
Reconfiguring a State Machine

Leslie Lamport Dahlia Malkhi Lidong Zhou

7 February 2008

Abstract

Reconfiguration means changing the set of processes executing a distributed
system. We explain several methods for reconfiguring a system implemented us-
ing the state-machine approach, including some new ones. We discuss the rela-
tion between these methods and earlier reconfiguration algorithms—especially
view changing in group communication.

Contents

1 Introduction 1

2 State Machines 2
2.1 Preliminaries . 2
2.2 Garbage Collection . 3
2.3 Reconfiguration Made Easy . 3
2.4 Correctness . 4

3 Reconfiguration Made Harder 4
3.1 Stopping a State Machine . 5

3.1.1 The Stop Sign . 5
3.1.2 Padding . 5
3.1.3 The Brick Wall . 5

3.2 Choosing a New Configuration . 7
3.3 Combining the Command Sequences 7
3.4 The Interface . 8

4 Conclusion 9

References 11

1 Introduction

A fault-tolerant system may need to change the set of processes that is executing it—
a procedure called reconfiguration. Reconfiguration can be performed to reduce the
vulnerability to further failures after a process has failed [22] or to replace hardware
without shutting down the system. Distinguishing process failure from transient
communication problems is often a challenging engineering problem. Waiting too
long to reconfigure can reduce fault tolerance, but not waiting long enough can lead
to thrashing. A reconfigurable system provides an interface for reconfiguring it,
separating reconfiguration from the decision of when to reconfigure and what new
configuration to use. That decision can be made by any desired algorithm or by a
human operator.

A state machine (also called an object [11]) accepts commands and produces
outputs. The functional behavior of any system can be specified by a state ma-
chine [13]. The state-machine approach consists of implementing a fault-tolerant
distributed system (or subsystem) by describing it as a state machine and using a
general fault-tolerant algorithm to implement that state machine [18, 21]. A state
machine’s definition and the correctness of its implementation directly imply the
correctness properties of the system.

An important property provided by the state-machine approach is irrevocability
of output. For a stock exchange, irrevocability means that if a broker receives output
from the system confirming that a customer has bought 100 shares of Nocturnal
Aviation, then she really owns them. Even if the broker’s computer is destroyed by
an asteroid, the customer can go to any other broker and sell those shares. Without
irrevocability, it is hard to explain what fault tolerance means for a system.

With the state-machine approach, it is easy to make a system reconfigurable
by letting the state machine itself specify the configuration [15, 21]. Although this
basic idea was described more than twenty years ago [14] and is implicit in earlier
process-control applications [22], it still appears not to be well understood. We
therefore review it along with the state-machine approach in Section 2.

Another approach that may seem more intuitive is to reconfigure the system by
terminating the state machine, letting it choose the new configuration, then resum-
ing execution with a new state machine that uses the new configuration. This is
the way reconfiguration is viewed in group communication [5, 7]. We show in Sec-
tion 3 that, while it is not as simple as the classic one described in Section 2, this
approach does lead to new reconfigurable state-machine implementations. These
two approaches to reconfiguration are different paths to obtaining reconfiguration
algorithms, but they do not imply any fundamental difference in the resulting algo-
rithms.

The relation between reconfiguration in the state-machine approach, in group
communication, and in some particular systems is discussed in the conclusion. Al-
though most of our methods for state-machine reconfiguration work in the presence
of malicious processes, the body of this paper considers only omission faults. Mali-
cious faults are discussed in the conclusion.

1

2 State Machines

2.1 Preliminaries

A state machine is described by a set of states, an initial state, and a function that
maps command-state pairs to output-state pairs. If the pair 〈c, s 〉 is mapped to
the pair 〈o, s ′ 〉, then we say that executing command c in state s produces output
o and changes the state to s ′. Execution of a state machine consists of executing a
sequence of commands in the obvious way, starting with the initial state, to produce
a sequence of outputs and new states. A noop is a special command that produces
a null output and leaves the state unchanged.

A state-machine implementation provides an interface by which clients propose
commands to the system and receive outputs from it. Outputs may be sent to
clients other than the proposer, but the proposer usually receives output at least
informing it that the command was executed. A command can include the identity
of the client that proposes it, and the state machine can be specified to treat the
command as a noop if the client is not authorized to propose it.

