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Abstract. Designing and interoperability testing of distributed, application-level
network protocols is complex. Windows, for example, supports currently more
than 200 protocols, ranging from simple protocols for emailexchange to com-
plex ones for distributed file replication or real time communication. To fight this
increasing complexity problem, we introduce a methodologyand formal frame-
work that uses model program composition to specify behavior of such protocols.
A model program can be used to specify an increment of protocol functionality
with a coherent purpose, which can be understood and analyzed separately. The
overall behavior of a protocol can be defined by a composite model program,
which defines how the individual parts interoperate.

1 Introduction

Protocols are abundant; we rely on the reliable sending and receiving of email, multi-
media, and business data. But protocols, such as SMB [28], can be very complex and
hard to get right. They require careful design to guarantee reliability and failure re-
silience; they require careful and efficient implementations, to not clog the system; and
they require careful documentation and interoperability testing, so that different vendors
understand the same protocol.

A protocol typically has many different facets. Each facet provides a partial view
of the overall functionality of the protocol with a coherentpurpose. An example of a
facet is a set of rules that describes how message ids are allowed to be computed and
communicated between a client and a server in a client-server protocol.

In this paper we provide a methodology and a formal frameworkfor specifying pro-
tocol facets as separate model programs. A model program is acollection of guarded
update rules indexed by actions. A model program of a single facet can be subject to
liveness and safety analysis, which can be infeasible to perform for the whole proto-
col model. Instead, one can apply compositional reasoning in the following sence. If
a model program satisfies one property and another model program satisfies another
property, then the composition of those model programs satisfies both properties. Dis-
tilling facet model programs also fosters reuse, since facets, such as an algorithm for
request cancellation in a particular client-server protocol, typically reappear in similar
protocols.

Model programs of different facets of a protocol can be composed into a single
model program. Composition of model programs is syntactic,but the underlying trace
semantics is based on the classical theory of labeled transition systems (LTSs) [31,
32]. This enables a direct application of the formal LTS based theory of testing using



IOCO [9] or interface automata refinement [15]. The step semantics of model programs
is based on the theory of abstract state machines (ASMs) [25]with a rich background
universe [6]. This enables explicit state exploration techniques [21] and symbolic anal-
ysis techniques that support the needed background theories [36], as well as a range of
other ASM technologies [8] to be applied to model programs.

A key property of the composition of model programs is that actions may include
parameters as logic variables. When actions are synchronized, values are shared through
unification from one model program to another, which is different from communication
through actions by composition of input/output automata [33], where input actions in
one model are synchronized with output actions in the other model. We provide tool
support for analyzing safety and liveness properties for basic and composed model pro-
grams within the NModel framework [34]. We have integrated model program com-
position into a model-based test environment in NModel so that interoperability tests
can be driven from those combined models. The NModel framework uses C# for writ-
ing model programs and is explained in detail in [30], which also discusses the use of
model programs as a practical modeling technique.

To summarize, this paper makes the following contributions.

– We introduce a novel modeling technique for protocols usinga decomposition of
a protocol into different facets that are modeled separately and composed using
model programs.

– We define formally the composition of model programs that simplifies and extends
the definition of parallel composition of model programs in [38]. In particular, the
composition admits sharing of state variables and can be used for state-dependent
scenario control.

– We illustrate the use of this modeling technique and composition on an excerpt of
an industrially relevant and non-trivial SMB2 protocol.

The remainder of the paper is organized as follows. Section 2defines model pro-
grams and related notions needed in the sequel. Section 3 defines model program com-
position. Section 4 illustrates the application of the technique to a sample protocol.
Section 5 explains some aspects of the implementation and experiments. Section 6 is
about related work. We finish off the paper with a short conclusion.

2 Model programs

Model programs can be viewed as abstract state machines (ASMs) [25] indexed by
actions. The main use of model programs is as high-level specifications in model-based
testing tools such as Spec Explorer [1, 37] and NModel [34]. In Spec Explorer, one
of the supported input languages is the abstract state machine language AsmL [2, 26].
AsmL is used in this paper as the concrete specification language for update rules that
correspond to basic ASMs with a rich background [6]T including arithmetic, sets,
maps, tuples, user defined data types, etc.

