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ABSTRACT  
We present a practical FPGA-based accelerator for solving 
Boolean Satisfiability problems (SAT). Unlike previous efforts for 
hardware accelerated SAT solving, our design focuses on 
accelerating the most time consuming part of the SAT solver ─ 
Boolean Constraint Propagation (BCP), leaving the choices of 
heuristics such as branching order, restarting policy, and learning 
and backtracking to software. Our novel approach uses an 
application-specific architecture instead of an instance-specific 
one to avoid time-consuming FPGA synthesis for each SAT 
instance. By avoiding global signal wires and carefully pipelining 
the design, our BCP accelerator is able to achieve much higher 
clock frequency than that of previous work. In addition, it can 
load SAT instances in milliseconds, can handle SAT instances 
with tens of thousands of variables and clauses using a single 
FPGA, and can easily scale to handle more clauses by using 
multiple FPGAs. Our evaluation on a cycle-accurate simulator 
shows that the FPGA co-processor can achieve 3.7-38.6x speedup 
on BCP compared to state-of-the-art software SAT solvers.  

Categories and Subject Descriptors 
C.3 Special-purpose and application-based systems  
General Terms 
Design, Experimentation, Verification. 

Keywords 
SAT solver, reconfigurable, BCP, co-processor, FPGA . 

1. INTRODUCTION 
Boolean Satisfiability (SAT) solvers are widely used as the 
underlying reasoning engine for electronic design automation, as 
well as in many other fields such as artificial intelligence, theorem 
proving, and program verification. Due to its wide adoption, much 
effort has been dedicated to design efficient SAT solvers. In 
recent years, tremendous progress has been made on SAT solving 
software in algorithm advancements, efficient implementation, 
and heuristic tuning. These improvements have enabled SAT 
instances with hundreds of thousands of variables and clauses to 
be solved in practice [1].  
It is not surprising that researchers have studied using 
(reconfigurable) hardware accelerators for SAT solving. Designs 
based on Field Programmable Gate Arrays (FPGAs) have been 
described in [2][3][4][5][6][7], and were compared in a survey 

[8]. A parallel SAT solver using a reconfigurable processor is 
described in [9]. Unfortunately, unlike the software solvers, none 
of the hardware-assisted SAT solvers have gained much traction 
in practice. Most of the existing hardware accelerators were 
designed before the invention of the so called “chaff-like” modern 
SAT solvers [10][1]. Compared with modern software solvers, the 
hardware accelerators from previous work are usually slow and 
capacity limited, and they are unable to accommodate some 
important features in modern software solvers such as learning.  
In this paper, we describe the design of an FGPA co-processor 
that focuses on accelerating the most time consuming component 
in a SAT solver, namely Boolean Constraint Propagation (BCP). 
BCP is a stable component in the modern SAT solver’s 
implication engine, making it a good target for hardware 
acceleration. Our approach leaves the rest of the SAT solver 
functionality to software, thereby accommodating the constant 
innovations in SAT solver research. In our design, the co-
processor is implemented in an FPGA. It heavily relies on modern 
FPGA’s Block RAM (BRAM) to provide parallelism and memory 
bandwidth. The co-processor can load new SAT instances in a 
few milliseconds. Using a single FPGA it can handle SAT 
instances with tens of thousands of variables and clauses. The 
design is flexible enough to accommodate learning and non-
chronological backtracking, as well as scaling to multiple FPGAs 
for increased capacity1. Due to careful pipelining, the synthesized 
design can achieve a clock frequency of up to 200MHz. Our full 
system cycle-accurate simulator shows that the BCP accelerator 
can achieve a speedup of 3.7~38.6x compared to a modern CPU 
for BCP operations. Finally, the co-processor can be easily used in 
the implication engines of many modern SAT solvers that use 
different heuristics and/or strategies.  

