Synthesis of Cloud Applications using Logic Programming: BAM!

Ethan K. Jackson and Wolfram Schulte
Research in Software Engineering,
Microsoft Research, Redmond, WA, USA
{ejackson, schulte} @microsoft.com

Abstract

Cloud applications are web-based distributed systems
deployed over a fluctuating set of computing nodes and ser-
vices. The design of cloud applications is particularly chal-
lenging because few assumptions can be made about the
connectivity of nodes, the availability of services, as well
as how the computing fabric will evolve in the long term.
In this paper we show that logic programming combined
with novel abstractions can be used to specify and synthe-
size cloud applications. Our tool-suite, called BAM, allows
cloud applications to be specified independently from im-
plementation technologies. The declarative nature of logic
programming is essential to produce this decoupling. Code
synthesis integrates state-of-the-art web technologies with
well-known algorithms from logic programming to produce
realistic and complete implementations from BAM spec-
ifications. First experiments show that mixing declara-
tive logic programming with novel communication abstrac-
tions yields a powerful framework for architecting next-
generation distributed systems.

1. Introduction

Cloud computing is a vision for next-generation appli-
cations, which replaces the desktop-as-a-platform with the
Internet-as-a-platform. Proponents of cloud computing en-
vision that non-specialists should be able to build robust ap-
plications using the computational resources of the Internet.
This is a departure from many of today’s web applications,
which may use a few reliable web services developed by
industry experts (e.g. Google Maps or Virtual Earth). Eco-
nomically, cloud computing provides new opportunities for
large companies to lease their computing power, further in-
centivizing the trend.

Unfortunately, application development for the Cloud is
a perfect storm of: (1) distributed systems programming,
(2) web development, and (3) uncertainty due to the under-
lying compute fabric. A number of new technologies are

Daniel Lucrdio
Institute of Mathematical and Computer Sciences,
University of Sdo Paulo, Sdo Paulo, Brazil
lucredio@icmc.usp.br

addressing these challenges. For example, Amazon’s Elas-
tic Cloud Compute (EC2) service [17] helps developers dis-
tribute their applications across robust servers. Compiler
technologies, such as Volta [11], simplify web development
by splitting monolithic applications into browser-side and
server-side parts. Web services [3] and workflow modeling
[1] provide a paradigm for architecting and deploying web-
based distributed systems. Recent analysis techniques for
systems with dynamic creation of processes [4, 6, 12] model

the dynamic agent topologies found in cloud computing.

However, the scope and scale of cloud computing means
no single technology will solve all of the engineering chal-
Instead, a constellation of existing and develop-
ing technologies must be integrated during implementation.
Currently, this key integration step is ad-hoc and has little
tool support, thereby threatening the adoption of the cloud

lenges.

computing paradigm.

This paper addresses the challenges of building a com-

plete cloud solution by developing:

e A holistic framework, called BAM, supporting all the

phases of development: from specification to integra-
This is
accomplished via a novel abstraction layer, based on
logic programming (LP), for end-to-end specification
of cloud applications. BAM’s declarative style decou-
ples the specification from the implementation and per-

tion to testing, validation and deployment.

mits many possible implementation strategies.

e A new implementation strategy, which combines state-
of-the-art technologies with code generators to pro-
duce full implementations from BAM specifications.
Our implementation stack incorporates recent ad-
vances in programming languages, databases, and

Meanwhile, the code generation

step makes extensive use LP to produce efficient im-

plementations. First experiments show that BAM is a

powerful approach for architecting cloud applications.

web-development.

This paper is divided into the following sections. Section
2 describes the BAM approach and introduces the running

example. Sections 3, 4, and 5 present the formal semantics
and specification language used for BAM. Section 6 dis-
cusses our implementation approach. Finally, we conclude
in Section 7.

2. Specifying Clouds with BAM

BAM specifications are comprised of several layers of
interrelated descriptions, encouraging an incremental speci-
fication approach. These layers are: (1) The data layer: The
set of key data structures and data invariants. (2) The oper-
ation layer: The set of operations for manipulating data. (3)
The connectivity layer: The communication policy among
distributed nodes in a cloud. Each layer is written in a struc-
tured LP language called FORMULA [8], which has been
designed for high-level specifications.

