
Refinement Types for Secure Implementations

Jesper Bengtson
Uppsala University

Karthikeyan Bhargavan
Microsoft Research

Cédric Fournet
Microsoft Research

Andrew D. Gordon
Microsoft Research

Sergio Maffeis
Imperial College London

Revision of November 2010

Technical Report
MSR–TR–2008–118

Microsoft Research
Roger Needham Building
7 J.J. Thomson Avenue
Cambridge, CB3 0FB

United Kingdom





Refinement Types for Secure Implementations

Jesper Bengtson
Uppsala University

Karthikeyan Bhargavan
Microsoft Research

Cédric Fournet
Microsoft Research

Andrew D. Gordon
Microsoft Research

Sergio Maffeis
Imperial College London

Abstract
We present the design and implementation of a typechecker for

verifying security properties of the source code of cryptographic
protocols and access control mechanisms. The underlying type
theory is a λ -calculus equipped with refinement types for express-
ing pre- and post-conditions within first-order logic. We derive
formal cryptographic primitives and represent active adversaries
within the type theory. Well-typed programs enjoy assertion-based
security properties, with respect to a realistic threat model includ-
ing key compromise. The implementation amounts to an enhanced
typechecker for the general purpose functional language F#; type-
checking generates verification conditions that are passed to an
SMT solver. We describe a series of checked examples. This is
the first tool to verify authentication properties of cryptographic
protocols by typechecking their source code.

1 Introduction

The goal of this work is to verify the security of imple-
mentation code by typing. Here we are concerned particu-
larly with authentication and authorization properties.

We develop an extended typechecker for code written
in F# (a variant of ML) [Syme et al., 2007] and annotated
with refinement types that embed logical formulas. We use
these dependent types to specify access-control and crypto-
graphic properties, as well as desired security goals. Type-
checking then ensures that the code is secure.

We evaluate our approach on code implementing autho-
rization decisions and on reference implementations of se-
curity protocols. Our typechecker verifies security proper-
ties for a realistic threat model that includes a symbolic at-
tacker, in the style of Dolev and Yao [1983], who is able
to create arbitrarily many principals, create arbitrarily many
instances of each protocol roles, send and receive network
traffic, and compromise arbitrarily many principals.

Verifying Cryptographic Implementations In earlier
work, Bhargavan et al. [2008b] advocate the crypto-
graphic verification of reference implementations of pro-
tocols, rather than their handwritten models, in order to

minimize the gap between executable and verified code.
They automatically extract models from F# code and, af-
ter applying various program transformations, pass them to
ProVerif, a cryptographic analyzer [Blanchet, 2001, Abadi
and Blanchet, 2005]. Their approach yields verified secu-
rity for very detailed models, but also demands considerable
care in programming, in order to control the complexity of
global cryptographic analysis for giant protocols. Even if
ProVerif scales up remarkably well in practice, beyond a
few message exchanges, or a few hundred lines of F#, veri-
fication becomes long (up to a few days) and unpredictable
(with trivial code changes leading to divergence).

Cryptographic Verification meets Program Verification
In parallel with the development of specialist tools for cryp-
tography, verification tools in general are also making rapid
progress, and can deal with much larger programs [see for
example Flanagan et al., 2002, Filliâtre and Marché, 2004,
Barnett et al., 2005, Régis-Gianas and Pottier, 2008]. To
verify the security of programs with some cryptography, we
would like to combine both kinds of tools. However, this
integration is delicate: the underlying assumptions of cryp-
tographic models to account for active adversaries typically
differ from those made for general-purpose program veri-
fication. On the other hand, modern applications involve
a large amount of (non-cryptographic) code and extensive
libraries, sometimes already verified; we’d rather benefit
from this effort.

Authorization by Typing Logic is now a well established
tool for expressing and reasoning about authorization poli-
cies. Although many systems rely on dynamic authorization
engines that evaluate logical queries against local stores of
facts and rules, it is sometimes possible to enforce policies
statically. Thus, Fournet et al. [2007a,b] treat policy en-
forcement as a type discipline; they develop their approach
for typed π-calculi, supplemented with cryptographic prim-
itives. Relying on a “says” modality in the logic, they also
account for partial trust (in logic specification) in the face of
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partial compromise (in their implementations). The present
work is an attempt to develop, apply, and evaluate this ap-
proach for a general-purpose programming language.

Outline of the Implementation Our prototype tool,
named F7, takes as input module interfaces (similar to F#

module interfaces but with extended types) and module im-
plementations (in plain F#). It typechecks implementations
against interfaces, and also generates plain F# interfaces by
erasure. Using the F# compiler, generated interfaces and
verified implementations can then be compiled as usual.

Our tool performs typechecking and partial type infer-
ence, relying on an external theorem prover for discharging
the logical conditions generated by typing. We currently use
plain first-order logic (rather than an authorization-specific
logic) and delegate its proofs to Z3 [de Moura and Bjørner,
2008], a solver for Satisfiability Modulo Theories (SMT).
Thus, in comparison with previous work, we still rely on an
external prover, but this prover is being developed for gen-
eral program verification, not for cryptography; also, we use
this prover locally, to discharge proof obligations at various
program locations, rather than rely on a global translation
to a cryptographic model.

Reflecting our assumptions on cryptography and other
system libraries, some modules have two implementations:
a symbolic implementation used for extended typing and
symbolic execution, and a concrete implementation used
for plain typing and distributed execution. We have ac-
cess to a collection of F# test programs already analyzed us-
ing dual implementations of cryptography [Bhargavan et al.,
2008b], so we can compare our new approach to prior work
on model extraction to ProVerif. Unlike ProVerif, type-
checking requires annotations that include pre- and post-
conditions. On the other hand, these annotations can ex-
press general authorization policies, and their use makes
typechecking more compositional and predictable than the
global analysis performed by ProVerif. Moreover, type-
checking succeeds even on code involving recursion and
complex data structures.

Outline of the Theory We justify our extended type-
checker by developing a formal type theory for a core of F#:
a concurrent call-by-value λ -calculus named RCF.

To represent pre- and post-conditions, our calculus has
standard dependent functions and pairs, and a form of re-
finement types [Freeman and Pfenning, 1991, Xi and Pfen-
ning, 1999]. A refinement type takes the form {x : T |C}; a
value M of this type is a value of type T such that the for-
mula C{M/x} holds. (Another name for the construction is
predicate subtyping [Rushby et al., 1998]; {x : T |C} is the
subtype of T characterized by the predicate C.)

To represent security properties, expressions may as-
sume and assert formulas in first-order logic. An expression

is safe when no assertion can ever fail at run time. By anno-
tating programs with suitable formulas, we formalize secu-
rity properties, such as authentication and authorization, as
expression safety.

Our F# code is written in a functional style, so pre- and
post-conditions concern data values and events represented
by logical formulas; our type system does not (and need not
for our purposes) directly support reasoning about mutable
state, such as heap-allocated structures.

Contributions First, we formalize our approach within
a typed concurrent λ -calculus. We develop a type system
with refinement types that carry logical formulas, building
on standard techniques for dependent types, and establish
its soundness.

Second, we adapt our type system to account for active
(untyped) adversaries, by extending subtyping so that all
values manipulated by the adversary can be given a spe-
cial universal type (Un). Our calculus has no built-in cryp-
tographic primitives. Instead, we show how a wide range
of cryptographic primitives can be symbolically coded (and
typed) in the calculus, using a seal abstraction [Morris,
1973, Sumii and Pierce, 2007]. The corresponding robust
safety properties then follow as a corollary of type safety.

Third, experimentally, we implement our approach as an
extension of F#, and develop a new typechecker (with par-
tial type inference) based on Z3 (a fast, incomplete, first-
order logic prover).

Fourth, we evaluate our approach on a series of program-
ming examples, involving authentication and authorization
properties of protocols and applications; this indicates that
our use of refinement types is an interesting alternative to
global verification tools for cryptography, especially for the
verification of executable reference implementations.

Contents The paper is organized as follows. Section 2
presents our core language with refinement types, and il-
lustrates it by programming access control policies. Sec-
tion 3 adds typed support for cryptography, using an en-
coding based on seals, and illustrates it by implementing
MAC-based authentication protocols. Section 4 describes
our type system and its main properties. Sections 5 and 6
report on the prototype implementation and our experience
with programming protocols with our type discipline. Sec-
tion 7 discusses related work and Section 8 concludes.

Appendixes provide additional details. Appendix A de-
scribes the logic and our usage of Z3. Appendix B defines
the semantics and safety of expressions. Appendix C es-
tablishes properties of the type system. Appendix D details
derived forms for types and expressions.Appendix E gives
typed encodings for formal cryptography primitives. Ap-
pendix F includes the code of an extended example.
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2 A Language with Refinement Types

Our calculus is an assembly of standard parts: call-
by-value dependent functions, dependent pairs, sums, iso-
recursive types, message-passing concurrency, refinement
types, subtyping, and a universal type Un to model at-
tacker knowledge. This is essentially the Fixpoint Calculus
(FPC) [Gunter, 1992], augmented with concurrency and re-
finement types. Hence, we adopt the name Refined Concur-
rent FPC, or RCF for short. This section introduces its syn-
tax, semantics, and type system (apart from Un), together
with an example application. Section 3 introduces Un and
applications to cryptographic protocols. (Any ambiguities
in the informal presentation should be clarified by the se-
mantics in Appendix B and the type system in Section 4.)

2.1 Expressions, Evaluation, and Safety

An expression represents a concurrent, message-passing
computation, which may return a value. A state of the com-
putation consists of (1) a multiset of expressions being eval-
uated in parallel; (2) a multiset of messages sent on channels
but not yet received; and (3) the log, a multiset of assumed
formulas. The multisets of evaluating expressions and un-
read messages model a configuration of a concurrent or dis-
tributed system; the log is a notional central store of logical
formulas, used only for specifying correctness properties.

We write S ` C to mean that a formula C logically fol-
lows from a set S of formulas. In our implementation, C
is some formula in (untyped) first-order logic with equal-
ity. In our intended models, terms denote closed values of
RCF, and equality M = N is interpreted as syntactic identity
between values. (Appendix A gives the details.)

Formulas and Deducibility:

C logical formula
{C1, . . . ,Cn} `C logical deducibility

We assume collections of names, variables, and type
variables. A name is an identifier, generated at run time,
for a channel, while a variable is a placeholder for a value.
If φ is a phrase of syntax, we write φ{M/x} for the out-
come of substituting a value M for each free occurrence of
the variable x in φ . We identify syntax up to the capture-
avoiding renaming of bound names and variables. We write
fnfv(φ) for the set of names and variables occurring free in
a phrase of syntax φ . We say a phrase is closed to mean it
has no free variables (although it may have free names).

Syntax of Values and Expressions:

a,b,c name
x,y,z variable
h ::= value constructor

inl left constructor of sum type
inr right constructor of sum type
fold constructor of recursive type

M,N ::= value
x variable
() unit
fun x→ A function (scope of x is A)
(M,N) pair
h M construction

A,B ::= expression
M value
M N application
M = N syntactic equality
let x = A in B let (scope of x is B)
let (x,y) = M in A pair split (scope of x, y is A)
match M with constructor match

h x→ A else B (scope of x is A)
(νa)A restriction (scope of a is A)
A � B fork
a!M transmission of M on channel a
a? receive message off channel
assume C assumption of formula C
assert C assertion of formula C

To evaluate M, return M at once. To evaluate M N, if
M = fun x → A, evaluate A{N/x}. To evaluate M = N,
if the two values M and N are the same, return true 4

=
inr(); otherwise, return false 4

= inl(). To evaluate let x =
A in B, first evaluate A; if evaluation returns a value M,
evaluate B{M/x}. To evaluate let (x1,x2) = M in A, if
M = (N1,N2), evaluate A{N1/x1}{N2/x2}. To evaluate
match M with h x→ A else B, if M = h N for some N,
evaluate A{N/x}; otherwise, evaluate B.

To evaluate (νa)A, generate a globally fresh channel
name c, and evaluate A{c/a}. To evaluate A � B, start a
parallel thread to evaluate A (whose return value will be dis-
carded), and evaluate B. To evaluate a!M, emit message M
on channel a, and return () at once. To evaluate a?, block
until some message N is on channel a, remove N from the
channel, and return N.

To evaluate assume C, add C to the log, and return (). To
evaluate assert C, return (). If S `C, where S is the set of
logged formulas, we say the assertion succeeds; otherwise,
we say the assertion fails. Either way, it always returns ().

Expression Safety:
A closed expression A is safe if and only if, in all evaluations
of A, all assertions succeed. (See Appendix B for formal
details.)

The only way for an expression to be unsafe is for an
evaluation to lead to an assert C, where C does not fol-
low from the current log of assumed formulas. Hence, an
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expression may fail in other ways while being safe accord-
ing to this definition. For example, the restriction (νa)a? is
safe, although it deadlocks in the sense no message can be
sent on the fresh channel a and so a? blocks forever. The
application () (funx→ x) is safe, but illustrates another sort
of failure: it tries to use () as a function, and so is stuck in
the sense that evaluation cannot proceed.

Assertions and assumptions are annotations for express-
ing correctness properties. Inasmuch as our notion of safety
is relative to the assumptions executed during evaluation,
these assumptions must be carefully reviewed.

There is no mechanism in RCF to branch based on
whether or not a formula is derivable from the current log.
Our intention is to verify safety statically. If we know stati-
cally that an expression is safe, there is no reason to imple-
ment the log of assumed expressions because every asser-
tion is known to succeed.

Once assumed, a formula remains in the log for the
whole run. Thus, if an assert succeeds, then, later in the
run, any other assert with the same formula will also suc-
ceed. Hence, our notion of safety captures stable safety
properties, which is adequate for verifying the security of
concurrent protocols.

2.2 Types and Subtyping

We outline the type system; the main purpose for type-
checking an expression is to establish its safety. We assume
a collection of type variables, ranged over by α , β . For any
phrase φ , the set fnfv(φ) includes the type variables, as well
as the names and (value) variables, that occur free in φ . No-
tice that no types or type variables occur in the syntax of
values or expressions. If φ is a phrase of syntax, we write
φ{T/α} for the outcome of substituting a type T for each
free occurrence of the type variable α in φ .

Syntax of Types:

H,T,U,V ::= type
unit unit type
Πx : T. U dependent function type (scope of x is U)
Σx : T. U dependent pair type (scope of x is U)
T +U disjoint sum type
µα.T iso-recursive type (scope of α is T )
α type variable
{x : T |C} refinement type (scope of x is C)

{C} 4= { : unit |C} ok-type
bool

4
= unit+unit Boolean type

(The notation denotes an anonymous variable that by con-
vention occurs nowhere else.)

A value of type unit is the unit value (). A value of type
Πx : T.U is a function M such that if N has type T , then M N
has type U{N/x}. A value of type Σx : T.U is a pair (M,N)

such that M has type T and N has type U{M/x}. A value
of type T +U is either inl M where M has type T , or inr N
where N has type U . A value of type µα.T is a construction
fold M, where M has the (unfolded) type T{µα.T/α}. A
type variable is a placeholder for a type, such as a recursive
type. A value of type {x : T |C} is a value M of type T such
that the formula C{M/x} follows from the log.

As usual, we can define syntax-directed typing rules for
checking that the value of an expression is of type T , written
E ` A : T , where E is a typing environment. The environ-
ment tracks the types of variables and names in scope.

The core principle of our system is safety by typing:

Theorem 1 (Safety) If ∅ ` A : T then A is safe.

Proof: See Appendix C. 2

Section 4 has all the typing rules; the majority are stan-
dard. Here, we explain the intuitions for the rules concern-
ing refinement types, assumptions, and assertions.

The judgment E `C means C is deducible from the for-
mulas mentioned in refinement types in E. For example:

• If E includes y : {x : T |C} then E `C{y/x}.

Consider the refinement types T1 = {x1 : T | P(x1)} and
T2 = {x2 : unit | ∀z.P(z)⇒ Q(z)}. If E = (y1 : T1,y2 : T2)
then E ` Q(y1) via the rule above plus first-order logic.

The introduction rule for refinement types is as follows.

• If E `M : T and E `C{M/x} then E `M : {x : T |C}.

A special case of refinement is an ok-type, written {C},
and short for { : unit | C}: a type of tokens that a for-
mula holds. For example, up to variable renaming, T2 =
{∀z.P(z)⇒ Q(z)}. The specialized rules for ok-types are:

• If E includes x : {C} then E `C.

• A value of type {C} is (), a token that C holds.

The type system includes a subtype relation E ` T <: T ′,
and the usual subsumption rule:

• If E ` A : T and E ` T <: T ′ then E ` A : T ′.

Refinement relates to subtyping as follows. (To avoid
confusion, note that True is a logical formula, which always
holds, while true is a Boolean value, defined as inr ()).

• If T <: T ′ and C `C′ then {x : T |C}<: {x : T ′ |C′}.

• {x : T | True}<:> T .

For example, {x : T |C}<: {x : T | True}<: T .
We typecheck assume and assert as follows.

• E ` assume C : {C}.
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• If E `C then E ` assert C : unit.

By typing the result of assume as {C}, we track that C can
subsequently be assumed to hold. Conversely, for a well-
typed assert to be guaranteed to succeed, we must check
that C holds in E. This is sound because when typecheck-
ing any A in E, the formulas deducible from E are a lower
bound on the formulas in the log whenever A is evaluated.

For example, we can derive Aex : unit where Aex is the fol-
lowing, where Foo and Bar are nullary predicate symbols.

let x = assume Foo()⇒ Bar() in
let y = assume Foo() in assert Bar()

By the rule for assumptions we have:

assume Foo()⇒ Bar() : {Foo()⇒ Bar()}
assume Foo() : {Foo()}

The rule for checking a let-expression is:

• If E`A:T and E,x:T`B:U then E`let x = A in B:U .

By this rule, to show Aex : unit it suffices to check

E ` assert Bar() : unit

where E = x : {Foo()⇒ Bar()},y : {Foo()}. The displayed
judgment follows by the rule for assertions as we can derive
E ` Bar(), since we have both E ` Foo()⇒ Bar() and E `
Foo(). Thus Aex is safe.

2.3 Formal Interpretation of our Type-
checker

We interpret a large class of F# expressions and mod-
ules within our calculus. To enable a compact presenta-
tion of the semantics of RCF, there are two significant dif-
ferences between expressions in these languages. First,
the formal syntax of RCF is in an intermediate, reduced
form (reminiscent of A-normal form [Sabry and Felleisen,
1993]) where let x = A in B is the only construct to al-
low sequential evaluation of expressions. As usual, A;B
is short for let = A in B, and let f x = A is short for
let f = fun x→ A. More notably, if A and B are proper
expressions rather than being values, the application A B is
short for let f = A in (let x = B in f x). In general, the
use in F# of arbitrary expressions in place of values can be
interpreted by inserting suitable lets.

The second main difference is that the RCF syntax for
communication and concurrency ((νa)A, A � B, a?, and
a!M) is in the style of a process calculus. In F# we ex-
press communication and concurrency via a small library
of functions, which is interpreted within RCF as follows.

Functions for Communication and Concurrency:

(T )chan
4
= (T → unit)∗ (unit→ T )

chan
4
= fun x→ (νa)(fun x→ a!x, fun → a?)

send
4
= fun c x→ let (s,r) = c in s x send x on c

recv
4
= fun c→ let (s,r) = c in r () block for x on c

fork
4
= fun f → ( f () � ()) run f in parallel

We define references in terms of channels.

Functions for References:

(T )ref 4= (T )chan

ref M 4
= let r = chan "r" in

send r M;r
new reference to M

!M 4
= let x = recv M in send M x;x dereference M

M := N 4
= recv M;send M N update M with N

We also assume standard encodings of strings, numeric
types, Booleans, tuples, records, algebraic types (including
lists) and pattern-matching, and recursive functions. (Ap-
pendix D lists the full details.) RCF lacks full-fledged
polymorphism, but by duplicating definitions at multiple
monomorphic types we can recover the effect of having
polymorphic definitions.

We use the following notations for functions with pre-
conditions, and non-empty tuples (instead of directly using
the core syntax for dependent function and pair types). We
usually omit conditions of the form {True} in examples.

Derived Notation for Functions and Tuples:

{x1 : T1 |C1}→U 4
= Πx1 : {x1 : T1 |C1}. U

(x1 : T1 ∗ · · · ∗ xn : Tn){C}
4
={

Σx1 : T1. . . .Σxn−1 : Tn−1. {xn : Tn |C} if n > 0
{C} otherwise

To treat assume and assert as F# library functions, we
follow the convention that constructor applications are in-
terpreted as formulas (as well as values). If h is an algebraic
type constructor of arity n, we treat h as a predicate symbol
of arity n, so that h(M1, . . . ,Mn) is a formula.

All of our example code is extracted from two kinds of
source files: either extended typed interfaces (.fs7) that de-
clare types, values, and policies; or the corresponding F#

implementation modules (.fs) that define them.
We sketch how to interpret interfaces and modules as

tuple types and expressions. In essence, an interface is a
sequence val x1 : T1 . . . val xn : Tn of value declarations,
which we interpret by the tuple type (x1 : T1 ∗ · · · ∗ xn : Tn).
A module is a sequence let x1 = A1 . . . let xn = An of value
definitions, which we interpret by the expression let x1 =
A1 in . . . let xn = An in (x1, . . . ,xn). If A and T are the in-
terpretations of a module and an interface, our tool checks
whether A : T . Any type declarations are simply inter-
preted as abbreviations for types, while a policy statement
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assume C is treated as a declaration val x : {C} plus a defi-
nition let x = assume C for some fresh x.

2.4 Example: Access Control in Partially-
Trusted Code

This example illustrates static enforcement of file access
control policies in code that is typechecked but not neces-
sarily trusted, such as applets or plug-ins. (See, for example,
Dean et al. [1996], Pottier et al. [2001], Abadi and Fournet
[2003], and Abadi [2007] for a more general discussion of
security mechanisms for partially-trusted code.)

We first declare a type for the logical facts in our policy.
We interpret each of its constructors as a predicate symbol:
here, we have two basic access rights, for reading and writ-
ing a given file, and a property stating that a file is public.

type facts =
| CanRead of string // read access
| CanWrite of string // write access
| PublicFile of string // some file attribute

For instance, the fact CanRead("C:/README") repre-
sents read access to "C:/README". We use these facts to
give restrictive types to sensitive primitives. For instance,
the declarations

val read: file:string{CanRead(file)}→string
val delete: file:string{CanWrite(file)}→unit

demand that the function read be called only in contexts
that have previously established the fact CanRead(M) for its
string argument M (and similarly for write). These demands
are enforced at compile time, so in F# the function read just
has type string→string and its implementation may be left
unchanged.

More operationally, to illustrate our formal definition of
expression safety, we may include assertions, and define

let read file = assert(CanRead(file)); "data"
let delete file = assert(CanWrite(file))

Library writers are trusted to include suitable assume
statements. They may declare policies, in the form of log-
ical deduction rules, declaring for instance that every file
that is writable is also readable:

assume ∀x. CanWrite(x)⇒CanRead(x)

and they may program helper functions that establish new
facts. For instance, they may declare

val publicfile: file : string→unit{ PublicFile(file) }
assume ∀x. PublicFile(x)⇒CanRead(x)

and implement publicfile as a partial function that dynami-
cally checks its filename argument.

let publicfile f =
if f = "C:/public/README" then assume (PublicFile(f))
else failwith "not a public file"

The F# library function failwith throws an exception, so
it never returns and can safely be given the polymorphic
type string→α , where α can be instantiated to any RCF
type. (We also coded more realistic dynamic checks, based
on dynamic lookups in mutable, refinement-typed, access-
control lists. We omit their code for brevity.)

To illustrate our code, consider a few sample files, one
of them writable:

let pwd = "C:/etc/password"
let readme = "C:/public/README"
let tmp = "C:/temp/tempfile"
let = assume (CanWrite(tmp))

Typechecking the test code below returns two type errors:

let test:unit =
delete tmp; // ok

// delete pwd; // type error
let v1 = read tmp in // ok, using 1st logical rule

// let v2 = read readme in // type error
publicfile readme; let v3 = read readme in () // ok

For instance, the second delete yields the error “Cannot es-
tablish formula CanWrite(pwd) at acls.fs(39,9)-(39,12).”

In the last line, the call to publicfile dynamically tests its
argument, ensuring PublicFile(readme) whenever the final
expression read readme is evaluated. This fact is recorded
in the environment for typing the final expression.

From the viewpoint of fully-trusted code, our inter-
face can be seen as a self-inflicted discipline—indeed, one
may simply assume ∀x.CanRead(x). In contrast, partially-
trusted code (such as mobile code) would not contain any
assume. By typing this code against our library interface,
possibly with a policy adapted to the origin of the code, the
host is guaranteed that this code cannot call read or write
without first obtaining the appropriate right.

Although access control for files mostly relies on dy-
namic checks (ACLs, permissions, and so forth), a static
typing discipline has advantages for programming partially-
trusted code: as long as the program typechecks, one can
safely re-arrange code to more efficiently perform costly dy-
namic checks. For example, one may hoist a check outside
a loop, or move it to the point a function is created, rather
than called, or move it to a point where it is convenient to
handle dynamic security exceptions.

In the code below, for instance, the function reader can
be called to access the content of file readme in any context
with no further run time check.

let test higher order:unit =
let reader: unit→string =

(publicfile readme; (fun ()→ read readme)) in
// let v4 = read readme in // type error

let v5 = reader () in () // ok

8



Similarly, we programmed (and typed) a function that
merges the content of all files included in a list, under the
assumption that all these files are readable, declared as

val merge: (file:string{ CanRead(file) }) list→string

where list is a type constructor for lists, with a standard im-
plementation typed in RCF.