We letΣ denote the overall signature of function symbols. Part of the signature,
denoted byΣvar, contains function symbols whose interpretation may vary from state
to state. The remaining partΣstatic contains symbols whose interpretation is fixed by



the background theory. A ground term overΣstatic is called avalue term. Formally,
the interpretationof a value termt is the same in all states and is denoted by[[t]]. An
example of a value termt, using AsmL syntax, is arange expression{3..7}; whose
value[[t]] is the set of all integers from 3 to 7.

A subset ofΣstatic, denoted byΣaction are free constructors calledaction symbols.
An action is a value termf(t1, . . . , tn) wheref is an action symbol, also called an
f -action. We also sayaction for [[f(t1, . . . , tn)]] = f([[t1]], . . . , [[tn]]). For all action
symbolsf with arity n ≥ 0, and alli, 1 ≤ i ≤ n, there is a uniqueparameter variable
denoted byf.i. We writeΣf for {f.i}1≤i≤n. Note that ifn = 0 thenΣf = ∅.

Definition 1. A model programP is a tuple(VP , AP , IP , RP ), where

– VP is a finite subset ofΣvar, called thestate variables ofP ;
– AP is a finite subset ofΣaction, called theaction symbols ofP ;
– IP is a formula overΣP = Σstatic∪ VP , called theinitial state condition ofP ;
– RP is a family{Rf

P }f∈AP
of action rulesRf

P = (Gf
P , U

f
P ), where

• G
f
P is a formula overΣP ∪Σf called theguardor enabling condition ofRf

P ;
• U

f
P is an update rule overΣP ∪Σf called theupdate rule ofRf

P .

We often sayactionto also mean an action rule or an action symbol, if the intent is
clear from the context.

Example 1 (Credits).The following model program is written in AsmL. It specifies
how a client and a server need to use message ids, based on a sliding window proto-
col (see Section 4). Here we illustrate the components of theCreditsmodel program
according to Definition 1.

var window as Set of Integer = {0}
var maxId as Integer = 0
var requests as Map of Integer to Integer = {->}

[Action("Req(_,m,c)")]
Req(m as Integer, c as Integer)

require m in window and c > 0
requests := Add(requests,m,c)
window := window difference {m}

[Action("Res(_,m,c,_)")]
Res(m as Integer, c as Integer)

require m in requests
require requests(m) >= c
require c >= 0
window := window union {maxId + i | i in {1..c}}
requests := RemoveAt(requests,m)
maxId := maxId + c

Its three state variables are indicated with the keywordvar. Creditshas two actions
Req andRes, indicated with the[Action] attribute on the corresponding method defi-
nition. The initial state condition is given by the initial assignment of values to the state
variables. The argument of the[Action] attribute provides the arity of the action sym-
bol and the mapping from the formal parameter names used in the method definition to
the corresponding parameter variables for the action symbol.1 Each occurrence of the

1 If the mapping coincides with the method signature, this argument can be omitted.



placeholder‘_’ indicates that the corresponding parameter variable is not referenced.
The Req action ruleRReq

Credits has the following components. The guardGReq
Credits is the

conjunction of all of therequire-statements. The update ruleUReq
Credits is defined by the

body of the method. Note that the parallel update rule is the default in AsmL, thus both
assignments in theReq action are executed in parallel as a single transaction, although
in this case a sequential execution would yield the same updates. TheRes action rule is
analogous. To summarize,

VCredits = {window, maxId, requests},

ACredits = {Req, Res},

ICredits = (window = {0} ∧ maxId = 0 ∧ requests = {7→}),

GReq
Credits = (Req.2 ∈ window ∧ Req.3 > 0),

UReq
Credits = (requests := Add(requests, Req.2, Req.3) ‖

window := window \ {Req.2}).

We introduce a special class of model programs used here for scenario control. A
finite state model programis a model program all of whose state variables have a finite
range. There is a straightforward encoding of regular expressions over the alphabet of
actions with placeholders to finite state model programs.2 Given such a regular expres-
sionρ we writeFSMP(ρ) for the corresponding finite state model program.

Example 2 (FSMP(Req( ,0,2)∗)). The following model programP is a finite state
model program, sinceVP = ∅. Intuitively,P describes the closureReq( ,0,2)∗.

