
ShutUp: End-to-End Containment of Unwanted Traffic

Saikat Guha, Paul Francis
Cornell University, Ithaca

Nina Taft
Intel Research

Abstract
While the majority of Denial-of-Service (DoS) defense propos-
als assume a purely infrastructure-based architecture, some re-
cent proposals suggest that the attacking endhost may be en-
listed as part of the solution, through tamper-proof software,
network-imposed incentives, or user altruism. While intriguing,
these proposals ultimately raise the deployment bar by requir-
ing both the infrastructure and endhosts to cooperate. In this
paper, we explore the design of a pure end-to-end architecture
based on tamper-proof endhost software implemented for in-
stance with trusted platforms and virtual machines. We present
the design of a “Shutup Service”, whereby the recipient of un-
wanted traffic can ask the sender to slowdown or stop. We show
that this service is effective in stopping DoS attacks, and in sig-
nificantly slowing down other types of unwanted traffic such as
worms. The Shutup service is incrementally deployable with
buy-in from OS or antivirus vendors, requiring only minimal
changes to the endhost software stack and no changes to the pro-
tocol stack. We show through experimentation that the service
is effective and has little impact on legitimate traffic.

1 Introduction
An ongoing problem in the Internet is that of unwanted
traffic: DoS, worms, and port scanning. A large vari-
ety of systems have been deployed or proposed that ad-
dress one or more of these types of unwanted traffic,
including purely infrastructure-based DoS defense sys-
tems [57, 56, 2, 23], hybrid endhost- and infrastructure-
based DoS defense systems [4, 3], and worm detection
and mitigation systems [54, 53, 40]. In spite of this, DoS
attacks remain commonplace, and the Internet remains
vulnerable to flash worms [31]. The latter is particularly
worrisome, because a malicious flash worm could do ex-
tensive damage to millions of systems.

In this paper, we explore a new point in the solution
design space. In particular, we propose a pure end-to-end
ShutUp Service, whereby a host that receives packets can
tell the sending host to rate limit or stop sending packets
to itself. This is enforced at the sending host by a tamper-
resistant enforcement agent, for instance implemented in
the NIC device or in a protected virtual machine. This
ShutUp service can be used in two ways:

1. It is used by the receiver of packets (therecipient) to

Init iator Recipient

Unwanted Flow (F)

ShutUp (F, Nonce_R, ...)

Challenge (F, Nonce_R, Nonce_I)

Response (F, Nonce_I)

Figure 1: Basic ShutUp operation: Recipient NM sends
SHUTUP for unwanted data. Initiator SM validates ShutUp
was sent by purported recipient before blocking the flow at the
source. Nonces protect against spoofing.

manage DoS attacks and flash crowds. The ShutUp
is used as a capability-based rate-control system. Af-
ter an initial short grace period during which the
sender (initiator) can send at full speed, the enforce-
ment agent at the initiator imposes a low rate unless
the recipient explicitly allows a higher rate. The re-
cipient may request a smaller or zero rate at any time,
for instance in response to increased volume.

2. It is used by the enforcement agent at the initiator
as a signal that the host may be misbehaving. If the
agent receives a significant number of these signals,
it responds by slowing the rate at which connections
to new hosts can be initiated. This slows down scan-
ning worms, and port scanning (collectively called
scanning attacksin this paper). In the case of port
scanning, the slow down reduces the severity of the
problem. In the case of scanning worms, the slow
down buys precious time for other mechanisms (e.g.
human response) to kick in.

The ShutUp service is implemented through the simple
request-challenge handshake shown in Figure 1. While
the design of the ShutUp service requires no infrastruc-
ture support, our design intentionally allows it to operate
between any pair of systems on the physical path of pack-
ets between initiator and recipient. This maximizes the
deployment options, allowing intervention by the middle

1

where appropriate. The main rationale for this E2E ap-
proach are as follows.

• By putting enforcement at the misbehaving host, we
maximize the scenarios whereby the ShutUp service
can be effective. For instance, hosts within an enter-
prise would be protected from each other.

• By allowing recipient endhosts to issue ShutUp re-
quests, we can exploit application-specific knowl-
edge to detect unwanted packets. At the same time,
by allowing firewalls or even routers on the data path
to issue ShutUp requests, we can exploit the broader
knowledge a firewall has due to its vantage point.

• The ShutUp service requires no new changes to ex-
isting protocols or to infrastructure equipment. En-
terprises already deploy host-based security solu-
tions, such as firewall and anti-virus software, and so
the ShutUp deployment model is a natural fit. While
we do not want to pretend that globally deploying
ShutUp (or any other defense system) is easy, the de-
ployment model for ShutUp is intriguing because it
could be accomplished with buy-in from a relatively
small number of organizations in one or a few in-
dustry segments: OS, firewall, or antivirus vendors.
Neither router vendors nor ISPs need be involved.

The deployment model for the ShutUp service is that it
would be enabled in hosts by default when they are in-
stalled or when software is upgraded. Individual users
could opt-out by disabling the ShutUp service enforce-
ment mechanism in their own hosts, but not without some
small difficulty or expense. Disabling the ShutUp ser-
vice doesn’t open new threats that don’t already exist to-
day. Within an enterprise, IT organizations can arrange
to have ShutUp enabled everywhere, thus getting its full
benefit. Globally, however, we can expect to see some
(hopefully small) percentage of hosts without ShutUp en-
forcement. This certainly allows individuals to launch at-
tacks from their own hosts, but not from botnets. Since
most users should prefer not to be sending unwanted traf-
fic, we would expect the ShutUp service to remain en-
abled in most hosts. For attacks launched from ShutUp-
disabled hosts, other defenses, such as ISP firewalls with
ShutUp support, or manual filtering of the attacker’s pack-
ets, would have to be used.

Although the ShutUp service borrows from recent work
in DoS defense systems that exploit endhost support, it is
unique in several ways. Argyraki and Cheriton [4] pro-
pose the use of a handshake similar to ShutUp, but require
enforcement devices in the network near the attacker, and
a control device on the attacker-side of the bottleneck re-
source. By contrast, ShutUp is a pure E2E mechanism.

In particular, ShutUp avoids the need for a control de-
vice outside of the bottleneck resource through a capa-
bility mechanism. To our knowledge, Shaw is the first
to propose putting enforcement at the endhost [41]. The
approach has some limitations, in particular with respect
to source address spoofing and the scoping of ShutUp re-
quests, and in any event only outlines the approach and
does not experiment. It is fair to characterize ShutUp as
a deep exploration of the same vision. AIP [3] is a new
network layer architecture with two-level self-certifying
addresses. Among the many uses of this architecture, it
can defend against DoS through an E2E handshake with
enforcement at the endhost (putting the mechanism in a
tamper-proof NIC card). Notably AIP still requires in-
frastructure support; to detect source address spoofing
by attackers. ShutUp works with legacy network layers,
does not require cryptographic mechanisms, and prevents
source address spoofing at the tamper-resistant driver in
the attacking endhost.

This paper makes the following contributions.First,
we present the first design and implementation of a pure
E2E ShutUp service.The ShutUp protocol itself is quite
simple, allowing us to confidently reason about its se-
curity properties and the correctness of the implementa-
tion. The enforcement module, for instance, is imple-
mented in less than 200 lines of Python code. This small
footprint also maximizes the deployment options. For in-
stance, the ShutUp protocol may be implemented in a NIC
or on small wireless devices. It requires no encryption
or key distribution, allowing us to avoid the complexity
and hazards of key distribution.Second, we analyze the
ShutUp service’s effectiveness as a DoS prevention mech-
anism. We show, for instance, that a host with 10Mbps
of access bandwidth can completely stop a 10Gbps attack
from ∼10,000 hosts behind broadband links.Finally, we
analyze the ShutUp service’s effectiveness as a defense
against scanning attacks.Of particular interest here is the
trade-off between effectiveness (how quickly scanning at-
tacks are discovered and how much they are slowed down)
and false positives (identifying legitimate activity as scan-
ning attacks). For example, we show that ShutUp slows
down scanning worms to the same degree as existing ap-
proaches while reducing false positives by two orders of
magnitude.

2 ShutUp Details
This section starts with an overview of the ShutUp compo-
nents, followed by a detailed description of its operation.

2.1 ShutUp Components
There are two components in ShutUp,notification mod-
ules (NM) and ShutUp modules(SM). As illustrated in

2

SM

Virtualization
Layer (VMM)

Network
Hardware

 User
 VM

ShutUp
VM

SM

App. Application

OS

Init iator Recipient

 Firewall

NM

Figure 2: The ShutUp module (SM) runs in a separate tamper-
proof VM. Network traffic to and from the user VM is routed
through the SM by the VMM. The Notification Module (NM)
runs at multiple layers: in the recipient application, endhost OS
and recipient firewall. The initiator and recipient endhost setup
is symmetric (abbreviated for clarity).