We introduce the formal semantics of BAM through a
simple example, which we call the document management
system (hereafter referred to as DocMan). The purpose
of DocMan is to store a user’s documents onto a server.
Each user can edit original documents on a local client with
or without connection to the server. Whenever a client is
connected to a server, there should be attempts to update
the server’s copies to match the documents on the client.
Though the DocMan example is simple, its core functional-
ity can be found in many places.

e Conference/manuscript systems: These systems moti-
vate our DocMan example. Manuscript Central and
EasyChair are a few exemplars.

o Email clients/servers: Users create email drafts and re-
organize email folders in a local client. These changes
are periodically synced with a server.

e Disconnected scenarios with rich clients: Users mod-
ify shopping carts, online profiles, or blog entries (in a
browser) while disconnected from the internet; data is
synchronized with the server whenever possible. This
capability is particular useful for mobile devices.

3. Modeling the Data
3.1. General Concepts

The foundation of any BAM application is a set of data
structures used for data persistence and communication.
Because BAM applications start from a specification, not an
implementation, data structures are defined using the simple
and semantically precise mechanism of free algebras (also
called a term algebras). A free algebra consists of a set of
constant values (like, 1, true or nil) and free constructors.
A free constructor f is an n-ary function; when applied to

1. domain Documents {

/// Data types for documents
Document (String, String) .
Field (String, Any) .
DocCopy : (String,String).
FldCopy (String,Any) .

D> AW

/// Data types for sets of docs
9. Snapshot (Id) .
10. MemberOf (Any, Any) .

Figure 1. Data structures for documents.

a list of n objects it constructs a new object. For example,
if f is a binary function, then f(1,2) is the application of
f to the constants 1,2. Free constructors create objects so
that the following property holds: Two objects are equal iff
they are the same constant (e.g. the integer 1 = 1) or if
they were constructed by exactly the same sequence of free
constructors:

f(f(la 1)) 2) = f(f(lv 1)’2) # f(la f(172))'

Note that our objects are much simpler than than those in
implementation languages. Each object is immutable, state-
less, and has a unique representation.

We now define the abstract notion of a state. Let T be
a set of free constructors and ¥ be a (possibly infinite) set
of constants, then 7 (X) is the set of all objects that can be
generated from constants and constructors. (Note that X is
always included in this set.) We write 7 when the context
is clear. Given a characterization of the objects, a state X
is just a finite set of objects. A finite run r is a sequence of
states:

r=X1,Xo,...,Xr, whereV1<i<k X;,CT.

A transition to a new state occurs whenever a finite number
of objects are removed from or added to the current state.
States of a system can be classified using predicates. For
example, IsDeadlock(X;) might decide if X; is a dead-
locked state. We employ LP (logic programming) to define
these predicates. In LP these predicates are called queries.
A query is not an arbitrary predicate, but one specified using
a restricted form of LP. Examples of queries appear below.

3.2. Specifying Data Structures

The core data structures of the DocMan system are “doc-
ument” and “copy of document”. Specifying these struc-
tures requires a number of related free constructors. For this
purpose, FORMULA provides an encapsulation mechanism

/ Snapshot #1 \

EmailToBob
Joe
SendTo: Bob
EmailSubject: Payroll

EmailToBob \
Joe

SendTo: Bob
EmailSubject: ExpenseReport

Report &

Bob
Chapter 1: Clouds 101 K

Figure 2. A sample state of the DocMan sys-
tem.

that groups together constructors, clauses, and queries into a
reusable package called a domain. Figure 1 shows a partial
specification of these core structures. Line 1 declares a do-
main called Documents. Lines 3 to 6 declare constructors
for documents and copies. FORMULA allows constructors
to be partial functions with respect to an order-sorted type
system. For example, Line 3 declares a binary constructor,
called Document, defined only when both arguments are
of type String. Every object has type Any; the Id type is a
countably infinite alphabet of names (identifiers).

Each constructor has an intended use. The Document
constructor creates a document object where the first argu-
ment should be the title of the document and the second
should be the user who created the document, e.g. Docu-
ment(“Report”, “Bob”) represents a report created by Bob.
The DocCopy constructor creates an object intended to be
a copy of the similarly named document object. The Field
constructor creates a name-value pair, where the name de-
scribes a field (of a document) having a particular value.
The constructor FIdCopy constructs fields that belong to
document copies.

Other constructors are needed for relating documents,
fields, and copies. The MemberOf function (Line 10) con-
structs membership objects serving this purpose. For in-
stance the term

MemberOf(Field(“Chapter 1”, “Clouds 101”),
Document(“Report”, “Bob”)).

indicates that Bob’s report has “Clouds 101 as its first
chapter. Additionally, membership objects are used with
snapshot objects (Line 9) to create sets of copies. Each
server in the DocMan system has a snapshot object that
holds many copies. For example

MemberOf(DocCopy(“Report”, “Bob”), Snapshot(#1))

indicates that the snapshot object with ID #1 contains a copy
of Bob’s report.

