extended to composite
states by renaming the data state δ(v) assigned to each vertex v.)

Composite states complicate analysis because the data state is distributed
over the topology, and invariants are relaxed so that they hold over maximal
cliques. Our first task is to show that every unstable composite state can be
understood in terms of a finite set of scenarios, regardless of the size of the
network. We begin by defining a relationship between composite states called a
folding ; this is similar to the familiar graph homomorphism:

Definition 3. Given composite states C, C′, a folding morphism ϕ : V → V ′

assigns vertices of C to vertices of C′ such that:

1. ϕ is onto.
2.
[
(u = w) ∨ (u,w) ∈ E

]
⇔
[(
ϕ(u) = ϕ(w)

)
∨
(
ϕ(u), ϕ(w)

)
∈ E′

]
3. ϕ is type-preserving: type(u) = type′(ϕ(u))
4. ϕ is data-preserving: δ′(u′) =

⋃
{u|u′=ϕ(u)} δ(u).

We say that C′ is a folding of C if there exists a folding morphism from C to C′.
Foldings can be combined with the preorder ≤ to form a more general preorder
� over composite states with varying topologies.

Definition 4. Given composite states C′, C then C′ � C if there exists a C′′ where
C′′ is a folding of C and C′ ≤ C′′.

This ordering is essential to characterizing the types of instabilities that can
occur.

In the general case invariants are evaluated against cliques, so we now turn
our attention to complete graphs:



Lemma 1. Let Kn be a composite state where the topology is a complete graph
of size n. Furthermore, let Km be any folding of Kn. In this case, (s(Kn) |=
I)⇔ (s(Km) |= I).

This lemma explains that when the network topology of C is a complete graph,
then the invariants that hold on C are preserved by folding. It it necessarily the
case that any folding of a Kn yields a smaller complete graph of size m ≤ n.
This allows Lemma 1 to be repeatedly applied until no smaller m exists. From
the definition of folding morphism, the smallest complete graph that is a folding
of Kn must have at least as many vertices as their are types in the composite
state Kn. The next lemma shows that this lower bound always exists.

Lemma 2. Let Kn be a composite state with connectivity that is a complete
graph. There exists a folding Km where m is the number of types in Kn: m =
|{type(u)|u ∈ V }|. There is no composite state C′ with fewer vertices or fewer
edges for which C′ is a folding of Kn.

Combining Lemmas 1 and 2 we conclude that if any complete graph fails an
invariant (or is accepted by some α ∈ I), then it can be folded into a minimum
complete graph that also fails the invariant. Since these minimum complete
graphs are determined only by the number of types in the system, they can be
finitely enumerated.

Let ∅ ⊂ T ⊆ A be a set of agent types, then K(T ) denotes the set of all
completely connected composite states with exactly one vertex for each type
in T . Each K(T ) still contains an infinite number of states due to the data
states. However, not all of these data states are important from the perspective
of invariants. The only interesting composite states are those with aggregated
data states s(Km) = p for some α ∈ I. Let K(T, s) be the set of all composite
states Km in K(T ) with aggregated data state s(Km) = s:

Lemma 3. Given a finite set of acceptors I and a finite set of agent types A,
then the set IK is finite.

IK =
⋃
T⊆A

{
C ∈ K(T, p)

∣∣ ∃(p, n) ∈ I
}

(16)

This set contains all completely connected composite states that are topologically
minimal and have data states from some scenario in I. The number of acceptors
α ∈ I is finite, each p is a finite set of data, and every minimal topology contains
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Fig. 6. Key unstable scenarios generated from BAM model of document management
system.



a finite number of nodes. Putting these together, there are only a finite number
of ways that each p can be split across a fixed topology so IK must contain a
finite number of composite states.

In the general case of an arbitrary unstable composite state C there must be
some maximal clique m where the data state s(m) over the clique violates an
invariant (Equation 10). This maximal clique is a completely connected com-
posite state Kn and so it has a folding onto some Kl ∈ K(T ) where T is the
set of types that appear in the clique. Furthermore, the data state s(m) must
embed some p from an acceptor; Kl also embeds this p as folding preserves data.
Therefore, there is some scenario i ∈ IK and some term automorphism π (i.e.
renaming of constants) such that π(i) � m.

Theorem 1. If C is an unstable composite state, then there exists a maximal
clique m in C such that π(i) � m for some i ∈ IK and some renaming π.

This result shows that IK contains the fundamental ways that an arbitrary state
can be unstable, and these can be calculated automatically from a BAM model.

Figure 6 shows the key scenarios generated from the BAM model of the doc-
ument management system. The MissingField scenario occurs when a document
has a field not found in its copy. Similarly, the ExtraField scenario occurs when a
copy has a field not found in the original document. Finally, the MissingDocument

scenario occurs when a snapshot does not have a copy of a document.

6 Related Works

This work uses the techniques of model-based design [10], which constructs com-
plex systems through formal domain-specific abstractions and code synthesis
techniques. Model-based design has been successfully applied to safety critical
embedded systems [11] where behavioral properties must be guaranteed before
deployment. Other successful applications of model-based design are security
models [12] and patient portals [13].

Two key concepts in model-based design are meta-modeling [14] and model
transformations [15], which create and relate domain specific abstractions. The
semantics of model transformations has been extensively studied in the mod-
eling community, where they are formalized as graph rewriting [16] systems,
graph grammars [17], and production systems [15]. Like meta-modeling, model
transformations are advantageous because they have a compact notation, formal
foundation, and tool support. Model transformations are normally used for off-
line model synthesis; model-driven architecture (MDA) [18] and code synthesis
[19] are two exemplars.

Modern business applications are now commonly implemented as service-
oriented architectures (SOAs) deployed over the Web [20]. The composition of
the different services has been studied in the context of work-flows, using formal
techniques ranging from Petri-Nets [21] to Pi-Calculus [22].



7 Discussion and Conclusion

We presented BAM, a model-based framework for designing data-centric busi-
ness applications. A system is described with three interrelated models: The data
model provides an abstract characterization of the data states in which the sys-
tem may find itself; high-level invariants added to the data model characterize
which data states are problematic. The operation model provides an expressive
framework for capturing the basic operations of the business applications. The
connectivity model extends operations over arbitrary topologies while preserving
the semantics of data access, information flow, and state-update. An analysis of
these models yields a finite representation of the unstable states that the system
might reach.

In future work, we intend to apply model checking [23] to the scenarios of
IK to determine if the operations are sufficient to correct the instabilities in the
system. In fact, model checking derives the sequence of operations that evolve
a system to a consistent state, and this can be used for protocol synthesis. The
amount of model checking can be reduced by applying folding morphisms to
the information horizons of the operations, which also produces a finite charac-
terization of the distinct topologies touched by operations. Our final goals are
(1) to decide if there exists a sequence of operations to stabilize any unstable
system (2) to synthesize a protocol (sequence of operations) that stabilizes any
unstable system. BAM makes this possible via a unique compositional language
for specifying and analyzing this important class of systems. Finally, tools from
model-based design make it possible to readily implement BAM.
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