The safety requirement for a state-machine implementation is that the outputs
received by all clients are generated by a single sequence of chosen commands, each
of which has been proposed by a client. (A more complete specification also requires
the state machine/object to be linearizable [11].) The safety requirement implies
irrevocability.

As with any fault-tolerant distributed algorithm, the precise liveness property
satisfied by a state-machine implementation depends on the details of how it is
implemented. It states approximately that, if enough servers are nonfaulty, then
proposed commands are added to the sequence of chosen commands and their out-
puts delivered to nonfaulty clients.

There are two (usually non-disjoint) sets of servers called acceptors and learners.
Acceptors choose the commands to be executed; learners maintain the state, learn
what commands are chosen, and execute them, generating the outputs. Acceptors
essentially provide stable storage and do not care what commands are chosen. Mak-
ing progress despite the failure of any f servers requires at least 2f + 1 acceptors
and f + 1 learners [16].

The classic way of implementing a state machine is with a consensus algorithm
for choosing a single command. The implementation runs a sequence of logically
separate instances of the consensus algorithm, using instance i to choose the i th

command. Most state-machine implementations use a special subset of learners
called leaders. A client proposes a command c by sending it to a leader, which
assigns it a number i and proposes c as the command to be chosen by consensus
instance i . The number i assigned to command c can be included in the output
generated by executing c. How client commands are delivered to a leader is an
instance of the general problem of how clients of a distributed system locate the
servers executing the system. We do not discuss this problem.

A leader does not have to wait until command i is chosen before proposing
another command as number i +1. Different commands can be chosen concurrently.

2

In general, command i cannot be executed and its output determined until all
commands numbered less than i have been chosen. However, there are important
cases in which the output of a command can be generated as soon as the command is
chosen—for example, if the output reveals only the command’s number and the fact
that it has been executed. Because the choice is irrevocable, choosing a command
is tantamount to executing it. (Linearizability is satisfied if command numbers are
consistent with the order in which the commands are proposed.)

2.2 Garbage Collection

In a non-reconfigurable system, we could allow the acceptors to maintain forever
their information for each instance of the consensus algorithm. At any time, a
learner could then learn the entire sequence of chosen commands by communicat-
ing with enough acceptors, where enough generally means a majority. In practice,
consensus instances must usually be garbage collected. Periodically, learners check-
point the state at some point in the execution sequence and instruct the acceptors
to forget about consensus instances for earlier commands. Exactly how this is done
is an engineering detail that does not concern us.

2.3 Reconfiguration Made Easy

A configuration is the set of processes (clients, acceptors, etc.) that are executing
the system. The consensus algorithm used to implement a state machine assumes
a fixed configuration, so we must ensure that each instance of that algorithm is
executed by a single configuration. (It is the set of acceptors that is important;
adding or removing clients or learners while executing a consensus algorithm is
not a problem.) Reconfiguration is achieved by using different configurations for
different instances. We define the configuration at command number i to be the
one used to execute consensus instance i .

To prevent chaos, processes must agree on the configuration at command i . The
easy way to obtain a reconfigurable state-machine implementation is to introduce
a component cfg of the state-machine state that specifies the current configuration.
In other words, the configuration at command i is determined by the value of cfg
in the state immediately following execution of command i − 1, or by its initial
value if i = 1. (We use ordinal numbers for commands, so the first command is
number 1.) We add reconfiguration commands of the form rcfg(C), which specifies
a new configuration C.

The obvious way to define the state machine is to let executing rcfg(C) set cfg
to C, so reconfiguration occurs immediately. We call this method R1. The problem
with R1 is that it prevents concurrent processing of different proposed commands.
Since the configuration used to execute instance i + 1 of the consensus algorithm
can be changed by executing command i , the state-machine implementation cannot
begin choosing command i + 1 until command i has been chosen.

To allow concurrent processing of commands, we define the state machine (by
introducing additional state) so that executing rcfg(C) as command number i causes
cfg to change after executing command i + α − 1, for some positive integer α. A

3

reconfiguration command thus takes effect α commands later, allowing the concur-
rent processing of up to α commands. (This was originally described for α = 3
in the mistaken belief that the generalization would be obvious [15].) We call this
method Rα. As the notation implies, R1 is the α = 1 case of Rα.