[Action("Req(_,m,c)")]
Req(m as Integer, c as Integer)

require m = 0 and c = 2
skip

Let P be a fixed model program. AP -stateis a mapping ofVP to values.3 Given
aP -stateS, an extension ofS with the parameter assignmentθ = {xi 7→ vi}1≤i≤n is
denoted by(S; θ). Given an extendedP -stateS, the reductionof S to VP is denoted
by S � VP . Given an actiona = f(t1, . . . , tn), let θa denote the parameter assignment
{f.i 7→ [[ti]]}1≤i≤n.

LetS be aP -state, and leta be anf -action. We use the notion offiring of an update
rule U in a stateS [25], denoted here byFire(S,U), that yields the updated state,
provided thatFire(S,U) is defined (a consistent update set exists).4 Thena is enabled
in S if (S; θa) |= G

f
P andS′ = Fire((S; θa), Uf

P ) � VP is defined. Thena causes a
transition fromS to S′.

A labeled transition systemor LTSis a tuple(S,S0, L, T ), whereS is a set ofstates,
S0 ⊆ S is a set ofinitial states, L is a set of labels andT ⊆ S × L × S is a transition
relation.

2 Model programs also have anaccepting state conditionthat has been omitted from the discus-
sion in this paper.

3 More precisely, this is the foreground part of the state, thebackground part is the canonical
model of the background theoryT .

4 There is no consistent update set when for exampleU is a parallel update of two distinct values
to the same state variable.



Definition 2. Let P be a model program. TheLTS ofP , denoted by[[P ]] is the LTS
(S,S0, L, T ), whereS0, is the set of allP -statess such thats |= IP ; L is the set of all
actions overAP ; T andS are the least sets such that,S0 ⊆ S, and ifs ∈ S and there is
an actiona that causes a transition froms to s′ thens′ ∈ S and(s, a, s′) ∈ T .

A run of P is a sequence of transitions(si, ai, si+1)i<κ in [[P ]], for someκ ≤ ω,
wheres0 is an initial state of[[P ]]. The sequence(ai)i<κ is called an (action) traceof
P . The run or the trace isfinite if κ < ω. We writeTraces(P ) for the set of all finite
traces ofP .

To illustrate the notion of a trace, considerP = FSMP(Req( ,0,2)∗). In this
case[[P ]] has a single states0 that is the empty mapping, because there are no state
variables. There is a transition(s0, Req(v, 0, 2), s0) in [[P ]] for all valuesv. Thus a trace
of P is any sequence ofReq-actions whose second argument is 0 and third argument is
2, which explains the intuition provided in Example 2.

3 Model program composition

Under composition, model programs with the same action signature synchronize their
steps for the actions. The guards of the actions in the composition are the conjunctions
of the guards of the component model programs. The update rules are the parallel com-
positions of the update rules of the component model programs. We use ‘‖’ to denote
parallel composition of update rules (ASMs) [25].

Definition 3. Let P andQ be model programs such thatA = AP = AQ. Thecompo-
sitionP ⊕Q is (VP ∪ VQ, A, IP ∧ IQ, (G

f
P ∧Gf

Q, U
f
P ‖ Uf

Q)f∈A).

The following facts follow immediately from the definition of composition. LetP
andQ (possibly with indices) denote model programs with the sameaction signature.

Fact 1 (Commutativity) [[P ⊕Q]] = [[Q⊕ P ]].

Fact 2 (Associativity) [[(P1 ⊕ P2) ⊕ P3]] = [[P1 ⊕ (P2 ⊕ P3)]].

A straightforward technique to lift two model programs to use the same action sig-
nature, that is commonly used to compose FSMs and LTSs, is provided by the following
basic action signature extensions.

Definition 4. Let P be a model program andf an action symbol not inAP . Theen-
abling extension ofP for f , denoted byP f , is the extension ofP such thatAP f =
AP ∪ {f} andRf

P f = (true, skip). The disabling extension ofP for f , denoted by

P−f , is the extension ofP such thatAP−f = AP ∪ {f} andRf

P−f = (false, skip).