We finally illustrate the use of refinement-typed values
within imperative data structures to “store” valid formulas.
We may declare an access control list (ACL) database as

type entry =
| Readable of x:string{CanRead(x)}
|Writable of x:string{CanWrite(x)}
| Nothing

val acls : (string,entry) Db.t
val safe read: string→string
val readable: file:string→unit{ CanRead(file) }

(where Db.t is a type constructor for our simplified typed
database library, parameterized by the types of the keys and
entries stored in the database) and implement it as:

let acls: (string,entry) Db.t = Db.create()
let safe read file =

match Db.select acls file with
| Readable file→ read file
|Writable file→ read file
| → failwith "unreadable"

let readable file =
match Db.select acls file with
| Readable f when f = file→ ()
|Writable f when f = file→ ()
| → failwith "unreadable"

Both safe read and readable lookup an ACL entry and, by
matching, either “retrieve” a fact sufficient for reading the
file, or fail. The code below illustrates their usage:

let test acls:unit =
Db.insert acls tmp (Writable(tmp)); // ok

// Db.insert acls tmp (Readable(pwd)); // type error
Db.insert acls pwd (Nothing); // ok
let v6 = safe read pwd in // ok (but dynamically fails)
let v7 = readable tmp; read tmp in () // ok

3 Modelling Cryptographic Protocols

We introduce our technique for specifying security prop-
erties of cryptographic protocols by typing.

3.1 Roles and Opponents as Functions

Following Bhargavan et al. [2008b], we start with plain
F# functions that create instances of each role of the pro-
tocol (such as client or server). The protocols make use

of various libraries (including cryptographic functions, ex-
plained below) to communicate messages on channels that
represent the public network. We model the whole protocol
as an F# module, interpreted as before as an expression that
exports the functions representing the protocol roles, as well
as the network channel [Sumii and Pierce, 2007]. We ex-
press authentication properties (correspondences [Woo and
Lam, 1993]) by embedding suitable assume and assert ex-
pressions within the code of the protocol roles.

The goal is to verify that these properties hold in spite
of an active opponent able to send, receive, and apply cryp-
tography to messages on network channels [Needham and
Schroeder, 1978]. We model the opponent as some arbi-
trary (untyped) expression O which is given access to the
protocol and knows the network channels [Abadi and Gor-
don, 1999]. The idea is that O may use the communication
and concurrency features of RCF to create arbitrary parallel
instances of the protocol roles, and to send and receive mes-
sages on the network channels, in an attempt to force failure
of an assert in protocol code. Hence, our formal goal is ro-
bust safety, that no assert fails, despite the best efforts of an
arbitrary opponent.

Formal Threat Model: Opponents and Robust Safety
A closed expression O is an opponent iff O contains no oc-
currence of assert.
A closed expression A is robustly safe iff the application O A
is safe for all opponents O.

(An opponent must contain no assert, or less it could vacu-
ously falsify safety.)

3.2 Typing the Opponent

To allow type-based reasoning about the opponent, we
introduce a universal type Un of data known to the oppo-
nent, much as in earlier work [Abadi, 1999, Gordon and Jef-
frey, 2003a]. By definition, Un is type equivalent to (both
a subtype and a supertype of) all of the following types:
unit, (Πx : Un. Un), (Σx : Un. Un), (Un+Un), and (µα.Un).
Hence, we obtain opponent typability, that O : Un for all
opponents O.

It is useful to characterize two kinds of type: public types
(of data that may flow to the opponent) and tainted types (of
data that may flow from the opponent).

Public and Tainted Types:

Let a type T be public if and only if T <: Un.
Let a type T be tainted if and only if Un <: T .

We can show that refinement types satisfy the following
kinding rules. (Section 4 has kinding rules for the other
types, following prior work [Gordon and Jeffrey, 2003b].)

• E ` {x : T |C}<: Un iff E ` T <: Un
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• E ` Un <: {x : T |C} iff E ` Un <: T and E,x : T `C

Consider the type T1
4
= {x : string | CanRead(x)}. Ac-

cording to the rules above, this type is public, because string
is public, but it is only tainted if CanRead(x) holds for
all x (and let’s suppose CanRead(x) does not hold for all
x). If we have a value M of this type we can conclude
CanRead(M). The type cannot be tainted, for if it were,
we could conclude CanRead(M) for any M chosen by the
opponent.

Dually, for a type that is tainted but not public, consider
the function type T2

4
= T1 → Un. Specializing the rules to

come in Section 4, a function type T →U is public when T
is tainted and U is public, so T2 is not public. On the other
hand, a function type T →U is tainted when T is public and
U is tainted, so T2 is tainted.

To see why it would be unsafe to consider the type T2
public, consider the function fun x→ assert CanRead(x),
which has type T2. The assertion is safe because x has the
refinement type T1, and so the formula CanRead(x) holds.
Intuitively, it should be safe to give any value of public type
to the untyped opponent, but it is unsafe to do so with this
function, because the opponent could apply it to some argu-
ment x that does not satisfy CanRead(x).

To summarize, we have the strict inclusions T1 <: Un <:
T2. This shows that not all types are public (consider T2),
not all types are tainted (consider T1), hence not all types
are equivalent to Un, and Un is not the top type (because T2
is not its subtype).

Verification of protocols versus an arbitrary opponent is
based on a principle of robust safety by typing.

Theorem 2 (Robust Safety) If ∅ ` A : Un then A is ro-
bustly safe.

Proof: See Appendix C. 2

To apply the principle, if expression A and type T are
the RCF interpretations of a protocol module and a protocol
interface, it suffices by subsumption to check that A : T and
T is public. The latter amounts to checking that Ti is public
for each declaration val xi : Ti in the protocol interface.

(Some of our example interfaces include declarations of
the form private val xi : Ti. These declarations are avail-
able only within protocol code and are not exported to the
attacker, and hence Ti is not necessarily public. We include
these declarations for the sake of exposition, and also to in-
form our typechecker of the enhanced type Ti.)

3.3 A Cryptographic Library

We provide various libraries to support distributed pro-
gramming. They include polymorphic functions for produc-
ing and parsing network representations of values, declared
as

val pickle: x:α → (p:α pickled)
val unpickle: p:α pickled→ (x:α )

and for messaging: addr is the type of TCP duplex connec-
tions, established by calling connect and listen, and used by
calling send and recv. All these functions are public.

The cryptographic library provides a typed interface to
a range of primitives, including hash functions, symmetric
encryption, asymmetric encryption, and digital signatures.
We detail the interface for HMACSHA1, a keyed hash func-
tion, used in our examples to build message authentication
codes (MACs). This interface declares

type α hkey = HK of α pickled Seal
type hmac = HMAC of Un
val mkHKey: unit→α hkey
val hmacsha1: k:α hkey→x:α pickled→h:hmac
val hmacsha1Verify: k:α hkey→xx:Un→h:hmac→x:α

pickled

where hmac is the type of hashes and α hkey is the type of
keys used to compute hashes for values of type α .

The function mkHKey generate a fresh key (informally
fresh random bytes). The function hmacsha1 computes the
joint hash of a key and a pickled value with matching types.
The function hmacsha1Verify verifies whether the joint hash
of a key and a value (presumed to be the pickled representa-
tion of some value of type α ) matches some given hash.
If verification succeeds, this value is returned, now with
the type α indicated in the key. Otherwise, an exception
is raised.

Although keyed-hash verification is concretely imple-
mented by recomputing the hash and comparing it to the
given hash, this would not meet its typed interface: assume
α is the refinement type x : string{CanRead(x)}. In order to
hash a string x, one needs to prove CanRead(x) as a precon-
dition for calling hmacsha1. Conversely, when receiving a
keyed hash of x, one would like to obtain CanRead(x) as
a postcondition of the verification—indeed, the result type
of hmacsha1Verify guarantees it. At the end of this section,
we describe a well-typed symbolic implementation of this
interface.

3.4 Example: A Protocol based on MACs

Our first cryptographic example implements a basic
one-message protocol with a message authentication code
(MAC) computed as a shared-keyed hash; it is a variant of a
protocol described and verified in earlier work [Bhargavan
et al., 2008b].

We present snippets of the protocol code to illustrate our
typechecking method; Appendix F lists the full source code
for a similar, but more general protocol. We begin with a
typed interface, declaring three types: event for specifying
our authentication property; content for authentic payloads;
and message for messages exchanged on a public network.
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type event = Send of string // a type of logical predicate
type content = x:string{Send(x)} // a string refinement
type message = (string ∗ hmac) pickled // a wire format

The interface also declares functions, client and server, for
invoking the two roles of the protocol.

val addr : (string ∗ hmac, unit) addr // a public server address
private val hk: content hkey // a shared secret

private val make: content hkey→content→message
val client: string→unit // start a client

private val check: content hkey→message→content
val server: unit→unit // start a server

The client and server functions share two values: a pub-
lic network address addr where the server listens, and a
shared secret key hk. Given a string argument s, client calls
the make function to build a protocol message by calling
hmacsha1 hk (pickled s). Conversely, on receiving a mes-
sage at addr, server calls the check function to check the
message by calling hmacsha1Verify.

In the interface, values marked as private may occur
only in typechecked implementations, and hence are not
available to the opponent. Conversely, the other values
(addr, client, server) must have public types, and may be
made available to the opponent.

Authentication is expressed using a single event Send(s)
recording that the string s has genuinely been sent by the
client—formally, that client(s) has been called. This event is
embedded in a refinement type, content, the type of strings s
such that Send(s). Thus, following the type declarations for
make and check, this event is a pre-condition for building
the message, and a post-condition after successfully check-
ing the message.

Consider the following code for client and server:

let client text =
assume (Send(text)); // privileged
let c = connect addr in
send c (make hk text)

let server () =
let c = listen addr in
let text = check hk (recv c) in
assert(Send text) // guaranteed by typing

The calls to assume before building the message and to
assert after checking the message have no effect at run time
(the implementations of these functions simply return ())
but they are used to specify our security policy. In the termi-
nology of cryptographic protocols, assume marks a “begin”
event, while assert marks an “end” event.

Here, the server code expects that the call to check only
returns text values previously passed as arguments to client.
This guarantee follows from typing, by relying on the types
of the shared key and cryptographic functions. On the other

hand, this guarantee does not presume any particular cryp-
tographic implementation—indeed, simple variants of our
protocol may achieve the same authentication guarantee, for
example, by authenticated encryption or digital signature.

Conversely, some implementation mistakes would result
in a compile-time type error indicating a possible attack.
For instance, removing private from the declaration of the
authentication key hk, or attempting to leak hk within client,
would not be type-correct; indeed, this would introduce an
attack on our desired authentication property. Other such
mistakes include using the authentication key to hash a plain
string, and rebinding text to any other value between the
assume and the actual MAC computation.

3.5 Example: Logs and Queries

We now relate our present approach to more traditional
correspondence properties, stated in terms of run time
events. To this end, we explicitly code calls to a secure
log function that exclusively records begin- and end-events,
and we formulate our security property on the series of calls
to this function.

Continuing with our MAC example protocol, we modify
the interface as follows:

type event = Send of string | Recv of string
private val log : e:event{ ∀x. (e = Recv(x)⇒Send(x)) }→

r:unit{ ∀x. (e = Send(x)⇒Send(x)) }

The intended correspondence property Recv(x)⇒Send(x)
can now be read off the declared type of log. (In this type,
Send and Recv are used both as F# datatype constructors
and predicate constructors.)

We also slightly modify the implementation, as follows:

let log x = match x with
| Send text→assume (Send(text))
| Recv text→assert(Send(text))

let client text =
log (Send(text)); // we log instead of assuming
let c = connect addr in
send c (make hk text)

let server () =
let c = listen addr in
let text = check hk (recv c) in
log (Recv text) // we log instead of asserting

The main difference is that assume is relegated to the im-
plementation of log; we also omit the redundant assert in
server code, as the condition follows from the type of both
check and log. As a corollary of type soundness, we ob-
tain that, for all runs, every call to log with a Recv event is
preceded by a call to log with a matching Send event (by
induction on the series of calls to log).
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3.6 Example: Principals and Compromise

We now extend our example to multiple principals, with
keys shared between each pair of principals. Hence, the
keyed hash authenticates not only the message content, but
also the sender and the intended receiver. The full imple-
mentation is in Appendix F; here we give only the types.

We represent principal names as strings; Send events are
now parameterized by the sending and receiving principals,
as well as the message text.

type prin = string
type event = Send of (prin ∗ prin ∗ string) | Leak of prin
type (;a:prin,b:prin) content = x:string{ Send(a,b,x) }

The second event Leak is used in our handling of princi-
pal compromise, as described below. The type definition
of content has two value parameters, a and b; they bind
expression variables in the type being defined, much like
type parameters bind type variables. (Value parameters ap-
pear after type parameters, separated by a semicolon; here,
content has no type parameters before the semicolon.)

We store the keys in a (typed, list-based) private database
containing entries of the form (a,b,k) where k is a symmetric
key of type (;a,b)content hkey shared between a and b.

val genKey: prin→prin→unit
private val getKey: a:

string→b:string→ ((;a,b) content) hkey

Trusted code can call getKey a b to retrieve a key shared
between a and b. Both trusted and opponent code can also
call genKey a b to trigger the insertion of a fresh key shared
between a and b into the database.

To model the possibility of key leakage, we allow oppo-
nent code to obtain a key by calling the function leak:

assume ∀a,b,x. ( Leak(a) )⇒Send(a,b,x)
val leak:

a:prin→b:prin→ (unit{ Leak(a) }) ∗ ((;a,b) content) hkey

This function first assumes the event Leak(a) as recorded
in its result type, then calls getKey a b and returns the key.
Since the opponent gets a key shared between a and b, it
can generate seemingly authentic messages on a’s behalf;
accordingly, we declare the policy that Send(a,b,x) holds
for any x after the compromise of a, so that leak can be
given a public type—without this policy, a subtyping check
fails during typing. Hence, whenever a message is accepted,
either this message has been sent (with matching sender,
receiver, and content), or a key for its apparent sender has
been leaked.

3.7 Discussion: Modelling Secrecy

Although this paper focuses on authentication and autho-
rization properties, our type system also guarantees secrecy

properties. Without key secrecy, for instance, we would not
be able to obtain authenticity by typing for the protocol ex-
amples given above.

In a well-typed program, the opponent is given access
only to a public interface, so any value passed to the oppo-
nent must first be given a public type. On the other hand, the
local type of the value does not yield in itself any guarantee
of secrecy, since the same value may be given a public type
in another environment, under stronger logical assumptions.
Informally, the logical formulas embedded in a type indicate
the conditions that must hold before values of that type are
considered public.

To give a more explicit account of secrecy, we consider
a standard “no escape” property that deems a value secret
as long as no opponent can gain direct access to the value.
(This form of secrecy is adequate for some values; it is
weaker than equivalence-based forms of secrecy that fur-
ther exclude any implicit flow of information from the ac-
tual value of a secret to the opponent.)

Robust Secrecy:
Let A be an expression with free variable s. The expres-
sion A preserves the secrecy of s unless C iff the expression
let s = (fun → assert C) in A is robustly safe.

This definition does not rely on types; instead, it tests
whether the opponent may gain knowledge of s: then,
the opponent may also call the function, thereby trigger-
ing the guarded assertion assert C. By definition of robust
safety, the formula C must then follow from the assumptions
recorded in the log.

As a simple corollary of Theorem 2 (Robust Safety), we
establish a principle of robust secrecy by typing.

Theorem 3 (Robust Secrecy) If s : {C} → unit ` A : Un,
then A preserves the secrecy of s unless C.

Proof: (In this proof, we anticipate the typing rules of
Section 4.) By hypothesis, s : {C} → unit ` A : Un, hence
∅ ` C, and thus {C} ` assert C : unit by (Exp Assert),
∅ ` (fun → assert C) : {C} → unit by (Val Fun), and
∅ ` let s = (fun → assert C) in A : Un by (Exp Let). We
conclude by Theorem 2 (Robust Safety). 2

By inspection of the rules for public kinding, we see that
the type {C} → unit given to s is public only in environ-
ments that entail C, and thus is indeed a type of secrets “un-
less C holds”.

We illustrate secrecy on a two-message protocol exam-
ple, relying on authenticated, symmetric encryptions in-
stead of MACs. The first message is a session key (k) en-
crypted under a long-term key; the second message is a se-
cret payload (s) encrypted under the session key. Secrecy
is stated unless Leak(a), a fact used below to illustrate the
usage of assumptions for modelling key compromise.
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We use the following declarations.

type empty = u:unit { Leak(a) }
type secret = {nonce:bytes; value:(empty→unit)}
type payload = secret

private val s: payload
private val k0: (payload symkey) symkey

// The protocol uses a fresh session key
// and relies on its authenticated encryption
// client→server : { fresh k }k0
// server→client : { s }k

val addr : (enc, enc) addr
val client: unit→unit
val server: unit→unit

Both s (the payload) and k0 (the long-term key) must be de-
clared as private values; otherwise we obtain kinding errors.

We give a definition only for the test secret—the rest of
the protocol definitions are similar to those listed above.

let s = {nonce = mkNonce();
value = fun ()→assert(Leak(a))} // our test secret

We obtain an instance of Theorem 3 (Robust Secrecy) for
the expression A that consists of library code plus the pro-
tocol code (without the definition of s). As we typecheck
the protocol definitions, we would obtain typing errors, for
instance, if the client code attempted to leak k0, k, or s on a
public channel, or if the server code attempted to encrypt s
under a public key instead of k.

We can model the compromise of the client machine by
releasing k0 (its only initial secret) to the opponent. The
code used to model this situation is typable only with suf-
ficient assumptions: we may for instance define a public
function let leak()= assume(Leak(a)); k0, with an assump-
tion that records the potential loss of secrecy for s.

In a refined example with multiple clients, each with its
own long-term key, we may use a more precise secrecy
condition, such as C = ∃a.( Leak(a)∧Accept(a)) where
Leak(a) records the compromise of a principal named a and
Accept(a) records that the server actually accepted to run
a session with a as client. Thus, for instance, we may be
able to check the secrecy of s despite the compromise of
unauthorized clients.

We refer to Gordon and Jeffrey [2005] and Fournet et al.
[2007b] for a more general account of secrecy and autho-
rization despite compromise.

3.8 Implementing Formal Cryptography

Morris [1973] describes sealing, a programming lan-
guage mechanism to provide “authentication and limited
access.” Sumii and Pierce [2007] provide a primitive se-
mantics for sealing within a λ -calculus, and observe the

close correspondence between sealing and various formal
characterizations of symmetric-key cryptography.

In our notation, a seal k for a type T is a pair of func-
tions: the seal function for k, of type T → Un, and the un-
seal function for k, of type Un→ T . The seal function, when
applied to M, wraps up its argument as a sealed value, infor-
mally written {M}k in this discussion. This is the only way
to construct {M}k. The unseal function, when applied to
{M}k, unwraps its argument and returns M. This is the only
way to retrieve M from {M}k. Sealed values are opaque; in
particular, the seal k cannot be retrieved from {M}k.

We declare a type of seals, and a function mkSeal to cre-
ate a fresh seal, as follows.

type α Seal = (α →Un) ∗ (Un→α )
val mkSeal: string→α Seal

To implement a seal k, we maintain a list of pairs
[(M1,a1); . . . ;(Mn,an)]. The list records all the values Mi
that have so far been sealed with k. Each ai is a fresh name
representing the sealed value {Mi}k. The list grows as more
values are sealed; we associate a reference s with the seal k,
and store the current list in s. We maintain the invariant
that both the Mi and the ai are pairwise distinct: the list is a
one-to-one correspondence.

The function mkSeal below creates a fresh seal, by gen-
erating a fresh reference s that holds an empty list; the seal
itself is the pair of functions (seal s,unseal s). The code
uses the abbreviations ref, !, and := displayed in Section 2.

The code also relies on library functions for list lookups:

let rec first f xs = match xs with
| x::xs→ (let r = f x in match r with

Some(y)→ r
| None→first f xs)

| []→None
let left z (x,y) = if z = x then Some y else None
let right z (x,y) = if z = y then Some x else None

The function first, of type (α→β option)→α list→β option,
takes as parameters a function and a list; it applies the func-
tion to the elements of the list, and returns the first non-
None result, if any; otherwise it returns None. This func-
tion is applied to a pair-filtering function left, defined as let
left z (x,y)= if z = x then Some y else None, to retrieve the

first ai associated with the value being sealed, if any, and is
used symmetrically with a function right to retrieve the first
Mi associated with the value being unsealed, if any.

type α SealRef = ((α ∗ Un) list) ref
let seal: α SealRef→α→Un = fun s m→

let state = !s in match List.first (List.left m) state with
| Some(a)→a
| None→

let a: Un = Pi.name "a" in
s := ((m,a)::state); a

let unseal: α SealRef→Un→α = fun s a→
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let state = !s in match List.first (List.right a) state with
| Some(m)→m
| None→ failwith "not a sealed value"

let mkSeal (n:string) : α Seal =
let s = ref []:α SealRef in

(seal s, unseal s)

Irrespective of the type α for M, sealing returns a public
name a, which may be communicated on some unprotected
network, and possibly passed to the opponent.

In a variant of seal, we always generate a fresh value a,
rather than perform a list lookup; this provides support
for non-deterministic encryption and signing (with differ-
ent, unrelated values for different encryptions of the same
value).

Within RCF, we derive formal versions of cryptographic
operations, in the spirit of Dolev and Yao [1983], but based
on sealing rather than algebra. Our technique depends
on being within a calculus with functional values. Thus,
in contrast with previous work in cryptographic π-calculi
[Gordon and Jeffrey, 2003b, Fournet et al., 2007b] where
all cryptographic functions were defined and typed as prim-
itives, we can now implement these functions and retrieve
their typing rules by typechecking their implementations.

Appendix E includes listings for the interface and the
(typed) symbolic implementation of cryptography. We
use seals to derive formal models for MACs (HMAC-
SHA1), symmetric encryption (AES), asymmetric encryp-
tion (RSA), and digital signatures (RSASHA1). For exam-
ple, the functions that model HMACSHA1 are as follows.

let mkHKey ():α hkey =
let s = mkSeal "hkey" in

HK s
let hmacsha1 (HK(key)) text =

let (h, ) = key in
let t = h text in

HMAC (t)
let hmacsha1Verify (HK key) text (HMAC h) =

let ( ,hv) = key in
let x:α pickled = hv h in

if x = text then x else failwith "hmac verify failed"

Keys are modelled as seals; computing and verifying MACs
then correspond to uses of sealing and unsealing.

Following the same style, we model RSA encryption us-
ing the types and functions below.

type β deckey = DK of β symkey Seal
type β enckey = EK of (β symkey→Un)
type penc = RSA of Un

let mkRsaDecKey () : β deckey =
let s = mkSeal "rsakey" in

DK(s)
let rsaEncKey (DK dk) =

let (e,d) = dk in EK(e)
let rsaEncrypt (EK (e)) t = RSA(e t)

let rsaDecrypt (DK k) (RSA msg) =
let (e,d) = k in d msg

RSA decryption keys are modelled as seals. RSA encryp-
tion keys are public and can be derived from the correspond-
ing decryption key. Encryption and decryption are modelled
as sealing and unsealing.

Our abstract functions for defining cryptographic prim-
itives can be seen as symbolic counterparts to the oracle
functions commonly used in cryptographic definitions of se-
curity [see, for instance, Bellare and Rogaway, 1993]. For
example, in a random-oracle model for keyed hash func-
tions, an oracle function would take an input to be hashed,
perform a table lookup of previously-hashed inputs, and ei-
ther return the previous hash value, or generate (and record)
a fresh hash value. The main difference is that we rely
on symbolic name generation, whereas the oracle relies on
probabilistic sampling.

4 A Type System for Robust Safety

The type system consists of a set of inductively defined
judgments. Each is defined relative to a typing environment,
E, which defines the variables and names in scope.
Judgments:

E ` � E is syntactically well-formed
E ` T in E, type T is syntactically well-formed
E `C formula C is derivable from E
E ` T :: ν in E, type T has kind ν

E ` T <: U in E, type T is a subtype of type U
E ` A : T in E, expression A has type T

Syntax of Kinds:

ν ::= pub | tnt kind (public or tainted)
Let ν satisfy pub = tnt and tnt = pub.

Syntax of Typing Environments:

µ ::= environment entry
α type variable
α :: ν kinding for recursive type α

α <: α ′ subtyping for recursive types α 6= α ′

a l T channel name
x : T variable

E ::= µ1, . . . ,µn environment

dom(α) = {α}
dom(α :: ν) = {α}
dom(α <: α ′) = {α,α ′}
dom(a l T ) = {a}
dom(x : T ) = {x}
dom(µ1, . . . ,µn) = dom(µ1)∪·· ·∪dom(µn)

recvar(E) = {α,α ′ | (α <: α ′) ∈ E}∪{α | (α :: ν) ∈ E}
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If E = µ1, . . . ,µn we write µ ∈ E to mean that µ = µi for
some i ∈ 1..n. We write T <:> T ′ for T <: T ′ and T ′ <: T .
Let recvar(E) be just the type variables occurring in kinding
and subtyping entries of E. Let E be executable if and
only if recvar(E) = ∅. Such environments contain names,
variables, and type variables (but no entries α :: ν or α <:
α ′). Let fnfv(E) =

⋃
{fnfv(T ) | (a l T ) ∈ E ∨ (x : T ) ∈ E}.

Rules of Well-Formedness and Deduction:

(Env Empty)

∅ ` �

(Env Entry)
E ` �
fnfv(µ)⊆ dom(E)
dom(µ)∩dom(E) =∅

E,µ ` �

(Type)
E ` �
fnfv(T )⊆ dom(E)

E ` T

(Derive)
E ` � fnfv(C)⊆ dom(E) forms(E) `C

E `C
forms(E) 4= {C{y/x}}∪ forms(y : T ) if E = (y : {x : T |C})

forms(E1)∪ forms(E2) if E = (E1,E2)
∅ otherwise

The function forms(E) maps an environment E to a set
of formulas {C1, . . . ,Cn}. We occasionally use this set in
a context expecting a formula, in which case it should be
interpreted as the conjunction C1 ∧ ·· · ∧Cn, or True in case
n = 0. For example, forms(x : {C}) = {C}. To see this, we
calculate as follows.

forms(x : {C})
= forms(x : {y : unit |C}) y /∈ fv(C)

= {C{x/y}}∪ forms(x : unit)

= {C}

Observe also that forms(E) = ∅ if E contains only names;
formulas are derived only from the types of variables, not
from the types of channel names.