Figure 2, NMs are deployed at the recipient at multiple
levels (application, endhost OS, etc.) from where they
can analyze inbound traffic at multiple layers. The NM is
not a trusted component. A SM is deployed at the initia-
tor, out of reach of untrusted components, from where the
SM can exert direct control over inbound and outbound
traffic. The recipient NMs are responsible for identifying
unwanted flows and sending ShutUp messages, and the
initiator SM is responsible for enforcing the recipient’s
decision and for correct operation of the ShutUp protocol.
Since an endhost can both initiate and receive flows, NMs
and an SM are deployed in each endhost.

2.1.1 ShutUp Module (SM)
One of the challenges in implementing ShutUp is protect-
ing the SM from being subverted by endhost malware,
while at the same time not placing undue constraints on
the resources available to it. This can be done by running
user software and the SM in separate virtual machines
(VM). The virtualization layer allows only the ShutUp
VM access to the physical network interfaces. Traffic to
and from the user VM is routed through the ShutUp VM
(Figure 2), where the SM can filter packets as necessary.

There are a number of options for protecting the SM,
for instance in NIC hardware [3] or TPM module [48], but
we believe that a VM protected by a VMM [13] is a good
choice. First, a VM has access to more resources (multi-
ple cores, memory) than a hardware implementation. On a
typical PC we estimate a SM will require around 256kB of
state isolated from the user; tamperproof memory in hard-

ShutUp Primitive
SHUTUP(FLOW, APPNAME , NONCER, TTL , IDNM)
THROTTLE(FLOW, APPNAME , NONCER, TTL , RATE, IDNM)

Recipient NM directs initiator SM to ShutUp
or throttle a flow (5-tuple; wildcards allowed).

CHALLENGE(FLOW, NONCER, NONCEI , IDNM)
Initiator SM requests confirmation of request

RESPONSE(FLOW, NONCEI)
DISCLAIM (FLOW, NONCEI)

Recipient NM confirms or denies original request
Query Primitive

QUERYAPPNAME(FLOW, NONCEI)
APPNAME(FLOW, APPNAME , NONCEI)

SM queries remote NM for application name (to
block scanning attacks before probe is sent)

Table 1: ShutUp primitives and message contents

ware is expensive, whereas a VMM can virtualize main
system memory. Second, a VM can be restored to known-
good states and updated once deployed. Updating hard-
ware securely requires physical access, whereas booting
into the VMM before accessing user programs bootstraps
a secure software environment. Existing software update
mechanisms can then download, verify and update the
SM. Finally, a VM is needed to demultiplex ShutUps for
middleboxes. With a hardware SM, a ShutUp for a mid-
dlebox (proxy, tunnel endpoint) resulting from traffic ini-
tiated by a single user would affect the entire middlebox,
thus affecting all users behind the middlebox. In a VM, a
trusted version of the middlebox service can run alongside
the SM to redirect ShutUps to the offending user.

2.2 Basic Operation
ShutUp offers two primitives (Table 1). The primary
primitive, SHUTUP, is used to block or rate limit indi-
vidual flows.

The basic ShutUp operation illustrated in Figure 1 is
fairly straightforward. The recipient NM sends a SHUTUP

request (unencrypted) in response to unwanted traffic.
The request includes a nonce (NONCER) for verification
purposes. To save state, the nonce may be computed as
a cryptographic hash of the flow identifier and a local
time-varying secret key. The initiator SM challenges the
purported recipient with a second nonce (NONCEI) and
includes the first nonce in the challenge. If NONCER is
validated, the recipient completes the challenge by return-
ing NONCEI . Otherwise, the recipient signals an error.
The first nonce protects against a spoofed SHUTUP mes-
sage and replays, while the second nonce protects against
a spoofed response. Once the ShutUp is validated, the SM

3

Algorithm 1 at SM ONRECVFROMAPP(P)
1: if ISUNVALIDATED (P.IPsrc , P.MACdst) then
2: rate limit ⊲ May be spoofed

3: if FOREXISTINGFLOW(P) then
4: F← GETFLOWSTATE(P)
5: ADDSRCPORTOFFSET(P, F) ⊲ Obscure 5-tuple
6: if ISSHUTUP(P) then ⊲ App sending ShutUp/Throttle
7: if RCVDDATA SINCESENTSHUTUP(F) then
8: forward ⊲ To net
9: else

10: drop ⊲ Redundant ShutUp

11: else ifFLOWRATEL IMITED (F) then
12: rate limit ⊲ Set by recipient
13: else ifFLOWBLOCKED(F) then
14: drop
15: else if INITIAL THROTTLETIMEOUT(F.IPdst) then
16: rate limit ⊲ Recipient under DoS?
17: else
18: forward
19: else ⊲ New flow
20: if ISSHUTUP(P) then
21: drop ⊲ No flow to ShutUp
22: else if notNEWFLOWALLOWED(P) then
23: drop ⊲ For scanning attacks
24: else
25: F← NEWOUTBOUNDFLOW(P)
26: ADDSRCPORTOFFSET(P, F)
27: forward
28: if not WASDROPPED(P) then
29: UPDATESENTTIMESTAMPS(F, P)

blocks (or rate limits) the unwanted traffic.

2.3 SM Operation
Algorithms 1 and 2 list in pseudo-code the SM operation
when forwarding a packet from the application to the net-
work and vice versa respectively. The SM: 1) prevents
spoofed source address, 2) unilaterally rate limits flows
after an initial grace period unless the NM explicitly al-
lows a higher rate (effectively acting as an E2E capabil-
ity), 3) enforces compliance with ShutUp requests, and 4)
detects and slows scanning attacks. The state maintained
at the SM is listed in Table 2.

2.3.1 Preventing Source Address Spoofing
A host that can spoof source addresses can launch an at-
tack without allowing ShutUp requests to reach it. To
prevent this, the SM must prevent source spoofing. The
difficulty in doing this lies in determining what an accept-
able source address is. A firewall can be configured with
this information. An endhost SM must however deter-
mine whether the endhost is authorized to use the present
address. It is hard for the SM to make this determination,
especially if the endhost statically assigns the address. We
however consider cryptographic solutions [3] unnecessar-
ily complex in this context.

Algorithm 2 at SM ONRECVFROMNET(P)
1: SETVALIDATED (P.IPdst , P.MACsrc) ⊲ Learn IP
2: if FOREXISTINGFLOW(P) then
3: F← GETFLOWSTATE(P)
4: if ISSHUTUP(P) then ⊲ Got ShutUp/Throttle
5: if SENTDATA SINCERCVDSHUTUP(F) then
6: SENDCHALLENGE(P)
7: else
8: drop ⊲ Redundant ShutUp

9: else if ISVALID CHALLENGERESPONSE(P) then
10: if ISFORTHROTTLE(P) then
11: RATEL IMIT FLOW(F, P.RATE, P.TTL)
12: else
13: BLOCKFLOW(F, P.TTL)
14: CHECKSCANNING(P.IPsrc, P.APP)
15: else
16: SUBDSTPORTOFFSET(P, F) ⊲ Unobscure 5-tuple
17: deliver ⊲ To app

18: else ⊲ New flow
19: if ISSHUTUP(P) then
20: drop ⊲ No flow to ShutUp
21: else
22: F← NEWINBOUNDFLOW(P)
23: deliver
24: if not WASDROPPED(P) then
25: UPDATERCVDTIMESTAMPS(F, P)

The SM rate limits sending “unvalidated” packets to
each layer-two neighbor, where validation requires receiv-
ing a packet for the purported IP address from that L2
neighbor (lines 1.1 and 2.1). Since the SM does not know
which addresses are spoofed and which not, rate limiting,
rather than blocking, is necessary to give an unvalidated
address a chance to be validated. If the address is in fact
spoofed, the validation does not succeed as long as the
spoofing host is not on the same subnet as the recipient, as
responses are not routed back to the SM, and the rate limit
is maintained indefinitely. Since virtually all applications
send packets in both directions [26], validation is effec-
tively piggybacked on application traffic. The approach
does not require any infrastructure or changes to the pro-
tocol stacks.

We choose to validate the IP address and destination
MAC pair rather than just the IP address. Doing so foils
two colluding endhosts on the same network attempting
to validate a spoofed address. For instance, a colluding
L2 neighbor may trigger validation by sending a packet
to the endhost’s MAC with the destination address set to
the spoofed address — the resulting validation whitelists
the spoofed address, but for use with that neighbor only.
Therefore for the security of the mechanism, the SM must
prevent spoofing the source MAC address. But since the
SM has exclusive access to the physical network hard-
ware, this is not difficult. (Section 3 discusses the case
where the colluding host does not have an SM.)