1. model ExampleState : Documents {
/// Some document objects

3. Document ("EmailToBob", "Joe"),

4. Document ("Report", "Bob"),

5. Field ("EmailSubject", "ExpenseReport"),

6. Field("Chapter 1", "Clouds 101"),
/// Some copy objects

8. Snapshot (#1),

9. DocCopy ("EmailToBob", "Joe"),

10. FldCopy ("EmailSubject", "Payroll"),
/// Some membership objects

12. MemberOf(..Ln 5.. ,..Ln 3..),

13. MemberOf(..Ln 6.. ,..Ln 4..),

14. MemberOf (..Ln 9.. ,..Ln 8..),

15. MemberOf (..Ln 10..,..Ln 9..),
/// The remaining objects omitted

}

Figure 3. State described with FORMULA.

Figure 2 illustrates a state of the DocMan system, ignor-
ing the distribution of the data. In this state there are two
original documents, called Report and EmailToBob. The
snapshot contains only a copy of EmailToBob document
and has an incorrect copy of EmailSubject field. Figure
3 shows this same state described as a finite set of objects
using the FORMULA language. In FORMULA a finite set
of objects is called a model. Line 1 declares that Exam-
pleState is a model defined using the constructors of the
Documents domain. Lines 12-15 construct membership
objects using the shorthand ..Ln X.. which stand for Use the
same constructors found in line x.

3.3. Clauses, Queries, and Invariants

The intended use of data structures must be explicit in the
specification. This is accomplished by introducing a predi-
cate ViolatesUse(X;), which examines the objects in state
X;, and returns true if X; violates the intended use of the
data structures. If we view a state X, as a database of ob-
jects, then this amounts to searching for some bad subset
of objects. Logic programming provides a simple declar-
ative mechanism for specifying these searches. Our logic
programs are comprised of constants, free constructors and
clauses, where a clause has the form:

S Ttm. stn4+m >0
ey
The subexpressions h, s;, and t; are applications of free
constructors, constant values, and, as we will see later, also
of derived constructors; furthermore they may contain vari-
ables. The subexpression h is called the head of the clause;
the remainder is called the body.
Evaluation of clauses can intuitively be understood as

hHShSQa"'aSna _‘tlv_‘tZa"

follows: the body of a clause is a search criteria on ob-
jects in the state. A clause is executed by searching the cur-
rent state for occurrences of the body. Each time a match is
found, the head is activated. Activation causes a new object
to be constructed from the head using the variable assign-
ments that satisfied the body. This new object is temporarily
added to the state, so that it can trigger other clauses. For
instance, evaluating the following clause

hasACopy(t,u) < Document(t,u), DocCopy(t,u).
2
against the state as defined in Figure 3 produces exactly one
match with the assignments: ¢ = "EmailToBob" and
u = "Joe". This match results in the creation of the ob-
ject:

hasACopy(“EmailToBob”,“Joe”)

recognizing that there exists a copy of Joe’s email to Bob.

The body of a clause is partitioned into positive terms
(the s;’s) and negative terms (the ¢;’s). Positive terms are
necessary patterns for a match, and negative terms are for-
bidden patterns. If negative terms appear in the body, then
the search criteria also requires the forbidden pattern to be
absent from the state. For example,

not ACopy(t,u) < Document(t,u), "DocCopy(t,u).
3)
creates a NOtACopy object for each document that does not
have a copy. The observed behavior occurs because the pos-
itive part of the pattern is matched first. Variables fixed by
the positive match restrict the forbidden pattern on those
variables. Consider the following clause:

noCopies(u) «— Document(t,u), ~DocCopy(y, u).

“)
This clause creates a noCopies(u) object for each user u
having zero copies assigned to u. In this case, the new be-
havior is caused by the variable y that is not restricted by
the positive match Document(t,u). We impose the usual
constraint that each variable in the head h must appear in at
least one positive term in the body.

Forbidden patterns have been studied in LP for many
years under the moniker LP with negation. FORMULA uses
a subset of LP called non-recursive LP with stratified nega-
tion [5]. This restriction is a syntactic property guaranteeing
that no set of clauses will cyclically activate to generate an
infinite number of objects; termination of the logic program
is guaranteed. Another consequence is there exists an eval-
uation order for clauses such that: (1) The body of each
clause needs to be examined for matches only once. (2)
Negation is well-behaved - if a test for a forbidden pattern
succeeds, then no later clauses will construct this forbidden
pattern.

