
1

A Practical Reconfigurable Hardware Accelerator for
Boolean Satisfiability Solvers

John D. Davis
Microsoft Research
 Silicon Valley Lab

joda@microsoft.com

Zhangxi Tan
EECS Department

UC Berkeley
xtan@cs.berkeley.edu

Fang Yu
Microsoft Research
 Silicon Valley Lab

fangyu@microsoft.com

Lintao Zhang
Microsoft Research
 Silicon Valley Lab

lintaoz@microsoft.com

ABSTRACT
We present a practical FPGA-based accelerator for solving
Boolean Satisfiability problems (SAT). Unlike previous efforts for
hardware accelerated SAT solving, our design focuses on
accelerating the most time consuming part of the SAT solver ─
Boolean Constraint Propagation (BCP), leaving the choices of
heuristics such as branching order, restarting policy, and learning
and backtracking to software. Our novel approach uses an
application-specific architecture instead of an instance-specific
one to avoid time-consuming FPGA synthesis for each SAT
instance. By avoiding global signal wires and carefully pipelining
the design, our BCP accelerator is able to achieve much higher
clock frequency than that of previous work. In addition, it can
load SAT instances in milliseconds, can handle SAT instances
with tens of thousands of variables and clauses using a single
FPGA, and can easily scale to handle more clauses by using
multiple FPGAs. Our evaluation on a cycle-accurate simulator
shows that the FPGA co-processor can achieve 3.7-38.6x speedup
on BCP compared to state-of-the-art software SAT solvers.

Categories and Subject Descriptors
C.3 Special-purpose and application-based systems
General Terms
Design, Experimentation, Verification.

Keywords
SAT solver, reconfigurable, BCP, co-processor, FPGA .

1. INTRODUCTION
Boolean Satisfiability (SAT) solvers are widely used as the
underlying reasoning engine for electronic design automation, as
well as in many other fields such as artificial intelligence, theorem
proving, and program verification. Due to its wide adoption, much
effort has been dedicated to design efficient SAT solvers. In
recent years, tremendous progress has been made on SAT solving
software in algorithm advancements, efficient implementation,
and heuristic tuning. These improvements have enabled SAT
instances with hundreds of thousands of variables and clauses to
be solved in practice [1].
It is not surprising that researchers have studied using
(reconfigurable) hardware accelerators for SAT solving. Designs
based on Field Programmable Gate Arrays (FPGAs) have been
described in [2][3][4][5][6][7], and were compared in a survey

[8]. A parallel SAT solver using a reconfigurable processor is
described in [9]. Unfortunately, unlike the software solvers, none
of the hardware-assisted SAT solvers have gained much traction
in practice. Most of the existing hardware accelerators were
designed before the invention of the so called “chaff-like” modern
SAT solvers [10][1]. Compared with modern software solvers, the
hardware accelerators from previous work are usually slow and
capacity limited, and they are unable to accommodate some
important features in modern software solvers such as learning.
In this paper, we describe the design of an FGPA co-processor
that focuses on accelerating the most time consuming component
in a SAT solver, namely Boolean Constraint Propagation (BCP).
BCP is a stable component in the modern SAT solver’s
implication engine, making it a good target for hardware
acceleration. Our approach leaves the rest of the SAT solver
functionality to software, thereby accommodating the constant
innovations in SAT solver research. In our design, the co-
processor is implemented in an FPGA. It heavily relies on modern
FPGA’s Block RAM (BRAM) to provide parallelism and memory
bandwidth. The co-processor can load new SAT instances in a
few milliseconds. Using a single FPGA it can handle SAT
instances with tens of thousands of variables and clauses. The
design is flexible enough to accommodate learning and non-
chronological backtracking, as well as scaling to multiple FPGAs
for increased capacity1. Due to careful pipelining, the synthesized
design can achieve a clock frequency of up to 200MHz. Our full
system cycle-accurate simulator shows that the BCP accelerator
can achieve a speedup of 3.7~38.6x compared to a modern CPU
for BCP operations. Finally, the co-processor can be easily used in
the implication engines of many modern SAT solvers that use
different heuristics and/or strategies.