4

Per L2 Neighbor
IPs : Source IP addresses validated

Per Destination IP
acknowledged : Sent throttle before initial timeout

Per Active Flow
id : 5-tuple plus source port offset
rate : Rate limit set for flow (possibly 0)
TTL : Time rate is in effect
4 × timestamp : Time ShutUps and data for the flow

were last sent and received
Per Application

#tokens : Number of ShutUps allowed
rate : Current replenishment rate
shutups : Recipients that have sent ShutUps
whitelist : Recipients that never sent ShutUps

Table 2: State maintained by SM

2.3.2 Delivering ShutUp Messages
ShutUp messages contain the 5-tuple of the data flow they
refer to. The messages are sent along the datapath en-
coded as ICMP packets with the 5-tuple contained in the
encapsulated payload headers. The reason for this is that,
NATs and firewalls that translate and forward ordinary
ICMP messages for a flow [44] will transparently do so
for ShutUp messages as well. Another option would be to
use a shim layer between IP and the transport, which we
avoid since it modifies the protocol stack, thus breaking
existing middleboxes and application firewalls.

2.3.3 Flow Initiation and ShutUps
A general problem with using multiway handshakes in
DoS prevention mechanisms is that the validation mes-
sage is likely to be dropped at the bottleneck link. If the
attack is large enough, very few validation messages will
get through, and it will take a long time to slow the at-
tack. To deal with this, the SM enforces a rate limit on
flows that must be explicitly lifted by the recipient NM.
The rate limiting operates as follows.

The SM initially allows the application to send at an
unlimited rate on new flows, but only for a short time in-
terval. The interval is picked conservatively (10 seconds
in our experiments) within which time the recipient must
send a THROTTLE message indicating the allowed rate
limit for the flow. If neither a THROTTLEnor a SHUTUP is
received, the SM automatically rate limits the flow. When
the throttle’s TTL expires, the SM again rate-limits the
flow (to 10kbps in our experiments). The NM must peri-
odically send throttles to maintain the flow at high speed.

In addition to rate limiting flow packets, the SM lim-
its both inbound and outbound ShutUp requests. For

outbound ShutUp requests sent by the application, the
SM ensures that the associated flow exists, and has re-
ceived data since the last ShutUp was sent. This gates
ShutUp messages with application traffic preventing end-
hosts from abusing ShutUp messages to launch certain at-
tacks. Similarly, the SM ignores inbound ShutUp requests
for flows that do not exist and flows on which no data
has been sent since the last ShutUp was received. These
safeguards require the SM to maintain per-flow state and
timestamps.

Legacy recipients: The automatic rate limiting above
does not affect legitimate flows to NM-enabled recipients,
but creates tradeoffs for legacy recipients that lack a NM.
On the one hand, the rate limit mitigates DoS attacks on
legacy recipients incapable of sending ShutUps. While on
the other hand, legitimate flows to legacy recipients that
last more than a few seconds are unnecessarily slowed.
To avoid this latter issue, the SM disables the rate limit if
it receivesanypacket for the flow from the receiver. But
to prevent an attacker from abusing this mechanism, the
SM makes it hard for the attacker to spoof a flow packet,
for instance by adding a random offset to the source port
in the 5-tuple1; an attacker may attempt to brute force the
5-tuple, but the SM can detect such an attempt. The se-
curity implications of this mechanism are considered in
Section 3.

2.3.4 Slowing Scanning Attacks
ShutUp usually slows the scanning application rather than
cordoning off the entire infected endhost, in order to re-
duce collateral damage to other applications. Identifying
the application from just the flow 5-tuple is notoriously
hard. Firewalls often resort to complex deep-packet in-
spection to identify application flows to dynamically se-
lected ports. ShutUp avoids this complexity by having the
NM provide the applicationnamein the ShutUp message.
Doing so is not hard for the NM since it is deployed in the
recipient application or endhost OS and can readily query
the application. Since the NM is not trusted in any event,
the name reported by the application is not verified.

At its simplest, the SM considers an anomalous rate
(per unit time) of ShutUps an indication of a scanning
attack, at which point new flow initiations for the appli-
cation are rate limited (lines 2.14 and 1.22). In principle,
a number of other options can be used for detecting scan-
ning attacks, ranging from the fraction of flows that re-
ceive ShutUps [53, 40], to the more complex introspection
of the user VM [14]. We base our choice on the simplicity
of the approach and the low number of false positives we

1Like NAT except only the local port for locally initiated flows is
modified. Since inbound packets can be unambiguously delivered, NAT
traversal approaches are not needed.

5

encountered as we report in later sections.
The SM algorithm for slowing scanning attacks is as

follows. The SM maintains a token-bucket for each appli-
cation. A token is consumed by each ShutUp from a dis-
tinct recipient. Flow initiations to recipients are blocked
if no tokens are present, however, flows to a dynamic list
of previously successfully contacted recipients are not af-
fected. Over time, tokens are replenished at a configured
rate up to a maximum value, but persistent scanning de-
creases this rate at which tokens are replenished. The rea-
soning behind these design decisions are as follows.

Distinct recipients:Consuming one token for multiple
ShutUps from the same recipient limits the potential dam-
age caused by a (malicious) recipient. For this purpose,
the SM maintains per-application state consisting of re-
cipients that have previously sent ShutUps.

Blocking by application:While the application name is
piggybacked on ShutUp requests as mentioned above, at
flow initiation time the packet 5-tuple does not, in general,
identify the application. Since the first flow packet can
itself exploit a vulnerability [31], this creates a chicken-
and-egg scenario where the first flow packet must be
blocked if it is for the offending application, but to de-
termine the application, the flow must be allowed and
a ShutUp sought. ShutUp breaks this dependency with
the Query primitive (Table 1), which is a simple request-
response exchange whereby the SM queries the NM for
the name of the application the flow would reach if it were
to be allowed. The query is not needed for well-known
ports and is only invoked when the host is believed to be
participating in an attack. Legacy recipients without an
NM cannot respond to these queries.

New Recipients:To mitigate the impact of false posi-
tives, the SM maintains a list of recipients contacted pre-
viously that have never sent a ShutUp for the application.
While flow initiations to new recipients are rate limited
during a suspected scanning attack, flows to recipients on
this list are whitelisted.

Rate limiting flow initiation:A common concern with
thresholds is how the threshold is picked. A low static
threshold creates false positives, which we determined in
our dataset to be bursty, whereas a threshold high enough
to accommodate bursts allows sub-threshold scans that
does not adequately slow the attacker. For this purpose,
ShutUp uses a dynamic threshold: the rate at which new
flow initiations are allowed is picked randomly (our im-
plementation uses an exponential distribution around a
configured mean), and this rate is halved every time the
token-bucket underflows. In effect, the rate limit allows
large but short bursts of ShutUps for legitimate applica-
tions, while forcing persistent scans to a much lower rate.

2.4 NM Operation
A single recipient NM cannot detect the wide range of
unwanted traffic we are interested in (address scans, DoS,
intrusions etc.). The design therefore accommodates sep-
arate collaborating NMs operating at various layers; each
NM tags ShutUp messages with its ID and responds to
challenges intended for it. However, ShutUp does not fo-
cus onhowthese attacks are detected — we rely on exist-
ing or future methods of detecting unwanted traffic at the
application, endhost OS, and recipient firewall including
IDS (e.g. [36]), CAPTCHAs [50], and exploit detectors
(e.g. [9]) as applicable.

Out of the three, the design of the endhost OS NM is
non-trivial. If the recipient application is not running,
the endhost OS must determine whether or not to send
a ShutUp. The choice is not clearcut because sending a
ShutUp prevents the source from reattempting the flow,
at least until the ShutUp expires. Such ShutUps hinder
interactive applications such as web browsing if the web
server is momentarily unavailable. Further, if enough
endhosts generate false positives, it unduly triggers the
scanning defense at the initiator. This affects P2P ap-
plications, for example, where stale membership infor-
mation results in peers attempting to contact a recently
running (or crashed) application for some time. To avoid
these false positives, applications in ShutUp register an
application-specific “linger” time when binding to a port
(few minutes for P2P applications, infinity for server ap-
plications). The endhost OS does not send ShutUps for
an unbound port until the linger period expires. In addi-
tion, the OS NM may have a small default linger time to
accommodate legacy apps that do not set a linger time.

3 Attacking ShutUp
In this section we consider attacks on ShutUp components
and mechanisms through which an attacker may attempt
to disrupt flow establishment.

Attacker Model: We assume that the attacker has com-
plete physical control over a small number of hosts. In
particular, the attacker can disable the SM on these hosts.
In addition, the attacker has software control over a much
larger number of compromised hosts.