To make the reconfiguration happen right away, a client that proposes a recon-
figuration command can propose noops as the next α−1 commands. A sequence of
successive commands, with successive command numbers, can be batched so that
they are proposed, chosen, and executed as efficiently as (using no more messages
than) a single command. Thus, α can be made arbitrarily large, permitting the
concurrent processing of any desired number of commands. To maintain correct-
ness, the implementation must produce the same result as if each instance of the
consensus algorithm were executed separately.

With methodRα, reconfiguration is performed using the ordinary state-machine
interface for proposing commands. Only a subset of the clients might be authorized
to propose reconfiguration commands, effectively separating the reconfiguration in-
terface from that used to propose other commands.

2.4 Correctness

A simple induction argument shows that Rα maintains the safety property of a
state-machine implementation. In particular, it satisfies irrevocability. Liveness for
a state-machine implementation states that it makes progress if enough servers are
nonfaulty. Reconfiguration raises the question, enough of which servers?

The purpose of reconfiguration is to eliminate the dependence on servers that

stop that execution, choose the new configuration, and start the execution of state-
machine implementation number v + 1 by that configuration. The starting state of
state machine v + 1 is the final state of state machine v .

This approach requires solving three largely orthogonal problems: (i) stopping
the current state machine, (ii) choosing the configuration to implement the next
state machine, and (iii) combining the sequence of commands chosen for each sep-
arate state machine into a single sequence. We consider them separately, starting
with three basic methods for implementing a stoppable state machine.

3.1 Stopping a State Machine

3.1.1 The Stop Sign

The Stop-Sign method adds to the state machine a stop command that turns every
subsequent state-machine command into a noop. Unlike algorithmR1 of Section 2.3,
this method allows multiple commands to be chosen concurrently. Any command
chosen after the stop command simply has no effect. However, the Stop-Sign method
has the following problem. As explained in Section 2.1, an ordinary state-machine
implementation allows an output like “this command was executed” to be generated
as soon as the command has been chosen. The Stop-Sign method does not allow
any command’s output to be generated before every lower-numbered command has
been chosen, since one of those commands could turn out to be stop.

The delayed Stop-Sign method allows command number i to be executed, if
possible, as soon as it and all commands numbered at most i −α have been chosen.
Just as Rα generalizes R1 to make the reconfiguration command take effect α
commands later, the delayed Stop-Sign method generalizes the stop command to
take effect α commands later. In other words, if command number i is a stop, then
all commands starting with number i + α are treated as noops. As with Rα, the
client proposing the stop command can at the same time propose α− 1 consecutive
noop commands.

3.1.2 Padding

We have already observed that we can batch a sequence of commands and process
them essentially as easily as a single command. This applies equally well to an
infinite sequence of consecutive commands, if all but a finite number of them are
noop commands. (It is easy to devise a finite encoding of the information needed
to execute the infinite number of consensus instances.) In the Padding method, a
client stops the state machine by proposing an infinite number of noop commands.
More precisely, it proposes noops for all commands numbered greater than some i .
When command number j has been chosen for all positive integers j , the state
machine has stopped.

3.1.3 The Brick Wall

The Stop-Sign and Padding methods use the underlying state-machine implemen-
tation, so their correctness follows immediately from the correctness of that imple-

5

mentation. However, they may seem unintuitive—the Stop-Sign method because
it can choose commands that are never executed by the state machine and the
Padding method because it fills the sequence with infinitely many noop commands.
We now describe the Brick-Wall method that is conceptually simpler but requires
a new state-machine implementation called Stoppable Paxos.

Like the Stop-Sign method, Stoppable Paxos assumes a special stop command.
However, it guarantees that if a stop command is chosen as command number i ,
then no command can ever be chosen for any command number greater than i . A
precise description and rigorous correctness proof of Stoppable Paxos will appear
elsewhere. Here, we briefly sketch the algorithm, starting with a description of
classic Paxos [15].