Example 3 (OrderedRequests).Consider the following model program, calledOrdere-
dRequests.

var window as Set of Integer

[Action("Req(_,m,_)")]
Req(m as Integer)

require m = Min(window)
skip



It requires the second argument of aReq action to be the smallest element in
window. Note thatIOrderedRequests= true because the initial values of the state vari-
ables are unspecified, i.e. all states of[[OrderedRequests]] are initial states. The enabling
extensionOrderedRequestsRes adds the action rule(true, skip) for Res to Ordere-
dRequests. The model programsOrderedRequestsRes andCredits in Example 1 have
the same action signature.

The enabling (or disabling) extension ofP for a set of action symbolsF not in
AP is denoted byPF (or P−F ). Note thatP ∅ = P−∅ = P . Let P andQ be model
programs. LetP ]Q

def
= [[PAQ\AP ⊕QAP \AQ ]] andP CQ

def
= [[P−AQ\AP ⊕Q−AP \AQ ]].

Intuitively, ‘]’ is an operator, where all actions whose symbol is not in the shared action
signature are interleaved; ‘C’ on the other hand disables all such actions.

In the sequel, we overload the composition operator ‘⊕’ so that, for arbitrary model
programsP andQ, P ⊕Q stands forP ]Q.

3.1 Trace intersection

When composition is used in an unrestricted manner then the end result is a new model
program which from the point of view of trace semantics mightbe unrelated to the
original model programs. In general this happens if the composed model programs share
state variables. The following proposition follows from [38, Theorem 1].

Proposition 1. LetP andQ be model programs such thatAP = AQ andVP ∩VQ = ∅.
Then Traces(P ⊕Q) = Traces(P ) ∩ Traces(Q).

The main reason why this property is important is that it makes it possible to do
compositional reasoning over the traces in the following sence. If all traces ofP satisfy
a propertyϕ and all traces ofQ satisfy a propertyψ then all traces ofP ⊕ Q satisfy
both propertiesϕ andψ.

3.2 Trace restriction

For scenario control, it is sometimes useful to refer to the state variables of a model
program in order to write a scenario for it. In other words, there is a contract model
programP and there is a scenario model programQ that may read the state variables
of P but it may not change the values of those variables. LetWriteSet(Q) be the set of
all state variables ofQ that appear as left hand sides of assignment rules inQ.

Proposition 2. LetP andQ be model programs such thatAQ ⊆ AP , and WriteSet(Q)
andVP are disjoint. Then Traces(P ⊕Q) ⊆ Traces(P ).

In this case composition ofP andQ does not introduce traces that were not traces
of P . A typical use of such composition isguard strengtheningthat is illustrated in
Example 4.



Example 4.Let P be the model programCreditsin Example 1 and letQ be the model
programOrderedRequestsin Example 3. In this caseVQ = {window} ⊂ VP and
WriteSet(Q) = ∅. In P ⊕ Q, Q strengthens the guardGReq

P so that all other choices
for the parameterm besides the smallest element inwindows are eliminated, which is a
particular valid scenario forP . It is not possible to achieve this effect easily with “pure”
composition as in Proposition 1.

4 Sample protocol

We consider an excerpt of the new SMB2 protocol, a successor of the Windows file-
sharing client-server protocol SMB [28], which is used for filesharing between Vista
machines and future Windows hosts. We consider a fixed clientand a fixed server. The
client sendsrequeststo the server and the server sendsresponsesback to the client.
One can decompose SMB2 into various facets, that, when modeled individually, would
comprise between 20 and 30 model programs. We look at two facets that are represen-
tative from the point of view of complexity and size. The excerpt is henceforth called
SP.

– Credit negotiationdescribes how the client and the server need to use message ids,
based on a sliding window algorithm.

– Cancellationdescribes how the client can cancel a previously sent request.

Concrete messages of the protocol are mapped to (abstract) actions where message
fields that are not relevant for the given facets have been omitted. We consider three ac-
tion symbols and the following message fields. Each message has acommandfield that
indicates the operation communicated between the client and the server. This command
field is either mapped to the first argument of the action, or itis mapped to the action
symbolCancel when the command is a special cancellation command.

– Req is a ternary action symbol that represents a request from theclient to execute
a command. Arequestis an actionReq(c,m,n), wherec is a command,m is a
message id andn is a number of requested credits.