We initially assume the attacker is not on the datapath
between the initiator and recipient. An on-path attacker,
for instance on a compromised router, can disrupt commu-
nication by dropping or modifying packets enroute even
in the absence of ShutUp. We later relax this assumption
to consider eavesdroppers — on-path attackers that can
observe but not modify in-flight packets.

Software Compromise:Vulnerabilities in the SM im-
plementation or virtualization layer could allow an at-
tacker to gain control of the SM through software meth-

6

ods. In case of compromise, the VMM can restore a
pristine SM from readonly media, and rely on automatic
software update mechanisms to apply all relevant patches.
Physical access is required only if the VMM itself is com-
promised or for updates to the readonly media.

Compromising the NM is less severe. A compro-
mised NM may fail to ShutUp unwanted flows, or worse,
ShutUp flows that are not unwanted. In the first case, NMs
deployed at other layers can still ShutUp unwanted flows.
In the second case, the danger is not so much to the re-
cipient, since such an attacker can block flows passing
through the NM even without cooperation from the SM,
but rather to the initiator for being falsely implicated of
unwanted traffic. However, the attacker must compromise
multiple NMs at recipients contacted by the initiator to
successfully trigger the scanning defense, mitigating the
severity of the attack.

Spoofed Packets:In order to spoof packets at an un-
limited rate without disabling the SM, the attacker must be
able to complete the address validation process by spoof-
ing the MAC address of the firsthop router, which requires
physical access to a second endhost on the same network.
With software-only access to a given network, an attacker
can at best hijack an address in that network, but since the
endhost would receive all packets for the hijacked address,
in particular ShutUp messages as well, there is little im-
pact on ShutUp for doing so. Consequently, the number
of networks an attacker can spoof packets from is limited
by the number of hosts the attacker has physical access
to — significantly better than today where up to 25% of
edge ASs allow spoofing [6]. If an attacker compromises
a legacy (no SM) host on the subnet, it can fake the MAC
address of the router and then create arbitrary addresses on
compromised SM-enabled hosts, however, if the attacker
already has such a foothold in a legacy host, it can in any
event spoof arbitrary addresses.

In order to successfully fake ShutUps, an attacker must
be able to eavesdrop packets. This is because, as previ-
ously mentioned, all ShutUp messages must be validated
before any action is taken by the SM, and the attacker
must be able to guess the nonces involved to fake the val-
idation. But since the nonces are not encrypted, an eaves-
dropper can win a validation race. However, since the
eavesdropper cannot stop the in-flight challenge, the real
recipient will generate a conflicting response. The SM can
therefore at least detect the presence of an eavesdropper,
although not which of the responses is legit. In any event,
an eavesdropper can disrupt flows even without ShutUp,
so ShutUp does not introduce a qualitatively new attack.

Abusing ShutUp Messages: ShutUp messages are
gated by application traffic at the SM. The mechanism
prevents an attacker from flooding a victim with ShutUp

messages absent an application flow between the two.
Even when a flow exists, the number of ShutUp messages
that can be sent is upper bound by the number of flow
packets. The same mechanism gates reflection attacks
consisting of ShutUp challenges if an attacker spoofs a
stream of ShutUp messages; the amplification factor for
such attacks is at most one.

Avoiding Initial Rate-Limit: An attacker may attempt
to disable the initial rate limit for unacknowledged flows
by abusing the mechanism intended for legacy recipients.
Doing so requires the attacker to guess the random initia-
tor port, which requires on average215 guesses. After the
first few guesses, the SM can detect the attack and lock in
the rate limit such that only a validated Throttle may lift it.
Thus an attacker cannot disable the initial rate limit, nor
affect flows to NM-equipped recipients, and can at best
target flows to legacy recipients to be rate limited; the re-
cipient can counter by deploying an NM.

Triggering Scanning Defense:An attacker can trig-
ger the scanning defense at an endhost by convincing the
initiator to contact recipients not expecting the flows. For
instance, a malicious website may return a webpage with
inline image URLs pointing to recipients not running a
webserver. Alternatively, a compromised router enroute
to multiple destinations may fake ShutUps. While Shutup
does not defend against such attacks, ShutUp limits the
impact. First, in case of a duped application the scan-
ning defense only applies to the one application and not
to other applications running on the endhost. Second,
the defense does not affect communication to recipients
that have never previously ShutUp the endhost, allowing
the application to operate with diminished reachability.
Finally, as the defense is lifted unless the application is
persistently scanning, a legitimate application can resume
normal operations after cautioning the user against reat-
tempting flows to the problematic destinations.

4 Stopping DoS with ShutUp
The ShutUp service can be used to mitigate both appli-
cation level as well as network level DoS attacks. At
the application level, the efficacy depends on how quickly
and accurately the attack is detected, which is contingent
on detection mechanisms external to ShutUp; once de-
tected, the application NM sends ShutUps to the attackers.
Defending against network level DoS, where the attack-
ers saturate a bottleneck link, is more involved, because
the ShutUp challenge-response mechanism must operate
through the same bottleneck.

If the bandwidth of challenges incident at the bottle-
neck link is B, and aggregate attacker bandwidth isX
times the bandwidth of the bottleneck link, then only
B/X challenges will cross the bottleneck. To put in num-

7

bers, if a small number of attackers, say 5000, command
a bandwidth 10 times that of a 100Mbps bottleneck, an
incident challenge bandwidth of 10Mbps would ShutUp
around 1000 attackers per second assuming 128 byte chal-
lenge packets, stopping the attack in 5 seconds.

Relying solely on the challenges getting through the
bottleneck suffices for small attacks but not large attacks.
This is because the incident challenge bandwidthB re-
quired to maintain the same rate of validated ShutUps in-
creases linearly withX. However, since challenges are
driven directly by ShutUp requests,B is upper bound by
the victim’s upload bandwidth, which remains fixed asX
increases. Moreover,B is more realistically a fraction,
typically one-tenth, of the bottleneck bandwidth assum-
ing ∼1kB attack packets. This is because the victim can,
at best, generate one ShutUp per attack packet crossing
the bottleneck, each of which results in a challenge. Gen-
erating more ShutUps or challenges creates the possibility
of amplification attacks. SinceB cannot be increased in-
definitely, ShutUp decreasesX for large DoS attacks.

In large DoS attacks (e.g.X > 20), the SM enforced
automatic rate limit after the first few seconds cutsX by
several orders of magnitude. The rate limit alone does
not address congestion at the bottleneck, as even with
the diminished bandwidth, the attackers can be numerous
enough to saturate the bottleneck. The purpose of the rate
limit is to increase the fraction of challenges in the at-
tack traffic, which is possible becauseB is independent
of X as long as the bottleneck is saturated. This allows
the challenge-response mechanism to kick in more effec-
tively and stop large DoS attacks.

The above discussion assumes that only the NM at the
victim is responding to the attack, however, other NMs
may additionally be involved. For instance, ShutUp chal-
lenges to an ISP NM upstream of the bottleneck link
would succeed. Or in case of an endhost behind the bot-
tleneck colluding with attackers by not sending ShutUps
for traffic crossing the bottleneck, a firewall NM between
the bottleneck and the endhost may instead send ShutUps
to protect other endhosts behind the bottleneck. Overall
ShutUp requires an NM to be present somewhere along
the attack path to stop a DoS.

Simulation Results: We usedns-2 to simulate how
well ShutUp mitigates DoS attacks. We use a fan-in topol-
ogy where a varying number of attackers (from 10 to
9600) send traffic to a bottleneck link; the recipient is on
the other side of the bottleneck. The topology models a
DoS where attack traffic does not self-interfere except at
the bottleneck. In the Internet, attackers sharing a com-
mon link other than the bottleneck may cause additional
packet loss. Nevertheless, since ShutUp is entirely end-
to-end (or edge-to-edge), we expect such AS- and router-

 0
 2
 4
 6
 8

 10

M
bp

s

Bottleneck utilization

 0
 500

 1000
 1500
 2000
 2500

 0 5 10 13 15 20

#

Time (seconds)

Attackers not ShutUp

Figure 3: The effect of a DoS attack under ShutUp. Aggregate
attack traffic is 240 times the bottleneck bandwidth. The SM
slows down attackers at 10s, increasing the rate of challenges
through the bottleneck.

level topology to have little impact. To convince ourselves
of this, we simulated ShutUp on the router-level topology
collected by the Rocketfuel project [43] and a sampling of
the AS topology collected by the RouteViews [49] project
and found the results to be qualitatively similar; however,
these simulations were restricted to small attacks (upto
X = 100) due to simulator limitations.