The next set of rules axiomatizes the sets of public and
tainted types, of data that can flow to or from the opponent.

Kinding Rules: E ` T :: ν for ν ∈ {pub, tnt}
(Kind Var)
E ` � (α :: ν) ∈ E

E ` α :: ν

(Kind Unit)
E ` �

E ` unit :: ν

(Kind Fun)
E ` T :: ν E,x : T `U :: ν

E ` (Πx : T. U) :: ν

(Kind Pair)
E ` T :: ν E,x : T `U :: ν

E ` (Σx : T. U) :: ν

(Kind Sum)
E ` T :: ν E `U :: ν

E ` (T +U) :: ν

(Kind Rec)
E,α :: ν ` T :: ν

E ` (µα.T ) :: ν

(Kind Refine Public)
E ` {x : T |C} E ` T :: pub

E ` {x : T |C} :: pub
(Kind Refine Tainted)
E ` T :: tnt E,x : T `C

E ` {x : T |C} :: tnt

The following rules for ok-types are derivable.

(Kind Ok Public)
E ` {C}

E ` {C} :: pub

(Kind Ok Tainted)
E ` {C} E `C

E ` {C} :: tnt

The following rules of subtyping are standard [Cardelli,
1986, Pierce and Sangiorgi, 1996, Aspinall and Com-
pagnoni, 2001]. The two rules for subtyping refinement
types are the same as in Sage [Gronski et al., 2006].

Subtype: E ` T <: U

(Sub Refl)
E ` T
recvar(E)∩ fnfv(T ) =∅

E ` T <: T

(Sub Public Tainted)
E ` T :: pub
E `U :: tnt
E ` T <: U

(Sub Fun)
E ` T ′ <: T E,x : T ′ `U <: U ′

E ` (Πx : T. U)<: (Πx : T ′. U ′)
(Sub Pair)
E ` T <: T ′ E,x : T `U <: U ′

E ` (Σx : T. U)<: (Σx : T ′. U ′)
(Sub Sum)
E ` T <: T ′ E `U <: U ′

E ` (T +U)<: (T ′+U ′)

(Sub Var)
E ` � (α <: α ′) ∈ E

E ` α <: α ′

(Sub Rec)
E,α <: α ′ ` T <: T ′ α /∈ fnfv(T ′) α ′ /∈ fnfv(T )

E ` (µα.T )<: (µα ′.T ′)
(Sub Refine Left)
E ` {x : T |C} E ` T <: T ′

E ` {x : T |C}<: T ′

(Sub Refine Right)
E ` T <: T ′ E,x : T `C

E ` T <: {x : T ′ |C}
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The universal type Un is type equivalent to all types that
are both public and tainted; we (arbitrarily) define Un

4
=

unit. We can show that this definition satisfies the intended
meaning: that T is public if and only if T is a subtype of
Un, and that T is tainted if and only if T is a supertype of
Un. (See Lemma 16 (Public Tainted) in Appendix C.)

The following congruence rule for refinement types is
derivable from the two primitive rules for refinement types
(Sub Refine Left) and (Sub Refine Right). We also list the
special case for ok-types.

(Sub Refine)
E ` T <: T ′ E,x : {x : T |C} `C′

E ` {x : T |C}<: {x : T ′ |C′}

(Sub Ok)
E, : {C} `C′

E ` {C}<: {C′}

Proof: To derive (Sub Refine), we are to show that E `
T <: T ′ and E,x : {x : T |C} `C′ imply E ` {x : T |C}<:
{x : T ′ | C′}. By Lemma 2 (Derived Judgments) in Ap-
pendix C, E,x : {x : T | C} ` C′ implies E ` {x : T | C}.
By (Sub Refine Left), E ` {x : T |C} and E ` T <: T ′ im-
ply E ` {x : T |C} <: T ′. By (Sub Refine Right), this and
E,x : {x : T |C} `C′ imply E ` {x : T |C}<: {x : T ′ |C′}.

2

Next, we present the rules for typing values. The rule for
constructions h M depends on an auxiliary relation h : (T,U)
that delimits the possible argument T and result U of each
constructor h.

Rules for Values: E `M : T

(Val Var)
E ` � (x : T ) ∈ E

E ` x : T

(Val Unit)
E ` �

E ` () : unit

(Val Fun)
E,x : T ` A : U

E ` fun x→ A : (Πx : T. U)

(Val Pair)
E `M : T E ` N : U{M/x}

E ` (M,N) : (Σx : T. U)

(Val Refine)
E `M : T E `C{M/x}

E `M : {x : T |C}
(Val Inl Inr Fold)
h : (T,U) E `M : T E `U

E ` h M : U
inl:(T,T+U) inr:(U,T+U) fold:(T{µα.T/α},µα.T )

We can derive an introduction rule for ok-types.

(Val Ok)
E `C

E ` () : {C}

Proof: From E ` C we know that E ` � and that E `
C{()/x}. By (Val Unit), E ` () : unit. By (Val Refine),
E ` () : {x : unit |C}, that is, E ` () : {C}. 2

Our final set of rules is for typing arbitrary expressions.

Rules for Expressions: E ` A : T

(Exp Subsum)
E ` A : T E ` T <: T ′

E ` A : T ′

(Exp Appl)
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x}
(Exp Split)
E `M : (Σx : T. U)
E,x : T,y : U, : {(x,y) = M} ` A : V
{x,y}∩ fv(V ) =∅

E ` let (x,y) = M in A : V
(Exp Match Inl Inr Fold)

E `M : T h : (H,T )
E,x : H, : {h x = M} ` A : U
E, : {∀x.h x 6= M} ` B : U

E `match M with h x→ A else B : U
(Exp Eq)

E `M : T E ` N : U x /∈ fv(M,N)

E `M = N : {x : bool | (x = true∧M = N)∨
(x = false∧M 6= N)}

(Exp Assume)
E ` � fnfv(C)⊆ dom(E)

E ` assume C : { : unit |C}

(Exp Assert)
E `C

E ` assert C : unit
(Exp Let)
E ` A : T E,x : T ` B : U x /∈ fv(U)

E ` let x = A in B : U
(Exp Res)
E,a l T ` A : U a /∈ fn(U)

E ` (νa)A : U

(Exp Send)
E `M : T (a l T ) ∈ E

E ` a!M : unit
(Exp Recv)
E ` � (a l T ) ∈ E

E ` a? : T
(Exp Fork)
E, : {A2} ` A1 : T1 E, : {A1} ` A2 : T2

E ` (A1 � A2) : T2

In rules for pattern-matching pairs and constructors, we
use equations and inequations within refinement types to
track information about the matched variables: (Exp Split)
records that M is the pair (x,y); (Exp Match Inl Inr Fold)
records that M is h x when A runs and that M is not of that
form when B runs. Rule (Exp Eq) similarly tracks the result
of equality tests.

The final rule, (Exp Fork) for A1 � A2, relies on an aux-
iliary function to extract the top-level formulas from A2 for
use while typechecking A1, and to extract the top-level for-
mulas from A1 for use while typechecking A2. The function
A returns a formula representing the conjunction of each C
occurring in a top-level assume C in an expression A, with
restricted names existentially quantified.
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Formula Extraction: A

(νa)A = ∃a.A A1 � A2 = A1 ∧ A2
let x = A1 in A2 = A1 assume C = C A = True if
A matches no other rule.

5 Implementing Refinement Types for F#

We implement a typechecker, known as F7, that takes as
input a series of extended RCF interface files and F# im-
plementation files and, for every implementation file, per-
forms the following tasks: (1) typecheck the implementa-
tion against its RCF interface, and any other RCF interfaces
it may use; (2) kindcheck its RCF interface, ensuring that
every public value declaration has a public type; and then
(3) generate a plain F# interface by erasure from its RCF
interface. The programming of these tasks almost directly
follows from our type theory. In the rest of this section,
we only highlight some design choices and implementation
decisions.

For simplicity, we do not provide syntactic support for
extended types or non-atomic formulas in implementation
files. To circumvent this limitation, one can always move
extended types and complex formulas to the RCF interface
by adding auxiliary declarations.

5.1 Handling F# Language Features

Our typechecker processes F# programs with many more
features than the calculus of Section 2. Thus, type defi-
nitions also feature mutual recursion, algebraic datatypes,
type abbreviations, and record types; value definitions also
feature mutual recursion, polymorphism, nested patterns in
let- and match-expression, records, exceptions, and mutable
references. As described in Section 2, these constructs can
be expanded out to simpler types and expressions within
RCF. Hence, for example, our typechecker eliminates type
abbreviations by inlining, and compiles records to tuples.
The remaining constructs constitute straightforward gen-
eralizations of our core calculus. For example, polymor-
phic functions represent a family of functions, one for each
instance of a type variable; hence, when checking a spe-
cific function application, our typechecker uses the argu-
ment type and expected result type to first instantiate the
function type and then typecheck it. (Appendix D provides
additional details on these codings.)

5.2 Annotating Standard Libraries

Any F# program may use the set of pervasive types and
functions in the standard library; this library includes op-
erations on built-in types such as strings, Booleans, lists,

options, and references, and also provides system functions
such as reading and writing files and pretty-printing. Hence,
to check a program, we must provide the typechecker with
declarations for all the standard library functions and types
it uses. When the types for these functions are F# types, we
can simply use the F# interfaces provided with the library
and trust their implementation. However, if the program re-
lies on extended RCF types for some library functions, we
must provide our own RCF interface. For example, the fol-
lowing code declares two functions on lists:

assume
(∀x, u. Mem(x,x::u)) ∧
(∀x, y, u. Mem(x,u)⇒Mem(x,y::u)) ∧
(∀x, u. Mem(x,u)⇒ (∃y, v. u = y::v ∧ (x = y ∨Mem(x,v))))

val mem: x:α →u:α list→ r:bool{r=true⇒Mem(x,u)}
val find: (α →bool)→ (u:α list→ r:α { Mem(r,u) })

We declare an inductive predicate Mem for list member-
ship and use it to annotate the two library functions for list
membership (mem) and list lookup (find). Having defined
these extended RCF types, we have a choice: we may either
trust that the library implementation satisfies these types,
or reimplement these functions and typecheck them. For
lists, we reimplement (and re-typecheck) these functions;
for other library modules such as String and Printf, we trust
the F# implementation.

5.3 Implementing Trusted Libraries

In addition to the standard library, our F# programs rely
on libraries for cryptography and networking. We write
their concrete implementations on top of .NET Framework
classes. For instance, we define keyed hash functions as:

open System.Security.Cryptography
type α hkey = HK of bytes
type hmac = bytes
let mkHKey () = HK (mkNonce())
let hmacsha1 (HK k) (P x) =

(new HMACSHA1 (k)).ComputeHash x
let hmacsha1Verify (HK k) (P x) (h:bytes) =

let hh = (new HMACSHA1 (k)).ComputeHash x in
if h = hh then P x else failwith "hmac verify failed"

Similarly, the network send and recv are implemented using
TCP sockets (and not typechecked in RCF).

We also write symbolic implementations for cryptogra-
phy and networking, coded using seals and channels, and
typechecked against their RCF interfaces. These implemen-
tations can also be used to compile and execute programs
symbolically, sending messages on local channels (instead
of TCP sockets) and computing sealed values (instead of
bytes); this is convenient for testing and debugging, as one
can inspect the symbolic structure of all messages.
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F# Definitions F# Declarations RCF Declarations Analysis Time Z3 Obligations
Typed Libraries 440 lines 125 lines 146 lines 12.1s 12
Access Control (Section 2.4) 104 lines 16 lines 34 lines 8.3s 16
MAC Protocol (Section 3.4) 40 lines 9 lines 12 lines 2.5s 3
Logs and Queries (Section 3.5) 37 lines 10 lines 16 lines 2.8s 6
Secrecy (Section 3.7) 51 lines 18 lines 41 lines 2.7s 6
Principals & Compromise (Section 3.6) 48 lines 13 lines 26 lines 3.1s 12
Flexible Signatures (Section 6) 167 lines 25 lines 52 lines 14.6s 28

Table 1. Typechecking Example Programs

5.4 Type Annotations and Partial Type
Inference

Type inference for dependently-typed calculi, such as
RCF, is undecidable in general. For top-level value def-
initions, we require that all types be explicitly declared.
For subexpressions, our typechecker performs type infer-
ence using standard unification-based techniques for plain
F# types (polymorphic functions, algebraic datatypes) but it
may require annotations for types carrying formulas.

5.5 Generating Proof Obligations for Z3

Following our typing rules, our typechecker must often
establish that a condition follows from the current typing
environment (such as when typing function applications and
kinding value declarations). If the formula trivially holds,
the typechecker discharges it; for more involved first-order-
logic formulas, it generates a proof obligation in the Sim-
plify format [Detlefs et al., 2005] and invokes the Z3 prover.
Since Z3 is incomplete, it sometimes fails to prove a valid
formula.

The translation from RCF typing environments to Sim-
plify involves logical re-codings. Thus, constructors are
coded as injective, uninterpreted, disjoint functions. Hence,
for instance, a type definition for lists

type (α ) list = Cons of α ∗ α list | Nil

generates logical declarations for a constant Nil and a binary
function Cons, and the two assumptions

assume ∀x,y. Cons(x,y) 6= Nil.
assume ∀x,y,x’,y’.

(x = x’ ∧y = y’)⇔Cons(x,y) = Cons(x’,y’).

Each constructor also defines a predicate symbol that
may be used in formulas. Not all formulas can be trans-
lated to first-order-logic; for example, equalities between
functional values cannot be translated and are rejected.

5.6 Evaluation

We have typechecked all the examples of this paper and
a few larger programs. Table 1 summarizes our results; for

each example, it gives the number of lines of typed F# code,
of generated F# interfaces, and of declarations in RCF inter-
faces, plus typechecking time, and the number of proof obli-
gations passed to Z3. Since F# programmers are expected
to write interfaces anyway, the line difference between RCF
and F# declarations roughly indicates the additional annota-
tion burden of our approach.

The first row is for typechecking our symbolic imple-
mentations of lists, cryptography, and networking libraries.
The second row is an extension of the access control ex-
ample of Section 2; the next three rows are variants of the
MAC protocol of Section 3. The second-last row is an ex-
ample adapted from earlier work [Fournet et al., 2007a]; it
illustrates the recursive verification of any chain of certifi-
cates. The final row implements the protocol described next
in Section 6.

The examples in this paper are small programs designed
to exercise the features of our type system; our results in-
dicate that typechecking is fast and that annotations are
not too demanding. Recent experiments [Bhargavan et al.,
2009] indicate that our typechecker scales well to large ex-
amples; it can verify custom cryptographic protocol code
with around 2000 lines of F# in less than 3 minutes. In
comparison with an earlier tool FS2PV [Bhargavan et al.,
2008b] that compiles F# code to ProVerif, our typechecker
succeeds on examples with recursive functions, such as the
last row in Table 1, where ProVerif fails to terminate. It also
scales better, since we can typecheck one module at a time,
rather than construct a large ProVerif model. On the other
hand, FS2PV requires no type annotations, and ProVerif can
also prove injective correspondences and equivalence-based
properties [Blanchet et al., 2008].

6 Application: Flexible Signatures

We illustrate the controlled usage of cryptographic sig-
natures with the same key for different intents, or different
protocols. Such reuse is commonplace in practice (at least
for long-term keys) but it is also a common source of er-
rors (see Abadi and Needham [1996]), and it complicates
protocol verification.

The main risk is to issue ambiguous signatures. As an in-
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formal design principle, one should ensure that, whenever
a signature is issued, (1) its content follows from the cur-
rent protocol step; and (2) its content cannot be interpreted
otherwise, by any other protocol that may rely on the same
key. To this end, one may for instance sign nonces, iden-
tities, session identifiers, and tags as well as the message
payloads to make the signature more specific.

Our example is adapted from protocol code for XML
digital signatures, as prescribed in web services security
standards [Eastlake et al., 2002, Nadalin et al., 2004].
These signatures consist of an XML “signature informa-
tion”, which represents a list of (hashed) elements covered
by the signature, together with a binary “signature value”,
a signed cryptographic hash of the signature information.
Web services normally treat received signed-information
lists as sets, and only check that these sets cover selected el-
ements of the message—possibly fewer than those signed,
to enable partial erasure as part of intermediate message
processing. This flexibility induces protocol weaknesses in
some configurations of services. For instance, by providing
carefully-crafted inputs, an adversary may cause a naive ser-
vice to sign more than intended, and then use this signature
(in another XML context) to gain access to another service.

For simplicity, we only consider a single key and two in-
terpretations of messages. We first declare types for these
interpretations (either requests or responses) and their net-
work format (a list of elements plus their joint signature).

type id = int // representing message GUIDs
type events =
| Request of id ∗ string // id and payload
| Response of id ∗ id ∗ string // id, request id, and payload

type element =
| IdHdr of id // Unique message identifier
| InReplyTo of id // Identifier for some related messsage
| RequestBody of string // Payload for a request message
| ResponseBody of string // Payload for a response message
|Whatever of string // Any other elements

type siginfo = element list
type msg = siginfo ∗ dsig

Depending on their constructor, signed elements are inter-
preted for requests (RequestBody), responses, (InReplyTo,
ResponseBody), both (IdHdr), or none (Whatever). We for-
mally capture this intent in the type declaration of the infor-
mation that is signed:

type verified = x:siginfo{
(∀id, b.(Mem(IdHdr(id),x) ∧Mem(RequestBody(b),x))

⇒Request(id,b) )
∧ (∀id, req, b.(Mem(IdHdr(id),x) ∧Mem(ResponseBody(b),x)

∧Mem(InReplyTo(req),x))⇒Response(id,req,b) ) }

Thus, the logical meaning of a signature is a conjunction of
message interpretations, each guarded by a series of condi-
tions on the elements included in the signature information.

We only present code for requests. We use the following
declarations for the key pair and for message processing.

private val k: (verified,unit) privkey
private val sk: verified sigkey
val vk: verified verifkey
private val mkMessage: verified→msg
private val isMessage: msg→verified

type request = (id:id ∗ b:string){ Request(id,b) }
val isRequest: msg→ request
private val mkPlainRequest: request→msg
private val mkRequest: request→siginfo→msg

To accept messages as a genuine requests, we just verify
its signature and find two relevant elements in the list:

let isMessage (msg,dsig) =
let signed: siginfo→siginfo pickled = pickle in
unpickle (rsasha1Verify vk (signed msg) dsig)

let isRequest msg =
let si = isMessage msg in
let i = find id si in
let r = find request si in
(i,r)

For producing messages, we may define (and type):

let mkMessage siginfo =
let signed: verified→verified pickled = pickle in
(siginfo, rsasha1 sk (signed siginfo))

let mkPlainRequest (id,payload) =
let l1: element list = [] in
let ide: element = IdHdr(id) in
let reqe : element = RequestBody(payload) in
let ls:element list = ide::reqe::l1 in
mkMessage ls

let mkRequest (id,payload) extra : msg =
check harmless extra;
let ide: element = IdHdr(id) in
let reqe : element = RequestBody(payload) in
let ls:element list = ide::reqe::extra in
mkMessage ls

While mkPlainRequest uses a fixed list of signed elements,
mkRequest takes further elements to sign as an extra pa-
rameter. In both cases, typing the list with the refinement
type verified ensures (1) Request(id,b), from its input refine-
ment type; and (2) that the list does not otherwise match the
two clauses within verified. For mkRequest, this requires
some dynamic input validation check harmless extra where
check harmless is declared as

val check harmless: x: siginfo→ r: unit {
( ∀s. not(Mem(IdHdr(s),x)))
∧ ( ∀s. not(Mem(InReplyTo(s),x)))
∧ ( ∀s. not(Mem(RequestBody(s),x)))
∧ ( ∀s. not(Mem(ResponseBody(s),x))) }

and recursively defined as
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let rec check harmless m = match m with
| IdHdr( ):: → failwith "bad"
| InReplyTo( ):: → failwith "bad"
| RequestBody( ):: → failwith "bad"
| ResponseBody( ):: → failwith "bad"
| ::xs→check harmless xs
| []→ ()

On the other hand, the omission of this check, or an error in
its implementation, would be caught as a type error.

To conclude this example, we provide an alternative dec-
laration for type verified. This type specifies a more restric-
tive interpretation of signatures: it assumes that the relevant
elements appear in a fixed order at the head of the list. (This
corresponds roughly to our most precise model in earlier
work, which relied on an ad hoc specification of list within
ProVerif.)

type verifiedprefix = x:siginfo{
( ∀id, b, extra.( x = IdHdr(id)::RequestBody(b)::extra⇒

Request(id,b) ))
∧ ( ∀id, req, b, extra.( x = IdHdr(id)::InReplyTo(req)::

ResponseBody(b)::extra
⇒Response(id,req,b) )) }

Formally, our typechecker confirms that verified is a sub-
type of prefixverified. For instance, we may use it instead of
verified for typing mkRequest (and even remove the call to
check harmless), but not for typing isRequest.

7 Related Work

RCF is intended for verifying security properties of im-
plementation code, and is related to various prior type sys-
tems and static analyses. We describe some of the more
closely related approaches. (See also Section 1 for a com-
parison with prior work of the authors.)

Verification tools for cryptographic protocol implemen-
tations CSur was the first tool to analyze the source
code of cryptographic protocols [Goubault-Larrecq and Par-
rennes, 2005]; it can verify protocol code in C annotated
with logical assertions, by generating proof obligations for
an external first-order-logic theorem-prover.

In prior work [Bhargavan et al., 2008b,a] a subset of
F# was translated into different variants of the applied
π-calculus which could be verified by Blanchet’s theo-
rem provers ProVerif [Blanchet, 2001] and CryptoVerif
[Blanchet, 2006] respectively. The use of specialized
provers enables the verification of complex cryptographic
protocols but is problematic with large implementations.

ASPIER [Chaki and Datta, 2009] has been applied to
verify code of the central loop of OpenSSL. It performs
no interprocedural analysis and relies on unverified user-
supplied abstractions of all functions called from the cen-
tral loop. ASPIER is based on software model-checking

techniques, and proves properties of OpenSSL assuming
bounded numbers of active sessions.

Program verification using dependent types Like stan-
dard forms of constructive type theory [Martin-Löf, 1984,
Constable et al., 1986, Coquand and Huet, 1988, Parent,
1995], our system RCF relies on dependent types (that is,
types which contain values), and it can establish logical
properties by typechecking. There are, however, three sig-
nificant differences in style between RCF and constructive
type theory. Most notably, RCF does not rely on the Curry-
Howard correspondence, which identifies types with logical
formulas; instead, RCF has a fixed set of type constructors,
and is parameterized by the choice of a logic, which may
or may not be constructive. Secondly, types in RCF may
contain only values, but not arbitrary expressions, such as
function applications. Thirdly, properties of functions are
stated by refining their argument and result types with pre-
conditions and postconditions, rather than by developing a
behavioural equivalence on functions.

Our treatment of refinement types follows Sage [Gron-
ski et al., 2006], a functional programming language with
a rich type system including refinement types. Typecheck-
ing generates proof obligations that are sent to an automatic
theorem prover; those that cannot be proved automatically
are compiled down to run time checks.

Our approach of annotating programs with pre- and post-
conditions has similarities with extended static checkers
used for program verification, such as ESC/Java [Flana-
gan et al., 2002], Spec# [Barnett et al., 2005], and ES-
C/Haskell [Xu, 2006]. Such checkers have not been used
to verify security properties of cryptographic code, but they
can find many other kinds of errors. For instance, Poll and
Schubert [2007] use ESC/Java2 [Cok and Kiniry, 2004] to
verify that an SSH implementation in Java conforms to a
state machine specification. Combining approaches can be
even more effective, for instance, Hubbers et al. [2003] gen-
erate implementation code from a verified protocol model
and check conformance using an extended static checker. In
recent work, Régis-Gianas and Pottier [2008] enrich a core
functional programming language with higher order logic
proof obligations. These are then discharged either by an
automatic or an interactive theorem prover depending on
the complexity of the proof.

In comparison with these approaches, we propose sub-
typing rules that capture notions of public and tainted
data, and we provide functional encodings of cryptography.
Hence, we achieve typability for opponents representing ac-
tive attackers. Also, we use only stable formulas: in any
given run, a formula that holds at some point also holds
for the rest of the run; this enables a simple treatment of
programs with concurrency and side-effects. More precise
stateful properties can still be specified and verified within
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RCF using a refined state monad [Borgström et al., 2010].
One direction for further research is to avoid the need

for refinement type annotations, by inference. A poten-
tial starting point is a recent line of work based on Liquid
Types [Rondon et al., 2008, Kawaguchi et al., 2009, Ron-
don et al., 2010], a polymorphic system of refinement types
for ML, together with a type inference algorithm based on
predicate abstraction.

Type systems for security Type systems for information
flow have been developed for code written in many lan-
guages, including Java [Myers, 1999], ML [Pottier and
Simonet, 2003], and Haskell [Li and Zdancewic, 2006].
Further works extend them with support for cryptographic
mechanisms [for example, Askarov and Sabelfeld, 2005,
Askarov et al., 2006, Vaughan and Zdancewic, 2007, Four-
net and Rezk, 2008].

These systems seek to guarantee non-interference prop-
erties for programs annotated with confidentiality and in-
tegrity levels. In contrast, our system seeks to guarantee
assertion-based security properties, commonly used in au-
thorization policies and cryptographic protocol specifica-
tions, and disregards implicit flows of information.