2. OVERVIEW OF SAT ALGORITHM  
We assume the readers are familiar with modern SAT solvers 
based on the Davis-Logemann-Loveland (DLL [11]) algorithm 
with learning (see [1] for a survey). In this section, we provide a 
brief overview of the algorithm that is relevant to the BCP co-
processor and the hybrid solver design.  
The DLL algorithm, which solves formulae in Conjunctive 
Normal Form (CNF), is a branch and search algorithm consisting 
of several major functions. The branching function heuristically 
chooses a free (unassigned) variable and assigns it a value. This is 
often called a decision. The deduce function propagates the effect 
of the decision based on the unit implication rule. A clause is said 
to be unit if all but one of its literals are assigned the value false 
and the remaining literal is free (unassigned). To satisfy the 
clause, the free literal needs to be implied to be true, and this 
clause is called the antecedent clause of the newly inferred 
variable. The iterative application of the unit implication rule is 
                                                                 
1 Not yet implemented in our current implementation.  
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called Boolean Constraint Propagation (BCP). If a variable is 
implied to be both true and false by different clauses, it is said that 
the current variable assignment is conflicting, and a conflict 
analysis function is invoked. The conflict analysis function may 
add extra clauses into the formula. This process is called conflict-
driven learning. From conflict analysis, the solver needs to undo 
certain variable assignments, also known as backtracking. 

 
Figure 1. A modern SAT solvers and SW/HW partition. 

While this work focuses on the deduction part of the SAT solver, 
the decision and conflict analysis part is equally important 
because they greatly affect the search space. In the last decade, 
SAT solver performance has been improved continuously with 
major innovations in the branching heuristics and learning 
schemes. Besides these major components, several other 
techniques such as preprocessing (e.g.[12]) and random restarts 
[13] also greatly contribute to the success of modern SAT solvers. 
Still, deduction remains to be one of the most important 
components of the SAT solvers and usually takes most of the time 
during SAT solving.  

3. A HARDWARE ASSISTED SAT SOLVER 
Our main goal in this research is to leverage hardware 
acceleration to build a practical SAT solver that performs better 
than pure software solvers for real world SAT instances. Due to 
the constant improvements of software SAT solvers on branching, 
learning and restarting heuristics, it is impossible to completely 
map a software SAT solver into hardware and build a practical 
hardware SAT solver, as previously attempted (e.g. [2][3][4]). 
Moreover, due to the huge research investment in so called 
“chaff-like” solvers; it would be difficult for algorithms that 
significantly deviate from it (e.g. [6]) to be competitive 
performance wise.  
Therefore, we focus our effort on accelerating only Boolean 
Constraint Propagation (BCP), which accounts for 80%−90% of 
the CPU runtime in a highly optimized SAT solver [1][10] 2 . 
Literature continues to provide optimizations for software BCP 
implementations, but the principle behind BCP (unit implication) 
has not changed, thus making it a good target for hardware 
acceleration. Moreover, most SAT solvers have clean interfaces 
between the implication engine and the rest of the solvers, thus 

                                                                 
2 More recent SAT solvers such as minisat and rsat have better heuristics 

for pruning, branching and restart, but their BCP performances are 
comparable to Zchaff. 

providing an easy way to integrate the BCP co-processor into 
different solvers. Figure 1 provides the CPU time breakdown of 
the SAT solver from software profiling and the resulting 
partitioning we used in implementing our hybrid SAT solver 
using both a general purpose CPU and a reconfigurable BCP co-
processor. 
Modern SAT solvers have tuned the BCP engine so well that each 
implication only takes a couple thousand CPU cycles for typical 
SAT instances. To achieve reasonable speedup is very challenging 
for an FPGA implementation, due to the inherently lower clock 
frequency of FPGAs compared to CPUs and ASICs. Since the 
CPU is running in the Gigahertz range, the BCP co-processor 
must have a high clock frequency and each implication on average 
can at most take tens of cycles. Global signals must be avoided 
and the BCP co-processor must be fully pipelined (in contrast to 
[2][3]). Most SAT instances encountered in the industrial 
applications contain thousands of variables. Therefore, the 
implication time must be independent of the variable count (in 
contrast to [4][5]). Finally, for any practical solutions, the 
hardware resource requirement must be roughly proportional to 
the size of the instance being solved (in contrast to [7]).  

3.1 BCP Co-processor Overview 
Due to the large amount of time required for FPGA logic 
synthesis and placement and routing, we avoided developing a 
BCP instance-specific SAT solver (e.g. [2][3]). Instead, we load 
SAT instances into an application-specific FPGA BCP co-
processor. Similar to [7], we leverage the Block RAM (BRAM) in 
modern FPGAs to store instance specific data. This approach not 
only reduces the instance loading overhead, but also simplifies the 
design of the interface with the host machine. Our design is 
mainly bounded by the BRAM capacity of the FPGA. In our 
current design, we target the Xilinx Virtex 5 LX110T FPGA, 
which can handle up to 64K variables and 64K clauses. Using the 
largest Xilinx FPGA (Virtex 5 LX330T), the capacity can be 
extended to 64K variables and 176K clauses, by instantiating 
more inference engines. For even larger SAT instances, the BCP 
co-processor design can be easily expanded to utilize multiple 
FPGAs, as we will present in Section 3.3. 