The latency between the attacker and the bottleneck is
parameterized by end-to-end RTT data collected by the
Meridian project [55]. Each attacker sends 1Mbps of at-
tack traffic. The bottleneck link is set to 10Mbps with
droptail queuing. All other links are set to 10Gbps. We
simulate attacks from 10Mbps to 9.6Gbps of attack traffic,
that is between 1 and 960 times the bottleneck bandwidth.

To determine the contribution of the ShutUp mecha-
nism and automatic rate limit, we compare the effective-
ness with and without the rate limit. When enabled, the
SM automatically rate limits traffic to 10Kbps after 10
seconds. The choice of these parameters is primarily to
explore the scaling properties of the DoS defense mecha-
nisms in ShutUp rather to than guide deployment.

Figure 3 plots a representative attack with aggregate
bandwidth 240 times the bottleneck. The figure is split
in two parts: the top plots the bottleneck link utilization
over time, while the bottom plots the number of attackers
that have not received a validated ShutUp. We observe
three distinct phases during the attack. Phase 1 lasts for 10
seconds where the bottleneck is saturated and the number
of active attackers decreases marginally by 1.6% because
few challenges get through. Phase 2 begins at 10 seconds
when the automatic rate limiting kicks in; the active at-
tackers drop rapidly as more challenges succeed, but the
aggregate attack traffic, while decreasing, still exceeds the
bottleneck. Phase 3 begins at 13 seconds when the aggre-
gate attack traffic equals the bottleneck capacity, at which

8

 0

 10

 20

 30

 40

 50

 60

10x 100x 1000x

T
im

e
(s

)

Attack magnitude (logscale)

ShutUps only
ShutUps + auto ratelimit

Figure 4: Time taken to stop a DoS attack as attack magnitude
increases

point all challenges are delivered and the remaining at-
tackers blocked within 1.3 seconds. The figure illustrates
that both the ShutUp mechanism and the automatic rate
limit mechanism are necessary to contain large DoS at-
tacks, and together, sufficient to block the attack in 15
seconds in the above example.

Figure 4 plots the time taken to stop a DoS as a func-
tion of the attack magnitude. For small attacks, enough
challenges get through that the ShutUp mechanism alone
can completely stop the attack, but there is a threshold
(X = 20) beyond which the automatic rate limiting is
needed to keep pace with the attack magnitude. Only
when the attack magnitude increases by two orders of
magnitude — the same factor as our chosen automatic
rate limit parameter — does the combined approach ex-
perience a disproportionate increase. Overall, ShutUp is
able to stop attacks ranging widely in their magnitude up
to nearly 1000 times the bottleneck bandwidth.

To determine the effectiveness of a partial deployment,
we simulated attacks where we varied the fraction of
legacy attackers that do not have an SM, and are there-
fore immune to ShutUps. We simulated ShutUp deploy-
ments from 90% to 10% holding the aggregate bandwidth
of legacy attackers constant at 90% of the bottleneck link.
The results were not surprising: in all cases, ShutUp is
able to desaturate the bottleneck in under two seconds by
stopping all SM-enabled attackers. ShutUp reduces at-
tack bandwidth by the same fraction as the degree of de-
ployment (i.e. 90% reduction for 90% deployment) —
what we might call “incremental improvability”, where
the more endhosts that have it, the better the results.

5 Slowing Scanning Worms
The scanning defense in ShutUp allows worm outbreaks
to be contained (or slowed) using the service. A scanning
worm, by its nature, propagates by discovering and infect-
ing vulnerable endhosts. There are several ways how such
worms may receive ShutUps. Probes to endhosts not run-

ning the vulnerable application, probes to honeynets [42]
or network telescopes [30], attempting to infect a vulner-
able endhost protected by application level defenses [9],
traffic monitored by in-network intrusion detection sys-
tems [36] and firewalls may all result in ShutUps.

As mentioned, the SM slows down new flow initiations
when a threshold rate of ShutUps is crossed. In contrast,
threshold random walk (TRW) based detectors [53, 40]
place bounds on the fraction of bad flows to good flows.
Both approaches have their pros and cons. TRW can de-
tect an extremely low rate of scanning, but is susceptible
to collusion where worm instances can maintain a fixed
fraction by establishing “good” flows amongst themselves
or with botnet members to absolve an equal number of
probes. ShutUp is not affected by such collusion, but
does not target sub-threshold scanning; to the extent the
randomness and exponential rate limit in ShutUp compel
the worm to scan slowly, ShutUp buys time for other ap-
proaches to detect and disinfect compromised hosts. Con-
sequently, we focus on fast scanning worms.

ShutUp ignores worm probes that do not generate a re-
sponse (not even a ShutUp), for instance probes to non-
existent addresses or to hosts behind NATs; interpreting
such silent probes as implicit ShutUps would increase the
ShutUp frequency and thus reduce the reaction time, but it
would also increase false positives (Section 6.2). Inside an
enterprise, last-hop routers could certainly be configured
to send ShutUps for such probes. On the Internet, how-
ever, we expect policy will prevent stealthy NAT/firewalls
from sending ShutUps for such probes [16]. Fortunately,
as we report below, the impact of ignoring these silent
probes is minimal for a typical worm attack. We hope to
revisit this design decision in the future if the behavior of
legitimate applications improves.

Simulation Results: We simulated worm outbreaks in
a custom simulator to determine how well ShutUp per-
forms as compared to the TRW-based approach proposed
in [53]. We parameterized our simulator with Internet
census data collected by the ANT project [17]. As per the
data, out of the 2.8 billion allocated unicast public IPv4
addresses, 187 million (6.7%) respond to probes. The re-
maining addresses are either unused, or used by stealthy
hosts. We simulate a Code Red-like worm [32] that scans
at∼11 addresses per second, and has a vulnerable popu-
lation of 359K endhosts. The vulnerable endhosts are dis-
tributed uniformly at random among the 2.8B allocated
addresses. If the worm probes a vulnerable address, the
destination is instantly infected (unless already infected)
and begins scanning. Otherwise, if the probe is to the
6.7% addresses that send a response, a ShutUp is sim-
ulated, else the probe times out (remaining 93% of the
time). At t = 0, the attacker infects 1000 vulnerable hosts

9

 0

 20

 40

 60

 80

 100

0 3 6 9 12 15 18 21 24

In
fe

ct
ed

 (
%

)

Time (hour)

No Containment
90% ShutUp

90% TRW
100% ShutUp

Figure 5: Worm outbreak under ShutUp. While a full ShutUp
deployment can completely contain scanning worms, a partial
deployment slows a worm significantly

to initiate the outbreak.
Figure 5 plots the number of infected hosts as a function

of time. Without containment, the worm infects 95% of
the vulnerable population in 1hr 43m. With full ShutUp
deployment, the worm is completely contained at 0.3%
infections; a full TRW deployment performs identically
(not shown). If ShutUp deployment is only 90%, worm
propagation is slowed down by an order of magnitude. In
1hr 43m, the worm is able to infect 0.63% versus the 95%
without containment, and time taken to infect 20% vul-
nerable hosts is increased by 8hr 44m. Surprisingly, the
difference between Shutup and TRW, while noticeable,
is small even though ShutUp ignores probes to the 93%
stealthy/unused addresses while TRW does not. This is
because the fraction of responding hosts that are vulner-
able is small enough that a sufficient rate of ShutUps is
generated to contain the infected host before it discovers
a vulnerable host. Consequently, trading off sensitivity
to silent probes for fewer false positives is well justified
which, as we report later, significantly reduces false pos-
itives for ShutUp in comparison to TRW. Overall, a full
ShutUp deployment can completely stop a worm, while a
partial deployment can slow it down significantly.

6 Evaluation
To evaluate the impact on real endhosts, we evaluated
ShutUp using datasets from an enterprise environment, an
academic environment, and a home environment.

Implementation: We implemented a proof-of-concept
SM in Python. The SM processes connection events gen-
erated by Bro [36], infers ShutUps from TCP errors, and
for each new outbound flow, passes a verdict whether the
flow would have been allowed, rate limited, or blocked
had the SM been running on the endhost during data col-
lection. The implementation is 153 lines long demonstrat-
ing the simplicity of the SM. While our implementation
allowed us to rapidly prototype (and refine) the ShutUp

design, and provided insights into the impact on legitimate
flows, performance and auditability of the SM software
stack are important deployment concerns that we believe
are best addressed using a non-interpreted language.

Trace Data: Our enterprise dataset consists of a
month-long trace of packet headers for all traffic to and
from endhosts, primarily employee laptops, for a major
corporation. The data was collectedat the endhost, and
thus includes traffic even when the endhost was outside
the enterprise. This is the ideal dataset for evaluating an
endhost SM. The trace contains little peer-to-peer fileshar-
ing traffic as enterprise policy forbids the use of P2P appli-
cations. The trace covers 357 users during the first quarter
of 2007 with the median trace lasting 26 days. Processed
through Bro, the trace contains about 24.5M TCP flows
initiated by the endhosts to 111K addresses.

