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Abstract. The recent availability of large scale data sets profiling sin-
gle nucleotide polymorphisms (SNPs) and gene expression across differ-
ent human populations, has directed much attention towards discovering
patterns of genetic variation and their association with gene regulation.
The influence of environmental, developmental and other factors on gene
expression can obscure such associations. We present a model that ex-
plicitly accounts for non-genetic factors so as to improve significantly
the power of an expression Quantitative Trait Loci (eQTL) study. Our
method also exploits the inherent block structure of haplotype data to
further enhance its sensitivity. On data from the HapMap project, we
find more than three times as many significant associations than a stan-
dard eQTL method.

1 Introduction

Discovering patterns of genetic variation that influence gene regulation has the
potential to impact a broad range of biological endeavours, such as improving our
understanding of genetic diseases. Recent advances in microarray and genotyping
methods have made it feasible to investigate complex multi-gene associations on
a genome-wide level, through expression Quantitative Trait Loci (eQTL) studies
(see (1) and references therein). The vast number of potential associations and
relatively small numbers of individuals in current data sets makes it challenging
to discover statistically significant associations between genome and transcript.
Methods for improving the sensitivity and accuracy of such studies are therefore
of considerable interest.

In this paper, we describe a method to improve substantially the number of
significant associations found in an eQTL study. The main insight is that much
of the variation in gene expression is due to non-genetic factors, such as differing
environmental conditions or developmental stages (2). By explicitly accounting
for non-genetic variation, we can greatly improve the statistical power of eQTL
methods as most of the non-genetic variation is removed and real associations
stand out to a greater extent.
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Fig. 1. Example results of (a) standard eQTL, (b) our proposed method FA-eQTL
which accounts for non-genetic factors and (c) the same method applied to haplotype
blocks. In this region, standard eQTL does not find any significant associations but our
proposed methods finds a cis association for the gene SLC35B4. The significance of
the association is improved when haplotype blocks are considered instead of individual
SNPs.

Following (3), we also improve the accuracy of eQTL by exploiting the inher-
ent block structure present in haplotype data. By jointly considering all SNPs in
a haplotype block, it is possible to detect weaker associations than can be found
using single SNPs. For example, if the relevant SNP lies between the measured
marker SNPs, a haplotype block model can effectively perform imputation of
this missing SNP value leading to a stronger detected association.

The contributions of this paper are best illustrated by the plots of Fig. 1
showing the results of different eQTL methods over the same region of chromo-
some 7. The top plot demonstrates that no associations have been found using
a standard eQTL method, whilst the second plot shows a significant cis associa-
tion which only becomes visible when non-genetic factors are accounted for. The
bottom plot shows that, when haplotype blocks are used instead of individual
SNPs, the significance of this association is further increased to well above the
0.01% False Positive Rate (FPR) level.

The structure of this paper is as follows. In Section 2, we compare sev-
eral models of how non-genetic factors influence gene expression. The best of
these models is incorporated into an eQTL method in Section 3 and their power
demonstrated on data from the HapMap project (4). Section 4 describes how
this eQTL approach can be extended to exploit the block structure of haplotype
data. Section 5 concludes with a discussion.



2 Modelling Non-genetic Factors

In addition to variation due to genomic differences, human gene expression lev-
els vary because of differing developmental stages, environmental influences and
other physiological and biological factors. In principle, when collecting gene ex-
pression data sets for eQTL, non-genetic factors should be controlled to be con-



0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.25

0.3

0.35

0.4

Fraction of missing data ρ

M
ea

n 
sq

ua
re

d 
fil

l−
in

 e
rr

or

 

 

Mean value
Bayesian ICA
Bayesian PCA
Bayesian FA

Fig. 2. Comparative performance of various linear Gaussian models for filling-in miss-
ing gene expression values for X chromosome genes. The plot shows the mean squared
error in the fill-in predictions against the fraction of missing data ρ, averaged over four
runs with different training/test splits. Error bars show one standard deviation. The
factor analysis model gives the lowest fill-in error over a range of missing data rates.

For each method, we use an Automatic Relevance Determination (ARD) prior
on the variance of each column of W, so that the number of latent non-genetic
factors is learned automatically (11).