2. OVERVIEW OF SAT ALGORITHM
We assume the readers are familiar with modern SAT solvers
based on the Davis-Logemann-Loveland (DLL [11]) algorithm
with learning (see [1] for a survey). In this section, we provide a
brief overview of the algorithm that is relevant to the BCP co-
processor and the hybrid solver design.
The DLL algorithm, which solves formulae in Conjunctive
Normal Form (CNF), is a branch and search algorithm consisting
of several major functions. The branching function heuristically
chooses a free (unassigned) variable and assigns it a value. This is
often called a decision. The deduce function propagates the effect
of the decision based on the unit implication rule. A clause is said
to be unit if all but one of its literals are assigned the value false
and the remaining literal is free (unassigned). To satisfy the
clause, the free literal needs to be implied to be true, and this
clause is called the antecedent clause of the newly inferred
variable. The iterative application of the unit implication rule is

1 Not yet implemented in our current implementation.

2

called Boolean Constraint Propagation (BCP). If a variable is
implied to be both true and false by different clauses, it is said that
the current variable assignment is conflicting, and a conflict
analysis function is invoked. The conflict analysis function may
add extra clauses into the formula. This process is called conflict-
driven learning. From conflict analysis, the solver needs to undo
certain variable assignments, also known as backtracking.

Figure 1. A modern SAT solvers and SW/HW partition.

While this work focuses on the deduction part of the SAT solver,
the decision and conflict analysis part is equally important
because they greatly affect the search space. In the last decade,
SAT solver performance has been improved continuously with
major innovations in the branching heuristics and learning
schemes. Besides these major components, several other
techniques such as preprocessing (e.g.[12]) and random restarts
[13] also greatly contribute to the success of modern SAT solvers.
Still, deduction remains to be one of the most important
components of the SAT solvers and usually takes most of the time
during SAT solving.

3. A HARDWARE ASSISTED SAT SOLVER
Our main goal in this research is to leverage hardware
acceleration to build a practical SAT solver that performs better
than pure software solvers for real world SAT instances. Due to
the constant improvements of software SAT solvers on branching,
learning and restarting heuristics, it is impossible to completely
map a software SAT solver into hardware and build a practical
hardware SAT solver, as previously attempted (e.g. [2][3][4]).
Moreover, due to the huge research investment in so called
“chaff-like” solvers; it would be difficult for algorithms that
significantly deviate from it (e.g. [6]) to be competitive
performance wise.
Therefore, we focus our effort on accelerating only Boolean
Constraint Propagation (BCP), which accounts for 80%−90% of
the CPU runtime in a highly optimized SAT solver [1][10] 2 .
Literature continues to provide optimizations for software BCP
implementations, but the principle behind BCP (unit implication)
has not changed, thus making it a good target for hardware
acceleration. Moreover, most SAT solvers have clean interfaces
between the implication engine and the rest of the solvers, thus

2 More recent SAT solvers such as minisat and rsat have better heuristics

for pruning, branching and restart, but their BCP performances are
comparable to Zchaff.

providing an easy way to integrate the BCP co-processor into
different solvers. Figure 1 provides the CPU time breakdown of
the SAT solver from software profiling and the resulting
partitioning we used in implementing our hybrid SAT solver
using both a general purpose CPU and a reconfigurable BCP co-
processor.
Modern SAT solvers have tuned the BCP engine so well that each
implication only takes a couple thousand CPU cycles for typical
SAT instances. To achieve reasonable speedup is very challenging
for an FPGA implementation, due to the inherently lower clock
frequency of FPGAs compared to CPUs and ASICs. Since the
CPU is running in the Gigahertz range, the BCP co-processor
must have a high clock frequency and each implication on average
can at most take tens of cycles. Global signals must be avoided
and the BCP co-processor must be fully pipelined (in contrast to
[2][3]). Most SAT instances encountered in the industrial
applications contain thousands of variables. Therefore, the
implication time must be independent of the variable count (in
contrast to [4][5]). Finally, for any practical solutions, the
hardware resource requirement must be roughly proportional to
the size of the instance being solved (in contrast to [7]).