As described in Section 2.1, Paxos implements a state machine by using logically
separate instances of a consensus algorithm. It assumes a method for selecting a
leader, guaranteeing progress only when there is a unique leader. (Safety is preserved
despite multiple leaders.) The Paxos consensus algorithm uses numbered ballots,
each initiated by at most one leader. (Do not confuse ballot numbers with consensus-
instance/command numbers.) A newly selected leader chooses a ballot number b
it believes to be greater than any already used, and it begins ballot b by sending
a phase 1a message to the acceptors, who respond with phase 1b messages. If the
leader has chosen b large enough and it receives phase 1b messages from a majority
of the acceptors, then it will learn that either:

P1. Command c (and no other command) might have been chosen by a lower-
numbered ballot, or

P2. No command has been chosen by a lower-numbered ballot.

The leader then proposes a command in ballot b by sending a phase 2a message to
the acceptors, proposing c in case P1 and any command in case P2. If no higher-
numbered ballot is begun, the proposed command will be chosen when a majority
of acceptors receive the phase 2a message. The Paxos state-machine algorithm
is efficient because the phase 1a and 1b messages sent by any one process for all
consensus instances are bundled into a single physical message.

Stopping Paxos prevents a leader from proposing a command if stop could be
chosen as a lower-numbered command. To describe how this is done, we first define
ξ(b, i), for ballot b of consensus instance i , to equal the command c of case P1 above,
and to equal ⊥ in case P2. Stopping Paxos places the following two additional
constraints on what command a leader can propose in ballot b of instance i :

S1. It cannot propose any command if, for some j < i , it proposed a reconfigura-
tion command in ballot b of instance j or ξ(b, j) is a reconfiguration command.

S2. It cannot propose a reconfiguration command if, for some k > i , it has pro-
posed a command in ballot b of instance k or ξ(b, k) 6= ⊥.

It is not hard to show that S1 and S2 prevent instance i from choosing any command
if a lower-numbered instance chooses stop. However, S1 can prevent progress if a

6

reconfiguration command is proposed but not chosen by a ballot numbered less
than b in instance j < i . To eliminate this problem, we modify the definition of
ξ approximately as follows: in case P1, ξ(b, i) equals ⊥ if c is a reconfiguration
command proposed in ballot b′ < b and some command was proposed in ballot b′′

of instance k with b′′ > b ′ and k > i . The precise definition and the proof that this
works are not trivial.

3.2 Choosing a New Configuration

When changing from state-machine implementation v to state-machine implemen-
tation v +1, there are two basic ways to choose the new configuration that executes
implementation v + 1:

R1. Let it be chosen by a reconfiguration command executed by state machine v .

R2. Use a special instance of the consensus algorithm, executed by the same con-
figuration that executes state machine v .

Option R2 has the potential advantage of allowing the processes in configuration
v + 1 to be determined and commands to be chosen for state machine v + 1 before
state machine v has been stopped. It is not clear if this is ever a good idea in
practice. For option R1 to work, we must:

(a) Make sure that a reconfiguration command is passed before configuration v is
terminated, and

(b) Decide what to do if multiple reconfiguration commands are passed.

The solution to (a) is obvious for the Stop-Sign and Brick-Wall methods—namely,
let the stop command specify the new configuration. For the Padding method, a
client should make sure that a reconfiguration command has been chosen before
it proposes an infinite sequence of noops. (If no reconfiguration is chosen, then
configuration v + 1 is the same as configuration v .)

Problem (b) does not exist for the Brick-Wall method. For the other methods,
there are two obvious choices: use either the first reconfiguration command that was
passed or the last one. If we use the first one, then the system can start choosing
commands for configuration v +1 as soon as all chosen commands through the first
reconfiguration command are known.

3.3 Combining the Command Sequences

We have shown how to initiate and execute a sequence of state-machine implemen-
tations, all but possibly the last one being stopped. State machine number v is
executed with configuration v .

If a state machine has been stopped, it has a unique “last interesting” command.
For the Stop-Sign or Brick-Wall method, that command is the (first) stop command.
For the delayed Stop-Sign method, it is α − 1 commands after the stop command.
For the Padding method, it is the last non-noop command. Let η(v) be the number

7

of the last interesting command of state machine number v , and define η(0) to
equal 0.