2.1 Investigation on HapMap expression data

We investigated these three models on gene expression measurements of individ-
uals from the HapMap project, consisting of the expression profiles for 47,294
gene probes profiled in EBV-transformed lymphoblastoid cell lines (12). The
parameters of each model were learned from the expression levels of 512 X chro-
mosome gene probes from a randomly-selected 75% of the HapMap individuals,
with the maximum number of non-genetic factors set to 40 (during learning sev-
eral of these factors were switched off by ARD). Bayesian learning was achieved
with a fully-factorised variational approximation using the VIBES software pack-
age (13). For the 25% of individuals not used for training, we removed a fraction
ρ of the expression measurements and applied each learned model to fill-in these
missing values. The idea behind this experiment is that models which better cap-
ture the latent causes of the observed gene expression levels, will better predict
missing expression levels from partial observations. The accuracy of the fill-in
predictions for each model was assessed in terms of mean squared error. The re-
sults are shown in Figure 2, along with a baseline prediction given by the mean
expression across the training individuals. These results show that the factor
analysis model gives the best fill-in performance, even when large fractions of
the data are missing. Hence, we use factor analysis to model non-genetic effects.



3 Accounting for Non-genetic Factors in eQTL

Standard eQTL methods assess how well a particular gene expression level is
modelled when genetic factors are taken into account, compared to how well
it is modelled by a background model that ignores genetic factors (14). The
relevant quantity is the log-odds (LOD) score,

log10
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j

P (ygj | sj , θg)

P (ygj | θbck)






(2)

where sj is a SNP measurement and ygj the gene expression level of probe g, for
the jth individual. The terms θg, θbck are parameters for probe g of the genetic
and background models respectively. The LOD scores can then be plotted against
the location of the SNP over a large genomic region to give an eQTL scan for
each gene expression g.

To account for non-genetic factors, we modify this approach to use the factor
analysis model of the previous section, denoting the new method FA-eQTL. In
FA-eQTL, the LOD score compares a full model of both genetic and non-genetic
factors to a background model which only includes non-genetic factors,

log10







∏
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P (ygj | sj , θg,wg,xj)

P (ygj |wg,xj)






(3)

where xj are the latent non-genetic causes for the jth individual and wg is the
gth row of the weight matrix W described in the previous section. For the full
model, which incorporates both genetic and non-genetic factors, we model the
expression value of gene g for the jth individual by

P (ygj | sj , θg,wg,xj) = N
(

genetic
︷ ︸︸ ︷

sj .θg +

non−genetic
︷ ︸︸ ︷
wgxj , ψg

)

, (4)

where N (m, τ) represents a Gaussian distribution with mean m and variance
τ . The variable sj encodes the state of a particular SNP whose relevance we
want to assess, and θg captures the change in gene expression caused by this
SNP. The SNP state sj is the sum of two indicator vectors encoding the two
alleles measured for this SNP. Each indicator vector has a one at the location
corresponding to the measured allele and zeroes elsewhere. The noise is Gaussian
with learned variance ψg. The full model is shown graphically in the Bayesian
network of Figure 3.

For the background model, we use exactly the factor analysis model of the
previous section. Hence, P (ygj |wg,xj) also has the Gaussian form of Eqn. 4, but
where the mean consists of only the non-genetic term. For completeness, we also
tested ICA and PCA as alternatives to FA but found that these led to weaker
associations, showing that the results of the fill-in experiments of Section 2 do
indeed indicate how well each model accounts for non-genetic effects.
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Fig. 3. The Bayesian network for the full model that includes both genetic (green)
and non-genetic factors (red) when explaining gene expression levels. The rectangle
indicates that contained variables are duplicated for each individual. See the text for
a detailed explanation of this model.

When there is extra information about each individual, it can also be incor-
porated into the full and background models. For example, the HapMap indi-
viduals are divided into three distinct populations with African ancestry (YRI),
European ancestry (CEU) and Asian ancestry (CHB,JPT). Certain SNP and
probe measurements have differing statistics in each population, which can lead
to false associations. To avoid such false associations, we introduce an additional
three-valued ‘virtual’ SNP measurement encoding the population each individ-
ual belongs to, and extend the sum in the mean of Eqn. 4 to include a linear
relation to this measurement. For similar reasons, we also include a binary mea-
surement encoding each individual’s gender. If desired, we can investigate the
association of a probe to multiple SNPs jointly by extending Eqn. 4 to a sum
over all SNPs in a region (or in multiple disjoint regions) as described in (3).

3.1 FA-eQTL on HapMap Data

We applied both the standard eQTL method and the FA-eQTL method to the
HapMap Phase II genotype data (4) and corresponding gene expression mea-
surements (12). Both methods were applied to chromosomes 2, 7, 11 and X. For
each chromosome, only probes for genes within that chromosome were included,
so that only within-chromosome associations were tested.