Our university dataset consists of a 6-day trace of
packet headers from endhosts in the computer science
department of a major university collected at the border
router. The dataset is ideal for evaluating a firewall SM.
As with the enterprise, policy discourages the use of P2P
filesharing applications. The data contains 5M flows from
1680 IP addresses during a week when the university was
in session.

Our home-user dataset consists of a 8-day trace of pri-
marily BitTorrent traffic collected in a home network. It
contains 37K flows over which around 5Gb of data was
transferred in both directions, which we use to counter the
lack of P2P filesharing traffic in the other two datasets.

Methodology: We treat TCP RST packets in response
to the initial SYN packet as ShutUps. Flows over which
at least one byte of application data is exchanged do not
generate ShutUps regardless of how the flow is terminated
(e.g. FIN exchange, RST packets, or TCP timeout). Flows
where the initial SYN packet does not elicit any response
within 3 seconds are treated as unacknowledged flows.
We discard other TCP flows (e.g. when a SYN ACK is
seen but no data is transferred); such flows comprise less
than 0.1% of our data. We do not analyze UDP traffic
as we cannot, in general, determine if a flow would have
generated a ShutUp. Furthermore, because we do not have
packet payloads, our evaluation is limited to ShutUps that
an endhost or firewall NM may generate; consequently,
application-level errors over a successful TCP flow (e.g.
SMTP errors) count as successful flows.

6.1 Tuning Parameters
Our choice of system parameters is driven by our data.

IP Spoofing Limit: Users in our enterprise trace use,
in the median case, 24 unique source IP addresses over
the duration of the trace, with 10% of users using more
than 70. The number is significantly higher than that mea-

10

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06 1e+07

C
D

F
 o

f s
uc

ce
ss

fu
l r

et
rie

s
(%

)

Time since first failure (seconds)

Figure 6: Determining the impact of endhost OS ShutUp TTL
and linger time on legitimate retries

sured for the average Internet user (1 IP address over 2
weeks) [7], which can be explained by the difference in
vantage points as [7] measures from the perspective of
a content provider. On average, the SM must validate a
source IP address and MAC pair every 7 hours.

87% of the time the address is validated within one sec-
ond, typically by the first application flow. In the worst
case, an endhost attempted 1 flow per second for 18 min-
utes before eliciting any response; in such cases, the end-
host OS may be configured to ping the first-hop router
shortly after assigning a new IP address to more quickly
validate the address. Our implementation rate limits pack-
ets with unvalidated addresses MAC pairs to a burst of at
most 60 packets in the first ten minutes, and one packet
per minute after that. The rate limit does not impact 99%
of address changes.

Linger period and ShutUp TTL: In order to deter-
mine the minimum linger period to be observed by the
endhost NM, and the TTL for ShutUp requests, we plot
the CDF of the time elapsed until a flow to a destina-
tion succeeds after the first encountered failure in Fig-
ure 6. The y-value represents the fraction of retries that
would have succeeded had a failed flow not been incor-
rectly ShutUp for a given TTL value (x-axis). Curiously,
the plot for our enterprise trace is linear on a semi-log
scale across six orders of magnitude — a phenomenon
well worth investigating in its own right. In essence, the
longer an application has been failing, the longer it is ex-
pected to keep failing, whereas the more recent the failure,
the more likely it is that a quick retry will succeed, some-
thing which we term “failure momentum”. A minimum
linger time of 2 seconds prevents 35% of retries from be-
ing incorrectly blocked. Beyond this, the NM may dy-
namically pick the TTL in proportion to the length of the
outage, however, our implementation uses a static value
of 60 seconds.

Scanning threshold: In order to determine a thresh-
old that does not impede legitimate flows while placing a
bound on scanning activity, we require an oracle to sep-

Application Port(s) Dataset # Hosts # Flows
ShutUp

Patch Dist. 63422 Enterprise 9 60
SMTP 25 University 4 171
- - Home User - -

Total (all applications): 7.3% 0.02%
ShutUp (w/ timeout as ShutUp)

Patch Disc. 63422 Enterprise 119 959
Unknown 3274 University 4 4811
BitTorrent * Home User 1 216

Total (all applications): 17.6% 0.14%
TRW-based

Web 80,443 Enterprise 97 15115
SMTP 25 University 3 459750
BitTorrent * Home User 1 1078

Total (all applications): 8.9% 1.7%

Table 3: Applications generating the most potential false posi-
tives for each dataset

arate benign traffic from suspicious traffic in our dataset.
For this purpose we use the TRW-based scan detection al-
gorithm proposed in [53] to flag potential scanners in our
enterprise dataset. We assume the 182 usersnot flagged
are least likely to be scanners. For these users, a mini-
mum threshold of 9 ShutUps per minute is necessary to
not trigger the scanning defense. Adding a margin for er-
ror, we use a threshold of 15 ShutUps per minute before
triggering the scanning defense.

State: The state maintained by the SM is dominated by
the per application whitelist that is built dynamically. The
list can potentially grow unbounded. The 99 percentile
size was 2300 entries for a node (8kB of IPv4 addresses);
the maximum was 32K (128kB). At most 437 ShutUps
were received in all by a host, of which fewer than 15
were concurrently active in the 95th percentile case. In
all, 256kB of state per endhost is sufficient for an endhost
SM for our dataset. A firewall SM with limited memory
may, however, use a fixed-sized cache for the whitelist,
taking care to protect against attackers abusing the cache-
replacement strategy.

6.2 False Positives
We evaluated ShutUp on all three datasets. For compari-
son, we also evaluated the TRW-based approach proposed
in [53], and a modified version of ShutUp that treats un-
acknowledged flows as implicit ShutUps. We use well-
known port numbers to determine the application name in
the enterprise and university trace, while for the home user
trace, we tag all flows generated by BitTorrent as such re-
gardless of the port number. For ShutUp, we use the pa-
rameters above. For TRW, we primarily use the parame-
ters in [53], which the authors tune using multiple datasets

11

and conclude are applicable in general. We also tested
TRW with higher thresholds, and while this reduced the
false positives quantitatively, it did not do so qualitatively:
the same applications generate the most false positives.

For each approach, we consider flows that the approach
decided to block, but which did in fact exchange data
during the trace. We manually examined the most egre-
gious endhosts and eliminated blatant scanners based on
sequential address or port scans. However, since we lack
payload data to automatically disambiguate certain cases,
some successful flows may in fact be successful scan at-
tempts; as such, our results identify legitimate applica-
tions potentially affected by ShutUp. Table 3 plots the top
applications generating potential false positives for each
dataset. Overall, ShutUp results in fewer false positives
(0.02% versus 1.7%) for the following reasons:

Enterprise: In the enterprise case, as mentioned pre-
viously, the linger mechanism reduces the number of
ShutUps generated due to momentary outages. False pos-
itives in ShutUp stem from the automated patching ap-
plication which performs distributed scanning to quickly
discover unpatched endhosts; we expect IT to configure
enterprise endhost NMs to not send ShutUps for benign
scanning authorized by the enterprise, or filter ShutUps
for such applications in the network.

University:The outbound mailserver has a ratio of 70%
unsuccessful flows, largely due to undeliverable bounces
to spam messages, triggering the scanning defense. The
whitelist in ShutUp allows flows to legitimate mailservers
that have never sent a ShutUp to continue unimpeded.

Home User:BitTorrent generates a large number of un-
acknowledged flows, presumably to other clients behind
NATs, but potentially also to clients that have recently left
the cloud. Since ShutUp ignores such flows, the scanning
defense is not triggered.

7 Extensions to ShutUp
In this section we present some extensions to ShutUp that
enhance the service provided by the SM. In general, these
extensions present new potential vulnerabilities that need
to be considered.

Weighted ShutUps: The SM can give more impor-
tance to ShutUps for more severe violations or from au-
thoritative sources. For instance, a ShutUp from an ap-
plication protected by Vigilante [9], could instantly trig-
ger the scanning defense. Such ShutUps would need to
carry proof of their authenticity, such as Vigilante’s self-
certifying alert that the SM can verify in the ShutUp VM.

Initiator behavior: The SM can provide information
about the initiator’s past behavior, such as the diversity of
recipients contacted, to new recipients. The NM can com-
pare this to the expected diversity for the application [22]

to help determine the legitimacy of the flow.
Collaborating SMs: The SM can collaborate with

nearby SMs to determine the uncleanliness [8] of the local
network. The metric may be used to adjust the sensitivity
of the SM to better contain worms.

Wireless Contention: Wireless nodes sharing the
broadcast medium with an overly-chatty node could re-
quest it to ShutUp. Once the SM verifies that a majority
of wireless neighbors concur, it can throttle the applica-
tion reducing contention.