Let us assign the “number” 〈v , i 〉 to the i th command chosen for state machine
number v . With the usual lexicographical ordering of pairs, this provides a linearly
ordered numbering of the sequence of all chosen commands. However, it is not a
useful numbering scheme because it does not tell a client whether there are any
commands between the ones numbered 〈4, 417〉 and 〈5, 1〉. It is better to number
commands with consecutive positive integers.

To give commands integer numbers, we observe that there is no reason why a
state machine’s command numbers should start with 1. Let us make the starting
number a parameter of the state machine, and let the first command of state machine
number v + 1 be one greater than that of the last interesting command of state
machine v . In other words the first command of state machine v + 1 has number
η(v)+1. Thus, command i is the one chosen as command number i of state machine
number v , where η(v−1) < i ≤ η(v). To implement this, the choosing of commands
in state machine v + 1 cannot begin until the value of η(v) is known.

In a naive implementation, each process would maintain a two-dimensional array
of data, where element 〈v , i 〉 contains the data maintained for consensus instance
i of state machine number v . However, for state machine v , there is no consensus
instance i if i ≤ η(v−1), and it does not matter what value is chosen by instance i if
i > η(v). In any state-machine implementation that uses a sequence of completely
separate consensus instances, a process need maintain information for instance i
only for the largest state machine number v for which processing of command i
has been initiated. To make this true using a state-machine implementation like
Stoppable Paxos, in which the execution of other consensus instances can depend
on the state of consensus instance i , the implementation must be modified so it can
forget the state of instance i when i > η(v). For Stoppable Paxos, the modification
is simple.

3.4 The Interface

In the reconfiguration methods based on a sequence of state machines, a state
machine is stopped by proposing either a stop command or an infinite sequence of
noop commands. If the new configuration is specified by a state-machine command
(option R1), then the entire reconfiguration is performed using the ordinary state-
machine interface. If the new configuration is determined by a special consensus
instance that is not part of a state-machine execution (option R2), then a separate
interface is required to specify the configuration.

In practice, any of these methods would use a separate interface for issuing
reconfiguration requests. The state-machine commands needed to perform the re-
configuration would be proposed by a leader, which would also initiate the special
consensus instance in option R2.

8

4 Conclusion

In the state-machine approach, a fault-tolerant distributed system is built on top
of a fault-tolerant state-machine implementation. The correctness properties of the
system, including irrevocability, follow from the definition of the state machine and
correctness of the state-machine implementation. A reconfigurable state-machine
implementation provides an interface for choosing the configuration that executes
the system. Section 2 reviewed the obviously correct method Rα for making a
state-machine implementation reconfigurable. Section 3 introduced other methods
for doing this. Except for the Brick-Wall method, their correctness follows directly
from the correctness of the underlying consensus algorithm.

Group communication (GC) is an alternate method for implementing a fault-
tolerant distributed system, in which a group of processes called a view execute a
broadcast mechanism so that all nonfaulty processes in the view receive the same
set of messages [5, 4]. Reconfiguration is an integral part of GC, being required to
achieve fault tolerance. There are a number of different versions of GC that provide
different guarantees. Here, we consider only a few of the versions that produce a
consistent total ordering of delivered messages, referring the reader to the survey
by Chockler et al. [7] for a more detailed account of previous work.

A GC service provides an interface in which the processes in a view send mes-
sages. An ordered sequence of sent messages is delivered to the processes. Each
delivered message is usually chosen by the view’s processes with an unreliable con-
sensus algorithm—an algorithm that guarantees at most one message is chosen,
but may be prevented from making progress by the failure of even one process.
(Unreliable consensus is usually implemented with a leader whose failure prevents
progress.) In the event of failure, the current view is ended and a new one is be-
gun. The view change is performed by using a fault-tolerant consensus algorithm
to determine (i) the sequence of messages that were delivered in the old view and
(ii) the members of the new view. The interface provided by a GC service typically
allows processes to enter and leave a view and to learn what processes belong to
the view, but the implementation may spontaneously change the view in response
to a failure.

There is an obvious correspondence between GC and the state-machine approach
in which a view corresponds to a configuration. We can consider a state-machine
implementation to be based on a GC service whose messages are commands, where
the delivered messages are the chosen commands. This correspondence is most ob-
vious for the implementations of Section 3 based on a sequence of state machines.
Conversely, we can consider a GC service to implement something like a state ma-
chine whose commands are of the form send message m and whose state is the
sequence of delivered messages.