– Res is an action symbol that takes four arguments and representsresponses from
the server. Aresponseis an actionRes(c,m,n,s) wherec is a command,m is a
message id,n is a number of granted credits, ands is a status value.

– Cancel is a unary action symbol that represents a “meta” request from the client to
cancel a previous request. Acancellation requestis an actionCancel(m) where
m is a message id.

4.1 Credit negotiation

The client can use certain message identifiers to communicate with the server. The set
of available message identifiers can be seen as a window of numbers that changes over
time. The window is, strictly speaking, not a consecutive interval of numbers because
the client does not have to use the available numbers in any particular order. This is an
important aspect of the specification that leaves open implementation specific details



of the client-side of the protocol. An identifier of a requestcan only be used once.
The client can ask for credits in the requests that it sends tothe server in order to
expand the window. The server may grant credits in its responses to the client. The
number of credits granted in a response determines how the window grows or shrinks as
time progresses. Note that the server may grant credits using different implementation
specific algorithms the details of which are left open by the specification.

TheCreditsmodel program is defined uniformly for all of the commands, except
for Cancel, see Example 1.

The state variablewindow is the set of all message ids that the client may use to
send new requests to the server,requests is a map containing all the outstanding
credit requests with message ids as keys, andmaxId is the largest id that has been
granted by the server. In the initial state of the model the only possible message id is 0,
the maximum id is also 0, and there are no pending requests.

TheReq action records in the state variablerequests that messagem has an out-
standing credit request forc credits, and removesm from the window. The actual com-
mand (the first argument) is irrelevant here. The guard of this action rule requires that
m appears in the window and that the requested number of credits is positive. TheRes
action updates the window with the new ids and updates the value of the maximum id.
This action is enabled if the given id is an outstanding request, and the granted credits
do not exceed the requested credits.

Validation The clientstarvesif it runs out of message ids and cannot send further
requests. An important safety requirement of the credits algorithm is that the client
must not starve. Note that this does not mean that the server always has to grant at least
one credit to the client in every response. It may be that the client has pending requests
and the server will eventually grant the client more credits. Thus, the state invariant
describing this safety condition is that if there are no pending requests then the window
must be nonempty.

[StateInvariant]
ClientHasEnoughCredits()

require (requests = {->}) implies (window <> {})

A natural question that arises here is if theCreditsmodel program has anyunsafe
states, i.e., states that are reachable (through a trace) from the initial state that violate
the state invariant. We use the finite state model programFSMP(Req( ,0,2)∗) in
Example 2 to restrict the number of requested credits to 2 andthe message id to 0.
[[Credits⊕ FSMP(Req( ,0,2)∗)]] is shown in Figure 1 and reveals an unsafe state
reached by the traceReq( ,0,2),Res( ,0,0, ). The labels on the states show the
values of the state variables of the credits model program listed in the same order they
appear in Example 1. We need to strengthen the guard of theRes action so that if there
are no pending requests and the window is empty, then the granted number of credits
must be at least one. Notice that if the window is empty and no credits are granted



{0}
0

{->}

{}
0

{0 -> 2}

Req(_,0,2)

{1,2}
2

{->}

{1}
1

{->}

{}
0

{->}

Res(_,0,2,_)    

Res(_,0,1,_)    

Res(_,0,0,_)    

Fig. 1. Exploration ofCredits⊕ FSMP(Req( ,0,2)∗).

then there must be at least two message ids pending when the new condition is checked
(indicated by ‘<--’ below), because the update rule will remove one of the ids.

[Action("Res(_,m,c,_)")]
Res(m as Integer, c as Integer)

require m in requests
require requests(m) >= c
require c >= 0
require requests.Size > 1 or window <> {} or c > 0 //<-- added condition
window := window union {maxId + i | i in {1..c}}
requests := RemoveAt(requests,m)
maxId := maxId + c

4.2 Cancellation

Cancellation enables the client to cancel requests that have been sent to the server. In
order to cancel a previously sent request with message idm, the client sends a cancel-
lation message to the server that identifies the request to becancelled by including its
id in the message. The model program is shown in Figure 2. Notice that it is natural
to refer to thewindow of theCredits model program for the valid message ids in a
request.