3.1 BCP Co-processor Overview
Due to the large amount of time required for FPGA logic
synthesis and placement and routing, we avoided developing a
BCP instance-specific SAT solver (e.g. [2][3]). Instead, we load
SAT instances into an application-specific FPGA BCP co-
processor. Similar to [7], we leverage the Block RAM (BRAM) in
modern FPGAs to store instance specific data. This approach not
only reduces the instance loading overhead, but also simplifies the
design of the interface with the host machine. Our design is
mainly bounded by the BRAM capacity of the FPGA. In our
current design, we target the Xilinx Virtex 5 LX110T FPGA,
which can handle up to 64K variables and 64K clauses. Using the
largest Xilinx FPGA (Virtex 5 LX330T), the capacity can be
extended to 64K variables and 176K clauses, by instantiating
more inference engines. For even larger SAT instances, the BCP
co-processor design can be easily expanded to utilize multiple
FPGAs, as we will present in Section 3.3.

In
fe

re
nc

e
M

ul
tip

le
xe

r

In
pu

t/O
ut

pu
t Q

ue
ue

Figure 2. Overall FPGA-based BCP Accelerator Architecture.
The overall system architecture of the BCP co-processor is shown
in Figure 2. It is composed of the following major components,
described from left to right in Figure 2:
1. CPU Communication Module: This module receives branch
decisions from and returns inference results back to the CPU. The
co-processor communicates with the CPU through high speed
links such as AMD HyperTransport (HT) [18], Intel’s Front-Side

3

Bus [17], and/or PCI Express (PCIe) [16] (we present simulation
results using HT and PCIe in Section 4). To maximize effective
bandwidth and minimize communication cost, inference results,
including the status (conflict or not) and implied variables and
their antecedents, are sent to the CPU in batches when the
communication buffer is full or the current iteration is finished.
Likewise, decisions are received from the CPU in batches.
Modern SAT decision heuristics (e.g. VSIDS [10]) are state-
independent, which means the decision order of a variable is
independent of variable assignments. Therefore, the software on
the CPU can compute several decisions in a batch and send them
to the co-processor. The co-processor performs BCP on each
decision variable one by one unless a conflict occurs. If a decision
variable is already implied by previous decisions, the co-processor
just ignores it. To accelerate conflict resolution, an undo operation
is built into the communication module such that when a conflict
occurs, it unassigns variables still in the buffer (i.e. variables
assigned at current decision level), at the same time, reporting the
results to the CPU.
2. Input/Output Queue: Decisions from the CPU and
implications derived from the inference engines are queued in a
FIFO (the equivalent of the implication queue in a software SAT
solver) and sent to multiple implication inference engines. This
module also sends the implication to a buffer to be sent to the
CPU if there are no conflicts. Both input/output queues employ a
banked architecture to sustain a bandwidth of up to 14.4 Gbps in
each direction (running at 200 MHz). The communication is also
asynchronous, potentially hiding communication latency.
3. Parallel Inference Engines: Clauses of the SAT formula are
partitioned and stored in multiple inference engines. Given a
variable index and its assigned value, the inference engines infer
values of other literals within a fixed number of hardware cycles
regardless of the number of literals in a clause. The new
implications are put into a FIFO buffer to be dequeued for further
processing. We present a more detailed description of the
inference engines in Section 3.2.
4. Inference Result Multiplexer: This module serializes the
data communications between the parallel inference engines and
sequential conflict inference detection stage. This module uses a
2-level priority-encoded multiplexing bus architecture that
supports up to 256 inference engines (physical resource in our
target FPGA (LX110T) limits us to 64 parallel inference engines).
Each data port is registered and has independent flow control
allowing pipelined operation.
5. Conflict Inference Detection: This is a serialized pipelined
process to detect conflict inference results generated by the
parallel inference engines. This module maintains a global copy of
the variable states. Given a new implication from the inference
engine, it detects if there is a conflict, and whether the same
implication was already produced by a different clause. If a
conflict is detected, the BCP co-processor notifies the CPU using
an interrupt. This invokes the conflict analysis and backtracking
process in the software. In our prototype, a total of 64K variables
are supported by the on-chip BRAM global status table. In order
to save BRAM overhead in the inference engines, the input to the
conflict detection module is locally indexed, i.e. a tuple <l, k, n>
indicates that the l-th literal in clause k of inference engine n is
implied. A separate pipelined DRAM is used to translate the local
index to its global variable and clause ID.