11. mayMember (x,y) :— x = Field(n,v),
12. y = Document (t,u) .

14. mayMember (x,y) :— x = FldCopy(n,v),
15. y = DocCopy (t,u).

17. mayMember (x,y) :— x = DocCopy(t,u),
18. y = Snapshot (id) .

/// Query for incorrect membership
21. badMember :? MemberOf (x,Vy),
22 !mayMember (x,vy) .

Figure 4. Specifying the membership rela-
tion. (Con’t from Figure 1.)

Henceforth we distinguish between objects that appear in
the state of the system, and derived objects used to remem-
ber information about the state. Free constructors like Doc-
ument and DocCopy denote objects in the state, derived
constructors like hasACopy, notACopy, and noCopies,
which are introduced via clauses, create only derived ob-
jects. Distinguishing between free and derived constructors
originated in declarative databases [13]. In FORMULA free
constructors start with a capital letter and their signatures
have to be given explicitly. Derived constructors' start with
a lowercase letter, and do not need to be explicitly declared.

A query is similar to a clause; it is an expression of the
form:

stn+m>0
)
where @ is called the guery predicate and the remainder is
called the body. The predicate (Q is evaluated over a finite
set of objects X. Q(X) evaluates to true iff there exists at
least one match for the body in X. Queries do not construct
any new objects and cannot appear in the bodies of clauses.
We put these concepts together to specify the improper
use of the constructors like MemberOf. Figure 4 shows
the necessary FORMULA specifications, where ‘-’ denotes
‘. ‘P denotes “—”, and ‘X = f(...)” allows ‘X’ to stand
for ’f(...)". The three clauses in Lines 11 - 18 thus construct
mayMember(x,y) objects for each object x that could be
a member of y, and lines 21 - 22 declare a badMember
query that is true whenever some membership object exists
for which no corresponding mayMember is found. One
might also wish to reject states with orphaned fields, but we
omit these in the interest of space.

Q :?‘917525"'38n7 _\tl,_‘t27...,_|t7".

lTechnically, derived constructors are still free constructors, in the alge-
braic sense. We use “derived constructor” as a shortened form of “derived
free constructor”.

The free constructors, clauses, and queries from Figures
1 and 4 can be derived directly from entity-relationship de-
scriptions such as UML class diagrams [14], metamodels
[2], or database schema. BAM provides automatic gen-
eration of these constructs. However, it is important to
recognize that translation to structured LP provides a for-
mal foundation useful for analysis [9] and code generation.
Also, the logic program representation allows additional in-
variants to be incorporated into the specification that cannot
be specified with a simple entity-relationship descriptions.

The most important part of the DocMan specification
captures the expectation that documents are synchronized
with copies. This part of the specification does not come
from simple entity-relationship descriptions, and is partic-
ular to this application, as shown in Figure 5. Lines 26-27
define the missingDoc query, which returns true if there
exists a document without a copy. Notice the use of the vari-
able s to search over all snapshots. Lines 37 - 42 define the
missingFld and extraFld invariants, which detect if doc-
uments are no longer synchronized with the copies. This
occurs whenever some copy is missing a field appearing in
its original document, or has an extra field not appearing in
its original.

Lines 44-45 expose a special query called unstable.
This is a reserved query name for testing if a state violates
the specification. This query is defined as a boolean com-
bination of the other queries. Note that the ability to take
boolean combinations of queries is also syntactic sugar. It
would be possible to express the unstable query without
this facility, by introducing additional clauses. Evaluating
unstable on the state from Figure 3 returns ¢rue, because
the snapshot is missing a copy of Bob’s report and Joe’s
email has the wrong subject in the snapshot’s copy.

4. Evolving the State with Actions

Cloud applications require operations that manipulate
data. These operations comprise the second layer of a BAM
specification, and are defined with a special type of logic
program called an action. Actions affect the state, in con-
trast to queries that only search the state creating transient
objects along the way.

An action « has a signature of the form:

Pl D

where [p1, pa, . . ., Pn] is an optional list of parameters, and
D is the name of a domain. An application of an action «
to a state X is denoted:

action a [p1,p2, - ..

alor,09,...,0,](X)

where o1, ...,0, is a list of objects. The body of an ac-
tion is similar to a domain; it is a set of free constructors

23. hasDCopy (t,u,s) :— x = DocCopy(t,u),
24. y = Snapshot (s),MemberOf (x,vVy) .