These systems also feature various privileged primitives
for declassifying confidential information and endorsing
untrusted information, which play a role similar to our
assume primitive for injecting formulas.

Type systems with logical effects, such as ours, have
also been used to reason about the security of models of
distributed systems. For instance, type systems for vari-
ants of the π-calculus [Fournet et al., 2007b, Cirillo et al.,
2007, Maffeis et al., 2008] and the λ -calculus [Jagadeesan
et al., 2008] can guarantee that expressions follow their ac-
cess control policies. Type systems for variants of the π-
calculus, such as Cryptyc [Gordon and Jeffrey, 2002], have
been used to verify secrecy, authentication, and authoriza-
tion properties of protocol models. Unlike our tool, none of
these typecheckers operates on source code.

The AURA type system [Vaughan et al., 2008, Jia
et al., 2008] also enforces authorization by relying on
value-dependent types, but it takes advantage of the Curry-
Howard isomorphism for a particular intuitionistic logic
[Abadi, 2007]; hence, proofs are manipulated at run time,
and may be stored for later auditing; in contrast, we erase
all formulas and discard proofs after typechecking.

Fable [Swamy et al., 2008] is a core formalism for ex-
pressing security policies; its type system does not in it-
self guarantee security properties, but additional proofs can
build on type safety to establish properties including access
control, information flow, and provenance. Fine [Swamy
et al., 2010, Chen et al., 2010] is another refinement type
system for F#, partly inspired by RCF; it extends the F#

source language with dependent, refinement, and affine

types that can be used to express and statically verify infor-
mation flow and stateful authorization policies. Moreover,
source programs typechecked with Fine can be compiled to
proof-carrying code in a low-level intermediate language.
To use the Fine typechecker and compiler, the programmer
writes in an extended source language with extensive type
annotations. In contrast, our typechecker works with pure
F# programs with all annotations provided in an external
RCF interface. Moreover, our verification case studies fo-
cus on the use of cryptography to enforce security policies,
while the the use of cryptographic primitives with Fine re-
mains future work.

Beyond typechecking, many verification techniques also
rely on checking logical properties of protocols, using for
instance pre- and post-conditions in a protocol logic with
domain-specific axioms [Durgin et al., 2003, Datta et al.,
2007].

Security verification using RCF Our type system and its
typechecker have been used to verify implementations of
complex cryptographic protocols and security mechanisms.

• Backes et al. [2009] use RCF as the formal basis of a
compiler for zero-knowledge protocols; the compiler
takes a verified (well-typed) protocol model and gen-
erates a well-typed RCF program, hence preserving
the desired security properties. In subsequent work,
Backes et al. [2010a] extend RCF with union and in-
tersection types, with application to verifying code for
zero-knowledge proofs and other security protocols.

• Baltopoulos and Gordon [2009] use F7 to validate an
improved compilation strategy for the Links multi-tier
programming language [Cooper et al., 2006], where
keyed hashes and encryption protect the integrity and
secrecy of web application data held in HTML forms.

• Bhargavan et al. [2009] use F7 as a component of a ver-
ifying protocol compiler for multi-party sessions; the
compiler generates a protocol implementation along
with type annotations and the typechecker verifies that
the implementation meets its high-level security spec-
ification.

• Guts et al. [2009] also use our typechecker to verify
the correct use of security audit logs in distributed ap-
plications; well-typed programs are guaranteed to log
enough information to later convince a judge that a par-
ticular sequence of events occurred.

• Bhargavan et al. [2010b] extend the F7 typechecker
with support for implicit predicates representing the
pre- and post-conditions of functions, in order to verify
applications that use higher-order functions to perform
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cryptographic operations over recursive data struc-
tures, such as lists.

• Bhargavan et al. [2010a] develop a revised set of cryp-
tographic libraries for F7, with embedded logical in-
variants, and use them to verify a web services security
protocol stack and an implementation of the widely-
deployed Cardspace protocol for federated identity
management. Their main motivation is to extend the
scope of cryptographic verification by typing.

Their libraries rely on different, more logic-oriented
design principles, and different types for the opponent.
Kinds in RCF provide a simple, built-in mechanism for
constraining types in opponent interfaces; they suffice
to model many cryptographic primitives, but not all of
those found in large case studies. Bhargavan et al. also
rely on RCF and F7, but do not rely on kinds.

Instead, their approach involves developing (and as-
suming) a logical theory of symbolic cryptographic
structures (including, in particular, a Pub predicate that
represents the attacker knowledge). To verify a given
protocol, one can then extend and customize the logi-
cal theory, rather than just declaring types.make

Intuitively, instead of types with nested constructors
subject to kinding, they mostly use refinement types
of the form {x : bytes | C}, carrying logical specifi-
cations C subject to subtyping, Instead of the kinding
judgments E ` T :: pub and E ` T :: tnt, they use sub-
typing judgments E ` T <: {x : bytes | Pub(x)} and
E ` {x : bytes | Pub(x)}<: T , respectively, where Pub
is an ordinary predicate of their theory.

Both sets of libraries are distributed with F7. Theirs
yield a more general treatment of secrecy, and a flex-
ible model for additional cryptographic patterns. For
example, their libraries include weaker, unauthenti-
cated, encryption algorithms that one can use to build
composite patterns such as hybrid encryption, which
are not easily encodable with our libraries. Conversely,
their libraries are more complex, and their usage some-
times requires hand proofs as well as typechecking.

• This article focuses on verifying security protocols
written in RCF against a formal model of cryptogra-
phy expressed with seals. Subsequent work by Backes
et al. [2010b] and by Fournet [2009] develops tech-
niques for verifying RCF code against the computa-
tional model of cryptography. Additionally, Backes
et al. show a formal correspondence between seals and
a formal algebra in the style of Dolev and Yao [1983].

Finally, a tutorial article [Gordon and Fournet, 2010] devel-
ops the calculus RCF in several stages (but without kinds),
and summarizes the various projects building on it.

8 Conclusion

The use of logical formulas as computational effects is a
valuable way to integrate program logics and type systems,
with application to security.
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A Logics

Formally, RCF is parameterized by the choice of a logic,
in the sense that our typed calculus depends only on a series
of abstract properties of the logic, rather than on a particular
semantics for logic formulas.

Experimentally, our prototype implementation uses ordi-
nary first order logic with equality, with terms that include
all the values M, N of Section 2.1 (including functional val-
ues). During typechecking, this logic is partially mapped to
the Simplify input of Z3, with the implementation restric-
tion that no term should include any functional value. This
restriction prevents discrepancies between run time equality
in RCF and term equality in F#.

We first give an abstract definition of the logic used for
the theorems, and then give a concrete definition of the logic
used in the implementation. Other interesting instances of
logics for our verification purposes include authorization
logics with “says” modalities [Abadi et al., 1993], which
may be used to give a logical account of principals and par-
tial trust by typing [Fournet et al., 2007b]. Accordingly, we
refer to our parametric logic as an authorization logic.

A.1 Definition of Authorization Logic

We give a generic, partial definition of logic that cap-
tures only the logical properties that are used to establish
our typing theorems.

An authorization logic is given as a set of formulas de-
fined by a grammar that includes the one given below and a
deducibility relation S `C, from finite multisets of formulas
to formulas that meets the properties listed below.

Minimal Syntax of Formulas:

p predicate symbol
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C ::= formula
p(M1, . . . ,Mn) atomic formula
M = M′ equation
C∧C′ conjunction
C∨C′ disjunction
¬C negation
∀x.C universal quantification
∃x.C existential quantification

True
4
= () = () False

4
= ¬True M 6= M′ 4= ¬(M = M′)

(C⇒C′) 4= (¬C∨C′) (C⇔C′) 4= (C⇒C′)∧ (C′⇒C)

Properties of Deducibility: S `C

S,C stands for S∪{C}; in (Subst), σ ranges over substitu-
tions of values for variables and permutations of names.

(Axiom)

C `C

(Mon)
S `C

S,C′ `C

(Subst)
S `C

Sσ `Cσ

(Cut)
S `C S,C `C′

S `C′

(And Intro)
S `C0 S `C1

S `C0∧C1

(And Elim)
S `C0∧C1

S `Ci

(Or Intro)
S `Ci

S `C0∨C1
i = 0,1

(Exists Intro)
S `C{M/x}

S ` ∃x.C

(Exists Elim)
S ` ∃x.C S,C `C′ x /∈ fv(S,C′)

S `C′

(Eq)

∅ `M = M

(Ineq)
M 6= N fv(M,N) =∅

∅ `M 6= N
(Ineq Cons)
h N = M for no N fv(M) =∅

∅ ` ∀x.hx 6= M

We have a derived property (True)∅ ` True.
Although these properties are mostly standard in first-

order logic, they are not complete; for instance, we do not
set any axiom for negation, so our typing results apply both
to intuitionistic and classical logics. Also, we do not pro-
vide enough properties to discharge the proof obligations
when typing our examples.

We use property (Mon) for the soundness of typing sub-
expressions, and use property (Subst) for establishing sub-
stitution lemmas. We also implicitly use (Subst) for han-
dling the terms of RCF up to α-conversion on bound names
and variables.

We use the properties (And Intro), (And Elim), (Exists
Intro), (Exists Elim), and (True) in the proof of Lemma 28
(V Preserves Logic), to show that the formula A extracted
from an expression A is preserved by structural equivalence.

We use the properties (Eq), (Ineq), and (Or Intro) in the
proof of Lemma 30 (→ Preserves Logic), for the sound-
ness of the typing rule (Exp Eq). Similarly, we use property
(Ineq Cons) for the soundness of (Exp Match Inl Inr Fold).

Since functions fun x→ A are values, they may occur in
atomic formulas or equations. Still, these functions are es-
sentially inert in the logic; they can be compared for equal-
ity but the logic does not allow reasoning about the appli-
cation of functions. Said otherwise, the equational theory
M = M′ is only up to α-conversion, but not for instance
β -conversion. Recall that we identify the syntax of values
up to the consistent renaming of bound variables, so that,
for example, fun x→ x and fun y→ y are the same value.
Hence, ∅ ` fun x→ x = fun y→ y is an instance of (Eq).
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A.2 An Authorization Logic based on
First-Order Logic

For the sake of a self-contained exposition, we review
classical first-order logic (predicate calculus) with equality,
as supported by the Z3 prover used by our typechecker.

First-Order Logic (Review) The syntax of first-order
logic consists of sets of formulas, C, and terms, t, induced
by sets of predicate symbols, p, and function symbols, f .

Syntax of First-Order Terms and Formulas:

t ::= x | f (t1, . . . , tn)
C ::= p(t1, . . . , tn) | (t = t ′) |

False |C∧C′ |C∨C′ |C⇒C′ | ∀x.C | ∃x.C
¬C 4

= (C⇒ False) t 6= t ′ 4= ¬(t = t ′)

We recall a proof system, FOL, for classical first-
order logic with equality in the style of Gentzen’s natural-
deduction. (More precisely, this is the theory of classi-
cal first-order logic with equality as implemented in Is-
abelle [Paulson, 1991], presented using sequents following,
for example, Dummett [1977] and Paulson [1987].

Proof Theory FOL: S `C

(FOL Assume)
C ∈ S

S `C

(FOL Refl)

S ` t = t

(FOL Subst)
S ` t = t ′ S `C{t/x}

S `C{t ′/x}
(FOL And Intro)
S `C0 S `C1

S `C0∧C1

(FOL And Elim)
S `C0∧C1

S `Ci

(FOL Or Intro)
S `Ci

S `C0∨C1
i = 0,1

(FOL Or Elim)
S `C0∨C1 S,C0 `C′ S,C1 `C′

S `C′

(FOL False)
S ` False

S `C
(FOL Classical)
S,¬C `C

S `C

(FOL Imply Intro)
S,C `C′

S `C⇒C′

(FOL Imply Elim)
S `C⇒C′ S `C

S `C′

(FOL All Intro)
S `C x /∈ fv(S)

S ` ∀x.C

(FOL All Elim)
S ` ∀x.C

S `C{t/x}
(FOL Exists Intro)
S `C{t/x}
S ` ∃x.C

(FOL Exists Elim)
S ` ∃x.C S,C `C′ x /∈ fv(S,C′)

S `C′

The only rule of FOL that is specific to classical logic
is (FOL Classical). The proof theory IFOL [Paulson, 1991]
for intuitionistic first-order logic consists of all the rules of
FOL apart from (FOL Classical).

An Authorization Logic To construct an authorization
logic from FOL, we begin by specifying a particular in-
stance of FOL, and translation from the formulas of autho-
rization logic into this instance.

The syntaxes of formulas in the two logics are essentially
the same. The only subtlety in the translation is that the
phrases of RCF syntax, including values M and expressions
within values, that may occur in authorization logic formu-
las include binders, while the syntax of first-order terms
does not. Our solution is to use the standard first-order
locally-nameless representation of syntax with binders in-
troduced by de Bruijn [1972]. Each bound name or vari-
able in an RCF phrase is represented as a numeric index,
while each free name or variable is represented by itself.
We assume that the set of variables of RCF coincides with
the variables of FOL, and that each of the (countable) set
of names of RCF is included as a nullary function symbol
(that is, a constant) in FOL. Moreover, we assume there is
a function symbol for each form of RCF phrase, zero and
successor symbols to represent indexes, a function symbol
to form a bound variable from an index, and one to form a
bound name from an index. We refer to these function sym-
bols (including names) as syntactic. Hence, any phrase of
RCF has a representation as a first-order term; in particular,
we write M for the term representing the value M. (We omit
the standard details of the locally nameless representation;
for a discussion see, for example, Gordon [1994] and Ay-
demir et al. [2008].) Notice that if M is obtained from N by
consistent renaming of bound names and variables then M
and N are identical first-order terms.

Hence, we may obtain an FOL formula C from an au-
thorization logic formula C via a homomorphic transla-
tion with base cases p(M1, . . . ,Mn) = p(M1, . . . ,Mn) and
M = N = M = N. We extend the translation to sets of for-
mulas: S = {C1, . . . ,Cn} when S = {C1, . . . ,Cn}.

In our intended model, the semantics of a term is an ele-
ment of a domain defined as the free algebra with construc-
tors corresponding to each of the syntactic function sym-
bols. Hence, the domain is the set of closed phrases of RCF
in de Bruijn representation.

We extend the theory FOL with standard axioms valid in
the underlying free algebra, that syntactic function symbols
yield distinct results, and are injective. (The notation~x =~y
means x1 = y1 ∧ ·· · ∧ xn = yn where ~x and ~y are the lists
x1, . . . ,xn and y1, . . . ,yn.)

Additional Rules for FOL/F:

(F Disjoint)
f 6= f ′ syntactic

S ` ∀~x.∀~y. f (~x) 6= f ′(~y)

(F Injective)
f syntactic

S ` ∀~x.∀~y. f (~x) = f (~x)⇒~x =~y

We can use Z3, or some other general SMT solver, to
check whether a sequent S`C is derivable in FOL/F by sim-
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ply declaring an axiom for each instance of (F Disjoint) and
(F Injective). (The problem is semi-decidable so the SMT
solver may fail to determine whether or not the sequent is
derivable.)

Now, we define our authorization logic: we take the
set of formulas to be exactly the minimal syntax of Ap-
pendix A.1, and we define the deducibility relation S ` C
to hold if and only if the sequent S ` C is derivable in the
theory FOL/F.

Theorem 4 (Logic) FOL/F is an authorization logic.

Proof: We derive all the properties required of an autho-
rization logic from the proof system FOL/F.

• We obtain (Mon) by induction on the proof of S ` C
(possibly using a renaming to meet the side conditions
of (FOL All Intro) and (FOL Exists Elim)).

• We obtain (Subst) for name permutations by induction
on the proof of S ` C, as in particular the instances
of (F Disjoint) and (F Injective) are preserved by such
permutations.

• We obtain (Subst) for value substitutions as follows.
Assume C1, . . . ,Cn `C. We have

`C1⇒ . . .⇒Cn⇒C

by (FOL Imply Intro) for i∈ 1..n, then (FOL All Intro)
for each variable in the domain of σ , then (FOL All
Elim) for each variable in the domain of σ , to obtain

`C1σ ⇒ . . .⇒Cnσ ⇒Cσ

We finally use (Mon) to add Ciσ as an hypothesis
then (FOL Imply Elim) for i ∈ 1..n, and finally obtain
C1σ , . . . ,Cnσ `Cσ .

• We obtain (Cut) by (FOL Imply Intro) and (FOL Imply
Elim).

• We obtain (Ineq) from (F Disjoint) and (F Injective).

• We obtain (Ineq Cons) from (F Disjoint) as follows.
Consider some closed value M, such that there is no N
with h N = M. Suppose that f is the outer syntactic
function symbol of M considered as a term M = f (~M).
Since M is a closed value, it can only be unit, a func-
tion, a pair, or a construction h′ M′ where h 6= h′; in
each case, the symbol f is distinct from h. By (F Dis-
joint), ` ∀x.∀~y.h x 6= f (~y). By re-ordering the quan-
tifiers, and (FOL All Elim), ` ∀x.h x 6= f (~M), that is,
` ∀x.h x 6= M.

The other properties follow immediately. 2

Since the derivations do not need (FOL Classical), the
intuitionistic variation IFOL/F could also serve as an autho-
rization logic.

B Semantics and Safety of Expressions

This appendix formally defines the operational seman-
tics of expressions, and the notion of expression safety, as
introduced in Section 2.

An expression can be thought of as denoting a structure,
given as follows. We define the meaning of assume C and
assert C in terms of a structure being statically safe.

Let an elementary expression, e, be any expression apart
from a let, restriction, fork, message send, or an assumption.

Structures and Static Safety:

∏i∈1..n Ai
4
= () � A1 � . . . � An

L ::= {} | (let x = L in B)

S ::= (νa1) . . .(νa`)
(( ∏

i∈1..m
assume Ci) � ( ∏

j∈1..n
c j!M j) � ( ∏

k∈1..o
Lk{ek}))

Let structure S be statically safe if and only if, for all k ∈
1..o and C, if ek = assert C then {C1, . . . ,Cm} `C.

Structures formalize the idea, explained in Section 2.1,
that a state has three components:

(1) a series of elementary expressions ek being evaluated
in parallel contexts;

(2) a series of messages M j sent on channels but not yet
received; and

(3) the log, a series of assumed formulas Ci.

Heating: AV A′

Axioms A≡ A′ are read as both AV A′ and A′V A.

AV A (Heat Refl)
AV A′′ if AV A′ and A′V A′′ (Heat Trans)

AV A′⇒ let x = A in BV let x = A′ in B (Heat Let)
AV A′⇒ (νa)AV (νa)A′ (Heat Res)
AV A′⇒ (A � B)V (A′ � B) (Heat Fork 1)
AV A′⇒ (B � A)V (B � A′) (Heat Fork 2)

() � A≡ A (Heat Fork ())
a!MV a!M � () (Heat Msg ())
assume CV assume C � () (Heat Assume ())

a /∈ fn(A′)⇒ A′ � ((νa)A)V (νa)(A′ � A) (Heat Res Fork 1)
a /∈ fn(A′)⇒ ((νa)A) � A′V (νa)(A � A′) (Heat Res Fork 2)
a /∈ fn(B)⇒

let x = (νa)A in BV (νa)let x = A in B
(Heat Res Let)

(A � A′) � A′′ ≡ A � (A′ � A′′) (Heat Fork Assoc)
(A � A′) � A′′V (A′ � A) � A′′ (Heat Fork Comm)
let x = (A � A′) in B≡

A � (let x = A′ in B)
(Heat Fork Let)
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Lemma 1 (Structure)
For every expression A, there is a structure S such that AV
S.

Proof: The proof is by structural induction on A. 2

Reduction: A→ A′

(fun x→ A) N→ A{N/x} (Red Fun)
(let (x1,x2) = (N1,N2) in A)→

A{N1/x1}{N2/x2}
(Red Split)

(match M with h x→ A else B)→{
A{N/x} if M = h N for some N
B otherwise

(Red Match)

M = N→
{

true if M = N
false otherwise (Red Eq)

a!M � a?→M (Red Comm)
assert C→ () (Red Assert)
let x = M in A→ A{M/x} (Red Let Val)

A→ A′⇒ let x = A in B→ let x = A′ in B (Red Let)
A→ A′⇒ (νa)A→ (νa)A′ (Red Res)
A→ A′⇒ (A � B)→ (A′ � B) (Red Fork 1)
A→ A′⇒ (B � A)→ (B � A′) (Red Fork 2)

A→ A′ if AV B,B→ B′,B′V A′ (Red Heat)

Expression Safety:
An expression A is safe if and only if, for all A′ and S, if
A→∗ A′ and A′V S, then S is statically safe.

C Properties of the Type System

The structure of this appendix is as follows.

• Appendix C.1 develops basic properties of the type
system, such as weakening, strengthening, and ex-
change lemmas.

• Appendix C.2 contains the proof of Lemma 15 (Public
Down/Tainted Up), which characterizes the relation-
ship between the public and tainted kinds and subtyp-
ing.

• Appendix C.3 establishes properties of subtyping,
principally Lemma 20 (Transitivity), that subtyping is
transitive.

• Appendix C.4 presents an alternative characterization
of the expression typing relation, avoiding the non-
structural rule (Val Refine), by building its effect into
each of the structural rules for values; this characteri-
zation is useful in various subsequent proofs.

• Appendix C.5 proves various properties of substitu-
tion.

• Appendix C.6 establishes Theorem 1 (Safety). The
main lemmas in the proof are Proposition 29 (V Pre-
serves Types) and Proposition 31 (→ Preserves Types).

• Finally, Appendix C.7 establishes Theorem 2 (Ro-
bust Safety); the main additional lemma needed is
Lemma 34 (Opponent Typability), that any opponent
expression can be typed within the system.

C.1 Basic Properties

We begin with some standard properties of our type sys-
tem. To state them, we let J range over {�,T,C,T ::
ν ,T <: T ′,A : T}.

Lemma 2 (Derived Judgments)

(1) If E ` T then E ` � and fnfv(T )⊆ dom(E).

(2) If E `C then E ` � and fnfv(C)⊆ dom(E).

(3) If E ` T :: ν then E ` T .

(4) If E ` T <: T ′ then E ` T and E ` T ′.

(5) If E ` A : T then E ` T and fnfv(A)⊆ dom(E).

Proof: The proof is by a simultaneous induction on the
depth of derivation of the judgments. 2

Lemma 3 (Type Variable Strengthening)
Let entry µ be one of α , α :: ν ′, or α <: α ′, and assume
that dom(µ)∩ fnfv(E ′) =∅.

(1) If E,µ,E ′ ` � then E,E ′ ` �.

(2) If E,µ,E ′ `C and dom(µ)∩ fnfv(C) =∅ then E,E ′ `
C.

(3) If E,µ,E ′ ` T :: ν and dom(µ) ∩ fnfv(T ) = ∅ then
E,E ′ ` T :: ν .

(4) If E,µ,E ′ ` T <: T ′ and dom(µ) ∩ fnfv(T,T ′) = ∅
then E,E ′ ` T <: T ′.

Proof: By an induction on the depth of derivation of
E,µ,E ′ `J , using property (Cut) of the logic. 2

Lemma 4 (Anon Variable Strengthening)
If E, : {C},E ′ `J and forms(E,E ′) `C then E,E ′ `J .

Proof: Recall that an anonymous variable is used
nowhere else than its occurrence in the typing environment,
so implicitly it cannot occur on the right-hand side of any
judgment. The proof is by induction on the depth of deriva-
tion of E, : {C},E ′ `J . 2

26



Lemma 5 (Exchange)
If E,µ1,µ2,E ′ ` J and dom(µ1) ∩ fnfv(µ2) = ∅ then
E,µ2,µ1,E ′ `J .

Proof: By an induction on the depth of derivation of
E,µ1,µ2,E ′ `J . 2

Lemma 6 (Weakening)
If E,E ′ `J and E,µ,E ′ ` � then E,µ,E ′ `J .

Proof: By an induction on the depth of derivation of
E,E ′ `J . The case for (Derive) depends on the mono-
tonicity property (Mon) of the logic. 2

The following lemma captures the idea that the formulas
in a tainted type cannot be relied upon, because any data
produced by the opponent may flow into a tainted type.

Lemma 7 (Kinding)
If E ` T :: tnt, and x 6∈ dom(E), then forms(E) ` forms(x :
T ).

Proof: When x /∈ fv(T ) we have the following (noting that
if T is a refinement type we can put it in the form {x : U |C}
up to alpha-conversion):

forms(x : T ) =
{
{C}∪ forms(x : U) if T = {x : U |C}
∅ otherwise

The proof is by induction on the derivation of E ` T ::
tnt. The only case for which forms(x : T ) 6= ∅ is for
(Kind Refine Tainted), when T = {x : U | C} and we have
E `U :: tnt and E,x : U ` C. We are to show forms(E) `
forms(x : T ), that is, forms(E) ` forms(x : U) ∪C. By
induction hypothesis, forms(E) ` forms(x : U). By def-
inition, E,x : U ` C implies forms(E), forms(x : U) ` C.
By (Cut), we get forms(E) ` C. By (And Intro), we get
forms(E) ` forms(x : U)∪C, as required. 2

If T is a subtype of T ′, then the set of formulas forms(x :
T ) is logically stronger than the set of formulas forms(x :
T ′).

Lemma 8 (Logical Subtyping)
If E ` T <: T ′ and x /∈ dom(E) then forms(E), forms(x : T )`
forms(x : T ′).

Proof: By induction on the derivation of E ` T <: T ′, us-
ing property (Cut) of the logic. In case (Sub Public Tainted),
we have E ` T :: pub and E ` T ′ :: tnt. By Lemma 7 (Kind-
ing), we get that E,x : Un ` C for all C ∈ forms(x : T ′),
which implies that forms(E) ` C for all C ∈ forms(x : T ′).
By (Mon), we get forms(E), forms(x : T ) ` forms(x : T ′). 2

Our system enjoys a standard bound weakening property,
that an occurrence of T in the environment of a judgment
can be replaced by a subtype T ′.