3.2 Inference Engines
The inference engine is the key component of our co-processor
design. Due to space limit, in this section, we can only provide a
high level description of how it works.
In a pre-processing step, we partition clauses into groups so that
they can be processed by multiple inference engines in parallel,
one group per engine. If there are multiple clauses associated with
a particular variable, these clauses are distributed over different
engines so that the clauses can be processed in parallel to produce
at most one new implication per inference engine. This
partitioning scheme also ensures that each group has a limited
number of clauses (limited by the BRAM capacity).
Each inference engine is pipelined and has two stages, as shown
in Figure 3. The first stage is called clause index walk, which
takes a variable assignment from the implication queue
(Input/Output Queue) and locates the corresponding clause. In the
second implication stage, the clause’s status is retrieved from the
clause status table, which includes the value of each literal in the
clause. The clause status is then examined to identify new
implications. In the rest of this section, we briefly go through
these two stages.

Figure 3: Inference engine overview.

The clause index walk module uses a tree to efficiently locate the
clause associated with the input variable. The tree is stored in the
tree walk table in an on-chip BRAM block local to the module.
Suppose the variable index has a width of k (so that the BCP co-
processor can handle 2k variables), and every non-leaf tree node
has 2m child nodes, then the tree will be k/m deep. Here both k and
m are configurable. Given a non-leaf node, the address of its
leftmost child in the tree walk table is called the base index of this
tree node. The rest of the children are ordered sequentially,
following the leftmost child. Therefore, to locate the ith child, the
index can be calculated by adding i to the base index. If a child is
not associated with any clauses, we store a no-match (-1) tag in
the entry. If for a node, all of its 2m children have no match, then
we do not expand the tree node and just store a no-match tag in
the node itself. The entry of a leaf node stores the clause ID where
the variable occurs, as well as the literal index in the clause that
corresponds to the variable.

Figure 4. Clause index tree walk in the inference engine.
Figure 4 provides a simple example with the literal index size k =4
and the tree branch width m=2. There are two clauses, (X1 V X14)
and (X12 V X13), with variable X1’s index is 0001, X12’s index is
1100, X13’s index is 1101, and X14’s index is 1110. Suppose the

4

new input variable is 1101. The base index of the root node is
0000 and the first two bits of the input are 11. The table index is
the sum of two: 0000+11= 0011. Using this table index, the first
memory lookup is conducted by checking the 0011 entry of the
table. This entry shows that the next lookup is an internal tree
node with the base index 1000. Following this base index, adding
it to the next two bits of the input 01, we reach the leaf node
1000+01 = 1001. This leaf node stores the variable association
information; in this case, the variable is associated with the
second variable of clause two.
After identifying the related clause, the implication module
retrieves its status from the clause status table in the BRAM in
one cycle. In the next cycle, the inference module checks whether
the clause generates a new implication. The condition for
generating a new implication is that only one variable is
unassigned and all the rest are set to false. The implication
generation algorithm is based on checking this condition using
bit-wise logic and the algorithm is shown in Figure 5. It is
implemented with combinational logic, which can be computed in
a single cycle.
Algorithm: Find implication in a clause
Input: Clause status bit vector, X
Output: Literal position if an inference is made, otherwise an all-one
position vector
1 Begin
2 For each literal ܺ calculate two or-reduced signal using clause status
bit vector, i.e.
݆ = or-reduce all status bit of literal ܺ, whereܫܪ 3 ݅
ܮ 4 ܱ = or-reduce all status bit of literal ܺ, where ݆ ൏ ݅
5 End for;
6 Return ܺ is the new implication, when ܫܪ ൌ ܮ ܱ ൌ and ݁ݏ݈݂ܽ