8 Related Work
Receiver oriented communication models are not new. IP
multicast [11], i3 [45], and off-by-default [5] all allow
the recipient to choose what data it receives. Multicast
is not intended for one-to-one communication, i3 requires
infrastructure, and off-by-default requires modificationto
routers and Internet routing. In contrast, ShutUp is end-
to-end (or edge-to-edge) and requires no infrastructure.

The work closest to the ShutUp service, either because
they use a challenge-response approach or because they
propose tamper-proof mechanisms in the attacking end-
host [41, 3, 4], are discussed in Section 1.

A large class of DoS mitigation approaches operate by
installing filters along the attack path. In the simplest ex-
ample, [38] thins attack traffic using passive and active
filters at the upsteam ISP. Taking this idea further, end-
hosts in [4, 29] install filters in gateway routers, or routers
progressively closer to the source. Combining filtering
with explicit authorization, [56, 57] configures routers up-
steam of the bottleneck to, by default, impede packets
not explicitly authorized by the endhost through capabil-
ity nonces. A second class of approaches [1, 12, 28, 2, 23]
dissipate DoS attacks before absorbing the unwanted traf-
fic. [51] uses a currency, such as bandwidth, to grant ac-
cess through filters at network choke points. In contrast,
ShutUp filters DoS traffic at the source (or its firewall)
preventing attack traffic from consuming any network re-
sources. Furthermore, ShutUp, more generally, handles
scanning attacks within the same architecture.

Worm containment has been subject of much recent
work. [33] provides guidelines applicable to any worm
containment approach. [54] rate limits all flow initia-
tions, and [15] bounds the diversity of recipients. Tar-
geted more directly at worms, TRW [20] detects scanning
worms from the recipient firewall’s perspective. Turning
the TRW approach inside-out and operating at a router
upstream of the infected endhost, [53] and [40] detect and
contain worm outbreaks based on an anomalous fraction
of failed flows for a particular port number. While the SM
can use any combination of these mechanisms, ShutUp
extends to applications that use dynamic ports.

12

Much work has been done in detecting unwanted traf-
fic both in the network and at the recipient endhost that
ShutUps complements. In the network, traffic can be
classified as portscans [20], worms [24, 39], DoS at-
tacks [18], flash crowds [19], and of dubious origin [10].
Classification can be performed through correlation [47],
rule-based matching [25], or entropy in feature sets [27]
in, potentially aggregated, flow parameters. At the end-
host, application-agnostic exploit detection [9, 42], as
well as application-specific detection based on common
usage profiles, and deviations therefrom [37, 46] have
been proposed. More active methods of detection includes
CAPTCHAs [34, 21] or tracking user-activity [35] to ver-
ify the presence of a human, and puzzle-auctions [52] to
rate limit attacks. The NM can directly use these and fu-
ture approaches to detect unwanted traffic to ShutUp.

9 Summary and Future Work
In this paper, we propose ShutUp, an end-to-end (or edge-
to-edge) service to reduce unwanted traffic in the Internet.
We throughly explore the design space and determine the
small set of mechanisms required to mitigate, and in many
cases completely stop, a wide range of unwanted traffic
ranging from DoS attacks to scanning worms. ShutUp
does not require any additional infrastructure or changes
to the protocol stack, is secure against a large class of at-
tackers, and is easily deployable in enterprises, and glob-
ally deployable with buy-in from only a few vendors, pro-
viding incremental improvement as deployment proceeds.
Through simulations we find that ShutUp scales well to
defend against large scale DoS attacks up to three orders
of magnitude in excess of bottleneck links, and can slow
scanning worms by an order of magnitude. Using exten-
sive trace data from three environments we establish that
ShutUp’s impact on legitimate traffic is minimal. Over-
all, we believe there is a compelling case to be made for
containing unwanted traffic at the ends.

Beyond this, there are a number of interesting research
directions that we hope to explore. Due to lack of space,
we only briefly list them here. Foremost among these is to
explore the use of self-certifying identifiers with ShutUp.
Another is extending ShutUp to curtail unwanted traffic at
higher layers such as spam and phishing. Finally, ShutUp
appears to be a promising basis for other functions within
the endhost SM that are controlled by entities in the net-
work. For instance, a router could ask a host to format
packets in a more efficient way (i.e. a stack of tags), to
label packets with certain QoS tags, or to shape or rate
limit traffic in a way that reduces load on the network. We
call this model the “network embassy”, because like one
country’s embassy situated in another country but not con-
trolled by the other country, it represents an autonomous

function within the endhost that is controlled not by the
endhost but by the network.

References
[1] A KAMAI TECHNOLOGIES, INC. Akamai: How it works.
[2] A NDERSEN, D. Mayday: Distributed filtering for internet ser-

vices. InProceedings of the USITS ’03(Seattle, WA, Mar. 2003).
[3] A NDERSEN, D., BALAKRISHNAN , H., FEAMSTER, N., KOPO-

NEN, T., MOON, D., AND SHENKER, S. Holding the Internet
accountable. InProceedings of HotNets ’07(Atlanta, GA, Nov.
2007).

[4] A RGYRAKI , K., AND CHERITON, D. R. Active Internet Traffic
Filtering: Real-Time Response to Denial-of-Service Attacks. In
Proceedings of the 2005 USENIX Annual Technical Conference
(Anaheim, CA, Apr. 2005).

[5] BALLANI , H., CHAWATHE , Y., RATNASAMY, S., ROSCOE, T.,
AND SHENKER, S. Off by Default! InProceedings of the Hot-
Nets’05(College Park, MD, Nov. 2005).

[6] BEVERLY, R., AND BAUER, S. The Spoofer Project: Inferring
the extent of source address filtering on the internet . InIn pro-
ceedings of the 1st Workshop on Steps to Reducing Unwanted
Traffic on the Internet (SRUTI)(Cambridge, MA, July 2005).

[7] CASADO, M., AND FREEDMAN, M. J. Peering through the
Shroud: The Effect of Edge Opacity on IP-based Client Identi-
fication . InProceedings of the NSDI ’07(Cambridge, MA, Apr.
2007).

[8] COLLINS, M. P., SHIMEALL , T. J., FABER, S., JANIES, J.,
WEAVER, R., AND SHON, M. D. Using Uncleanliness to Pre-
dict Future Botnet Addresses. InProceedings of the 2007 Internet
Measurement Conference(San Diego, CA, Oct. 2007).

[9] COSTA, M., CROWCROFT, J., CASTRO, M., ROWSTRON, A.,
ZHOU, L., ZHANG, L., AND BARHAM , P. Vigilante: End-to-
end containment of internet worms. InProceedings of the 20th
ACM Symposium on Operating Systems Principles(Oct. 2005).

[10] DEAN, D., FRANKLIN , M., AND TUBBLEFIELD, A. S. An alge-
braic approach to ip traceback.Information and System Security
5, 2 (2002).

[11] DEERING, S. RFC 1112: Host Extensions for IP Multicasting,
Aug. 1989.

[12] FREEDMAN, M. J., LAKSHMINARAYANAN , K., AND

MAZI ÈRES, D. OASIS: Anycast for Any Service. In
Proceedings of NSDI’06(San Jose, CA, May 2006).

[13] GARFINKEL , T., PFAFF, B., CHOW, J., ROSENBLUM, M., AND

BONEH, D. Terra: a virtual machine-based platform for trusted
computing. InProceedings of the nineteenth ACM Symposium
on Operating Systems Principles(Bolton Landing, NY, October
2003).

[14] GARFINKEL , T., AND ROSENBLUM, M. A Virtual Machine In-
trospection Based Architecture for Intrusion Detection. In Pro-
ceedings of ISOC Network and Distributed System Security(San
Diego, CA, February 2003).

[15] GOPALAN, P., JAMIESON, K., MAVROMMATIS , P., AND PO-
LETTO, M. Signature metrics for accurate and automated worm
detection. InProceedings of the he 4th Workshop on Recurring
Malcode (WORM)(nov 2006).

[16] GUHA , S.,AND FRANCIS, P. Characterization and Measurement
of TCP Traversal through NATs and Firewalls. InProceedings of
the 2005 Internet Measurement Conference(New Orleans, LA,
Oct. 2005).

[17] HEIDEMANN , J., PRADKIN , Y., GOVINDAN , R., PAPADOPOU-
LOS, C., AND BANNISTER, J. Exploring Visible Internet
Hosts through Census and Survey. Tech. Rep. ISI-TR-2007-640,
USC/Information Sciences Institute, Marina del Rey, CA, 2007.