If the GC service does implement a real message-sending state machine with
irrevocable message delivery, then using it to implement an arbitrary state machine
is straightforward. Whether or not it does depends on exactly how it performs
a view change. The property required of the GC view-changing operation was
called Virtual Synchrony by Birman and Joseph [5]. As originally defined, Virtual

9

Synchrony requires that the new view contain a majority of the old view’s processes,
and that the messages delivered to any process in that majority be declared to have
been delivered in the old view. This requirement is not strong enough to ensure
irrevocability, since a broker’s computer will not be in the new view if it has been
hit by an asteroid, so a message committing a stock sale need not be declared by
the view change to have been delivered. (This has been observed before [20, 12].)

It is not hard to implement the stronger requirement that messages delivered
by any process in the old view are declared to have been delivered. We need
only require that before a process delivers a message, it learns that a majority of
processes in the view know that the message was sent. A value proposed to the
view-changing consensus algorithm as the old view’s sequence of delivered messages
must include all messages that some majority of processes knows to have been sent.
With the stronger requirement, it is easy to make the GC service implement a state
machine. Such stronger services do exist, including Isis’s GBCAST protocol [5] and
the “Safe” messages of Transis [8] and Totem [1]. A GBCAST/Safe message is
delivered after all members of the view received it. These services have been used
to provide consistent totally ordered broadcast by implementing a view-changing
decision that forces delivery of any received GBCAST/Safe message [9, 12, 20].
Babaoglu et al. [3] take the direct approach of delaying delivery of a message until
a majority of processes acknowledge having received it.

State-machine implementations seem quite different from GC. They use a reli-
able consensus algorithm to choose each command, while GC implementations use
an unreliable consensus algorithm to broadcast a message and invoke a reliable con-
sensus algorithm only on a view change. However, an “asynchronous” consensus
algorithm executes a sequence of unreliable consensus algorithms—for example, the
individual ballots of Paxos—stopping when a command is chosen. The unreliable
consensus algorithm used by GC to broadcast a message can be viewed as just the
first one of a reliable consensus algorithm, the rest of the consensus algorithm being
performed simultaneously for all messages at the view change. This is effectively
what happens in Paxos when a leader fails and a new ballot is begun simultaneously
for all instances of the consensus algorithm. A state-machine implementation and
a strong GC service perform essentially the same actions; those actions are just
viewed differently. The state-machine view makes correctness obvious; the GC view
makes the implementation more obvious.

All protocols that provide a strong GC service prevent any messages from being
delivered after a view change has begun. They therefore essentially use the Brick-
Wall method for stopping a state machine. Totem [1] chooses the number of the last
message delivered in the old configuration and the new reconfiguration at the same
time, a procedure analogous to option R1 of Section 3.2. CoRel [12] first selects
a new configuration and only later determines which messages are delivered in the
old configuration, which is analogous to option R2.

In traditional GC, the view-changing consensus algorithm is executed by the
processes in the new view, while in Rα and in the methods of Section 3, the new
configuration is chosen with a consensus algorithm executed by the old configura-
tion. (In Rα and in option R1 of Section 3.2, that consensus algorithm is the one

10

that chooses an ordinary state-machine command.)
Maintaining a unique sequence of configurations requires the new configuration

to be chosen by the acceptors of the old configuration, but making progress requires
it to be learned by the learners of the new configuration. Because the original
work on GC did not distinguish between acceptors and learners, it ensured progress
by having the processes in the new view execute the consensus algorithm and en-
sured uniqueness of views by requiring that the new view contain a majority of
the processes from the old view. As our algorithms show, there is no need for any
overlap between the old and new views. The processes in the new view just have to
learn the new view chosen by the old one.

There are also reconfigurable systems that do not provide the power of a state-
machine implementation. RAMBO [6, 10, 19] is a fault-tolerant system that pro-
vides simple read and write operations. It is based on the ABD algorithm [2], which
plays the role that a consensus algorithm does in a state-machine implementation.
In Rambo, reconfiguration is done using a separate state machine to choose a new
configuration that can take effect in the middle of executing an individual read or
write. This is similar to an alternative approach to reconfiguration in Paxos that
we have not discussed [17].