In
fe

re
nc

e 
M

ul
tip

le
xe

r

In
pu

t/O
ut

pu
t Q

ue
ue

Figure 2. Overall FPGA-based BCP Accelerator Architecture. 
The overall system architecture of the BCP co-processor is shown 
in Figure 2. It is composed of the following major components, 
described from left to right in Figure 2:  
1. CPU Communication Module: This module receives branch 
decisions from and returns inference results back to the CPU. The 
co-processor communicates with the CPU through high speed 
links such as AMD HyperTransport (HT) [18], Intel’s Front-Side 
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Bus [17], and/or PCI Express (PCIe) [16] (we present simulation 
results using HT and PCIe in Section 4). To maximize effective 
bandwidth and minimize communication cost, inference results, 
including the status (conflict or not) and implied variables and 
their antecedents, are sent to the CPU in batches when the 
communication buffer is full or the current iteration is finished. 
Likewise, decisions are received from the CPU in batches. 
Modern SAT decision heuristics (e.g. VSIDS [10]) are state-
independent, which means the decision order of a variable is 
independent of variable assignments. Therefore, the software on 
the CPU can compute several decisions in a batch and send them 
to the co-processor. The co-processor performs BCP on each 
decision variable one by one unless a conflict occurs. If a decision 
variable is already implied by previous decisions, the co-processor 
just ignores it. To accelerate conflict resolution, an undo operation 
is built into the communication module such that when a conflict 
occurs, it unassigns variables still in the buffer (i.e. variables 
assigned at current decision level), at the same time, reporting the 
results to the CPU. 
2. Input/Output Queue: Decisions from the CPU and 
implications derived from the inference engines are queued in a 
FIFO (the equivalent of the implication queue in a software SAT 
solver) and sent to multiple implication inference engines. This 
module also sends the implication to a buffer to be sent to the 
CPU if there are no conflicts. Both input/output queues employ a 
banked architecture to sustain a bandwidth of up to 14.4 Gbps in 
each direction (running at 200 MHz). The communication is also 
asynchronous, potentially hiding communication latency. 
3. Parallel Inference Engines: Clauses of the SAT formula are 
partitioned and stored in multiple inference engines. Given a 
variable index and its assigned value, the inference engines infer 
values of other literals within a fixed number of hardware cycles 
regardless of the number of literals in a clause. The new 
implications are put into a FIFO buffer to be dequeued for further 
processing. We present a more detailed description of the 
inference engines in Section 3.2. 
4. Inference Result Multiplexer: This module serializes the 
data communications between the parallel inference engines and 
sequential conflict inference detection stage. This module uses a 
2-level priority-encoded  multiplexing bus architecture that 
supports up to 256 inference engines (physical resource in our 
target FPGA (LX110T) limits us to 64 parallel inference engines). 
Each data port is registered and has independent flow control 
allowing pipelined operation.  
5. Conflict Inference Detection: This is a serialized pipelined 
process to detect conflict inference results generated by the 
parallel inference engines. This module maintains a global copy of 
the variable states. Given a new implication from the inference 
engine, it detects if there is a conflict, and whether the same 
implication was already produced by a different clause.  If a 
conflict is detected, the BCP co-processor notifies the CPU using 
an interrupt.  This invokes the conflict analysis and backtracking 
process in the software. In our prototype, a total of 64K variables 
are supported by the on-chip BRAM global status table. In order 
to save BRAM overhead in the inference engines, the input to the 
conflict detection module is locally indexed, i.e. a tuple <l, k, n> 
indicates that the l-th literal in clause k of inference engine n is 
implied. A separate pipelined DRAM is used to translate the local 
index to its global variable and clause ID. 