ܺ ൌ otherwise an all-one vector ,݀݁݊݃݅ݏݏܽ݊ݑ
7 End

Figure 5. Inference algorithm.
The hardware inference algorithm tries to make inferences for
each literal concurrently (line 2-5 in parallel). For each literal in
the clause, it checks whether the inference condition has been met
− whether it is an unassigned variable (line 6), and all the literals
before it (line 3) and after it are all false (line 4). If so, it reports a
new inference. Finally, the inference engine updates the clause
status table in the BRAM with the new clause status.
In our current implementation of the inference engine, m=4 and
k=16. Therefore, we need 16/4=4 BRAM reads in the clause
index tree walk, each takes one cycle. One engine can support up
to 1024 clauses. The status of these clauses is stored in a BRAM
block, which supports clauses with up to 9 literals. Note this can
be easily extended to support many more literals (see Section 3.3).
FPGA BRAMs are dual-ported. The clause index tree walk uses
one of the ports. The other port is designated to the tree walk table
initialization and reprogramming interface.

3.3 Discussions on the BCP Co-Processor
As mentioned before, our inference engine supports clauses with
up to 9 literals. For longer clauses, extra variables could be
introduced to break them into smaller ones. Our single chip design
using an LX110T currently supports up to 64K variables and 64K
clause and is limited by on-chip BRAM resources. Using the
largest Xilinx FPGA (LX330T) available, the capacity of the BCP
co-processor can be extended to 176K clauses. In both cases, the
Input/Output Queue and Inference Result Multiplexer are
underutilized. This makes it relatively easy to extend the design to
multiple FPGAs without changing the architecture. Our

architecture supports adding more inference engines by
connecting multiple FPGAs using the Input/Output Queue and the
Inference Result Multiplexer across chip boundaries, as shown in
Figure 6. Our current design can support up to 256 inference
engines without modifying the existing RTL code. The system
shown in Figure 6 can accommodate up to 256K clauses using
five Virtex 5 LX110T FPGAs. The potential downside of this
multi-FPGA design is increased overall latency due to crossing
chip boundaries. The overall BCP co-processor design is highly
modularized and can support additional levels of hierarchy, which
enables connecting even more FPGAs and scaling up the solvable
SAT instances linearly. Finally, like the clause capacity, both the
maximum number of variables and literals for each clause can
also be scaled by using more BRAM resources.

Figure 6. Scaling the BCP co-processor with multiple FPGAs.
Unlike many existing designs, our architecture does not require
re-synthesis and subsequent placement and routing of the FPGA
before solving a new SAT instance. The time for software pre-
processing of clauses to create the clause partitions and the FPGA
reprogramming time can all be done in less than a second. The
actual FPGA "reprogramming" can be done by configuring the
clause index walk tables in the inference engines, requiring about
1 millisecond in the worst case. For this purpose, we designed a
3.6 Gbps CPU-to-FPGA programming interface that is
independent of the normal data path using the second port of the
dual-ported BRAM. The rest of tables and state in FPGA
(including the FIFOs, clause status tables and variable states in the
conflict detection module) are reinitialized the same way. This
FPGA programming interface allows dynamic clause addition
during the solving process, if required. This gives us the flexibility
of being able to add learned clauses [14].

3.4 Implementation and Circuit Performance
There are numerous physical optimizations used to make the
FPGA BCP co-processor run as fast as possible. First, the whole
design is heavily pipelined. Each stage described in Section 3.1
represents a high-level pipeline stage. Furthermore, within each
high-level stage, pipelining is used to improve performance. For
example, on some timing critical paths, such as the inference
engine, internal pipeline stages are added to break down global
wires and help route signals. Manually mapping FPGA primitives
was another method used to achieve the highest clock frequency.
For example, special low-latency FPGA structures, such as fast
carry-chains, are used in pattern detection and priority encoding.
We use Xilinx ISE 9.2i SP3 to synthesize and place and route our
design, which has about 4000 lines of VHDL code. The target
device is Xilinx Virtex 5 LX110T with a speed grade of -3. The
timing of our post placed and routed design is reported to be 5.0

5

ns (200 MHz) without any manual floor planning. Changing to an
FPGA with a speed grade of -2 degrades performance by 15%, to
approximately 170 MHz. Manual floor planning is a potential
future performance optimization opportunity, which is especially
useful when pushing the BRAM utilization to its limit. The FPGA
resource consumption is shown below in Table 1. Because we
translate Boolean expressions into a collection of memory
addresses, it is no surprise that on-chip BRAM (also used for
FIFOs) is heavily consumed (91%). If aggressive BRAM block
packing is used by not maintaining the design hierarchy, the
BRAM blocks usage can be reduced to about 70%. The other on-
chip FPGA resources are used moderately (<20%) with registers
having slightly higher utilization because of additional pipeline
registers required to achieve the aggressive clock rate.
Table 1. Resource Utilization on XC5VLX110T-3FF1136.