Lemma 9 (Bound Weakening)
Suppose that E ` T ′ <: T . If E,x : T,E ′ `J then E,x :
T ′,E ′ `J . Moreover the depth of the derivation of the
second judgment equals that of the first (except where J is
a typing judgment).

Proof: By induction on the derivations of E,x : T,E ′ `
J , using Lemma 8 (Logical Subtyping) and property (Cut)
of the logic. 2

Recall that an ok-type {C} is a token witnessing that the
formula C holds, and is defined to be the refinement type
{ : unit | C}. The final lemmas in this section state some
simple properties of ok-types.

Lemma 10 (Bound Weakening Ok)
Suppose that E,C′ ` C. If E,x : {C},E ′ `J then E,x :
{C′},E ′ `J .

Proof: Corollary of Lemma 9 (Bound Weakening) and
(Sub Ok). 2

Lemma 11 (Sub Refine Left Refl)
If E ` {x : T |C} then E ` {x : T |C}<: T .

Proof: If E ` {x : T |C} then E ` T . By (Sub Refl), E, :
{x : T | C} ` T <: T . By (Sub Refine Left), E ` {x : T |
C}<: T . 2

Lemma 12 (And Sub)
If E ` {x : T |C1∧C2} then: E ` {x : T |C1∧C2}<:> {x :
{x : T |C1} |C2}.

Proof: Suppose E ` {x : T |C1∧C2}, which is to say E `
� and fnfv(T )⊆ dom(E) and fnfv(C1,C2)⊆ dom(E)∪{x}.

By (Sub Refl), E ` T <: T . By (Derive) and (And Elim),
E,x : {x : T |C1 ∧C2} `C1 because forms(x : {x : T |C1 ∧
C2}) = {C1 ∧C2}∪ forms(T ). Hence, by (Sub Refine), we
have:

E ` {x : T |C1∧C2}<: {x : T |C1}

By (Derive) and (And Elim), E,x : {x : T | C1 ∧C2} ` C2.
Hence, by (Sub Refine Right), we obtain the forwards in-
clusion:

E ` {x : T |C1∧C2}<: {x : {x : T |C1} |C2}

By (Sub Refine Left), twice, we have E ` {x : {x : T |
C1} | C2} <: T . By (Derive) and (And Intro), E,x : {x :
{x : T | C1} | C2} ` C1∧C2 because forms(x : {x : {x : T |
C1} |C2}) = {C1,C2}∪ forms(x : T ). Hence, by (Sub Refine
Right), we obtain the backwards inclusion:

E ` {x : {x : T |C1} |C2}<: {x : T |C1∧C2}

2
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Lemma 13 (Ok ∧)
We have E, : {C1}, : {C2},E ′ `J if and only if E, :
{C1∧C2},E ′ `J .

Proof: By inductions on the derivation of each judgment
and properties (And Intro), (And Elim), and (Cut) of the
logic. 2

C.2 Properties of Kinding

We introduced in Section 3.2 a universal type Un of data
known to the opponent. Lemma 16 (Public Tainted) is a
standard characterization [Gordon and Jeffrey, 2003b] of
the public and tainted kinds: a type T is public if and only
if it is a subtype of Un, and a type is tainted if and only if
it is a supertype of Un. The next two lemmas are needed in
the proof of this main lemma.

The proofs of Lemma 15 (Public Down/Tainted Up) in
this section and Lemma 20 (Transitivity) in the next both
rely on the following compartmental notation E[E ′] for en-
vironments.

Compartmental Notation for Environments: E[E ′]

Let E[(E ′i )
i∈1..n] denote the environment obtained by insert-

ing E ′1, . . . , E ′n at fixed positions between the entries of E,
subject to the constraint that E is executable.

Lemma 14 (Replacing Tainted Bounds)
If E,x : T,E ′ `U :: ν and E ` T :: tnt and E `V then E,x :
V,E ′ `U :: ν .

Proof: The proof is by induction on the derivation of
E,x : T,E ′ `U :: ν . In each case we assume that E ` T :: tnt
and E `V .

(Kind Var) Here E,x : T,E ′ ` α :: ν derives from E,x :
T,E ′ ` � and (α :: ν) ∈ (E,x : T,E ′). By assumption
E `V , we have E,x : V,E ′ ` �. We also have (α :: ν)∈
(E,x : V,E ′). By (Kind Var), E,x : V,E ′ ` α :: ν .

(Kind Unit) Here E,x : T,E ′ ` unit :: ν derives from E,x :
T,E ′ ` �. By assumption E `V , we have E,x : V,E ′ `
�. By (Kind Unit), E,x : V,E ′ ` unit :: ν .

(Kind Fun) Here E,x : T,E ′ ` (Πy : T ′. U ′) :: ν derives
from E,x : T,E ′ ` T ′ :: ν and E,x : T,E ′,y : T ′ `U ′ ::
ν . By induction hypothesis, E,x : V,E ′ ` T ′ :: ν and
E,x : V,E ′,y : T ′ `U ′ :: ν . By (Kind Fun), E,x : V,E ′ `
(Πy : T ′. U ′) :: ν .

(Kind Pair) Here E,x : T,E ′ ` (Σy : T ′. U ′) :: ν derives
from E,x : T,E ′ ` T ′ :: ν and E,x : T,E ′,y : T ′ `U ′ :: ν .
By induction hypothesis, E,x : V,E ′ ` T ′ :: ν and E,x :
V,E ′,y : T ′ `U ′ :: ν . By (Kind Pair), E,x : V,E ′ ` (Σy :
T ′. U ′) :: ν .

(Kind Sum) Here E,x : T,E ′ ` (T ′+U ′) :: ν derives from
E,x : T,E ′ ` T ′ :: ν and E,x : T,E ′ `U ′ :: ν . By induc-
tion hypothesis, E,x : V,E ′ ` T ′ :: ν and E,x : V,E ′ `
U ′ :: ν . By (Kind Sum), E,x : V,E ′ ` (T ′+U ′) :: ν .

(Kind Rec) Here E,x : T,E ′ ` (µα.T ′) :: ν derives from
E,x : T,E ′,α :: ν ` T ′ :: ν . By induction hypothesis,
E,x : V,E ′,α :: ν ` T ′ :: ν . By (Kind Rec), E,x : V,E ′ `
(µα.T ′) :: ν .

(Kind Refine Public) Here E,x : T,E ′ ` {y : T ′ |C} :: pub
derives from E,x : T,E ′ ` {y : T ′ |C} and E,x : T,E ′ `
T ′ :: pub. Given E,x : T,E ′ ` {y : T ′ |C} we can also
show E,x : V,E ′ ` {y : T ′ |C}, by assumption E ` V .
By induction hypothesis, E,x : V,E ′ ` T ′ :: pub. By
(Kind Refine Public),E,x : V,E ′ ` {y : T ′ |C} :: pub.

(Kind Refine Tainted) Here E,x : T,E ′ ` {y : T ′ |C} :: tnt
derives from E,x : T,E ′ ` T ′ :: tnt and E,x : T,E ′,y :
T ′ ` C. By induction hypothesis, E,x : V,E ′ ` T ′ ::
tnt. By Lemma 7 (Kinding), E ` T :: tnt implies
that forms(E) ` forms(x : T ). Hence, E,x : T,E ′,y :
T ′ `C implies E,x : V,E ′,y : T ′ `C. By (Kind Refine
Tainted), we obtain E,x : V,E ′ ` {y : T ′ |C} :: tnt. 2

Lemma 15 (Public Down/Tainted Up)
Suppose that E is executable.

(1) If E ` T <: T ′ and E ` T ′ :: pub then E ` T :: pub.

(2) If E ` T :: tnt and E ` T <: T ′ then E ` T ′ :: tnt.

Proof: The lemma is an instance (for n = 0) of the fol-
lowing more general statement:

If E ` T <: T ′ where E = E0[(αi <: α ′i )
i∈1..n] then for

all Ê = E0[(αi :: νi,α
′
i :: νi)

i∈1..n], we have:

(1) If Ê ` T ′ :: pub then Ê ` T :: pub.

(2) If Ê ` T :: tnt then Ê ` T ′ :: tnt.

In the following proof, in the case for (Sub Fun), we ap-
peal to the following adaptation of Lemma 9 (Bound Weak-
ening):

If E ` T ′ <: T and (Ê,x : T,E ′) ` U :: ν then
(Ê,x : T ′,E ′) `U :: ν .

The adaptation is proved by induction on the derivation of
(Ê,x : T,E ′)`U :: ν , with appeal to Lemma 8 (Logical Sub-
typing) in the case for (Kind Refine Tainted).

The proof is by induction on the derivation of E ` T <:
T ′ where E = E0[(αi <: α ′i )

i∈1..n]. Consider any Ê =
E0[(αi :: νi,α

′
i :: νi)

i∈1..n].

(Sub Refl) Here T = T ′ and parts (1) and (2) follow at
once.
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(Sub Var) We have E ` α <: α ′ derived from E ` � and
(α <: α ′) ∈ E.

We must have α = α j and α ′ = α ′j for some j ∈ 1..n.

For part (1), assume that Ê ` α ′j :: pub. This can only
be derived by (Kind Var), and so ν j = pub (since the
αi, α ′i are distinct). Hence, we get Ê ` α j :: pub by
(Kind Var).

For part (2), assume that Ê ` α j :: tnt. This can only
be derived by (Kind Var), and so ν j = tnt (since the αi,
α ′i are distinct). Hence, we get Ê ` α j :: pub by (Kind
Var).

(Sub Public Tainted) We have E ` T <: U derived from
E ` T :: pub and E `U :: tnt.
For part (1), we obtain Ê ` T :: pub because the deriva-
tion of E ` T :: pub makes no use of the entries (αi <:
α ′i )

i∈1..n.

For part (2), we have Ê `U :: tnt because the deriva-
tion of E `U :: tnt makes no use of the entries (αi <:
α ′i )

i∈1..n.

(Sub Fun) We have E ` (Πx : T. U) <: (Πx : T ′. U ′) de-
rived from E ` T ′ <: T and (E,x : T ′) `U <: U ′.

For part (1), assume that Ê ` (Πx : T ′. U ′) :: pub.

This can only be derived by (Kind Fun), from Ê ` T ′ ::
tnt and (Ê,x : T ′) `U ′ :: pub.

By induction hypothesis (2), Ê ` T ′ :: tnt and E ` T ′<:
T imply Ê ` T :: tnt.
By induction hypothesis (1), (E,x : T ′) `U <: U ′ and
(Ê,x : T ′) `U ′ :: pub imply (Ê,x : T ′) `U :: pub.

By Lemma 2 (Derived Judgments), Ê ` T :: tnt implies
Ê ` T .

By Lemma 14 (Replacing Tainted Bounds), (Ê,x :
T ′) ` U ′ :: pub and Ê ` T ′ :: tnt and Ê ` T imply
(Ê,x : T ) `U :: pub.

By (Kind Fun), Ê ` (Πx : T. U) :: pub.

For part (2), assume that Ê ` (Πx : T. U) :: tnt.
This can only be derived by (Kind Fun), from Ê ` T ::
pub and (Ê,x : T ) `U :: tnt.
By induction hypothesis (1), E ` T ′ <: T and Ê ` T ::
pub imply Ê ` T ′ :: pub.

By the adaptation of Lemma 9 (Bound Weakening) in-
troduced at the start of this proof, E ` T ′ <: T and
(Ê,x : T ) `U :: tnt imply (Ê,x : T ′) `U :: tnt.
By induction hypothesis (2), (Ê,x : T ′) `U :: tnt and
(E,x : T ′) `U <: U ′ imply (Ê,x : T ′) `U ′ :: tnt.
By (Kind Fun), from Ê ` T ′ :: pub and (Ê,x : T ′) `
U ′ :: tnt we obtain Ê ` (Πx : T ′. U ′) :: tnt, as desired.

(Sub Pair), (Sub Sum) These cases follow similarly to the
case for (Sub Fun).

(Sub Rec) We have E ` (µα.T )<: (µα ′.T ′) derived from
E0[(αi <: α ′i )

i∈1..n,α <: α ′] ` T <: T ′ and α /∈
fnfv(T ′) and α ′ /∈ fnfv(T ) and {α,α ′}∩ fnfv(E0) =∅
For part (1), assume that Ê ` (µα ′.T ′) :: pub. This can
only be derived by (Kind Rec), from E0[(αi :: νi,α

′
i ::

νi)
i∈1..n,α ′ :: pub] ` T ′ :: pub. By Lemma 6 (Weak-

ening), E0[(αi :: νi,α
′
i :: νi)

i∈1..n,α :: pub,α ′ :: pub] `
T ′ :: pub. By induction hypothesis, E0[(αi :: νi,α

′
i ::

νi)
i∈1..n,α :: pub,α ′ :: pub] ` T :: pub. By Lemma 3

(Type Variable Strengthening), α ′ /∈ fnfv(T ) and α ′ /∈
fnfv(E0) implies E0[(αi :: νi,α

′
i :: νi)

i∈1..n,α :: pub] `
T :: pub. By (Kind Rec), Ê ` (µα.T ) :: pub.

Part (2) follows by a symmetric argument.

(Sub Refine Left) We have E ` {x : T | C} <: T ′ derived
from E ` {x : T |C} and E ` T <: T ′.

For part (1), assume that Ê ` T ′ :: pub. By induction
hypothesis, Ê ` T :: pub. We have Ê ` {x : T |C}. By
(Kind Refine Public), Ê ` {x : T |C} :: pub.

For part (2), assume that Ê ` {x : T |C} :: tnt. This can
only be derived by (Kind Refine Tainted), from Ê `
T :: tnt and (Ê,x : T ) ` C. By induction hypothesis,
Ê ` T ′ :: tnt.

(Sub Refine Right) We have E ` T <: {x : T ′ |C} derived
from E ` T <: T ′ and (E,x : T ) `C.

For part (1), assume that Ê ` {x : T ′ |C} :: pub. This
can only be derived by (Kind Refine Public), from Ê `
{x : T ′ |C} and Ê ` T ′ :: pub. By induction hypothesis,
Ê ` T :: pub.

For part (2), assume that Ê ` T :: tnt. By induction
hypothesis, Ê ` T ′ :: tnt. We have (E,x : T ) ` C. By
(Kind Refine Tainted), Ê ` {x : T ′ |C} :: tnt. 2

Lemma 16 (Public Tainted)
For all T and executable E:

(1) E ` T :: pub if and only if E ` T <: Un.

(2) E ` T :: tnt if and only if E ` Un <: T .

Proof: By definition, Un
4
= unit. By (Kind Unit), E `Un ::

pub and E ` Un :: tnt. The forward implications follow by
(Sub Public Tainted), the reverse implications by Lemma 15
(Public Down/Tainted Up). 2

C.3 Properties of Subtyping

The main result in this section is transitivity of subtyp-
ing, perhaps the most difficult proof in the development,
because it needs a relatively complex inductive argument.

29



The proof of transitivity depends on the following
lemma, the first two of which concern the use of recursive
type variables declared by entries α <: α ′ in the typing en-
vironment.

Lemma 17 (Rec Kinding)
If E ` T :: ν and (α <: α ′) ∈ E then α /∈ fnfv(T ) and α ′ /∈
fnfv(T ).

Proof: By induction on the derivation of E ` T :: ν . 2

Lemma 18 (Rec Subtyping)
If E ` T <: T ′ and (α <: α ′) ∈ E we have that: {α,α ′}∩
fnfv(T ) =∅ if and only if {α,α ′}∩ fnfv(T ′) =∅.

Proof: By induction on the derivation of E ` T <: T ′. 2

The following lemma formalizes the intuition that the
formulas decorating the type in the environment are all that
matter as far as the kinding and subtyping judgments are
concerned. In particular, we can replace an environment
entry x : T with x : (T )], where (T )] is the refinement of the
unit type given as follows.

Formulizing a Type:

(T )] 4= {x : unit | forms(x : T )}

Lemma 19 (Formulize Type) Assume E,x : T,E ′ ` �.

(1) E,x : (T )],E ′ ` �.

(2) E,x : T,E ′ `C iff E,x : (T )],E ′ `C.

(3) E,x : T,E ′ `U :: ν iff E,x : (T )],E ′ `U :: ν .

(4) E,x : T,E ′ `U <: U ′ iff E,x : (T )],E ′ `U <: U ′.

Moreover, the depth of the derivations of each pair of judg-
ments is the same.

Proof: Each direction follows by induction on the deriva-
tion of the assumed judgment. 2

Lemma 20 (Transitivity)
If E is executable and E ` T <: T ′ and E ` T ′ <: T ′′ then
E ` T <: T ′′.

Proof: The lemma is an instance of the following more
general statement, which we prove by a simultaneous induc-
tion on the sum of the depth of derivations of the antecedent
judgments:

(1) E01 ` T <: T ′ and E12 ` T ′ <: T ′′ imply E02 ` T <: T ′′

(2) E12 ` T ′′ <: T ′ and E01 ` T ′ <: T imply E02 ` T ′′ <: T

where E01, E12, and E02 take the form

E01 = E[(αi Ri α ′i )
i∈1..n]

E12 = E[(α ′i Ri α ′′i )
i∈1..n]

E02 = E[(αi Ri α ′′i )
i∈1..n]

for some number n, distinct type variables αi, α ′i , α ′′i , re-
lations Ri ∈ {<:,<:−1} for i ∈ 1..n, and executable envi-
ronment E with E ` �. (We write R ∈ {<:,<:−1} to mean
that relation R is either the subtype relation (in which case
α R α ′ stands for α <: α ′) or its inverse (in which case
α R α ′ stands for α ′ <: α).)

Since E is executable, none of the type variables αi, α ′i ,
α ′′i occurs in types in E.

We prove part (1) in detail. We first assume (*) that the
last rule in the derivation of E12 ` T ′ <: T ′′ is neither (Sub
Refl), nor (Sub Public Tainted), nor (Sub Refine Right); we
prove that E02 ` T <: T ′′ by a case analysis of the last rule
in the derivation of E01 ` T <: T ′.

(Sub Refl) In this case T = T ′ and E01 ` T <: T follows
from E01 ` T with fnfv(T )∩ recvar(E01) = ∅ and we
have E12 ` T <: T ′′. We have fnfv(T ) ⊆ dom(E01)∩
dom(E12) = dom(E)∪ {α ′i i∈1..n} and so we get that
fnfv(T )⊆ dom(E).

We have E12 ` T <: T ′′ and none of the type variables
α ′i , α ′′i occurs in T ; so, by Lemma 18 (Rec Subtyp-
ing), none of these variables occurs in T ′′. Hence,
fnfv(T ′′) ⊆ dom(E). We may therefore obtain E02 `
T <: T ′′ from E12 ` T <: T ′′ by removing the sub-
type declarations of E12 with Lemma 3 (Type Vari-
able Strengthening) and introducing the subtype dec-
larations of E02 with Lemma 6 (Weakening).

(Sub Public Tainted) In this case, E01 ` T <: T ′ follows
from E01 ` T :: pub and E01 ` T ′ :: tnt.

By Lemma 17 (Rec Kinding), none of the type vari-
ables αi, α ′i , α ′′i occurs in T or T ′.

We may therefore obtain E ` T :: pub from E01 ` T ::
pub by removing the subtype declarations of E01 with
Lemma 3 (Type Variable Strengthening).

Similarly, we may obtain E ` T ′ :: tnt from E01 ` T ′ ::
tnt by removing the subtype declarations of E01 with
Lemma 3 (Type Variable Strengthening).

We have E12 ` T ′ <: T ′′ and none of the type variables
α ′i , α ′′i occurs in T ′; so, by Lemma 18 (Rec Subtyp-
ing), none of the type variables αi, α ′i , α ′′i occurs in T ′′

either.

We may therefore obtain E ` T ′ <: T ′′ from E12 `
T ′ <: T ′′ by removing the subtype declarations of E12
with Lemma 3 (Type Variable Strengthening).
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By Lemma 15 (Public Down/Tainted Up), given that
E is executable, E ` T ′ :: tnt and E ` T ′ <: T ′′ imply
E ` T ′′ :: tnt.
By (Sub Public Tainted), this and E ` T :: pub imply
E ` T <: T ′′.

We obtain E02 ` T <: T ′′ from E ` T <: T ′′. by intro-
ducing the subtype declarations of E02 with Lemma 6
(Weakening).

(Sub Fun) If E01 ` T <: T ′ follows by (Sub Fun), then T =
Πx : T1. T2 and T ′=Πx : T ′1 . T ′2 with E01 ` T ′1 <: T1 and
E01,x : T ′1 ` T2 <: T ′2 , and E12 ` (Πx : T ′1 . T ′2)<: T ′′.

By assumption (*), the latter must be obtained via (Sub
Fun), so that T ′′=Πx : T ′′1 . T ′′2 with E12 ` T ′′1 <: T ′1 and
E12,x : T ′′1 ` T ′2 <: T ′′2 .

By Lemma 8 (Logical Subtyping), E12 ` T ′′1 <: T ′1 im-
plies forms(E12), forms(x : T ′′1 ) ` forms(x : T ′1), which
is to say forms(E01), forms(x : T ′′1 ) ` forms(x : T ′1),
since, by construction, forms(E12) = forms(E01).

By definition, (T ′′1 )
] = {x : unit | forms(x : T ′′1 )} and

(T ′1)
] = {x : unit | forms(x : T ′1)}.

By (Sub Refine), E01 ` (T ′′1 )] <: (T ′1)
].

By Lemma 19 (Formulize Type), E01,x : T ′1 ` T2 <: T ′2
implies E01,x : (T ′1)

] ` T2 <: T ′2 .

By Lemma 9 (Bound Weakening), we obtain E01,x :
(T ′′1 )

] ` T2 <: T ′2 .

By Lemma 19 (Formulize Type), E12,x : T ′′1 ` T ′2 <: T ′′2
implies E12,x : (T ′′1 )

] ` T ′2 <: T ′′2 .

By induction hypothesis (1), from E01,x : (T ′′1 )
] ` T2 <:

T ′2 and E12,x : (T ′′1 )
] ` T ′2 <: T ′′2 we obtain E02,x :

(T ′′1 )
] ` T2 <: T ′′2 .

(We can apply the induction hypothesis because our
applications of Lemma 19 (Formulize Type) and
Lemma 9 (Bound Weakening) preserve the depths of
derivation.)

By Lemma 19 (Formulize Type), we obtain E02,x :
T ′′1 ` T2 <: T ′′2 .

By induction hypothesis (2), from E12 ` T ′′1 <: T ′1 and
E01 ` T ′1 <: T1 we obtain E02 ` T ′′1 <: T1.

By (Sub Fun), we obtain E02 ` (Πx : T1. T2) <: (Πx :
T ′′1 . T ′′2 ).

(Sub Pair), (Sub Sum) These cases follow similarly to the
case for (Sub Fun).

(Sub Var) If E01 ` T <: T ′ follows by (Sub Var), then T ′

must be a type variable, and so, given assumption (*),
the judgment E12 ` T ′ <: T ′′ can only follow from
(Sub Var). It must be, then, that T = α j and T ′ = α ′j
and T ′′ = α ′′j and R j =<: for some j ∈ 1..n. We have

(α j <: α ′′j ) ∈ E02, and so, by (Sub Var), we obtain:
E02 ` T <: T ′′, as required.

(Sub Rec) If E01 ` T <: T ′ follows by (Sub Rec), it must be
that T = µα.U and T ′ = µα ′.U ′, and we have E[(αi Ri
α ′i )

i∈1..n,α <: α ′] ` U <: U ′ and E12 ` (µα ′.U ′) <:
T ′′. By assumption (*), the latter can only follow
from (Sub Rec), and so T ′′ = µα ′′.U ′′, with E[(α ′i Ri
α ′′i )

i∈1..n,α ′ <: α ′′] `U ′ <: U ′′. By induction hypoth-
esis (1), we obtain E[(αi Ri α ′′i )

i∈1..n,α <: α ′′] `U <:
U ′′. By (Sub Rec), we obtain E02 `U <: U ′′.

(Sub Refine Left) If E01 ` T <: T ′ follows by (Sub Refine
Left), then T = {x : U |C} and we have E01 ` {x : U |
C} and E01 ` U <: T ′. By induction hypothesis (1),
this and E12 ` T ′ <: T ′′ imply E02 `U <: T ′′. By (Sub
Refine Left), we obtain E02 ` T <: T ′′.

(We can apply the induction hypothesis because the
sum of the depth of derivations of E01 `U <: T ′ and
E12 ` T ′ <: T ′′ is less than the sum of the depth of
derivations of E01 ` T <: T ′ and E12 ` T ′ <: T ′′.)

(Sub Refine Right) If E01 ` T <: T ′ follows by (Sub Re-
fine Right), then T ′ = {x : W | C} and we have E01 `
T <: W and E01,x : T `C.

By assumption (*), and since T ′ is a refinement type,
the derivation of E12 ` T ′ <: T ′′ must use rule (Sub
Refine Left). It must be that E12 `W <: T ′′. By in-
duction hypothesis (1), E02 ` T <: T ′′. (We can apply
the induction hypothesis because the sum of the depth
of derivations of E01 ` T <: W and E12 ` W <: T ′′

is less than the sum of the depth of derivations of
E01 ` T <: {x : W |C} and E12 ` {x : W |C}<: T ′′.)

On the other hand, our assumption (*) may not hold, that
is, we may have E01 ` T <: T ′ and a derivation of E12 `
T ′ <: T ′′ using (Sub Refl), (Sub Public Tainted), or (Sub
Refine Right). We consider these three possibilities below;
the arguments are similar to the cases above for when E01 `
T <: T ′ follows by (Sub Refl), (Sub Public Tainted), or (Sub
Refine Right).