3.2 Inference Engines 
The inference engine is the key component of our co-processor 
design. Due to space limit, in this section, we can only provide a 
high level description of how it works.  
In a pre-processing step, we partition clauses into groups so that 
they can be processed by multiple inference engines in parallel, 
one group per engine. If there are multiple clauses associated with 
a particular variable, these clauses are distributed over different 
engines so that the clauses can be processed in parallel to produce 
at most one new implication per inference engine. This 
partitioning scheme also ensures that each group has a limited 
number of clauses (limited by the BRAM capacity).  
Each inference engine is pipelined and has two stages, as shown 
in Figure 3. The first stage is called clause index walk, which 
takes a variable assignment from the implication queue 
(Input/Output Queue) and locates the corresponding clause. In the 
second implication stage, the clause’s status is retrieved from the 
clause status table, which includes the value of each literal in the 
clause. The clause status is then examined to identify new 
implications. In the rest of this section, we briefly go through 
these two stages.  

 
Figure 3: Inference engine overview. 

The clause index walk module uses a tree to efficiently locate the 
clause associated with the input variable. The tree is stored in the 
tree walk table in an on-chip BRAM block local to the module. 
Suppose the variable index has a width of k (so that the BCP co-
processor can handle 2k variables), and every non-leaf tree node 
has 2m child nodes, then the tree will be k/m deep. Here both k and 
m are configurable. Given a non-leaf node, the address of its 
leftmost child in the tree walk table is called the base index of this 
tree node. The rest of the children are ordered sequentially, 
following the leftmost child. Therefore, to locate the ith child, the 
index can be calculated by adding i to the base index. If a child is 
not associated with any clauses, we store a no-match (-1) tag in 
the entry. If for a node, all of its 2m children have no match, then 
we do not expand the tree node and just store a no-match tag in 
the node itself. The entry of a leaf node stores the clause ID where 
the variable occurs, as well as the literal index in the clause that 
corresponds to the variable.  

Figure 4. Clause index tree walk in the inference engine. 
Figure 4 provides a simple example with the literal index size k =4 
and the tree branch width m=2. There are two clauses, (X1 V X14) 
and (X12 V X13), with variable X1’s index is 0001, X12’s index is 
1100, X13’s index is 1101, and X14’s index is 1110. Suppose the 



4 

new input variable is 1101. The base index of the root node is 
0000 and the first two bits of the input are 11. The table index is 
the sum of two: 0000+11= 0011. Using this table index, the first 
memory lookup is conducted by checking the 0011 entry of the 
table. This entry shows that the next lookup is an internal tree 
node with the base index 1000. Following this base index, adding 
it to the next two bits of the input 01, we reach the leaf node 
1000+01 = 1001. This leaf node stores the variable association 
information; in this case, the variable is associated with the 
second variable of clause two.  
After identifying the related clause, the implication module 
retrieves its status from the clause status table in the BRAM in 
one cycle. In the next cycle, the inference module checks whether 
the clause generates a new implication. The condition for 
generating a new implication is that only one variable is 
unassigned and all the rest are set to false. The implication 
generation algorithm is based on checking this condition using 
bit-wise logic and the algorithm is shown in Figure 5. It is 
implemented with combinational logic, which can be computed in 
a single cycle.  
Algorithm: Find implication in a clause 
Input:  Clause status bit vector, X 
Output: Literal position if an inference is made, otherwise an all-one 
position vector 
1 Begin 
2     For each literal ܺ calculate two or-reduced signal using clause status 
bit vector, i.e. 
݆  = or-reduce all status bit of literal ܺ, whereܫܪ 3  ݅ 
ܮ 4 ܱ = or-reduce all status bit of literal ܺ, where ݆ ൏ ݅ 
5     End for; 
6    Return ܺ  is the new implication, when ܫܪ ൌ ܮ  ܱ  ൌ  and ݁ݏ݈݂ܽ 

ܺ  ൌ  otherwise an all-one vector ,݀݁݊݃݅ݏݏܽ݊ݑ
7 End 

Figure 5. Inference algorithm. 
The hardware inference algorithm tries to make inferences for 
each literal concurrently (line 2-5 in parallel). For each literal in 
the clause, it checks whether the inference condition has been met 
− whether it is an unassigned variable (line 6), and all the literals 
before it (line 3) and after it are all false (line 4). If so, it reports a 
new inference. Finally, the inference engine updates the clause 
status table in the BRAM with the new clause status. 
In our current implementation of the inference engine, m=4 and 
k=16. Therefore, we need 16/4=4 BRAM reads in the clause 
index tree walk, each takes one cycle. One engine can support up 
to 1024 clauses. The status of these clauses is stored in a BRAM 
block, which supports clauses with up to 9 literals. Note this can 
be easily extended to support many more literals (see Section 3.3). 
FPGA BRAMs are dual-ported. The clause index tree walk uses 
one of the ports. The other port is designated to the tree walk table 
initialization and reprogramming interface.  