We have considered only non-malicious faults. The state-machine implemen-
tation obtained with any of our algorithms except the Brick-Wall method (Sec-
tion 3.1.3) tolerates malicious failures if the underlying consensus algorithms does.
We must also design the state machine to tolerate malicious clients—including ones
that propose reconfigurations. This is done by requiring that a critical operation
such as stopping the current configuration or choosing a new one be performed only
when requested by enough different clients. In the Stop-Sign method (Section 3.1.1),
the stop command is the request that triggers stopping. For option R2 in which the
new view is chosen by a separate consensus algorithm (Section 3.2), that algorithm
is replaced by a fault-tolerant state machine.

References

[1] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. The
Totem single-ring ordering and membership protocol. ACM Transactions on Computer
Systems, 13(4):311–342, 1995.

[2] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-
passing systems. J. ACM, 42(1):124–142, 1995.

[3] Ozalp Babaoglu, Renzo Davoli, and Alberto Montresor. Group communication in
partitionable systems: Specification and algorithms. Software Engineering, 27(4):308–
336, 2001.

[4] Kenneth Birman and Tommy Joseph. Exploiting virtual synchrony in distributed
systems. In Eleventh ACM Symposium on Operating Systems Principles, pages 123–
138, 1987.

[5] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence
of failures. ACM Transactions on Computer Systems, 5(1):47–76, February 1987.

11

[6] Gregory Chockler, Seth Gilbert, Vincent C. Gramoli, Peter M. Musial, and Alex A.
Shvartsman. Reconfigurable distributed storage for dynamic networks. In 9th Inter-
national Conference on Principles of Distributed Systems (OPODIS), 2005.

[7] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifi-
cations: a comprehensive study. ACM Computing Surveys, 33(4):427–469, 2001.

[8] Danny Dolev and Dalia Malki. The Transis approach to high availability cluster com-
munication. Communications of the ACM, 39(4):64–70, 1996.

[9] Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using a partitionable
group communication service. ACM Transactions on Computer Systems, 19(2):171–
216, 2001.

[10] Seth Gilbert, Nancy A. Lynch, and Alex A. Shvartsman. RAMBO II: Rapidly re-
configurable atomic memory for dynamic networks. In International Conference on
Dependable Systems and Networks (DSN), 2003.

[11] M.P. Herlihy and J.M. Wing. Axioms for concurrent objects. In Proceedings of the
Fourteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 13–26, Munich, January 1987. ACM.

[12] Idit Keidar and Danny Dolev. Efficient message ordering in dynamic networks. In
Fifteenth ACM Symp. on Principles of Distributed Computing (PODC), pages 68–76,
1996.

[13] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[14] Leslie Lamport. Using time instead of timeout for fault-tolerant distributed systems.
ACM Transactions on Programming Languages and Systems, 6(2):254–280, April 1984.

[15] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, May 1998.

[16] Leslie Lamport. Lower bounds for asynchronous consensus. Distributed Computing,
19(2):104–125, October 2006.

[17] Leslie B. Lamport and Michael T. Massa. Cheap paxos. United States Patent 7249280,
filed June 18, 2004, issued July 24, 2007.

[18] Butler W. Lampson. How to build a highly available system using consensus. In Ozalp
Babaoglu and Keith Marzullo, editors, Distributed Algorithms, volume 1151 of Lecture
Notes in Computer Science, pages 1–17, Berlin, 1996. Springer-Verlag.

[19] Nancy A. Lynch and Alex A. Shvartsman. RAMBO: A reconfigurable atomic memory
service for dynamic networks. In 5th International Symposium on Distributed Com-
puting (DISC), 2002.

[20] Louise E. Moser, Yair Amir, P. Michael Melliar-Smith, and Deborah A. Agarwal.
Extended virtual synchrony. In The 14th IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 56–65, 1994.

[21] Fred B. Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

[22] J. Wensley et al. SIFT: Design and analysis of a fault-tolerant computer for aircraft
control. Proceedings of the IEEE, 66(10):1240–1254, October 1978.

12