Resources Used Utilization
Registers 14,221 20%
LUTs used as logic 12,144 17%
LUTs used as memory 1,536 8%
BRAMs 138 91%
Equivalent ASIC Gate Count 13,861,127

An alternative to an FPGA-based BCP co-processor would be to
develop an ASIC. Kuon and Rose compared FPGAs to ASICs
with respect to performance, area, and power [15]. They showed
that ASIC performance was 3.5 to 4.8 times better depending on
the speed grade of the FPGA for benchmarks using both logic and
memory. Likewise, ASIC area was about 33 times smaller, but
this could be reduced dramatically to as low as 18 to 5 times
smaller if using the built-in hard blocks. Thus, we expect a single
chip ASIC BCP co-processor can operate at approximately 700
MHz and support well over 256 parallel inference engines.

4. RESULTS
The FPGA implementation was simulated and tested using
ModelSim 6.3. We developed a cycle-accurate simulator to
evaluate the design. The ModelSim results from the FPGA BCP
co-processor were used for the timing information in our cycle-
accurate simulator, which faithfully simulates events in the FPGA.
We compare the FPGA co-processor running at 200 MHz with a
state-of-the-art software-only SAT solver based on a modified
version of Zchaff [10]. It runs on a 3.6 GHz Pentium 4 with 2 GB
of RAM. Since the FPGA co-processor only performs the BCP
part of the solver, we compare it with the software BCP module,
which takes around 90% of total running time (excluding initial
I/O cost for loading instances). We disabled learning in the
software SAT solver because our initial co-processor design does
not support learning. For each SAT instance, we run the solver for
one million implications. The execution time of the BCP co-
processor is divided by the CPU cycle time to report the
performance results in terms of CPU cycles.
For the link between the FPGA and CPU, we simulate two types
of connection: HyperTransport (HT) [18] and PCI-Express (PCIe)
[16]. The simulated HT operates at 800 MHz with 16 lanes using
DDR technology. Each packet has a maximum size of 64-bytes
and uses 8b/10b encoding. For writes, the packet control overhead
is 8 bytes and for reads, the packet control overhead is 12 bytes.
The round trip delay between the FPGA and CPU is 300ns using
HT. PCIe has higher latency (560ns), but the max packet size is
bigger (128 bytes) and the bandwidth is higher (2Gbps effective
bandwidth per lane with 16 lanes).

We use two types of SAT instances, the first is a set of randomly
generated k-SAT instances at phase transition point across various
clause sizes and the second is a collection of real SAT instances
from commonly used SAT benchmarks. Using both real world
and synthetic SAT instances prevents the system from being
optimized for a specific instance and demonstrates good
performance across a range of SAT instances and sizes.

Table 2. Parameters for generating random SAT instances.
 3-SAT 4-SAT 5-SAT 6-SAT

Clause-Variable Ratio 4.3 9.9 21 43
FPGA to CPU speedup (HT) 7.7 10.7 16.3 38.6

FPGA to CPU speedup (PCIe) 6.7 8.3 13.3 30.5

We randomly generated k-SAT instances (3 ≤ k ≤ 6) with 200
variables at the phase transition point [19], producing non-trivial
k-SAT instances. The clause-variable ratios at the phase transition
point are shown in the first row of Table 1. The second and third
rows in the table show the speedup ratios of the BCP FPGA co-
processor using HT and PCIe links vs. the software BCP
implementation. From the table, we can see that the speedup ratio
varies from 6.7 to 38.6. We notice that the speedup ratio increases
as the clause-variable ratio increases. Intuitively, there are two
reasons behind this. First, a higher clause-variable ratio means one
variable appears in more clauses, producing greater opportunity
for parallelism. Second, the CPU spends more cycles per
implication sequentially processing the variables when there are
more variables per clause. In Figure 7, the left bar in the cluster of
three bars shows how the number of clock cycles per implication
grows using a software-only SAT solver. In contrast, using the
BCP co-processor, multiple clauses can be evaluated in parallel in
the FPGA instead of sequentially as in the software SAT solver.
In addition, for each clause, the FPGA can examine all the literals
in one clause in constant time regardless of the clause length (as
long as it is less than 9). As a result, the number of cycles needed
per implication remains almost constant when moving from 3-
SAT to 6-SAT, as shown in Figure 7.