(Sub Refl) In this case T ′ = T ′′ and E12 ` T <: T fol-
lows from E12 ` T ′′ with fnfv(T ′′)∩ recvar(E12) = ∅
and we have E01 ` T <: T ′′. We have fnfv(T ′′) ⊆
dom(E01)∩ dom(E12) = dom(E)∪ {α ′i i∈1..n} and so
we get that fnfv(T ′′) ⊆ dom(E). We have E01 ` T <:
T ′′ and none of the type variables α ′i , α ′′i occurs in
T ′′; by Lemma 18 (Rec Subtyping), none of these
variables occurs in T , so that fnfv(T ) ⊆ dom(E). We
may therefore obtain E02 ` T <: T ′′ from E01 ` T <:
T ′′ by removing the subtype declarations of E01 with
Lemma 3 (Type Variable Strengthening) and introduc-
ing the subtype declarations of E12 with Lemma 6
(Weakening).
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(Sub Public Tainted) In this case, E12 ` T ′ :: pub and
E12 ` T ′′ :: tnt.
By Lemma 17 (Rec Kinding), none of the type vari-
ables αi, α ′i , α ′′i occurs in T ′ or T ′′.

We have E01 ` T <: T ′ and none of the type variables
αi, α ′i occurs in T ′; so, by Lemma 18 (Rec Subtyping),
none of the type variables αi, α ′i , α ′′i occurs in T either.

We may therefore obtain E ` T <: T ′ from E01 ` T <:
T ′ by removing the subtype declarations of E01 with
Lemma 3 (Type Variable Strengthening).

We may also obtain E ` T ′ :: pub from E12 ` T ′ ::
pub by removing the subtype declarations of E12 with
Lemma 3 (Type Variable Strengthening).

We may also obtain E ` T ′′ :: tnt from E12 ` T ′′ ::
tnt by removing the subtype declarations of E12 with
Lemma 3 (Type Variable Strengthening).

By Lemma 15 (Public Down/Tainted Up), given that
E is executable, E ` T <: T ′ and E ` T ′ :: pub imply
E ` T :: pub.

By (Sub Public Tainted), E ` T :: pub and E ` T ′′ :: tnt
imply E ` T <: T ′′.

We obtain E02 ` T <: T ′′ from E ` T <: T ′′ by intro-
ducing the subtype declarations of E02 with Lemma 6
(Weakening).

(Sub Refine Right) It must be that T ′′ = {x : U | C′} and
E12 ` T ′ <: U and E12,x : T ′ `C′.

By induction hypothesis (1), E01 ` T <: T ′ and E12 `
T ′ <: U imply E02 ` T <: U .

(We can apply the induction hypothesis because the
sum of the depth of derivations of E01 ` T <: T ′ and
E12 ` T ′ <: U is less than the sum of the depth of
derivations of E01 ` T <: T ′ and E12 ` T ′ <: {x : U |
C′}.)
Since forms(E12,x : T ′) = forms(E02,x : T ′), we have
E02,x : T ′ `C′.

By Lemma 8 (Logical Subtyping), E01 ` T <: T ′ im-
plies that forms(E), forms(x : T ) ` forms(x : T ′).

We obtain E02,x : T ` C′ because forms(E02,x : T ) =
forms(E,x : T ) and forms(E), forms(x : T ) ` forms(x :
T ′) and forms(E,x : T ′) `C′.

By (Sub Refine Right), E02 ` T <: {x : U |C′}.

The proof of part (2) is symmetric to the proof of part (1);
we detail only those parts of the case analysis that examine
the relations Ri within the environments E12 and E01. As-
sume first that the last rule in the derivation of E01 ` T ′ <: T
is neither (Sub Refl), nor (Sub Public Tainted), nor (Sub Re-
fine Left); we prove that E02 ` T ′′ <: T by a case analysis
of the last rule in the derivation of E12 ` T ′′ <: T ′.

(Sub Var) If E12 ` T ′′ <: T ′ follows by (Sub Var), then T ′

must be a type variable, and so the judgment E01 `
T ′ <: T can only follow from (Sub Var). It must be,
then, that T ′′ = α ′′j and T ′ = α ′j and T = α j and R j =

<:−1 for some j ∈ 1..n. We have (α ′′j <: α j) ∈ E02,
and so, by (Sub Var), we obtain: E02 ` T ′′ <: T , as
required.

(Sub Rec) If E12 ` T ′′ <: T ′ follows by (Sub Rec), it must
be that T ′′ = µα ′′.U ′′ and T ′ = µα ′.U ′, and we have
E[(α ′i Ri α ′′i )

i∈1..n,α ′′ <: α ′] ` U ′′ <: U ′ and E01 `
(µα ′.U ′) <: T . The latter can only follow from (Sub
Rec), and so T = µα.U , with E[(αi Ri α ′i )

i∈1..n,α ′ <:
α] `U ′ <: U . By induction hypothesis (2), we obtain
E[(αi Ri α ′′i )

i∈1..n,α ′′<: α]`U ′′<: U . By (Sub Rec),
we obtain E02 `U ′′ <: U .

The rest of part (2) is exactly symmetric to part (1). 2

C.4 Alternative Formulation of Typing

We present an alternative definition of expression typ-
ing, which avoids the non-structural rule (Val Refine), and
hence is useful in the proofs of Lemma 23 (Substitution),
Proposition 29 (V Preserves Types) and Proposition 31 (→
Preserves Types).

Alternative Rules for Typing Values: E ` A : T

(Val Var Refine)
E `C{x/y} (x : T ) ∈ E

E ` x : {y : T |C}

(Val Unit Refine)
E `C{()/y}

E ` () : {y : unit |C}
(Val Fun Refine)
E,x : T ` A : U E `C{fun x→ A/y}
E ` fun x→ A : {y : (Πx : T. U) |C}

(Val Pair Refine)
E `M : T E ` N : U{M/x} E `C{(M,N)/y}

E ` (M,N) : {y : (Σx : T. U) |C}
(Val Inl Inr Fold Refine)
h : (T,U) E `M : T E `U E `C{h M/y}

E ` h M : {y : U |C}

Lemma 21 (Alternative Typing)
Assuming that E is executable, the expression typing rela-
tion E ` A : T is the least relation closed under the alter-
native rules for values displayed above together with the
original rules for expressions.

Proof: For the duration of this proof we write E `alt A : T
to mean that the judgment follows from the alternative rules
for values together with the original rules for expressions.

Each of the alternative rules (Val Var Refine), (Val Unit
Refine), (Val Fun Refine), (Val Pair Refine), and (Val Inl Inr
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Fold Refine) is derivable in the original system, by appeal
to the original rule and (Val Refine) in each case. Hence, we
can show that E `alt A : T implies E ` A : T , by induction
on the derivation of E `alt A : T . We omit the details.

To complete the proof, we prove that E `M : T implies
E `alt M : T by induction on the derivation of E `M : T .

(Val Refine) We have E ` M : {x : T | C} derived from
E ` M : T and E ` C{M/x}. By induction hypothe-
sis, E `alt M : T . Therefore there must be an instance
of one of the alternative rules of the form

(. . .) E `C′{M/x}
E `alt M : {x : T ′ |C′}

followed by some instances of (Exp Subsum) such
that, by Lemma 20 (Transitivity), E ` {x : T ′ |C′} <:
T . Since E `C′{M/x} and E `C{M/x}, by (And In-
tro) we have E ` (C′ ∧C){M/x}, so, by the same al-
ternative rule, we have E `alt M : {x : T ′ |C′∧C}. By
Lemma 12 (And Sub), E ` {x : T ′ |C′∧C}<: {x : {x :
T ′ |C′} |C}. By (Sub Refine), E ` {x : T ′ |C′} <: T
implies E ` {x : {x : T ′ | C′} | C} <: {x : T | C}. By
Lemma 20 (Transitivity), E ` {x : T ′ |C′ ∧C} <: {x :
T |C}. By (Exp Subsum), E `alt M : {x : T |C}.

(Exp Subsum) We have E `M : T ′ derived from E `M : T
and E ` T <: T ′. By induction hypothesis, E `alt M :
T . By (Exp Subsum), E `alt M : T ′.

The remaining possibilities are that E `M : T is derived
by one of the rules (Val Var), (Val Unit), (Val Fun), (Val
Pair), or (Val Inl Inr Fold). By appeal to the corresponding
alternative rules and property (True), in each case we can
derive E `alt M : {x : T | True}. By Lemma 11 (Sub Refine
Left Refl), E ` {x : T | True}<: T . By (Exp Subsum), E `alt
M : T . 2

Lemma 22 (Formulas)
If E ` M : T and x /∈ dom(E) then forms(E) ` forms(x :
T ){M/x}.

Proof: By appeal to Lemma 21 (Alternative Typing), the
proof is by induction on the derivation of E `M : T .

In case that E `M : T follows by one of the alternative
rules for typing values, by inspection, it follows that we can
derive forms(E) ` forms(x : T ){M/x}.

Otherwise, E ` M : T follows by (Exp Subsum) from
E ` M : T ′ and E ` T ′ <: T for some T ′. By in-
duction hypothesis, forms(E) ` forms(x : T ′){M/x}. By
Lemma 8 (Logical Subtyping), since x /∈ dom(E), we have
forms(E), forms(x : T ′) ` forms(x : T ). By property (Subst),
forms(E),(forms(x : T ′){M/x}) ` forms(x : T ){M/x}. By
property (Cut), forms(E) ` forms(x : T ){M/x}. 2

C.5 Properties of Substitution

To state the two substitution lemmas in this section, we
need a notation for applying a substitution to the entries in
environments. If x /∈ dom(E), let E{M/x} be the outcome
of applying {M/x} to each type occurring in E. Similarly,
if α /∈ dom(E), let E{T/α} be the outcome of applying
{T/α} to each type occurring in E. We define these nota-
tions as follows.

Substitution into Typing Environments:

E{M/x}= (µ1{M/x}, . . . ,µn{M/x})
where x /∈ dom(E) and E = µ1, . . . ,µn

µ{M/x}=

 y : (U{M/x}) if µ = (y : U) and x 6= y
a l (U{M/x}) if µ = a lU
µ otherwise

E{T/α}= (µ1{T/α}, . . . ,µn{T/α})
where α /∈ dom(E) and E = µ1, . . . ,µn

µ{T/α}=

 y : (U{T/α}) if µ = (y : U)
a l (U{T/α}) if µ = a lU
µ otherwise

Our first substitution lemma shows how substitution of a
value M for a variable x affects various judgments.

Lemma 23 (Substitution)

(1) If h : (T,U)
then h : (T{M/x},U{M/x}).

(2) If x /∈ dom(E)
then forms(E){M/x}= forms(E{M/x}).

(3) If E,x : U,E ′ ` � and E `M : U
then E,(E ′{M/x}) ` �.

(4) If E,x : U,E ′ `C and E `M : U
then E,(E ′{M/x}) `C{M/x}.

(5) Suppose that E `M : U.

• If E,x : U,E ′ ` T
then E,(E ′{M/x}) ` T{M/x}.
• If E,x : U,E ′ ` T :: ν

then E,(E ′{M/x}) ` T{M/x} :: ν .

• If E,x : U,E ′ ` T <: T ′

then E,(E ′{M/x}) ` T{M/x}<: T ′{M/x}.
• If E,x : U,E ′ ` A : T

then E,(E ′{M/x}) ` A{M/x} : T{M/x}.

Proof:

(1) By cases on the definition of h : (T,U).

(2) By definition of forms(E).
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(3) By induction on the derivation of E,x : U,E ′ ` �,
Lemma 2 (Derived Judgments), and standard proper-
ties of substitution.

(4) The judgment E,x : U,E ′ `C can only be an instance
of (Derive) such as the following:

E,x : U,E ′ ` �
fnfv(C)⊆ dom(E,x : U,E ′)
forms(E,x : U,E ′) `C

E,x : U,E ′ `C

We can rewrite this instance as follows, by expand-
ing definitions, where S = forms(x : U), we have
forms(E,E ′),S `C.

By property (Subst), forms(E,(E ′{M/x})),S{M/x} `
C{M/x}, and by Lemma 22 (Formulas), E `M : U and
x /∈ dom(E) imply forms(E) ` S{M/x}.
These two facts, by properties (Mon) and (Cut), entail
forms(E,(E ′{M/x})) `C{M/x}.
Hence, we obtain the following instance of (Derive):

E,(E ′{M/x}) ` �
fnfv(C{M/x})⊆ dom(E,(E ′{M/x}))
forms(E,(E ′{M/x})) `C{M/x}

E,(E ′{M/x}) `C{M/x}

(5) By simultaneous induction on the derivation of each
judgment, using the previous points, Lemma 6 (Weak-
ening), and standard properties of substitution. 2

The following auxiliary lemma expresses that kinding
judgments do not depend on type declarations of the form
α <: α ′.

Lemma 24
If E,α <: α ′,E ′ ` T :: ν then E,α :: pub,α ′ :: tnt,E ′ ` T ::
ν .

Proof: By induction on the derivation of E,α <: α ′,E ′ `
T :: ν . 2

Our second substitution lemma shows how substitution
of a type T for a variable α affects various judgments.

Lemma 25 (Type Substitution)

(1) If E,α,E ′ `J and E ` T and recvar(E)∩ fnfv(T ) =
∅ then E,(E ′{T/α}) `J {T/α}.

(2) If E,α :: ν ,E ′ ` � and E ` T :: ν

then E,(E ′{T/α}) ` �.

(3) If E,α :: ν ,E ′ `U and E ` T :: ν

then E,(E ′{T/α}) `U{T/α}.

(4) If E,α :: ν ,E ′ ` T ′ :: ν ′ and E ` T :: ν

then E,(E ′{T/α}) ` T ′{T/α} :: ν ′.

(5) If E,α <: α ′,E ′ ` T <: T ′ and E `U <: U ′

then E,(E ′σ) ` T σ <: T ′σ
where σ = {U/α}{U ′/α ′}.

Proof:

(1) For each judgment J , by induction on the derivation
of E,α,E ′ `J .

(2) By induction on the derivation of E,α :: ν ,E ′ ` �, not-
ing that, by Lemma 2 (Derived Judgments), E ` T :: ν

implies fnfv(T )⊆ dom(E).

(3) By definition (Type), point (1), and Lemma 2 (Derived
Judgments).

(4) By induction on the derivation of E,α :: ν ,E ′ ` T ′ :: ν ′.

(5) By induction on the derivation of E,α <: α ′,E ′ ` T <:
T ′.

In case (Sub Public Tainted), we have E,α <: α ′,E ′ `
T <: T ′ derived from E,α <: α ′,E ′ ` T :: pub and
E,α <: α ′,E ′ ` T ′ :: tnt.
By Lemma 24, we have E,α :: pub,α ′ :: tnt,E ′ ` T ::
pub and E,α :: pub,α ′ :: tnt,E ′ ` T ′ :: tnt.
By point (4), we have E,(E ′σ) ` T σ :: pub and
E,(E ′σ) ` T ′σ :: tnt.
By (Sub Public Tainted), we get: E,(E ′σ) ` T σ <:
T ′σ . 2

C.6 Proof of Theorem 1 (Safety)

We need the following inversion lemma, for analyzing
instances of subtyping.

Lemma 26 (Inversion)

(1) Let T be {y : (Πx : T ′′. U ′′) |C} or (Πx : T ′′. U ′′).

If E ` T <: Πx : T ′. U ′

then E ` T ′ <: T ′′ and E,x : T ′ `U ′′ <: U ′.

(2) Let T be {y : (Σx : T ′′. U ′′) |C} or (Σx : T ′′. U ′′).

If E ` T <: Σx : T ′. U ′

then E ` T ′′ <: T ′ and E,x : T ′′ `U ′′ <: U ′.

(3) Let T be {y : (µα.U) |C} or (µα.U).

If E ` T <: µα ′.U ′

then E `U{µα.U/α}<: U ′{µα ′.U ′/α ′}.

(4) Let T be {y : T1 +T2) |C} or T1 +T2.

If E ` T <: U1 +U2
then E ` T1 <: U1 and E ` T2 <: U2.
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(5) Let h be inl, inr, or fold. Let T be {y : U |C} or U for
any U such that h : (H,U). For any H ′ and U ′ such
that h : (H ′,U ′), if E ` T <: U ′ then E ` H <: H ′.

Proof:

(1) By induction on the derivations of E ` T <: Πx :
T ′. U ′, proceeding by a case analysis of the final rule,
which can only be (Sub Refl), (Sub Fun), (Sub Refine
Left), or (Sub Public Tainted).

The cases for (Sub Refl) or (Sub Fun) are trivial.

The case for (Sub Refine Left) is a straightforward ap-
plication of the induction hypothesis.

We analyze in detail the case for (Sub Public Tainted).

It must be the case that E ` T ::pub and E `
Πx : T ′. U ′::tnt.

Since E ` T ::pub can only follow by (Kind Fun) and
possibly (Kind Refine Public), it must be the case that
E ` T ′′::tnt and E,x : T ′′ `U ′′::pub.

Since E ` Πx : T ′. U ′::tnt can only follow by (Kind
Fun), it must be the case that E ` T ′::pub and E,x :
T ′ `U ′::tnt.

By (Sub Public Tainted), E ` T ′ <: T ′′.

By Lemma 9 (Bound Weakening), E,x : T ′ `U ′′::pub.

By (Sub Public Tainted), E,x : T ′ `U ′′ <: U ′.

(2) By induction on the derivations of E ` T <: Σx : T ′.U ′,
proceeding by a case analysis of the final rule, which
can only be (Sub Refl), (Sub Pair), (Sub Refine Left),
or (Sub Public Tainted).

The cases for (Sub Refl) and (Sub Pair) are trivial.

The case for (Sub Refine Left) is a straightforward ap-
plication of the induction hypothesis.

We analyze in detail the case for (Sub Public Tainted).

It must be the case that E ` T ::pub and E `
Σx : T ′. U ′::tnt.

Since E ` T ::pub can only follow by (Kind Pair) and
possibly (Kind Refine Public), it must be the case that
E ` T ′′::pub and E,x : T ′′ `U ′′::pub.

Since E ` Σx : T ′. U ′::tnt can only follow by (Kind
Pair), it must be the case that E ` T ′::tnt and E,x :
T ′ `U ′::tnt.

By (Sub Public Tainted), E ` T ′′ <: T ′.

By Lemma 9 (Bound Weakening), E,x : T ′′ `U ′::tnt.

By (Sub Public Tainted), E,x : T ′′ `U ′′ <: U ′.

(3) By induction on the derivations of E ` T <: µα ′.U ′,
proceeding by a case analysis of the final rule, which

can only be (Sub Refl), (Sub Rec), (Sub Refine Left),
or (Sub Public Tainted).

The case for (Sub Refl) is trivial.

In case (Sub Rec), we have E ` T <: µα ′.U ′ derived
from E,α <: α ′ `U <: U ′ where T = µα.U .

By point (5) of Lemma 25 (Type Substitution), E `
U{µα.U/α}<: U ′{µα ′.U ′/α ′}.
The case for (Sub Refine Left) is a straightforward ap-
plication of the induction hypothesis.

In case (Sub Public Tainted), we have E ` T ::pub and
E ` µα ′.U ′::tnt.

Since E ` T ::pub can only follow from (Kind Rec) and
possibly (Kind Refine Public), it must be the case that
E ` µα.U :: pub and E,α :: pub `U :: pub.

Since E ` µα ′.U ′::tnt can only follow from (Kind
Rec), it must be the case that E,α ′ :: tnt `U ′ :: tnt.

By point (4) of Lemma 25 (Type Substitution), E `
U{µα.U/α} :: pub.

By point (4) of Lemma 25 (Type Substitution), E `
U ′{µα ′.U ′/α ′} :: tnt.

By (Sub Public Tainted), E ` U{µα.U/α} <:
U ′{µα ′.U ′/α ′}.

(4) By induction on the derivations of E ` T <: U1 +U2,
proceeding by a case analysis of the final rule, which
can only be (Sub Refl), (Sub Sum), (Sub Refine Left),
or (Sub Public Tainted).

The cases for (Sub Refl) and (Sub Sum) are trivial.

The case for (Sub Refine Left) is a straightforward ap-
plication of the induction hypothesis.

We analyze in detail the case for (Sub Public Tainted).

It must be the case that E ` T ::pub and E `
U1 +U2::tnt.

Since E ` T ::pub can only follow by (Kind Sum) and
possibly (Kind Refine Public), it must be the case that
E ` T1::pub and E ` T2::pub.

Since E `U1 +U2::tnt can only follow by (Kind Sum),
it must be the case that E `U1::tnt and E `U2::tnt.

By (Sub Public Tainted), E ` T1 <: U1 and E ` T2 <:
U2.

(5) Let T be {y : U |C} or U for any U such that h : (H,U).
There are three ways in which h : (H,U) may be ob-
tained, depending on h.

In case h = inl we have U = H +S for some S. For any
H ′ and S′, assume E ` T <: H ′+S′ and we are to show
E ` H <: H ′. This follows from point (4).
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In case h = inr we have U = S+H for some S. For any
H ′ and S′, assume E ` T <: S′+H ′ and we are to show
E ` H <: H ′. This follows from point (4).

In case h = fold we have U = µα.S and H = S{U/α}
for some S. For any S′, assume E ` T <: µα.S′ and
we are to show E ` H <: S′{µα.S′/α}. This follows
from point (3). 2

Recall from Section 4 that A is the set of for-
mulas extracted from the expression A. For ex-
ample, (νa)(assume Foo(a,x) � assume Bar(z)) =
∃a.(Foo(a,x)∧ Bar(z)). The following states that if A is
well-typed in environment E, then the formulas extracted
from A are well-formed in E, that is, all their free variables
are declared in E.

Lemma 27
If E ` A : T then E ` {A}.

Proof: By Lemma 2 (Derived Judgments), E ` A : T im-
plies E ` � and fnfv(A) ⊆ dom(E). By induction on the
structure of A, fnfv(A) ⊆ dom(E). By (Type), E ` � and
fnfv(A)⊆ dom(E) imply E ` {A}. 2

The next two lemmas assert that heating A V A′ pre-
serves the extracted formulas of an expression (that is, the
formulas extracted from A′ follow from those extracted
from A) and also that heating preserves types.

Lemma 28 (V Preserves Logic)
If AV A′ then A′ ` A.

Proof: By induction on the derivation of AV A′.

(Heat Refl), (Heat Res Let), and (Heat Fork Let) follow
from A′ = A and Property (Axiom).

(Heat Trans) follows from Property (Cut).

(Heat Let) is by induction.

(Heat Res) is by induction plus Property (Exists Intro).

(Heat Fork 1) and (Heat Fork 2) are by induction, Prop-
erty (Axiom) for B, and Properties (And Elim)
and (And Intro).

(Heat Fork ()), (Heat Msg ()), (Heat Assume ()) follow
from True ∧ A ` A and its converse, derived from
Properties (True), (And Elim), and (And Intro).

(Heat Res Fork 1), (Heat Res Fork 2) follow from

∃x.(C′∧C) ` (C′∧∃x.C) if x /∈ fv(C′)

derived from Properties (Exists Elim), (And Elim),
(Exists Intro), and (And Intro).

(Heat Fork Assoc), (Heat Fork Comm) follow from (C∧
(C′ ∧C′′)) ` ((C∧C′)∧C′′) and (C∧C′) ` (C′ ∧C),
derived from Properties (And Elim) and (And Intro).2

Proposition 29 (V Preserves Types)
If E is executable, E ` A : T , and AV A′, then E ` A′ : T .

Proof: By an induction on the derivation of AV A′.

(Heat Refl) We have AV A and E ` A : T , so we are done.

(Heat Trans) We have AV A′′ derived from AV A′ and
A′V A′′.

Assume E ` A : T . By induction hypothesis, AV A′

implies E ` A′ : T . By induction hypothesis, A′V A′′

implies E ` A′′ : T .

(Heat Fork ()) This rule () � A ≡ A means both (1) () �
AV A and (2) AV () � A.

For (1), assume E ` () � A : T . This must follow from
an instance of (Exp Fork) with premises

E, : {A} ` () : T1 E, : {()} ` A : T2

plus some instances of (Exp Subsum) such that E `
T2 <: T . By Lemma 4 (Anon Variable Strengthening),
we have E ` A : T2 because {()} = {True}. By (Exp
Subsum), we obtain E ` A : T as required.

For (2), assume E ` A : T . By Lemma 27, (Val Unit),
and Lemma 6 (Weakening), we obtain the following.

E, : {A} ` () : unit E, : {()} ` A : T

By (Exp Fork), then, we obtain E ` () � A : T .

(Heat Msg ()) We have a!MV a!M � ().

Assume E ` a!M : T . This must follow from an in-
stance of (Exp Send) with conclusion E ` a!M : unit
and premises E `M : T and (a l T ) ∈ E, and some in-
stances of (Exp Subsum) such that E ` unit <: T . We
can check the following, using (Val Ok).

E, : {()} ` a!M : T E, : {a!M} ` () : unit

By (Exp Fork), then, we obtain E ` a!M � () : unit. By
(Exp Subsum), we obtain E ` a!M � () : T as required.

(Heat Assume ()) We have assume CV assume C � ().

Assume E ` assume C : T . This must follow from an
instance of (Exp Assume) with premise E, : {C} `
() : T ′ and conclusion E ` assume C : T ′ plus some
instances of (Exp Subsum) such that E ` T ′ <: T .
We can check the following, since {()} = {True} and
{assume C}= {C}.

E, : {()} ` assume C : T ′

E, : {assume C} ` () : T ′
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By (Exp Fork), then, we obtain E ` assume C � () : T ′.
By (Exp Subsum), we obtain E ` assume C � () : T .

(Heat Let) We have let x = A in BV let x = A′ in B de-
rived from AV A′.