[18] HUSSAIN, A., HEIDEMANN , J., AND PAPADOPOULOS, C. A
framework for classifying denial of service attacks. InProceed-

13

ings of ACM SIGCOMM(Aug 2003).
[19] JUNG, J., KRISHNAMURTHY, B., AND RABINOVICH , M. Flash

crowds and denial of service attacks: Characterization andimpli-
cations for cdns and web sites. InProceedings of WWW(May
2002).

[20] JUNG, J., PAXSON, V., BERGER, A. W., AND BALAKRISHNAN ,
H. Fast portscan detection using sequential hypothesis testing. In
Proceedings of IEEE Symposium on Security and Privacy(Oak-
land, CA, May 2004).

[21] KANDULA , S., KATABI , D., JACOB, M., AND BERGER, A.
Botz-4-sale: Surviving organized ddos attacks that mimic flash
crowds. InProceedings of NSDI 2005(May 2005).

[22] KARAGIANNIS , T., PAPAGIANNAKI , D., AND FALOUTSOS, M.
Blinc: Multilevel traffic classification in the dark. InProceedings
of ACM SIGCOMM 2005(Aug. 2005), pp. 217–228.

[23] KEROMYTIS, A. D., MISRA, V., AND RUBENSTEIN, D. SOS:
secure overlay services.SIGCOMM Comput. Commun. Rev. 32,
4 (2002), 61–72.

[24] K IM , H.-A., AND KARP, B. Autograph: Toward automated, dis-
tributed worm signature detection. InProceedings of the Usenix
Security Symposium(Aug 2004).

[25] K IM , M.-S., KANG, H.-J., HUNG, S.-C., CHUNG, S.-H., ,
AND HONG, J. W. A flow-based method for abnormal network
traffic detection. InProceedings of the IEEE/IFIP Network Op-
erations and Management Symposium(April 2004).

[26] KREIBICH, C., WARFIELD, A., CROWCROFT, J., HAND , S.,
AND PRATT, I. Using Packet Symmetry to Curtail Malicious
Traffic. In Proceedings of the HotNets’05(College Park, MD,
Nov. 2005).

[27] LAKHINA , A., CROVELLA , M., AND DIOT, C. Mining anoma-
lies using traffic feature distributions. InProceedings of ACM
SIGCOMM 2005(Aug. 2005), pp. 217–228.

[28] LAKSHMINARAYANAN , K., ADKINS, D., PERRIG, A., AND

STOICA, I. Taming IP packet flooding attacks.ACM Computer
Communications Review 34, 1 (Jan. 2004), 45–50.

[29] MAHAJAN , R., BELLOVIN , S. M., FLOYD , S., IOANNIDIS, J.,
PAXSON, V., AND SHENKER, S. Controlling High Bandwidth
Aggregates in the Network.ACM Computer Communications Re-
view 32, 3 (July 2002), 62–73.

[30] MOORE, D. Network Telescopes: Observing Small or Distant
Security Events . InProceedings of the the 11th USENIX Security
Symposium (Security ’02)(San Francisco, CA, Aug. 2002).

[31] MOORE, D., PAXSON, V., SAVAGE , S., SHANNON, C., STANI -
FORD, S., AND WEAVER, N. Inside the Slammer Worm.IEEE
Security and Privacy 1, 4 (2003), 33–39.

[32] MOORE, D., SHANNON, C., AND KC CLAFFY. Code-Red: a
case study on the spread and victims of an Internet worm. In
Proceedings of the SIGCOMM Internet Measurement Workshop
’02 (Marseille, France, Nov. 2002).

[33] MOORE, D., SHANNON, C., VOELKER, G. M., AND SAV-
AGE, S. Internet Quarantine: Requirements for Containing Self-
Propagating Code. InProceedings of the INFOCOM ’03(San
Francisco, CA, Mar. 2003).

[34] MOREIN, W., STAVROU, A., COOK, D., KEROMYTIS, A.,
M ISHRA, V., AND RUBENSTEIN, D. Using graphic turing tests
to counter automated ddos attacks against web servers. InCCS
’03: Proceedings of the 10th ACM conference on Computer and
communications security(2003).

[35] PARK , K., AND LEE, V. S. P. K.-W. Securing web service by
automatic robot detection. InProceedings of USENIX 2006 An-
nual Technical Conference(May 2006).

[36] PAXSON, V. Bro: A System for Detecting Network Intruders in
Real-Time .Computer Networks 31, 23.

[37] RANJAN, S., SWAMINATHAN , R., UYSAL , M., AND

KNIGHTLY, E. Ddos-resilient scheduling to counter application

layer attacks under imperfect detection. InProceedings of INFO-
COM 2006(May 2006).

[38] RIVERHEAD NETWORKS, INC. DDoS Mitigation: Maintaining
Business Continuity in the Face of Malicious Attacks.

[39] SCHECHTER, S., JUNG, J., AND BERGER, A. Fast detection of
scanning worm infections. InProceedings of the Seventh Inter-
national Symposium on Recent Advances in Intrusion Detection
(Sep 2004).

[40] SCHECHTER, S. E., JUNG, J., AND BERGER, A. W. Fast De-
tection of Scanning Worm Infections. InProceedings of the 7th
International Symposium on Recent Advances in Intrusion Detec-
tion (French Riviera, France, Sept. 2004).

[41] SHAW, M. Leveraging Good Intentions to Reduce Unwanted Net-
work Traffic. In Proceedings of SRUTI’06(San Jose, CA, July
2006).

[42] SPITZNER, L. The honeynet project: trapping the hackers.Secu-
rity and Privacy Magazine, IEEE 1, 2 (March 2003), 15–23.

[43] SPRING, N., MAHAJAN , R., ,AND WETHERALL, D. Measuring
ISP Topologies with Rocketfuel. InProceedings of the Special In-
terest Group on Data Communications (SIGCOMM)(Pittsburgh,
PA, Aug. 2002).

[44] SRISURESH, P., FORD, B., SIVAKUMAR , S.,AND GUHA , S. In-
ternet BCP draft: NAT Behavioral Requirements for ICMP pro-
tocol, Oct. 2007. Work in progress. draft-ietf-behave-nat-icmp-
06.txt.

[45] STOICA, I., ADKINS, D., ZHUANG, S., SHENKER, S., AND

SURANA , S. Internet Indirection Infrastructure. InProceedings
of the SIGCOMM ’02(Pittsburgh, PA, Aug. 2002).

[46] TAN , P.-N., AND KUMAR , V. Discovery of web robot sessions
based on their navigational patterns.Data Min. Knowl. Discov. 6,
1 (2002).

[47] THOTTAN, M., AND JI , C. Anomaly detection in ip networks. In
IEEE Trans. Signal Processing (Special issue of Signal Process-
ing in Networking)(August 2003).

[48] TRUSTEDCOMPUTING GROUP. TPM Specification Version 1.2.
[49] UNIVERSITY OF OREGON. RouteViews Project.
[50] VON AHN, L., BLUM , M., HOPPER, N. J.,AND LANGFORD, J.

CAPTCHA: Using Hard AI Problems For Security. InProceed-
ings of EUROCRYPT’03(Warsaw, Poland, May 2003).

[51] WALFISH, M., VUTUKURU, M., BALAKRISHNAN , H.,
KARGER, D., AND SHENKER, S. DDoS Defense by Offense.
In Proceedings of SIGCOMM ’06(Pisa, Italy, September 2006).

[52] WANG, X., AND REITER, M. K. Defending against denial-of-
service attacks with puzzle auctions. InSP ’03: Proceedings of
the 2003 IEEE Symposium on Security and Privacy(Washington,
DC, USA, 2003).

[53] WEAVER, N., STANIFORD, S., AND PAXSON, V. Very Fast
Containment of Scanning Worms. InProceedings of the the 12th
USENIX Security Symposium(San Diego, CA, Aug. 2004).

[54] WILLIAMSON , M. M. Throttling viruses: Restricting propa-
gation to defeat malicious mobile code. InProceedings of the
8th Annual Computer Security Applications Conference (ACSAC
2002)(Las Vegas, NV, Dec. 2002).

[55] WONG, B., SLIVKINS , A., AND SIRER, E. G. Meridian: A
Lightweight Network Location Service without Virtual Coordi-
nates. InProceedings of SIGCOMM’05(Philadelphia, PA, Aug.
2005).

[56] YAAR , A., PERRIG, A., AND SONG, D. SIFF: A Stateless In-
ternet Flow Filter to Mitigate DDoS Flooding Attacks. InIEEE
Symposium on Security and Privacy(Pittsburgh, PA, May 2004),
pp. 130– 143.

[57] YANG, X., WETHERALL, D., AND ANDERSON, T. A DoS-
limiting Network Architecture. InProceedings of the SIGCOMM
’05 (Philadelphia, PA, Aug. 2005).

14