Figure 7. Number of converted CPU cycles per implication.

Figure 8. Cycles spent on communication link.

It should also be noted that in our experiments, the performance of
HT is slightly better than PCIe as shown in Figure 8. As
mentioned earlier, PCIe has higher bandwidth and latency, while

0

5000

10000

15000

3-SAT 4-SAT 5-SAT 6-SAT

Co
nv

er
te

d
CP

U
 c

yc
le

s CPU
FPGA (HT)
FPGA (PCIe)

0

50

100

150

200

250

3-SAT 4-SAT 5-SAT 6-SAT

Co
nv

er
te

d
CP

U
 c

yc
le

s
pe

r
Im

pl
ic

at
io

n

Cycles spent on HT

Cycles spent on PCIe

6

HT has lower bandwidth and latency. Our design tries to reduce
communication overhead by using the largest packets possible,
and batch communication as much as possible. However, only a
small amount of batched data is transferred between the co-
processor and the CPU. Therefore, link latency plays a more
important role than link bandwidth even with the batch
asynchronous communication and difference in packet size. Under
such scenario, HT performs better than PCIe. Among all the
cycles consumed in the FPGA, HT constitutes 15-20 % of total
cycles, while PCIe is 30-40%. We also observed that the
benchmarks with higher clause-variable ratios generate more
conflicts (we fix the total number of implications). As one might
expect, the more conflicts, the more round trip interactions
between CPU and FPGA. Therefore, the total cycles spent on
communication go up for benchmarks with a higher clause-
variable ratio.
Next, we tested the performance of our SAT co-processor using
real world benchmarks, which have clauses with mixed length.
Table 3 shows the speedup ratio of the FPGA co-processor
compared to the software-based BCP running on the CPU. On
average, one implication takes around 5-15 FPGA cycles.
Converting FPGA cycles to CPU cycles and comparing it to the
software solvers, the speedup ratio varies from 3.73 to 14.1.
Crypto benchmarks (names starting with crypto) have the greatest
speedup. Similar to the synthesized instances, the performance of
HT is better than PCIe. The difference in speedup is mainly due to
the clause-variable ratio. In particular, the miters benchmarks tend
to have smaller clause-variable ratios. In contrast, crypto
benchmarks tend to have higher clause-variable ratios. Currently,
our co-processor does not support clause learning; therefore,
learning is disabled in both the software and the hybrid solver.
Since learned clause tends to contain many literals; we expect our
co-processor to be even more competitive when learning is
enabled.

Table 3. Performance speedup on real word instances.

SAT instances
Clause

variable ratio
FPGA to CPU speedup ratio

HT PCIe
miters-c2670 2.50 3.92 3.73
miters-c3540 2.70 6.07 5.91
miters-c499 3.09 4.59 4.10
miters-c5315 2.96 4.32 4.17
miters-c7552 2.67 4.33 4.26
mites-c880 5.08 4.08 3.82

bmc-galileo-8 5.08 7.53 7.70
bmc-galileo-9 5.14 7.54 7.72
bmc-ibm-10 5.48 11.31 11.25
bmc-ibm-11 4.67 8.80 8.66

crypto-md4_wang5 4.16 12.64 12.26
crypto-md5_48 4.17 14.10 14.00
crypto-sha0-34 4.17 8.52 8.20

5. CONCLUSION AND FUTURE WORK
We have described a practical hybrid SAT solver that uses an
application-specific FPGA-based BCP co-processor. The key to
this co-processor architecture is our novel approach to transform
Boolean logic into a compact memory structure to take advantage
of the FPGA’s high bandwidth and low latency on-chip BRAM.
The modular design of the BCP co-processor can be scaled up to
support hundreds of thousands of clauses.
Our results demonstrate speed-up over an optimized software-
only BCP implementation by approximately 3.7 to 38.6 times.