The state variablereqMode records for each message id whether it has been sent
or cancelled by the client. Initially, no request has eitherbeen sent or cancelled, so the
value ofreqMode is the empty map.

TheReq action records the mode of the message asSent. TheCancel action is
always enabled, it updates aSent mode toCancel mode, and ignores the request
otherwise (this behavior is needed for robustness). TheRes action removes the pending
request and requires that the request has indeed been cancelled by the client if the status
is false. Note that the client may try to cancel a request but is too late to do so, when
the server has already completed it but the response has not yet reached the client due
to network latencies. Therefore, the status of a response toa request that the client tried
to cancel, is eithertrue or false, so that a potential race condition that would otherwise
arise in the specification is avoided.

Validation Cancellationbehaves uniformly for all message ids. It is therefore enough
to fix a single message id, say 5, to expose all possible isomorphic behaviors. As above,



enum Mode
Sent //Client has sent the request
Cancel //Client has asked to cancel the request

var reqMode as Map of Integer to Mode = {->}

[Action("Req(_,m,_)")]
Req(m as Integer)

require m in window
reqMode := Add(reqMode,m,Sent)

[Action]
Cancel(m as Integer)

if reqMode(m) = Sent
reqMode := Add(reqMode,m,Cancel)

[Action("Res(_,m,_,status)")]
Res(m as Integer, status as Boolean)

require m in reqMode.Keys
require (status or reqMode(m) = Cancel) //status=false means cancelled
reqMode := RemoveAt(reqMode,m)

Fig. 2. Cancellationmodel program.

{->}

Cancel(5)
{5->Sent}Req(_,5,_)

Res(_,5,_,true)
{5->Cancel}

Cancel(5)

Res(_,5,_,false)
Res(_,5,_,true)

Cancel(5)

Fig. 3. Exploration ofCancellation⊕ Cancel5.

we use a finite state model program to do this.

Cancel5= FSMP({Cancel(5),Req( ,5, ),Res( ,5, , )}∗)

[[Cancellation⊕Cancel5]] is shown in Figure 3. The labels on the states show the value
of reqMode. Using more message ids does not provide any additional useful informa-
tion aboutCancellation, but blows up the state space exponentially in the number of
distinct message ids. Withk distinct message ids there are3k states.

4.3 Composition

Once the individual facets have been modeled and validated in isolation, we can com-
pose some or all of their model programs to validate their interactions. We use an
additional model program calledCommands: if a request with idm has commandc,
then the response with idm must also have commandc, i.e., the server cannot re-
spond with a command that is different from the one it was requested to execute. Note
that it is convenient to refer towindow of the Credits model program in theCom-
mandsmodel program for the domain of message ids. (The definition of the Com-
mandsmodel program is straightforward, using a map from message ids to commands.)
We assume that the commands areA andB.5 Note that only the first two arguments
of Req and Res actions are relevant in theCommandsmodel program. Moreover,

5 In reality, SMB2 has 19 commands.
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Req(A,0,2)
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4

Req(B,1,2)

3

5

Req(B,1,2)

87 10

Res(A,0,2,true)Res(A,0,1,true)

Res(B,1,1,true)Res(B,1,2,true) 6

Cancel(1)

Res(B,1,1,_)Res(B,1,2,_)

Res(B,1,0,true)Res(B,1,1,true) Res(B,1,2,true)9

Cancel(1)

Res(B,1,0,_)Res(B,1,1,_) Res(B,1,2,_)

Fig. 4. Exploration ofSPscenario.

Client Server

Req(A,0,2)

Res(A,0,1,true)

Req(B,1,2)

Cancel(1)

Res(B,1,1,false)

Fig. 5.A trace in Figure 4 from state 0 to state 8.

we use two scenario model programs:AB = FSMP(Req(A, , )Req(B, , )) and
M = FSMP({Cancel(1),Req( , ,2)}∗). AB restricts the client behavior so that
a singleA request is followed by a singleB request.M restricts the client behavior so
that only message 1 is ever cancelled, and all requests ask for two credits. Exploration
of the composition

SPscenario= Credits⊕ Cancellation⊕ Commands⊕ AB⊕M

is illustrated in Figure 4. All self-loops ofCancel(1) are hidden. All occurrences of
placeholders (for the status argument of responses) indicate that bothtrueandfalseare
possible. Notice that the server behavior is unconstrained. In the states 7, 8 and 10, the
value ofwindow is, respectively,{2, 3}, {2}, and{2, 3, 4}, corresponding to all the
possible ways in which the server could grant credits on the way from the initial state.
A particular trace from the initial state to state 8 in Figure4 is illustrated in Figure 5.