3.3 Discussions on the BCP Co-Processor 
As mentioned before, our inference engine supports clauses with 
up to 9 literals. For longer clauses, extra variables could be 
introduced to break them into smaller ones. Our single chip design 
using an LX110T currently supports up to 64K variables and 64K 
clause and is limited by on-chip BRAM resources. Using the 
largest Xilinx FPGA (LX330T) available, the capacity of the BCP 
co-processor can be extended to 176K clauses. In both cases, the 
Input/Output Queue and Inference Result Multiplexer are 
underutilized. This makes it relatively easy to extend the design to 
multiple FPGAs without changing the architecture. Our 

architecture supports adding more inference engines by 
connecting multiple FPGAs using the Input/Output Queue and the 
Inference Result Multiplexer across chip boundaries, as shown in 
Figure 6. Our current design can support up to 256 inference 
engines without modifying the existing RTL code. The system 
shown in Figure 6 can accommodate up to 256K clauses using 
five Virtex 5 LX110T FPGAs. The potential downside of this 
multi-FPGA design is increased overall latency due to crossing 
chip boundaries. The overall BCP co-processor design is highly 
modularized and can support additional levels of hierarchy, which 
enables connecting even more FPGAs and scaling up the solvable 
SAT instances linearly. Finally, like the clause capacity, both the 
maximum number of variables and literals for each clause can 
also be scaled by using more BRAM resources.  

 
Figure 6. Scaling the BCP co-processor with multiple FPGAs. 
Unlike many existing designs, our architecture does not require 
re-synthesis and subsequent placement and routing of the FPGA 
before solving a new SAT instance. The time for software pre-
processing of clauses to create the clause partitions and the FPGA 
reprogramming time can all be done in less than a second. The 
actual FPGA "reprogramming" can be done by configuring the 
clause index walk tables in the inference engines, requiring about 
1 millisecond in the worst case. For this purpose, we designed a 
3.6 Gbps CPU-to-FPGA programming interface that is 
independent of the normal data path using the second port of the 
dual-ported BRAM. The rest of tables and state in FPGA 
(including the FIFOs, clause status tables and variable states in the 
conflict detection module) are reinitialized the same way. This 
FPGA programming interface allows dynamic clause addition 
during the solving process, if required. This gives us the flexibility 
of being able to add learned clauses [14].   

3.4 Implementation and Circuit Performance 
There are numerous physical optimizations used to make the 
FPGA BCP co-processor run as fast as possible. First, the whole 
design is heavily pipelined. Each stage described in Section 3.1 
represents a high-level pipeline stage. Furthermore, within each 
high-level stage, pipelining is used to improve performance. For 
example, on some timing critical paths, such as the inference 
engine, internal pipeline stages are added to break down global 
wires and help route signals. Manually mapping FPGA primitives 
was another method used to achieve the highest clock frequency. 
For example, special low-latency FPGA structures, such as fast 
carry-chains, are used in pattern detection and priority encoding.  
We use Xilinx ISE 9.2i SP3 to synthesize and place and route our 
design, which has about 4000 lines of VHDL code. The target 
device is Xilinx Virtex 5 LX110T with a speed grade of -3. The 
timing of our post placed and routed design is reported to be 5.0 
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ns (200 MHz) without any manual floor planning. Changing to an 
FPGA with a speed grade of -2 degrades performance by 15%, to 
approximately 170 MHz. Manual floor planning is a potential 
future performance optimization opportunity, which is especially 
useful when pushing the BRAM utilization to its limit. The FPGA 
resource consumption is shown below in Table 1. Because we 
translate Boolean expressions into a collection of memory 
addresses, it is no surprise that on-chip BRAM (also used for 
FIFOs) is heavily consumed (91%). If aggressive BRAM block 
packing is used by not maintaining the design hierarchy, the 
BRAM blocks usage can be reduced to about 70%. The other on-
chip FPGA resources are used moderately (<20%) with registers 
having slightly higher utilization because of additional pipeline 
registers required to achieve the aggressive clock rate. 
Table 1. Resource Utilization on XC5VLX110T-3FF1136. 