Currently, the non-BCP parts (decision, conflict resolving, and
backtracking) take around 10% of running time in software. If
BCP is sped up by the accelerator, the non-BCP modules become
the system bottleneck. We believe the non-BCP parts can be
further optimized and potentially run in parallel with the FPGA
accelerator, a potential future direction for the SAT community.
We are currently in the process of mapping the design to real
hardware and integrating it with the software solver to do full
system comparison, which will also enable thorough investigation
of the BCP co-processor design using a multi-FPGA platform.

ACKNOWLEDGEMENTS
We would like to thank Chuck Thacker and Satnam Singh for
their helpful comments and suggestions. We would also like to
thank all of the anonymous reviewers for their valuable feedback.

6. REFERENCES
[1] L. Zhang and S. Malik, “The Quest for Efficient Boolean

Satisfiability Solvers,” Proc. of CAV 2002, July 2002
[2] T. Suyama, M. Yokoo, H. Sawada, and A. Nagoya, “Solving

Satisfiability Problems Using Reconfigurable Computing,” IEEE
Trans. VLSI Systems, vol. 9, no. 1, pp. 109-116, 2001

[3] P. Zhong, M. Martonosi, P. Ashar, and S. Malik, “Using
Configurable Computing to Accelerate Boolean Satisfiability,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems,
vol. 18, no. 6, pp. 861-868, 1999

[4] P. Zhong, M. Martonosi, P. Ashar, and S. Malik, “Solving Boolean
Satisfiability with Dynamic Hardware Configurations,” FPL 1998:
326-335

[5] M. Redekopp and A. Dandalis, “A Parallel Pipelined SAT Solver for
FPGA’s”, Proc. of the The Roadmap to Reconfigurable Computing,
10th International Workshop on Field-Programmable Logic and
Application, 2000

[6] M. Abramovici and D. Saab, “Satisfiability On Reconfigurable
Hardware,” Proc. Intn’l. Workshop on Field-Programmable Logic
and Applications, Sept. 1997

[7] I. Skliarova and A.B. Ferrari, “A Software/Reconfigurable Hardware
SAT Solver,” IEEE Trans. Very Large Scale Integration (VLSI)
Systems, vol. 12, no. 4, pp. 408-419, Apr. 2004

[8] I. Skliarova, A.B. Ferrari, “Reconfigurable Hardware SAT Solvers:
A Survey of Systems,” IEEE Transactions on Computers, vol. 53,
issue 11, Nov. 2004, pp. 1449-1461.

[9] Y. Zhao, S. Malik, M. Moskewicz, and C. Madigan, “Accelerating
boolean satisfiability through application specific processing,” ISSS
2001, 244-249

[10] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” 38th Design
Automation Conference, Las Vegas, June 2001

[11] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for
Theorem Proving,” Comm. ACM, no. 5, pp. 394-397, 1962

[12] N. Een and A. Biere, “Effective Preprocessing in SAT through
Variable and Clause Elimination,” SAT 2005

[13] C. P. Gomes, B. Selman, and H. Kautz, “Boosting Combinatorial
Search through Randomization,” AAAI 1998.

[14] J. Davis, Z. Tan, F. Yu, and L. Zhang, “Designing an Efficient
Hardware Implication Accelerator for SAT Solving,” SAT 2008

[15] I. Kuon and J. Rose, “Measuring the Gap between FPGAs and
ASICs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 26, NO. 2, Feb. 2007, pp. 203
- 215.

[16] “PCI Express Base 2.0 Specification,”
http://www.pcisig.com/members/downloads/specifications/pciexpres
s/PCI_Express_Base_Rev_2.0_20Dec06a.pdf

[17] Open FSB Initiative, Intel IDF, Spring 2007, Beijing
[18] HyperTransport Technology I/O link, AMD, 2001
[19] S. Kirkpatrick and B. Selman, “Critical Behavior in the Satisfiability

of Random Boolean Formulae,” Science, Vol. 264, pp. 1297-1301,
May 27, 1994

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