5 Implementation and experiences

All experiments in this paper have been made within the NModel framework using C#
as the modeling language. The complete examples, as well as the full source of NModel
itself, can be downloaded from [34]. The exploration and thecomposition examples
have been carried out using thempvutility of NModel.

In NModel a model program is scoped by a namespace. Within that namespace,
classes can be given a[Feature] attribute that declares that class as a feature or sub-
model program of the full model program. This mechanism can be used to construct
separate facet model programs that share state variables, as discussed in this paper. The
main composition operator in NModel assumes that the composed model programs do
not share state variables.

The FSMPconstruct is supported in NModel by entering a textual representation
of a nondeterministic finite automaton or NFA (e.g. in a text file), that is converted to a
finite state model program representing a lazy determinization of the NFA based on the
Rabin-Scott algorithm, see e.g. [29, Theorem 2.1].

For conformance testing of the server, the client actions are declaredcontrollable
and the server actions (in this case responses) are declaredobservable. For online (or
on-the-fly) test execution, with thect utility of NModel, the composed model program
is exploredlazily by firing the actions one at a time, i.e. building up a trace of the
model program incrementally. Due to the lazy exploration, scalability is not an issue.
The discussion aboutaccepting stateshas been omitted in this paper. Accepting states
are used to define states where a trace may end, thus providinga way to finish a test in
a clean way.

Model program analysis in NModel is based on explicit state exploration over
abstract states. Much of the algorithmic support builds on earlier work in Spec Ex-
plorer [37]. In addition, the exploration includes a pruning technique based on isomor-
phism checking of states that use objects and unordered datastructures [40].

NModel does currently not support symbolic analysis. We areinvestigating an SMT
approach for doing reachability analysis of model programs[36], where we use Z3 [41,
5] for our implementation, as it supports background theories [17, 16] for arithmetic
as well as sets and maps. A prototype is being implemented fora fragment of model
programs written in AsmL. Integration of this analysis intoNModel is future work.

The entire SMB2 specification contains over 300 pages of natural language specifi-
cation and corresponds to roughly 20 facets The specification is written in a way where
the different facets are specified in separate sections of the document and therefore the
corresponding model programs are closely tied to these sections. Thus, having separate
facet model programs matches well with the style of the natural language specs and
makes it possible to do requirements tracking in the corresponding model programs.

The internal version of the modeling tool based on model programs is called Spec
Explorer 2007 and is being developed and used internally in Windows as a core technol-
ogy for protocol modeling and model-based testing. In Spec Explorer, model programs
and composition are used for modeling and scenario control of industrial application-
level network protocols. The entire protocol SMB2, has beenmodeled. The use of com-
position between contract model programs and model programs for scenario control



(test purposes) is one of the core techniques for controlling exploration [24]. For com-
plex protocols it may be hard to identify facets due to dependencies. A crude classifi-
cation of the protocols we have looked at is whether remote procedure call or message
passing is being used, where SMB2 belongs to the latter kind.Being able to decompose
a large protocol into facets is crucial for the latter kind ofprotocols.

At least half of the effort in model-based conformance testing of protocols is ac-
tually spent in harnessing of the implementation. A big partof this effort goes into
implementing a protocol-specific adapter from concrete messages on the wire to ab-
stract actions. When defining a mapping from concrete messages on the wire not all of
the fields of messages are relevant. For example, some of the fields in a message are
solely related to well-formedness of the message structure, checking of which can be
part of a message validation layer that is orthogonal to the behavioral model.