Resources Used Utilization
Registers 14,221 20%
LUTs used as logic 12,144 17%
LUTs used as memory 1,536 8%
BRAMs 138 91%
Equivalent ASIC Gate Count 13,861,127

An alternative to an FPGA-based BCP co-processor would be to 
develop an ASIC. Kuon and Rose compared FPGAs to ASICs 
with respect to performance, area, and power [15]. They showed 
that ASIC performance was 3.5 to 4.8 times better depending on 
the speed grade of the FPGA for benchmarks using both logic and 
memory. Likewise, ASIC area was about 33 times smaller, but 
this could be reduced dramatically to as low as 18 to 5 times 
smaller if using the built-in hard blocks. Thus, we expect a single 
chip ASIC BCP co-processor can operate at approximately 700 
MHz and support well over 256 parallel inference engines.  

4. RESULTS 
The FPGA implementation was simulated and tested using 
ModelSim 6.3. We developed a cycle-accurate simulator to 
evaluate the design. The ModelSim results from the FPGA BCP 
co-processor were used for the timing information in our cycle-
accurate simulator, which faithfully simulates events in the FPGA. 
We compare the FPGA co-processor running at 200 MHz with a 
state-of-the-art software-only SAT solver based on a modified 
version of Zchaff [10]. It runs on a 3.6 GHz Pentium 4 with 2 GB 
of RAM. Since the FPGA co-processor only performs the BCP 
part of the solver, we compare it with the software BCP module, 
which takes around 90% of total running time (excluding initial 
I/O cost for loading instances). We disabled learning in the 
software SAT solver because our initial co-processor design does 
not support learning. For each SAT instance, we run the solver for 
one million implications. The execution time of the BCP co-
processor is divided by the CPU cycle time to report the 
performance results in terms of CPU cycles. 
For the link between the FPGA and CPU, we simulate two types 
of connection: HyperTransport (HT) [18] and PCI-Express (PCIe) 
[16]. The simulated HT operates at 800 MHz with 16 lanes using 
DDR technology. Each packet has a maximum size of 64-bytes 
and uses 8b/10b encoding. For writes, the packet control overhead 
is 8 bytes and for reads, the packet control overhead is 12 bytes. 
The round trip delay between the FPGA and CPU is 300ns using 
HT. PCIe has higher latency (560ns), but the max packet size is 
bigger (128 bytes) and the bandwidth is higher (2Gbps effective 
bandwidth per lane with 16 lanes). 

We use two types of SAT instances, the first is a set of randomly 
generated k-SAT instances at phase transition point across various 
clause sizes and the second is a collection of real SAT instances 
from commonly used SAT benchmarks. Using both real world 
and synthetic SAT instances prevents the system from being 
optimized for a specific instance and demonstrates good 
performance across a range of SAT instances and sizes. 

Table 2. Parameters for generating random SAT instances. 
 3-SAT 4-SAT 5-SAT 6-SAT

Clause-Variable Ratio 4.3 9.9 21 43 
FPGA to CPU speedup (HT) 7.7 10.7 16.3 38.6 

FPGA to CPU speedup (PCIe) 6.7 8.3 13.3 30.5 

We randomly generated k-SAT instances (3 ≤ k ≤ 6) with 200 
variables at the phase transition point [19], producing non-trivial 
k-SAT instances. The clause-variable ratios at the phase transition 
point are shown in the first row of Table 1. The second and third 
rows in the table show the speedup ratios of the BCP FPGA co-
processor using HT and PCIe links vs. the software BCP 
implementation. From the table, we can see that the speedup ratio 
varies from 6.7 to 38.6. We notice that the speedup ratio increases 
as the clause-variable ratio increases. Intuitively, there are two 
reasons behind this. First, a higher clause-variable ratio means one 
variable appears in more clauses, producing greater opportunity 
for parallelism. Second, the CPU spends more cycles per 
implication sequentially processing the variables when there are 
more variables per clause. In Figure 7, the left bar in the cluster of 
three bars shows how the number of clock cycles per implication 
grows using a software-only SAT solver. In contrast, using the 
BCP co-processor, multiple clauses can be evaluated in parallel in 
the FPGA instead of sequentially as in the software SAT solver. 
In addition, for each clause, the FPGA can examine all the literals 
in one clause in constant time regardless of the clause length (as 
long as it is less than 9). As a result, the number of cycles needed 
per implication remains almost constant when moving from 3-
SAT to 6-SAT, as shown in Figure 7.  