Assume E ` let x = A in B : T . This must follow from
an instance of (Exp Let) with premises

E ` A : T ′ E,x : T ′ ` B : U x /∈ fv(U)

plus some instances of (Exp Subsum) such that E `
U <: T . By induction hypothesis, AV A′ implies E `
A′ : T ′. Hence, by (Exp Let) and (Exp Subsum) we can
conclude that E ` let x = A′ in B : T .

(Heat Res) We have (νa)AV (νa)A′ derived from AVA′.

Assume E ` (νa)A : T . This must follow from an in-
stance of (Exp Res) with premises

E,a : (Tc)chan ` A : U a /∈ fn(U)

plus some instances of (Exp Subsum) such that E `
U <: T . By induction hypothesis, A V A′ implies
E,a : (Tc)chan ` A′ : U . Hence, by (Exp Let) and (Exp
Subsum) we can conclude that E ` let x = A′ in B : T .

(Heat Fork 1) We have (A � B)V (A′ � B) derived from
AV A′.

Assume E ` (A � B) : T . This must follow from an
instance of (Exp Fork) with premises

E, : {B} ` A : TA E, : {A} ` B : TB

plus some instances of (Exp Subsum) such that E `
TB <: T . By induction hypothesis, A V A′ implies
E, : {B} ` A′ : TA. By Lemma 28 (V Preserves
Logic), AV A′ implies A′ ` A. By Property (Mon),
E,{A′} ` A. By Rule (Sub Ok), E ` {A′} <: {A}. By
Lemma 9 (Bound Weakening), E, : {A} ` B : TB and
E ` {A′}<: {A} imply E, : {A′} ` B : TB. Hence, we
can establish:

E, : {B} ` A′ : TA E, : {A′} ` B : TB

By (Exp Fork) and (Exp Subsum), then, we obtain E `
(A′ � B) : T .

(Heat Fork 2) We have (B � A)V (B � A′) derived from
AV A′.

This is similar to the case for (Heat Fork 1); we omit
the details.

(Heat Res Fork 1) We have A′ � ((νa)A)V (νa)(A′ � A)
given that a /∈ fn(A′).

Assume E ` A′ � (νa)A : T . This must obtain from an
instance of (Exp Fork) with premises

E, : {∃a.A} ` A′ : T ′1
E, : {A′} ` (νa)A : T1

and conclusion E `A′ � (νa)A : T1, and some instances
of (Exp Subsum) such that E ` T1 <: T .

Moreover, there must be an instance of (Exp Res) with
premises

E, : {A′},a : Ta ` A : T2 a /∈ fn(T2)

and conclusion E, : {A′} ` (νa)A : T2, and some in-
stances of (Exp Subsum) such that E, : {A′} ` T2 <:
T1.

By Lemma 6 (Weakening) and Lemma 20 (Transi-
tivity), E, : {A′} ` T2 <: T1 and E ` T1 <: T im-
ply E, : {A′},a : Ta ` T2 <: T . By (Exp Subsum),
E, : {A′},a : Ta ` A : T . By Lemma 5 (Exchange),
a /∈ fn(A′) implies:

E,a : Ta, : {A′} ` A : T

By Lemma 6 (Weakening), we obtain:

E,a : Ta, : {∃a.A} ` A′ : T ′1

By Lemma 10 (Bound Weakening Ok) and E,a :
Ta,A ` ∃a.A we get:

E,a : Ta, : {A} ` A′ : T ′1

Hence we have:

E,a : Ta, : {A} ` A′ : T ′1
E,a : Ta, : {A′} ` A : T

By (Exp Fork) we obtain:

E,a : Ta ` (A′ � A) : T

By (Exp Res) we obtain, as desired:

E ` (νa)(A′ � A) : T

(Heat Res Fork 2) We have ((νa)A) � A′ V (νa)(A � A′)
given that a /∈ fn(A′).

This case is similar to (Heat Res Fork 1); in both parts
we know that a /∈ fn(T ) because of the use of the rule
(Exp Res).

(Heat Res Let) We have let x = (νa)A in BV (νa)let x =
A in B given that a /∈ fn(B).
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Assume E ` let x = (νa)A in B : T . This must fol-
low from an instance of (Exp Let) with premises E `
(νa)A : T2 and

E,x : T2 ` B : T1

(hence a /∈ fn(T1)) and x /∈ fv(T1) and conclusion E `
let x = (νa)A in B : T1, and some instances of (Exp
Subsum) such that E ` T1 <: T . Moreover, there must
be an instance of (Exp Res) with premises

E,a : Ta ` A : T3

and a /∈ fv(T3) and conclusion E ` (νa)A : T3 and some
instances of (Exp Subsum) such that E ` T3 <: T2.

By (Exp Subsum),

E,a : Ta ` A : T2

By Lemma 6 (Weakening),

E,a : Ta,x : T2 ` B : T1

By (Exp Let),

E,a : Ta ` let x = A in B : T1

By (Exp Res), since we know a /∈ fn(T1),

E ` (νa : Ta)let x = A in B : T1

By (Exp Subsum),

E ` (νa : Ta)let x = A in B : T

(Heat Fork Assoc) We have A � (A′ � A′′)≡ (A � A′) � A′′,
which amounts to (1) A � (A′ �A′′)V (A �A′) �A′′ and
(2) (A � A′) � A′′V A � (A′ � A′′).

For (1), assume E ` A � (A′ � A′′) : T . There must be
an instance of (Exp Fork) with premises

E, : {A′∧A′′} ` A : T1
E, : {A} ` (A′ � A′′) : T2

and some instances of (Exp Subsum) such that E `
T2 <: T . There must be an instance of (Exp Fork) with
premises

E, : {A}, : {A′′} ` A′ : T3
E, : {A}, : {A′} ` A′′ : T4

and some instances of (Exp Subsum) such that E `
T4 <: T2.

By Lemma 13 (Ok ∧), we have:

E, : {A′}, : {A′′} ` A : T1

By Lemma 5 (Exchange), we obtain:

E, : {A′′}, : {A′} ` A : T1
E, : {A′′}, : {A} ` A′ : T3

Hence, by (Exp Fork), we obtain:

E, : {A′′} ` (A � A′) : T3

By Lemma 13 (Ok ∧), we have:

E, : {A � A′} ` A′′ : T4

Hence, by (Exp Fork), we obtain:

E ` (A � A′) � A′′ : T4

By (Exp Subsum), and E ` T4 <: T , we obtain:

E ` (A � A′) � A′′ : T

Part (2) follows by a symmetric argument.

(Heat Fork Comm) We have (A � A′) � A′′ V (A′ � A) �
A′′.

This case is similar to (Heat Fork Assoc); we omit the
details.

(Heat Fork Let) We have let x = (A � A′) in B ≡ A �
(let x = A′ in B), which amounts to (1) let x = (A �
A′) in BV A � (let x = A′ in B) and (2) A � (let x =
A′ in B)V let x = (A � A′) in B.

For (1), assume E ` let x = (A �A′) in B : T . This must
follow from an instance of (Exp Let) with premises

E ` (A � A′) : T1 E,x : T1 ` B : T2 x /∈ fv(T2)

and some instances of (Exp Subsum) such that E `
T2 <: T . There must be an instance of (Exp Fork) with
premises

E, : {A′} ` A : T3 E, : {A} ` A′ : T4

and some instances of (Exp Subsum) such that E `
T4 <: T1.

By (Exp Subsum), E, : {A} ` A′ : T1.

By Lemma 6 (Weakening), E, : {A},x : T1 ` B : T2.

By (Exp Let), E, : {A} ` let x = A′ in B : T2.

We have let x = A′ in B = A′.

By (Exp Fork), E ` A � let x = A′ in B : T2.

By (Exp Subsum), E ` T2 <: T implies E ` A � let x =
A′ in B : T .
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For (2), assume E `A � (let x = A′ in B) : T . This must
follow from an instance of (Exp Fork) with premises

E, : {A′} ` A : T1
E, : {A} ` (let x = A′ in B) : T2

(since let x = A′ in B = A′) and some instances of
(Exp Subsum) such that E ` T2 <: T . There must be
an instance of (Exp Let) with premises

E, : {A} ` A′ : T4
E, : {A},x : T4 ` B : T3

and some instances of (Exp Subsum) such that E `
T3 <: T2.

By (Sub Refine Right):

E, : {A} ` T4 <: { : T4 | A}

Given the following

E, : {A′} ` A : T1
E, : {A} ` A′ : { : T4 | A}

we conclude by (Exp Fork):

E ` A � A′ : { : T4 | A}

By (Sub Refine Left):

E, : {A} ` { : T4 | A}<: T4

By Lemma 9 (Bound Weakening):

E, : {A},x : { : T4 | A} ` B : T3

By Lemma 4 (Anon Variable Strengthening):

E,x : { : T4 | A} ` B : T3

By (Exp Let):

E ` let x = (A � A′) in B : T3

By (Exp Subsum): E ` T3 <: T implies

E ` let x = (A � A′) in B : T

2

Similarly, the next two lemmas assert that reduction A→
A′ preserves the extracted formulas of an expression and
also that reduction preserves types.

Lemma 30 (→ Preserves Logic)
If A→ A′ then A′ ` A.

Proof: By induction on the derivation of A→ A′.

(Red Comm) follows from True ` True ∧ True, derived
from Properties (True) and (And Intro).

All other base case follow from A′ ` True, derived from
Properties (True) and (Mon).

The context cases are handled by induction hypothesis,
as in the proof of Lemma 28 (V Preserves Logic).

(Red Heat) follows from Lemma 28 (V Preserves Logic)
(twice), the induction hypothesis, and Properties
(Mon) and (Cut). 2

Proposition 31 (→ Preserves Types)
If E is executable, fv(A) = ∅, E ` A : T , and A→ A′, then
E ` A′ : T .

Proof: By induction on the derivation of A→ A′, using
Lemma 21 (Alternative Typing). Below we implicitly ap-
peal to Lemma 20 (Transitivity) several times (which we
may do because of the assumption that E is executable).

(Red Fun) It must be the case that E ` (fun x→ A) N : T
follows by an instance of (Exp Appl) after a certain
number of instances of (Exp Subsum).

Hence, it must be the case that E ` (fun x→ A) N :
U ′{N/x}, E `U ′{N/x}<: T and E ` funx→ A : Πx :
T ′. U ′ and E ` N : T ′ (by Lemma 20 (Transitivity)).

Moreover, it must be the case that E ` funx→ A : Πx :
T ′. U ′ follows by an instance of (Val Fun Refine) after
a certain number of instances of (Exp Subsum).

Hence, it must be the case that E ` fun x→ A : {y :
Πx : T ′′. U ′′ | C} and E,x : T ′′ ` A : U ′′ and E ` {y :
Πx : T ′′. U ′′ |C}<: Πx : T ′. U ′.

By Lemma 26 (Inversion)(1), E ` T ′ <: T ′′ and E,x :
T ′ `U ′′ <: U ′.

By Lemma 23 (Substitution), E ` U ′′{N/x} <:
U ′{N/x}.
By (Exp Subsum), E ` N : T ′′.

By Lemma 23 (Substitution), E ` A{N/x} : U ′′{N/x}
By (Exp Subsum), E ` A{N/x} : T .

(Red Split) It must be the case that E ` let (x,y) =
(N1,N2) in A : T follows by an instance of (Exp Split)
after a certain number of instances of (Exp Subsum).

Hence, it must be the case that E ` (N1,N2) : (Σx :
T ′. U ′), E,x : T ′,y : U ′, : {(x,y) = (N1,N2)} ` A : V
and {x,y}∩ fv(V ) =∅, where E `V <: T .

Moreover, it must be the case that E ` (N1,N2) : (Σx :
T ′.U ′) follows by an instance of (Val Pair Refine) after
a certain number of instances of (Exp Subsum).
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Hence, it must be the case that E ` (N1,N2) : {y : Σx :
T ′′. U ′′ | C} and E ` N1 : T ′′, E,x : T ′′ ` N2 : U ′′ and
E ` {y : Σx : T ′′. U ′′ |C}<: Σx : T ′. U ′.

By Lemma 26 (Inversion)(2), E ` T ′′ <: T ′ and E,x :
T ′′ `U ′′ <: U ′.

By Lemma 9 (Bound Weakening), E,x : T ′′,y : U ′′, :
{(x,y) = (N1,N2)} ` A : V

By Lemma 23 (Substitution), E,y : U ′′{N1/x}, :
{(N1,y) = (N1,N2)} ` A{N1/x} : V .

By Lemma 23 (Substitution), E, : {(N1,N2) =
(N1,N2)} ` A{N1/x}{N2/x} : V .

(In these uses of Lemma 23 (Substitution), the substi-
tutions both apply to V but leave it unchanged because
{x,y}∩ fv(V ) =∅.)

By Properties (Eq) and (Mon), forms(E) ` (N1,N2) =
(N1,N2), thus by Lemma 4 (Anon Variable Strength-
ening), E ` A{N1/x}{N2/x} : V .

By (Exp Subsum), E ` A{N1/x}{N2/x} : T .

(Red Match) It must be the case that E `
match M with h x → A else B : T follows by an
instance of (Exp Match Inl Inr Fold) after a certain
number of instances of (Exp Subsum).

Hence, it must be the case that E `
match M with h x → A else B : U , E ` M : T ′,
h : (H,T ′), E,x : H, : {h x = M} ` A : U and
E, : {∀x.h x 6= M} ` B : U and E `U <: T , and hence
x 6∈ fv(U).

Suppose there is no h,N such that M = h N. we obtain
E, : {∀x.h x 6= M} ` B : T by (Exp Subsum).

Since fv(A) =∅, we have fv(M) =∅. Hence, by prop-
erty (Ineq Cons), we have ∅ ` ∀x.h x 6= M.

Hence, by property (Mon) and Lemma 4 (Anon Vari-
able Strengthening), we obtain E ` B : T .

Otherwise, suppose there is N such that M = h N. It
must be the case that E `M : T ′ follows by an instance
of (Val Inl Inr Fold Refine) after a certain number of
instances of (Exp Subsum).

Hence, it must be the case that E ` h N : {y : U ′ |C},
h : (H ′,U ′), E ` N : H ′.

By Lemma 26 (Inversion), E ` H ′ <: H.

By Lemma 9 (Bound Weakening), E,x : H ′, : {h x =
M} ` A : U .

By Lemma 23 (Substitution), E, : {h N = M} `
A{M/x} : U .

By Properties (Eq) and (Mon), E ` h N = M, so
by Lemma 4 (Anon Variable Strengthening), E `
A{M/x} : U .

By (Exp Subsum), E ` A{M/x} : T .

(Red Eq) It must be the case that E ` M = N : T follows
by an instance of (Exp Eq) after a certain number of
instances of (Exp Subsum).

Hence, it must be the case that E `M = N : {b : bool |
b = true⇔M = N} and E `M : T and E ` N : U .

Moreover, by Lemma 20 (Transitivity), E ` {b : bool |
b = true⇔M = N}<: T .

We split the proof in two cases.

• If M = N then A′ = true.
By definition, true = inr().
By (Eq) in the logics and (Val Inl Inr Fold) for
inr, E ` true : {y : bool | y = true⇔M = M}.
By (Exp Subsum), E ` true : T .

• If M 6= N then A′ = false. By definition, false =
inl().
By (Val Inl Inr Fold), E ` false : {y : bool | y =
true⇔M = N}.
By (Exp Subsum), E ` false : T .

(Red Comm) By (Exp Fork), (Exp Send), (Exp Recv),
(Exp Subsum) and Lemma 4 (Anon Variable Strength-
ening), noticing that c? = True.

(Red Assert) By (Exp Assert), (Val Unit Refine), (Exp
Subsum) and Lemma 11 (Sub Refine Left Refl).

(Red Let Val) By (Exp Let), (Exp Subsum) and Lemma 23
(Substitution).

(Red Let) By (Exp Let), (Exp Subsum) and the induction
hypothesis.

(Red Res) By (Exp Res), (Exp Subsum) and the induction
hypothesis.

(Red Fork 1) By (Exp Fork), (Exp Subsum) and the induc-
tion hypothesis.

(Red Fork 2) By (Exp Fork), (Exp Subsum) and the induc-
tion hypothesis.

(Red Heat) By Proposition 29 (V Preserves Types) and
the induction hypothesis. 2

Our next results are that typing implies static safety and
indeed safety.

Lemma 32 (Static Safety)
If ∅ ` S : T then S is statically safe.

Proof: Consider an arbitrary structure S:

(νa1) . . .(νa`)((A1 � A2) � A3)
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where A1 = (∏i∈1..m assume Ci) and A2 = (∏ j∈1..n c j!M j)
and A3 = (∏k∈1..o Lk{ek}). Suppose that ep = assert C for
some p ∈ 1..o. We are to show that {C1, . . . ,Cm} `C.

Our hypothesis ∅ ` S : T must be obtained from ` in-
stances of (Exp Res), interleaved with some instances of
(Exp Subsum), from hypothesis

E` ` (A1 � A2) � A3 : U1

with E` = a1 l T1, . . . ,a` l T`, for some type U1 and types
T1, . . . , Tl .

There must be an instance of (Exp Fork) and some in-
stances of (Exp Subsum) such that

E`, : {A3} ` (A1 � A2) : U12
E`, : {A1∧A2} ` A3 : U3

for some U12 and U3.
There must be an instance of (Exp Fork) and some in-

stances of (Exp Subsum) such that

E`, : {A3}, : {A2} ` A1 : U1
E`, : {A3}, : {A1} ` A2 : U2

for some U1 and U2.
Since Lk{ek} is an elementary expression ek surrounded

by a stack of let-expressions, we have that Lk{ek} = True
for each k ∈ 1..o. Since E`, : {A1 ∧A2} ` A3 : U3, it fol-
lows that E`, : {A1 ∧ A2} ` Lp{ep} : Up for some type
Up, and therefore there is an instance of (Exp Assert) such
that E`, : {A1 ∧A2} ` assert C : unit follows from E`, :
{A1 ∧A2} ` C, and therefore there is an instance of (De-
rive) with forms(E`, : {A1∧A2}) `C.

Since E` contains only names, forms(E`) = ∅. By defi-
nition of A1 and A2, it must be that forms( : {A1 ∧A2}) =
{C1, . . . ,Cn}. Hence, we have {C1, . . . ,Cn} `C, as desired.

2

Restatement of Theorem 1 (Safety)
If ∅ ` A : T then A is safe.

Proof: Consider any A′ and S such that A →∗ A′ and
A′ V S; it suffices to show that S is statically safe. By
Proposition 31 (→ Preserves Types), ∅ ` A : T and A→∗ A′

imply ∅ ` A′ : T . By Proposition 29 (V Preserves Types),
this and A′ V S imply ∅ ` S : T . By Lemma 32 (Static
Safety), this implies S is statically safe. 2

C.7 Proof of Theorem 2 (Robust Safety)

First, we note that Un is type equivalent to a range of
types.

Lemma 33 (Universal Type)
Given E ` � we have E ` Un <:> T for each T below:

{unit,(Πx : Un. Un),(Σx : Un. Un),(Un+Un),(µα.Un)}

Proof: By appeal to Lemma 16 (Public Tainted), it suf-
fices to show that E ` T :: pub and E ` T :: tnt for each
type T in the statement of this lemma. All of these kinding
judgments directly follow from the kinding rules. 2

The next lemma establishes that any opponent can be
well-typed using Un to type its free names. The lemma is a
little more general—it applies to any expression containing
no Assert; an opponent is any such expression with no free
variables.

Lemma 34 (Opponent Typability)
Suppose E ` � and that E is executable. If O is an ex-
pression containing no assert such that (a l Un) ∈ E for
each name a ∈ fn(O), and (x : Un) ∈ E for each variable
x ∈ fv(O), then E ` O : Un.

Proof: The proof is by induction on the structure of O; in
each case we obtain E ` O : Un using the expression typing
rule corresponding to the structure of O, the rule of sub-
sumption (Exp Subsum), and the properties of the type Un
stated in Lemma 33 (Universal Type).

In the case for an opponent M = N we additionally ap-
peal to Lemma 11 (Sub Refine Left Refl).

In the cases for an opponent that is a split, a match, or a
fork, we additionally appeal to Lemma 6 (Weakening).

In the cases mentioning a constructor h ∈ {inl, inr, fold}
we appeal to the following instances of the constructor judg-
ment: E ` inl : (Un,Un+Un) and E ` inr : (Un,Un+Un) and
E ` fold : (µα.Un,Un). 2

Finally, we prove that robust safety follows by typing.

Restatement of Theorem 2 (Robust Safety)
If ∅ ` A : Un then A is robustly safe.

Proof: Consider any opponent O with fn(O) =
{a1, . . . ,an}. We are to show the application O A is
safe. Let E = a1 l Un, . . . ,a1 l Un. By Lemma 34 (Op-
ponent Typability), E ` O : Un. By (Exp Subsum) and
Lemma 33 (Universal Type), E ` O : (Πx : Un. Un). By
Lemma 6 (Weakening), E ` A : Un. We can easily derive
E ` let f =O in (let x = A in f x) : Un, that is, E `O A : Un.
Hence, we can derive ∅ ` (νa1) . . .(νan)(O A) : Un. By
Theorem 1 (Safety), (νa1) . . .(νan)(O A) is safe. Restric-
tion does not affect safety, so it follows that O A is itself
safe, as required. 2

D Derived Forms

In our code examples, we use F# syntax for expressions
and a convenient F#-like syntax for types. Elaborating on
Section 2.3, we describe how these syntactic forms are de-
rived in RCF, our core language.
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RCF has a reduced syntax for expressions; the more
general expression syntax of F# is derived by inserting let-
expressions. (We assume that the inserted bound variables
are fresh.)

Implicit Lets:

A;B 4
= let = A in B

(A,B) 4= let x = A in let y = B in (x,y)
h A 4

= let x = A in h x
A B 4

= let x = A in let y = B in x y
let (x,y) = A in B 4

= let z = A in let (x,y) = z in B
match A with h x→ B else B′ 4=

let z = A in match z with h x→ B else B′

A = B 4
= let x = A in let y = B in x = y

We use the following derived syntax for function and tu-
ple types:

Function and Tuple Types:

T1→ T2
4
= Π : T1. T2

x1 : T1→ T2
4
= Πx1 : T1. T2

T1 ∗T2
4
= Σ : T1. T2

{C} 4= { : unit |C}
(x1 : T1 ∗ · · · ∗ xn : Tn){C}

4
=

Σx1 : T1. . . .Σxn−1 : Tn−1. {xn : Tn |C}

We also support type abbreviations in module interfaces:

type (α1, . . . ,αn; x1:T1, . . . ,xm:Tm)F = Σ

where Σ is either a type or a type expression defining an
algebraic sum type

Σ ::= T
(|hi of Ti)i∈1..k(k ≥ 1)

The first form is not recursive: the type T does not con-
tain F . The latter form defines a recursive sum type; we
require that all appearances of F in T1, . . . ,Tk be of the form
(β1, . . . ,βn;y1, . . . ,ym)F , that is, it may only have type and
term variables as parameters. It also defines constructors
h1, . . . , hk derived from inl, inr, and fold. We translate type
abbreviations and their constructors as follows:

Algebraic Types:

type (α1, . . . ,αn;x1 : T1, . . . ,xm : Tm)F = Σ defines:

(T1, . . . ,Tn;M1, . . . ,Mm)F
4
=

T{T1/α1; . . . ;Tn/αn;M1/x1; . . . ;Mm/xm}
when Σ = T.

(T1, . . . ,Tn;M1, . . . ,Mm)F
4
= (non-recursive case)

Sum(U1, . . . ,Uk)
when Σ = (|hi of Ui)i∈1..k
and F does not occur in U1, . . . ,Uk.

(T1, . . . ,Tn;M1, . . . ,Mm)F
4
= (recursive case)

µβ .(Sum(U1, . . . ,Uk){β/(α1, . . . ,αn;x1, . . . ,xm)F})
when Σ = (|hi of Ui)i∈1..k
and F occurs in at least one of U1, . . . ,Uk.

Sum(U1)
4
=U1

Sum(U1,U2, . . . ,Uk)
4
=U1 +Sum(U2, . . . ,Uk)

Constructors for non-recursive sum types are defined as:
hi M 4

= [(inr]i−1 (inl M)) . . .) i = 1..k−1
hk M 4

= [(inr]k−1 M ) . . .)

Constructors for recursive sum types are defined as:
hi M 4

= fold([(inr]i−1 (inl M)) . . .) i = 1..k−1
hk M 4

= fold([(inr]k−1 M ) . . .)

We may also write hi instead of both hi of unit and hi()
when Ui = unit. With this encoding, we can define primitive
types such as Booleans, integers, strings, lists, and options:

type bool = false | true
type int = Zero | Succ of int
type string = Str of int list
type α list = op Nil | op ColonColon of α ∗ α list
type α option = None | Some of α

We treat constants, such as strings and integers, as syn-
tactic sugar for applications of these constructors. The F#

operators op Nil and op ColonColon stand for the list con-
structors [] and ::.

As an example, the type bool above defines a disjoint
sum type; we then derive conditional branching in terms of
constructor matching:

Booleans and Conditional Branching:

bool
4
= unit+unit

false 4= inl ()
true 4= inr ()
if A then B else B′ 4=

match A with true → B else match A with false → B′

General pattern matching is derived using nested con-
structor matching and let-expressions:

Pattern Matching:

match A with (hi xi→ Ai)i∈1..k
4
=

match A with h1 x1→ A1
else match A with (h j x j→ A j) j∈2..k

match A with h x→ B 4
= match A with h x→ B

else failwith "match failed"
match A with h N→ B else B′ 4= match A with

h x→match x with
N→ B

else B′

else B′

match A with x→ B else B′ 4= let x = A in B
match A with (x,y)→ B else B′ 4= let (x,y) = A in B
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Via a standard encoding [Gunter, 1992, p241], we obtain
a fixpoint operator using iso-recursive types as follows.

type (α ,β )Fix = Fold of ((α ,β )Fix→ (α →β ))
let unfold (Fold (f)) = f
let fix : ((α →β )→ (α →β ))→ (α →β ) =

begin
(fun f→

(fun x→ fun y→ f (unfold x x) y)
(Fold (fun x→ fun y→ f (unfold x x) y)))

end
let add: int→ int→ int = fix (fun add→ fun x→ fun y→ if x=0

then y else add (x−1) (y+1))

Using this fixpoint operator, we can encode recursive func-
tions at any function type:

Functions and Recursion:

let f x1 . . . xn = A in B 4
=

let f = (fun x1→ . . . fun xn→ A) in B
let rec f = A 4

= let f = fix (fun f → A)

Finally, we define our primitive functions for communi-
cation and concurrency in terms of expressions in our core
language. (We introduced some of these functions in Sec-
tion 2.)