26. missingDoc :? Document (t,u),
27. 'hasDCopy (t,u, s) .

29. hasField(n,v,t,u) :-—
30. x = Field(n,v),
31. y = Document (t,u) ,MemberOf (x,Vy) .

33. hasFCopy (n,v,t,u) :-—
34. x = FldCopy (n,v),
35. y DocCopy (t,u) ,MemberOf (x,vy) .

37. missingFld :? hasField(t,u,n,v),
38. 'hasFCopy (t,u,n,v) .

40. .extraFld :? hasFCopy (t,u,n,v),
41. Document (t,u),
42. 'hasField(t,u,n,v) .

44. unstable :? badMember or missingDoc
45. or missingFld or extraFld.
46. '}

Figure 5. Specifying invariants for DocMan.
(Con’t from Figure 4)

and clauses, such that the logic program is non-recursive
and stratified. Applying an action to a state causes a chain
of events. First, a type-check verifies that the objects in X
were built from the free constructors of domain D. Second,
every occurrence of a parameter p; in the logic program is
replaced with the object o;. Third, new objects are con-
structed by executing the logic program. Fourth, the objects
generated by the program cause some objects to be added
to X and some objects to be removed from X.

Figure 6 shows several actions. The first action (Lines
1-4) creates a new document with title t by user u. The
action has one clause in its body; this clause checks that
a document with the same title/user attributes does not al-
ready exist, and then creates an add(Document(t,u)) ob-
ject. Since U and t are parameters, the clause is specialized
with concrete values before the action executes. For exam-
ple, NewDoc["ToDoList””Alice”](X) results in the follow-
ing logic program:

add(Document("ToDoList", "Alice”)) «
—Document("ToDolList", "Alice”)

(6)
containing no variables. The logic program executes nor-
mally, but accumulates special objects constructed with the
unary add and del constructors. Let O denote all the ob-

1. jaction NewDoc[t, u] Documents {
2. add (Document (t,u)) :-

3. !'Document (t,u) .

4.}

6. :action DelDoc|[t,u] Documents {
7. del (Document (t,u)) :-

8. Document (t,u) .

9. i}

11. .action CopyDocs Documents {

12.. add(DocCopy (t,u)),

13. . add (MemberOf ((DocCopy (t,u),x)) :-
14. Document (t,u) ,x = Snapshot(s),
15. 'hasDCopy (t,u, s) .

16. |}
/// Rest of the actions omitted

Figure 6. Three actions in the DocMan sys-
tem.

jects constructed by the action, then at the end of execution
the new state X’ becomes:

X'= (X U{s|add(s) € O}) —{t|del(t) e O} (7)

with the side condition that each s must be a valid (non-
derived) object of the domain D. This update rule allows
logic programs to effect the state in a predictable and mod-
ular fashion. Usage of the del constructor can be found in
Lines 6-9. The CopyDocs action (Lines 11-16) is more
complex. It searches for all pairs of documents/snapshots
where the snapshot does not have a copy of the document.
For every pair, a copy of the document is added to the
snapshot. Note that this action uses a standard shorthand:
Clauses with exactly the same body can be written as one
clause with multiple head terms.

5. Characterizing the Cloud

Thus far our specification has intentionally avoided any
issues of distribution over a cloud. Distribution is specified
after the data and operation layers, encouraging a separa-
tion of concerns. At this final specification layer the user
identifies:

1. A finite set of agent types A. The running system con-
tains a heterogeneous mixture of nodes, each of which
has exactly one agent type.

2. A communication policy FF C Ax A is symmetric rela-
tion on agent types. This policy determines if any two
nodes v and w of agent type A, and A,, can establish
a point-to-point communication channel.

3. A data access policy p : A — P(T) is a map from an
agent type to a set of objects. This policy constrains

the data that can be stored on a node u with agent type
A,

In our abstraction, a cloud consists of a finite set of
nodes connected by ideal (no information loss), bidirec-
tional, and point-to-point communication channels. For-
mally, the topology state of a cloud is a finite undirected
graph G = (N, E C N x N). Each node is assigned an
agent type according to 7 : N — A. Nodes respect the
communication policy; they can be connected only if the
communication policy allows it:

Yu,we N (u,w) € E= (t(u),7(w)) € F. (8)

In addition to the topology, each node has a data state ac-
cording to 6 : N — P(7), which assigns a finite set of
objects to each node. Nodes respect the data access policy;
they only contain objects allowed by this policy:

Yue N §(u) Cp(r(u)).)