 

 
Figure 7. Number of converted CPU cycles per implication. 

 
Figure 8. Cycles spent on communication link. 

It should also be noted that in our experiments, the performance of 
HT is slightly better than PCIe as shown in Figure 8. As 
mentioned earlier, PCIe has higher bandwidth and latency, while 
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HT has lower bandwidth and latency. Our design tries to reduce 
communication overhead by using the largest packets possible, 
and batch communication as much as possible. However, only a 
small amount of batched data is transferred between the co-
processor and the CPU. Therefore, link latency plays a more 
important role than link bandwidth even with the batch 
asynchronous communication and difference in packet size. Under 
such scenario, HT performs better than PCIe. Among all the 
cycles consumed in the FPGA, HT constitutes 15-20 % of total 
cycles, while PCIe is 30-40%. We also observed that the 
benchmarks with higher clause-variable ratios generate more 
conflicts (we fix the total number of implications). As one might 
expect, the more conflicts, the more round trip interactions 
between CPU and FPGA. Therefore, the total cycles spent on 
communication go up for benchmarks with a higher clause-
variable ratio. 
Next, we tested the performance of our SAT co-processor using 
real world benchmarks, which have clauses with mixed length. 
Table 3 shows the speedup ratio of the FPGA co-processor 
compared to the software-based BCP running on the CPU. On 
average, one implication takes around 5-15 FPGA cycles. 
Converting FPGA cycles to CPU cycles and comparing it to the 
software solvers, the speedup ratio varies from 3.73 to 14.1. 
Crypto benchmarks (names starting with crypto) have the greatest 
speedup. Similar to the synthesized instances, the performance of 
HT is better than PCIe. The difference in speedup is mainly due to 
the clause-variable ratio. In particular, the miters benchmarks tend 
to have smaller clause-variable ratios. In contrast, crypto 
benchmarks tend to have higher clause-variable ratios. Currently, 
our co-processor does not support clause learning; therefore, 
learning is disabled in both the software and the hybrid solver. 
Since learned clause tends to contain many literals; we expect our 
co-processor to be even more competitive when learning is 
enabled.  

Table 3. Performance speedup on real word instances. 

SAT instances 
Clause 

variable ratio 
FPGA to CPU speedup ratio 

HT PCIe 
miters-c2670 2.50 3.92 3.73 
miters-c3540 2.70 6.07 5.91 
miters-c499 3.09 4.59 4.10 
miters-c5315 2.96 4.32 4.17 
miters-c7552 2.67 4.33 4.26 
mites-c880 5.08 4.08 3.82 

bmc-galileo-8 5.08 7.53 7.70 
bmc-galileo-9 5.14 7.54 7.72 
bmc-ibm-10 5.48 11.31 11.25 
bmc-ibm-11 4.67 8.80 8.66 

crypto-md4_wang5 4.16 12.64 12.26 
crypto-md5_48 4.17 14.10 14.00 
crypto-sha0-34 4.17 8.52 8.20 

5. CONCLUSION AND FUTURE WORK 
We have described a practical hybrid SAT solver that uses an 
application-specific FPGA-based BCP co-processor. The key to 
this co-processor architecture is our novel approach to transform 
Boolean logic into a compact memory structure to take advantage 
of the FPGA’s high bandwidth and low latency on-chip BRAM.  
The modular design of the BCP co-processor can be scaled up to 
support hundreds of thousands of clauses.  
Our results demonstrate speed-up over an optimized software-
only BCP implementation by approximately 3.7 to 38.6 times. 

Currently, the non-BCP parts (decision, conflict resolving, and 
backtracking) take around 10% of running time in software. If 
BCP is sped up by the accelerator, the non-BCP modules become 
the system bottleneck. We believe the non-BCP parts can be 
further optimized and potentially run in parallel with the FPGA 
accelerator, a potential future direction for the SAT community. 
We are currently in the process of mapping the design to real 
hardware and integrating it with the software solver to do full 
system comparison, which will also enable thorough investigation 
of the BCP co-processor design using a multi-FPGA platform. 
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