An issue with using the FA-eQTL model for chromosome-wide scans is the
very high computational cost of re-learning the factor analysis model at each
locus. To avoid this, we learned each wg and xj once for the background model
and kept them fixed when learning the full model. This approximation is accurate
only if the genetic and non-genetic models are nearly orthogonal. To test this
assumption, we estimated the contribution to the gene expression levels due to
the non-genetic factors alone, given by Wx, and treated it as expression data
in standard eQTL. If the genetic and non-genetic models are nearly orthogonal,
then we would expect that no significant association would be found between
any SNP and these reconstructed expression levels. This was indeed the case,



Chr. Position gene
ΔeQTL

score

ΔFA-eQTL

score

7 7.55Mb POMZP3 79.1 73.2

7 12.81Mb IRF5 64.9 79.4

11 7.41Mb XRRA1 63.9 70.4

X 11.18Mb AMOT 52.0 56.0

2 24.17Mb STK25 51.7 95.0

7 11.57Mb CAV2 51.4 51.3

7 11.57Mb CAV2 48.0 48.0

2 21.69Mb RPL37A 47.7 71.9

2 20.13Mb PPIL3 44.0 60.5

11 6.40Mb SF1 33.4 33.9

11 6.66Mb RPS6KB2 33.2 77.3

2 8.58Mb POLR1A 32.4 72.1

11 1.83Mb LDHC 28.6 28.7

11 0.04Mb CD151 27.8 45.6

11 6.82Mb MRPL21 27.8 79.2

11 5.68Mb TIMM10 27.3 49.4

7 10.78Mb THAP5 27.1 81.6

11 3.29Mb CSTF3 25.4 72.5

7 9.91Mb TRIM4 24.9 64.4

2 4.65Mb CRIPT 24.4 45.5

2 9.88Mb TSGA10 22.9 28.3

11 0.20Mb C11orf21 21.1 20.2

2 7.42Mb MRPL53 20.5 39.8

2 2.50Mb DTNB 18.9 29.4

7 15.60Mb C7orf13 18.5 24.3

11 4.35Mb HSD17B12 18.0 48.7

11 11.81Mb TRAPPC4 17.9 58.3

7 6.45Mb RABGEF1 16.5 45.4

...

X 48.32Mb RBM3 0.2 8.8
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b)
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Fig. 4. Examples of the improved association significance for FA-eQTL over standard
eQTL. The plots a) and b) give two example regions where FA-eQTL increases the
significance of cis associations found by standard eQTL and also finds additional cis

associations. Horizontal lines indicate the threshold value corresponding to 0.01% FPR
for relevant genes. Arrows indicate gene coding regions. The table shows associations
ranked how much the eQTL score is above the FPR threshold (∆eQTL) along with the
corresponding score above threshold for FA-eQTL (∆FA-eQTL). For the associations
found by both methods, the FA-eQTL score is on average 21.8 higher than the eQTL
score, demonstrating the advantage of accounting for non-genetic factors.

for example, the highest LOD score over the entirety of chromosome 2 was just
11.4 which is not statistically significant. Also for computational reasons, we
apply maximum likelihood methods to estimate the parameters θ, rather than
the variational approach which is Bayesian but much more expensive. Because
maximum likelihood methods perform poorly with little data, we remove SNPs
where two or fewer individuals have the minor allele.

Fig. 4 shows the results of FA-eQTL and standard eQTL applied to the
HapMap data. The table lists associations ranked by the difference between the
eQTL score and the 0.01% FPR threshold. For comparison the corresponding
FA-eQTL score difference (computed from the highest score within 50 loci of
the eQTL peak) is also listed. We consider all associations found in any 100kbp
window as a single association, so as not to over count associations due to linkage
disequilibrium between SNPs. Across all associations found by eQTL, the FA-
eQTL scores are higher in all but five cases, with an average score change of



+21.8. The plot of Fig. 4a gives an example of the improvement gained, where
FA-eQTL increases the LOD score of four cis associations found by eQTL. The
plot of Fig. 4b illustrates that some weaker cis associations missed by eQTL are
picked up by FA-eQTL, for the genes SLC38A5, FTSJ1 and SUV39H1.

To quantify the improvement in power given by the FA-eQTL model, we
counted the number of associations found at a 0.01% FPR for each model (Ta-
ble 1). Using the factor analysis model to explain away non-genetic effects more
than doubles the number of significant associations found (from 81 to 222).