Functions for Communication and Concurrency:

failwith
4
= fun x→ (νa)a? block on failure

op Equals
4
= fun x y→ x = y equality function

(T )chan
4
= (T → unit)∗ (unit→ T )

(T )ref 4= (T )chan
chan

4
= fun x→ (νa)(fun x→ a!x, fun → a?)

send
4
= fun c x→ let (s,r) = c in s x send x on c

recv
4
= fun c→ let (s,r) = c in r () block for x on c

fork
4
= fun f → ( f () � ()) run f in parallel

ref 4= fun x→ let r = chan "r" in
send r x;r

new reference

! 4= fun r→ let x = recv r in send r x;x dereference r
:= 4

= fun r y→ let x = recv r in send r y update r with y

We derive the following types for these expressions:

• failwith can be given type T →U for any T , U (using
(Val Fun), (Exp Res), and (Exp Recv));

• the F# equality operator op Equals (also written =) can
be given type T →U → bool for any T , U (using (Val
Fun) and (Exp Eq));

• chan can be given type T → (U)chan for any T , U
(using (Val Fun) and (Exp Res));

• send can be given type (T )chan→ T → unit for any
T (using (Val Fun), (Exp Fork), (Exp Send), and (Val
Unit));

• recv can be given type (T )chan→ T for any T (using
(Val Fun), (Exp Let), (Exp Recv), and (Val Var));

• fork can be given type (unit→ T )→ unit for any T (us-
ing (Val Fun), (Exp Fork), (Exp Appl), and (Val Unit)).

• ref can be given type T → (U)ref for any T , U (using
(Val Fun), (Exp Res),(Exp Fork), (Exp Send), and (Val
Unit));

• ! can be given type (T )ref→ T for any T (using (Val
Fun), (Exp Let), (Exp Recv), and (Val Var));

• := can be given type (T )ref→ T → unit for any T (us-
ing (Val Fun), (Exp Let), (Exp Recv), (Val Var), (Exp
Fork), (Exp Send), and (Val Unit)).

Hence, we have the following polymorphic types for
these functions.

val failwith : string→ (α ){false}
val op Equals : x:α →y:β → (z:bool){z = True⇒x = y}
val fork : unit→unit→unit
val chan : string→α chan
val send : α chan→α→unit
val recv : α chan→α

val ref : α→α ref
val !: α ref→α

val := : α ref→α→unit

E Typed Encoding of Formal Cryptography

We provide the complete interface and implementation
for formal cryptography within RCF.

An RCF Interface for Formal Cryptography

module Crypto
open PrimCrypto
open Pi

type str =
Literal of string
| Guid of Pi.name

type bytes =
Concat of bytes ∗ bytes
| Nonce of Pi.name

val str: s:string→ (x:str){x = Literal(s)}
val istr: x:str→ (s:string){x = Literal(s)}
val concat: x1:bytes→x2:bytes→c:bytes{c = Concat(x1,x2

)}
val iconcat: c:bytes→ (x1:bytes ∗ x2:bytes){c = Concat(x1,

x2)}
val mkGuid: unit→str
val mkPassword: unit→str
val mkPasswordPrin: string→str
val mkNonce: unit→bytes
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type α pickled = P of α

val pickle: x:α → (p:α pickled)
val unpickle: p:α pickled→ (x:α )

val tup31: α ∗ β ∗ γ→α

val tup32: α ∗ β ∗ γ→β

val tup33: α ∗ β ∗ γ→γ

(* The following design uses Seals rather
than Tables *)

type α hkey = HK of α pickled Seal
type hmac = HMAC of Un
val mkHKey: unit→α hkey
val hmacsha1: k:α hkey→x:α pickled→h:hmac
val hmacsha1Verify: k:α hkey→xx:Un→h:hmac→x:α

pickled

type α symkey = Sym of α pickled Seal
type enc = AES of Un
val mkEncKey: unit→α symkey
val aesEncrypt: k:α symkey→x:α pickled→e:enc
val aesDecrypt: k:α symkey→e:enc→x:α pickled

type α sigkey = SK of α pickled Seal
type α verifkey = VK of (Un→α pickled)
type dsig = RSASHA1 of Un
val rsasha1: k:α sigkey→x:α pickled→d:dsig
val rsasha1Verify: k:α verifkey→xx:Un→d:dsig→x:α

pickled

type β deckey = DK of β symkey Seal
type β enckey = EK of (β symkey→x:Un)
type penc = RSA of Un
val rsaEncrypt: β enckey→β symkey→penc
val rsaDecrypt: β deckey→penc→β symkey

type (α ,β ) privkey = Priv of α sigkey ∗ β deckey (* One
for signing, one for encryption *)

type (α ,β ) pubkey = Pub of α verifkey ∗ β enckey
val rsaKeyGen: unit→ (α ,β ) privkey
val rsaPub: (α ,β ) privkey→ (α ,β ) pubkey
val sigkey: (α ,β ) privkey→α sigkey
val deckey: (α ,β ) privkey→β deckey
val verifkey: (α ,β ) pubkey→α verifkey
val enckey: (α ,β ) pubkey→β enckey

type hash = SHA1 of Un
type α hasher = Sha1 of α pickled Seal

val mkSha1: unit→α hasher
val sha1: α hasher→α pickled→hash

Generated F# Interface

module Crypto

open PrimCrypto
open Pi
type str

type bytes
val str : (string→str)
val istr : (str→string)
val concat : (bytes→ (bytes→bytes))
val iconcat : (bytes→ (bytes ∗ bytes))
val mkGuid : (unit→str)
val mkPassword : (unit→str)
val mkPasswordPrin : (string→str)
val mkNonce : (unit→bytes)
type α pickled
val pickle : (α →α pickled)
val unpickle : (α pickled→α )
val tup31 : ((α ∗ β ∗ γ )→α )
val tup32 : ((α ∗ β ∗ γ )→β )
val tup33 : ((α ∗ β ∗ γ )→γ )
val namegen : (string→ (unit→Un))
type α hkey
type hmac
type α hmacpred
val mkHKey : (unit→α hkey)
val hmacsha1 : (α hkey→ (α pickled→hmac))
val hmacsha1Verify : (α hkey→ (Un→ (hmac→α pickled)))
type α symkey
type enc
type α encpred
val mkEncKey : (unit→α symkey)
val aesEncrypt : (α symkey→ (α pickled→enc))
val aesDecrypt : (α symkey→ (enc→α pickled))
type α sigkey
type α verifkey
type dsig
type α dsigpred
val rsasha1 : (α sigkey→ (α pickled→dsig))
val rsasha1Verify : (α verifkey→ (Un→ (dsig→α pickled)))
type β deckey
type β enckey
type penc
type α pencpred
val rsaEncrypt : (β enckey→ (β symkey→penc))
val rsaDecrypt : (β deckey→ (penc→β symkey))
type (α ,β ) privkey
type (α ,β ) pubkey
val rsaKeyGen : (unit→ (α , β ) privkey)
val rsaPub : ((α , β ) privkey→ (α , β ) pubkey)
val sigkey : ((α , β ) privkey→α sigkey)
val deckey : ((α , β ) privkey→β deckey)
val verifkey : ((α , β ) pubkey→α verifkey)
val enckey : ((α , β ) pubkey→β enckey)
type hash
type α hasher
val mkSha1 : (unit→α hasher)
val sha1 : (α hasher→ (α pickled→hash))
type α deriver
val mkPSHA1 : (α symkey→α deriver)
val psha1 : (α deriver→ (bytes→α symkey))
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An Implementation of Formal Cryptography
#light "off"
module Crypto
open Pi
open PrimCrypto

type str =
Literal of string
| Guid of Pi.name

type bytes =
Concat of bytes ∗ bytes
| Nonce of Pi.name

let str s = Literal s
let istr s = match s with
| Literal v→v
| → failwith "iS failed"
let concat x y = Concat(x,y)
let iconcat s = match s with
| Concat(x,y)→ (x,y)
| → failwith "iconcat failed"

let mkGuid () = Guid (Pi.name "id")
let mkNonce () = Nonce (Pi.name "nonce")
let mkPassword () = Guid (Pi.name "pwd")
let mkPasswordPrin (p:string) = Guid (Pi.name p)

type pickled<α > = P of α

let pickle (x:α ) = P x
let unpickle (P x) = x

let tup31 (a,b,c) = a
let tup32 (a,b,c) = b
let tup33 (a,b,c) = c

let fail: unit→α = fun ()→ failwith "Not Found"

type α hkey = HK of α pickled Seal
type hmac = HMAC of Un

let mkHKey ():α hkey =
let s = mkSeal "hkey" in

HK s
let hmacsha1 (HK(key)) text =

let (h, ) = key in
let t = h text in

HMAC (t)
let hmacsha1Verify (HK key) text (HMAC h) =

let ( ,hv) = key in
let x:α pickled = hv h in

if x = text then x else failwith "hmac verify failed"

type α symkey = Sym of α pickled Seal

type enc = AES of Un
let mkEncKey () :α symkey =

let t = mkSeal "symkey" in
Sym (t)

let aesEncrypt (Sym key) (text:α pickled) : enc =

let (e,d) = key in
let x = e text in

AES(x)
let aesDecrypt (Sym key) (AES msg) : α pickled =

let (e,d) = key in
d msg

type α sigkey = SK of α pickled Seal
type α verifkey = VK of (Un→α pickled)
type dsig = RSASHA1 of Un
let rsasha1 (SK(sk)) t =

let (s,v) = sk in
let ss = s t in

RSASHA1(ss)
let rsasha1Verify (VK(v)) t (RSASHA1 sg) =

let x:α pickled = v sg in
if x = t then x else failwith "rsasha1 verify failed"

type β deckey = DK of β symkey Seal
type β enckey = EK of (β symkey→Un)
type penc = RSA of Un

let mkRsaDecKey () : β deckey =
let s = mkSeal "rsakey" in

DK(s)
let rsaEncKey (DK dk) =

let (e,d) = dk in EK(e)
let rsaEncrypt (EK (e)) t = RSA(e t)
let rsaDecrypt (DK k) (RSA msg) =

let (e,d) = k in d msg

(* Private/Public keypairs, for signing and
encryption *)

type (α ,β ) privkey = Priv of α sigkey ∗ β deckey
type (α ,β ) pubkey = Pub of α verifkey ∗ β enckey
let rsaKeyGen () :(α ,β ) privkey =

let t1 = mkSeal "sigkey" in
let t2 = mkSeal "deckey" in

Priv(SK(t1),DK(t2))
let rsaPub (p:(α ,β ) privkey) :(α ,β ) pubkey =

let (Priv (s,d)) = p in
let (SK(sk)) = s in
let (DK(dk)) = d in
let (s,v) = sk in
let (e,d) = dk in
let vk = VK(v) in
let ek = EK(e) in
let p = Pub(vk,ek) in

p
let sigkey (Priv (s,d)) = s
let deckey (Priv (s,d)) = d
let verifkey (Pub (v,e)) = v
let enckey (Pub (v,e)) = e

type hash = SHA1 of Un
type α hasher = Sha1 of α pickled Seal

let mkSha1 () =
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let t = mkSeal "sha1" in
Sha1 t

let sha1 (Sha1(t)) x =
let (h, ) = t in

SHA1(h x)

F Example Code

We provide the complete interface and implementation
code for the final MAC-based authentication protocol of
Section 3.

Refinement-Typed Interface

module M
open Pi
open Crypto
open Net

type prin = string
type event = Send of (prin ∗ prin ∗ string) | Leak of prin
type (;a:prin,b:prin) content = x:string{ Send(a,b,x) }

type message = (prin ∗ prin ∗ string ∗ hmac) pickled

private val mkContentKey:
a:prin→b:prin→ ((;a,b)content) hkey

private val hkDb:
(prin∗prin, a:prin ∗ b:prin ∗ k:(;a,b) content hkey) Db.t

val genKey: prin→prin→unit
private val getKey: a:

string→b:string→ ((;a,b) content) hkey

assume ∀a,b,x. ( Leak(a) )⇒Send(a,b,x)
val leak:

a:prin→b:prin→ (unit{ Leak(a) }) ∗ ((;a,b) content) hkey

val addr : (prin ∗ prin ∗ string ∗ hmac, unit) addr
private val check:

b:prin→message→ (a:prin ∗ (;a,b) content)
val server: string→unit

private val make:
a:prin→b:prin→ (;a,b) content→message

val client: prin→prin→string→unit

F# Implementation Code

module M
open Pi
open Crypto // Crypto Library
open Net // Networking Library

// Simple F# types for principals, events, payloads, and messages:
type prin = string
type event = Send of (prin ∗ prin ∗ string) | Leak of prin

type content = string
type message = (prin ∗ prin ∗ string ∗ hmac) pickled

// Key database:
let hkDb : ((prin∗prin),(prin∗prin∗(content hkey))) Db.t =

Db.create ()
let mkContentKey (a:prin) (b:prin) : content hkey =

mkHKey()
let genKey a b =

let k = mkContentKey a b in
Db.insert hkDb (a,b) (a,b,k)

let getKey a b =
let a’,b’,sk = Db.select hkDb (a,b) in
if (a’,b’) = (a,b) then sk else failwith "select didn’t

find appropriate item"

// Key compromise:
let leak a b =

assume (Leak(a)); ((),getKey a b)

// Server code:
let addr : (prin ∗ prin ∗ string ∗ hmac, unit) addr =

http "http://localhost:7000/pwdmac" ""
let check b m =

let a,b’,text,h = unpickle m in
if b = b’ then

let k = getKey a b in
(a,unpickle (hmacsha1Verify k (pickle text) h))

else failwith "Not the intended recipient"
let server b =

let c = listen addr in
let (a,text) = check b (recv c) in

assert(Send(a,b,text))

// Client code:
let make a b s =

pickle (a,b,s,hmacsha1 (getKey a b) (pickle s))
let client a b text =

assume (Send(a,b,text));
let c = connect addr in
send c (make a b text)

// Execute one instance of the protocol:
let = genKey "A" "B"
let = fork (fun (u:unit)→client "A" "B" "Hello")
let = server "B"

Generated F# Interface

module M

open Pi
open Crypto
open Net
type prin = string
type event
type content = string
type message = ((prin ∗ prin ∗ string ∗ hmac)) pickled
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val genKey : (prin→ (prin→unit))
val leak : (prin→ (prin→ (unit ∗ content hkey)))
val addr : ((prin ∗ prin ∗ string ∗ hmac), unit) addr
val server : (string→unit)
val client : (prin→ (prin→ (string→unit)))

Typechecking We invoke our typechecker on the example
above, along with the interfaces and implementations it de-
pends upon, including our encoding of formal cryptography
and symbolic implementations of the trusted libraries. More
precisely, the typechecker is given a program consisting of:

• Pi: a typed interface to functions for communication
and concurrency;

• PrimCrypto: the interface and encoding of seals;

• Crypto, Net: interfaces and symbolic implementations
of trusted libraries (see Appendix E; Section 5);

• M: the interface and implementation of the example
above.

The type definitions in implementations and interfaces
define abbreviations that are eliminated by inlining. Then
the interfaces of a program are interpreted as a type T and a
set of formulas SC:

T = (e1 : T1 ∗ · · · ∗ el : Tl)
SC = {C1, . . . ,Cm}

where e1, . . . ,el are all the values exported by the interfaces
PrimCrypto, Crypto, Net, and M, and C1, . . . ,Cn are all the
formulas assumed in the interfaces.

The program is interpreted as an expression A that as-
sumes the formulas SC and defines the values e1, . . . ,el .
By typechecking, we establish that A has public type T
(∅ ` A : T and C1, . . . ,Cm ` T <: Un); hence, by Theorem 2
(Robust Safety), A is robustly safe.

More precisely, the program is then interpreted as an ex-
pression A of the form:

A =
let failwith = fun x→(νa)a? in
...
let recv = fun c→ let x = c? in x in
assume C1;
...
assume Cm;
let y1 = B1 in
...
let yk = Bk in
(e1,...,el)

where failwith, . . . , recv are all the functions defined in Pi;
y1, . . . ,yk are the values defined in PrimCrypto, Crypto,

Net, and M as expressions B1, . . . ,Bk (we expect that
{e1, . . . ,el} ⊆ {y1, . . . ,ym}).

To prove that the program is robustly safe, we apply The-
orem 2 (Robust Safety), by proving ∅ ` A : Un.

We first use our typechecker to establish:

failwith : string→unit,
...,
recv: α chan→α ,
:{C1},..., :{Cm} `

let y1 = B1 in
...
let yk = Bk in
(e1,...,el)

:
T

and to also check that T <: Un.
We then establish, by hand, that each function in Pi has

the types stated above; we then obtain ∅ ` A : T by several
applications of (Exp Assume) followed by (Exp Let). From
∅ ` A : T and T <: Un, we apply (Exp Subsum) to obtain
∅ ` A : Un.

The full result printed by the typechecker is as follows:

Given Type Declarations:

type int = Zero of unit | Succ of int
type α list = op Nil of unit | op ColonColon of (α ∗ α list)
type string = Str of int list
type α ref = Ref of α

type tup0 = Tup0 of unit
type α tup1 = Tup1 of α

type (α ,β ) tup2 = Tup2 of (α ∗ β )
type (α ,β ,γ ) tup3 = Tup3 of (α ∗ β ∗ γ )
type (α ,β ,γ ,δ ) tup4 = Tup4 of (α ∗ β ∗ γ ∗ δ )
type (α ,β ,γ ,δ ,ε ) tup5 = Tup5 of (α ∗ β ∗ γ ∗ δ ∗ ε )
type (α ,β ,γ ,δ ,ε ,φ ) tup6 = Tup6 of (α ∗ β ∗ γ ∗ δ ∗ ε ∗ φ )
type bool = True of unit | False of unit
type α option = None of unit | Some of α

type name
type α chan
type Un = name
type α PrimCrypto.Seal = (α →Un ∗ Un→α )
type α PrimCrypto.SealChan = (α ∗ Un) list chan
type α PrimCrypto.Key = α PrimCrypto.Seal
type α PrimCrypto.HK = α PrimCrypto.Seal
type α PrimCrypto.SK = α PrimCrypto.Seal
type α PrimCrypto.VK = Un→α

type α PrimCrypto.DK = α PrimCrypto.Seal
type α PrimCrypto.EK = α→Un
type (’k,’v) Db.t = Db.Db of (’k ∗ ’v) chan
type α List.m = List.Mem of (α ∗ α list)
type Crypto.str = Crypto.Literal of string | Crypto.Guid of

name
type Crypto.bytes = Crypto.Concat of (Crypto.bytes ∗

Crypto.bytes) | Crypto.Nonce of name
type Crypto.nonce = Crypto.bytes
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type α Crypto.pickled = Crypto.P of α

type α Crypto.symkey = Crypto.Sym of α Crypto.pickled
PrimCrypto.Key

type α Crypto.privkey = Crypto.Priv of α Crypto.pickled
PrimCrypto.SK

type α Crypto.pubkey = Crypto.Pub of α Crypto.pickled
PrimCrypto.VK

type Crypto.dsig = Crypto.RSASHA1 of Un
type Crypto.enc = Crypto.AES of Un
type α Crypto.hkey = α Crypto.pickled PrimCrypto.HK
type Crypto.hmac = Crypto.HMAC of Un
type (α ,β ) Net.addr = Net.Ch of (string ∗ (α Crypto.pickled

chan ∗ β Crypto.pickled chan) chan)
type (α ,β ) Net.conn = Net.Conn of (α Crypto.pickled chan ∗

β Crypto.pickled chan)
type M.prin = string
type M.event = M.Send of (M.prin ∗ M.prin ∗ string) | M.Leak

of M.prin
type (a:M.prin,b:M.prin) M.content = (x:string){M.Send(a, b,

x)}
type M.message = (M.prin ∗ M.prin ∗ string ∗ Crypto.hmac)

Crypto.pickled

Assuming Value Declarations:

val failwith : string→ (φ f){false}
val op Equals : x:α →y:β → (z:bool){z = True⇒x = y}
val fork : unit→unit→unit
val chan : string→α chan
val send : α chan→α→unit
val recv : α chan→α

Assuming Formulae:

assume (∀x. (∀u. List.Mem(x, op ColonColon (x, u)))) ∧ (∀x. (
∀y. (∀u. List.Mem(x, u)⇒List.Mem(x, op ColonColon (
y, u))))) ∧ (∀x. (∀u. List.Mem(x, u)⇒ (∃y. (∃v. u =
op ColonColon (y, v) ∧x = y ∨List.Mem(x, v)))))

assume (∀a. (∀b. (∀x. M.Leak(a)⇒M.Send(a, b, x))))

Typechecking succeeds for:

val PrimCrypto.mkSeal : unit→Un PrimCrypto.Seal
val PrimCrypto.mkKey : unit→Un PrimCrypto.Key
val PrimCrypto.senc : Un PrimCrypto.Key→Un→Un
val PrimCrypto.sdec : Un PrimCrypto.Key→Un→Un
val PrimCrypto.mkHK : unit→Un PrimCrypto.HK
val PrimCrypto.khash : Un PrimCrypto.HK→Un→Un
val PrimCrypto.khashVerify : Un PrimCrypto.HK→Un→Un
val PrimCrypto.mkSK : unit→Un PrimCrypto.SK
val PrimCrypto.vk : Un PrimCrypto.SK→Un PrimCrypto.VK
val PrimCrypto.sign : Un PrimCrypto.SK→Un→Un
val PrimCrypto.verify : Un PrimCrypto.VK→Un→Un
val PrimCrypto.mkDK : unit→Un PrimCrypto.DK
val PrimCrypto.ek : Un PrimCrypto.DK→Un PrimCrypto.

EK
val PrimCrypto.penc : Un PrimCrypto.EK→Un→Un
val PrimCrypto.pdec : Un PrimCrypto.DK→Un→Un

val Db.create : unit→ (Un, Un) Db.t
val Db.select : (Un, Un) Db.t→Un→Un
val Db.find : (Un, Un) Db.t→Un→Un option
val Db.insert : (Un, Un) Db.t→Un→Un→unit
val List.mem : x:Un→u:Un list→ (r:bool){r = True⇒List.

Mem(x, u)}
val List.find : Un→bool→u:Un list→ (r:Un){List.Mem(r, u)}
val List.first : Un→Un option→Un list→Un option
val List.left : Un→ (Un ∗ Un)→Un option
val List.right : Un→ (Un ∗ Un)→Un option
val Crypto.str : s:string→ (x:Crypto.str){x = Crypto.Literal (s

)}
val Crypto.istr : x:Crypto.str→ (s:string){x = Crypto.Literal (s

)}
val Crypto.concat : x1:Crypto.bytes→x2:Crypto.bytes→ (c:

Crypto.bytes){c = Crypto.Concat (x1, x2)}
val Crypto.iconcat : c:Crypto.bytes→ (x1:Crypto.bytes ∗ x2:

Crypto.bytes){c = Crypto.Concat (x1, x2)}
val Crypto.mkGuid : unit→Crypto.str
val Crypto.mkNonce : unit→Crypto.bytes
val Crypto.mkPassword : unit→Crypto.str
val Crypto.mkPasswordPrin : string→Crypto.str
val Crypto.mkEncKey : unit→Un Crypto.symkey
val Crypto.check : x:Un→y:Un→ (unit){x = y}
val Crypto.mkHKey : unit→Un Crypto.hkey
val Crypto.hmacsha1 : Un Crypto.hkey→Un Crypto.pickled

→Crypto.hmac
val Crypto.hmacsha1Verify : Un Crypto.hkey→Un Crypto.

pickled→Crypto.hmac→Un Crypto.pickled
val Crypto.aesEncrypt : Un Crypto.symkey→Un Crypto.

pickled→Crypto.enc
val Crypto.aesDecrypt : Un Crypto.symkey→Crypto.enc→

Un Crypto.pickled
val Crypto.rsaKeyGen : unit→Un Crypto.privkey
val Crypto.rsaPub : Un Crypto.privkey→Un Crypto.pubkey
val Crypto.pickle : Un→Un Crypto.pickled
val Crypto.unpickle : Un Crypto.pickled→Un
val Crypto.rsasha1 : Un Crypto.privkey→Un Crypto.pickled

→Crypto.dsig
val Crypto.rsasha1Verify : Un Crypto.pubkey→Un Crypto.

pickled→Crypto.dsig→Un Crypto.pickled
val Net.http : string→ (Un, Un) Net.addr
val Net.connect : (Un, Un) Net.addr→ (Un, Un) Net.conn
val Net.listen : (Un, Un) Net.addr→ (Un, Un) Net.conn
val Net.close : (Un, Un) Net.conn→unit
val Net.send : (Un, Un) Net.conn→Un Crypto.pickled→

unit
val Net.recv : (Un, Un) Net.conn→Un Crypto.pickled
val M.genKey : M.prin→M.prin→unit
val M.leak : a:M.prin→b:M.prin→ (unit{M.Leak(a)} ∗ (;a, b)

M.content Crypto.hkey)
val M.addr : ((M.prin ∗ M.prin ∗ string ∗ Crypto.hmac), unit)

Net.addr
val M.server : string→unit
val M.client : M.prin→M.prin→string→unit
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