6 Related work

The notion of facets as behavioral aspects of a protocol is similar to protocolfeatures.
Feature oriented specifications have a long standing in the telecommunication indus-
try [42], because it makes specifications easy to change and individual features easy to
understand, but it also introduces semantic challenges dueto unintended feature inter-
actions [10]. More recently, features, as increments of program functionality, are being
used infeature oriented programming(FOP) for step-wise refinement of systems, and
are supported by theory and tools using algebraic specifications [4]. In FOP, features
are viewed as program transformations, and the purpose is tosupport feature oriented
development through program synthesis and generative programming [4]. This is quite
different from model programs that provide a partial view ofthe expected behavior of a
system as an LTS, where the system itself is a black box, that is typically a combination
of different applications from different vendors. However, the relationship between the
mathematical underpinnings of model programs and FOP deserves a closer look.

Composition of model programs is a lazy automata-theoreticcomposition of the
underlying LTSs, where actions are composed by unification.The unification between
action parameters happens through the conjoined action guards. The motivation comes
from the domain of model-based testing and analysis tools such as Spec Explorer [37].
A survey of model-based approaches to software modeling, with an emphasis on test-
ing, is given in the recent book [35]. The notion of model program composition is a
simplified and extended version of parallel composition of model programs in [38].
Work related to other forms of composition of automata is discussed in [38]. The use
of several feature classes within in a single C# model program in NModel [34] allows
for sharing of state variables across features. This enables state-dependent parameter
generation and guard strengthening, which is, in general, not possible with composition
of model programs with disjoint state signatures. The semantics of model programs
can also be formulated in terms of labeled Kripke structures. This formulation has the
advantage that one can adapt techniques that are used for model checking of temporal
properties of concurrent software systems, including counterexample-guided abstrac-
tion refinement and compositional reasoning [12].



In aspect oriented programming two concerns crosscut when the related method
behaviors intersect [19]. In the current paper the crosscutting of concerns corresponds to
interacting behaviors between different facets of a protocol. The sharing of information
is achieved through unification of actions, that allow data to be shared between traces
but make the sharing explicitly visible in action traces. Model program composition
might be a viable approach for formalizing certain forms of composition of trace based
aspects [18] or model weaving of stateful aspects in aspect oriented modeling [13].

The main application of model programs is for analysis and testing of software sys-
tems. In particular, for passive testing or runtime monitoring, a model program can be
used as an oracle that observes the traces of a system under test and reports a failure
when an action occurs that is not enabled in the model. This isrelated to aspect oriented
approaches to trace monitoring [3]. In the context of testing of reactive systems with
model programs [39], the action symbols are separated into controllable and observable
ones. In that context the semantics of a model program as an LTS [31, 32] is fundamen-
tal in order to use IOCO [9], or refinement of interface automata [14], for formalizing
the conformance relation.

Model program composition as defined in this paper is independent of the mech-
anism of exploration or analysis. Various approaches, including explicit state explo-
ration [30] as well as symbolic reachability analysis [36],may be applied. The main
difference compared to composition ofaction machines[23] is that composition of
model programs is syntactic, whereas composition of actionmachines is defined in the
style of natural semantics using inference rules and symbolic computation that incor-
porates the notion of computable approximations of subsumption checking between
symbolic states. The computable approximations reflect thepower of the underlying
decision procedures that are being used and are an integral part of the composition,
using a three-valued logic. More about model-based testingapplications and further
motivation for the composition of model programs can be found in [11, 23, 39, 37].

Model programs are also related to symbolic transition systems that have an explicit
notion of data and data-dependent control flow [20].

TheFSMP(ρ) construction introduced here is a subset of a more general coordina-
tion language approach for scenario control calledCord [22].

Besides protocol modeling, model program composition is also being investigated
as a technique for modeling and analyzing scheduling problems in embedded real-time
systems [27].

When consideringinteractionof model programs that require synchronization or
communication on objects rather than actions, then composition of model programs
may be too limited. A more general foundation can be based on interactive abstract
state machines [7].

Conclusion

The modeling approach introduced in this paper is being applied in a variety of indus-
trially relevant modeling and testing contexts. In particular, model programs are being
adopted as a technique for protocol modeling within Microsoft. The use of composition
of model programs is an important part of this effort that enables scenario control as



well as a divide-and-conquer approach to model complex protocols. Individual facet
model programs can be analyzed separately, they can be composed for interoperability
analysis and for constructing the oracle for the full protocol model for test case genera-
tion and conformance testing.
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