Chr 2 Chr 7 Chr11 Chr X Total FDR

eQTL 24 13 39 5 81 2%
FA-eQTL 82 44 84 12 222 2%

Table 1. Number of associations found at a 0.01% FPR and corresponding FDR

False Positive Rates (FPRs) were estimated empirically for each chromosome
using 30,000 permutations across randomly selected regions of length 500 SNPs.
For each gene the threshold score was set to give a FPR of 0.01%. False Discovery
Rates were calculated from this fixed FPR, the number of conducted tests and
the number of associations found for a specific gene. Since almost all of the
associations we find are cis each gene generally has either exactly one or no



We applied a method for discovering haplotype blocks that explains each
individual’s haplotype using pieces of a small number of learned ‘ancestor’ hap-
lotypes, where the pieces break at block boundaries. The particular model we
used is the recently proposed piSNP model (15) which accounts for population
structure to give increased accuracy when learning the ancestral haplotypes. The
learning process discovers the haplotype block boundaries and indicates which
ancestral haplotype is used for each block. We define Block FA-eQTL to be the
FA-eQTL method previously described but where the measurements sj are over
ancestors rather than alleles and are measured for each block rather than each
locus. Also, as there are fewer blocks than SNPs, it is computationally affordable
to enhance the noise model for Block FA-eQTL. To do this, we model v as a
mixture of a Gaussian distribution and a uniform distribution. This heavy tailed
noise model is more robust to outliers and considerably reduces the false positive
rate, at the cost of around a fifty-fold increase in computation time.

4.1 Block FA-eQTL on HapMap Data

Due to the computational expense of Block FA-eQTL, it was only applied to 500
SNP regions within each chromosome, with the number of ancestors set to ten. A
region was analysed if it was in the top 100 regions ranked by a soft-max criterion,

S = 1
N1/p

(
∑N

n=1(LODn)p
)1/p

with p = 3. This criterion identifies both regions

with high single-locus peaks and regions where the LOD score is high over an
extended area. The selected regions contained all the associations found with
FA-eQTL in the previous section. Figure 5 illustrates the benefits of learning
associations using haplotype blocks. The plot of Fig. 5a shows the LOD scores
for FA-eQTL and Block FA-eQTL for a region containing a strong association.
The form of this association is shown in Fig. 5b where the expression level of the
AMOT gene plotted against the SNP allele and haplotype block at the locations
marked with red arrows. The block model is able to pull out population-specific
associations which are not apparent in the single SNP plot.

This difference is shown more clearly in the second example of Fig. 5 c,d
where blocking causes a cis association to move from just above to well above
the 0.01% FPR significance threshold. Table 2 shows that for each of the four
chromosomes tested we identify more significant associations using haplotype
blocks compared to the single SNP approach. Out of the total of 274 associations
at the 0.01% FPR level, only five are trans, all at sufficiently low significance
levels to suggest that they are false associations.

Chr 2 Chr 7 Chr11 Chr X Total FDR

FA-eQTL 82 44 84 12 222 2%
Block FA-eQTL 117 57 86 14 274 2%

Table 2. Number of associations found at a 0.01% FPR and corresponding FDR

Transcription factor study We selected a subset of 960 gene probes listed
as transcription factors in the BDB database ver 2.0 (16). FA-eQTL was then
applied genome-wide to search for trans associations to these probes. Only one
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Fig. 5. Left: FA-eQTL scores for SNPs and haplotype blocks, showing the 0.01% FPR
threshold for the gene corresponding to the strongest association. Blocking leads to
improved association significance. Right: Scatter plots of mRNA levels against the
SNP allele and block ancestor at the locations marked with red arrows in the left plots.

significant trans association was found: between DPF2 and a region in chro-
mosome 12 (54.5Mb). Testing for associations of all expression levels to this
genomic region, we identified an additional cis association with RPS26 and a
second trans association with FLT1. The expression profiles of RPS26 and FLT1

show strong correlation whilst RPS26 and DPF2 are strongly anti-correlated. A
plausible biological explanation is that the ribosomal protein RBS26 is mediat-
ing the expression of both FLT1 (vascular endothelial growth factor) and DPF2

(apoptosis response zinc finger protein).

5 Conclusion

In (17), Sen and Churchill described two effects that act to obscure QTL as-
sociations, “First is the environmental variation inherent in most quantitative
phenotypes. Second is the incomplete nature of the genotype information, which
can only be observed at the typed markers”. By explicitly modelling non-genetic
variation and by using a haplotype block model, we have accounted for both of
these effects. Our results on HapMap data demonstrate that countering these
effects leads to a more than threefold increase in the number of significant asso-
ciations found. Given this performance of Block FA-eQTL, we now plan to scale
it so that it can be applied exhaustively across all probes and SNPs.
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