A cloud application is a transition system that evolves
through a sequence of topology/data states:

(Go,00) — (G1,61) — (G2,02) — ... (10)

We shall refer to the pair (G5, d;) as the i*" cloud state C;.
(Later in this section se discuss why it is sufficient to con-
sider the cloud as a sequential system, despite the fact that
cloud applications are distributed and concurrent.) The dis-
tribution of data is an essential property of distributed sys-
tems. The ability of the system to transition through differ-
ent topologies is a fundamental characteristic of cloud com-
puting. The challenge is to understand how an application
behaves over this complex notion of state.

BAM addresses these challenges with a novel approach
for extending the data and operation specifications beyond a
simple state X; to a cloud state C;. First, the unstable(X;)
predicate is generalized to unstable(C;) according to the
following rule:

unstable(C;) = /\ unstable (U 5l(u)> (11)

Memazxcliques(G;) ueM

where maxcliques(G;) denotes the maximal cliques in the
undirected graph G;. This rule declares that a cloud state
violates the invariants of the data specification if there exists
some maximal clique M, such that the aggregate data state
on M would be found unstable by the basic logic program.

Figure 7 illustrates three topology states, with nine nodes
per state; each node has type circle or box. These states dif-
fer in the connectivity between nodes resulting in different
maximal cliques (shown in blue). State GG, is one extreme

Figure 7. Extending the unstable query over
maximal cliques.

case where all the nodes are disconnected. The maximal
clique semantics naturally assigns invariant evaluation lo-
cally to each node. State G.. is another extreme case where
all nodes are connected. (Some edges overlap in the figure.)
Every node is capable of directly transmitting information
to every other node, so the maximal clique semantics evalu-
ates invariants using the global data state of the system. All
remaining topologies can be viewed as intermediate cases
between these two extremes, as shown in state GG. Note
that a single node may participate in several evaluations of
the unstable query, if it occurs in multiple maximal cliques.
For example, in G}, every node participates in more than one
evaluation of the basic unstable query.

5.1 Extending Actions over C;

Next, we extend actions over cloud states. This task
is more complicated, because the following circumstances
must be taken into account: (1) The node that executed
the action. (2) The information requirements of the action.
(3) The data access policy restricting access to information.
First, we characterize the information requirements of an
action «v in terms of the set of all non-derived objects that the
action may observe, construct, or delete. Let freecons(a)
denote the set of free constructors appearing in the body? of
« . For example:

freecons(CopyDocs) = { Document, DocCopy,
Snapshot,MemberOf }

2The body of an action may include extra clauses. For example, the
CopyDocs action implicitly includes the clause from Documents hav-
ing hasDCopy in the head. These extra clauses can be determined stati-
cally, and are used for calculating freecons(a).

Then, Tjcecons(a)(X) is the set of all objects that may be
observed, constructed, or deleted by action a; we write 7,
for short. A node u contributes to the execution of « if it
has access to some of the required information, i.e.

contrib(u, o) =

prW)NTo £0. (12)

Though a single node may have access to some informa-
tion, its access may not fulfill all the information require-
ments of . When this happens, multiple communicating
nodes need to pool their data access in order for the action
to proceed. A set of nodes S satisfies the information re-
quirements if:

satinf(S,0) € T, C (U p(v(w))))

weSsS

i.e., if S collectively has enough information rights to exe-
cute o Let

<y on] (u, Cy)

aloy,09,..

be the action « applied to cloud state C; executed by node
u. We define the pooling behavior with a set of nodes in the
neighborhood of u that contribute information rights to the
action a. This set is called the horizon:

{u} if satinf({u}, @).

otherwise:

{w|w € N[u] and contrib(w, «)}.
(14)

If u has enough rights for «, then the horizon is {u}. Oth-

erwise, it is the set of nodes in the closed neighborhood of

u (i.e. N[u]) that contribute to the access rights.

At this stage the useful nodes around u have been identi-
fied. However, the flexibility of the cloud permits the hori-
zon nodes to be interconnected in arbitrary ways, as long as
the communication policy is followed. Therefore, subsets
of nodes must be located that can actually share informa-
tion through direct communication. The sets are defined to
be:

horizon(u, @) =

hmaz(u, o) =

{M M € maxcliques(G;[horizon(u, a)]) }
(15)

and satinf (M, o)
These sets are the maximal cliques of the horizon’s induced
subgraph (i.e. G;[horizon(u,«)]) that also satisfy the in-
formation rights of a.. The state-update equation becomes:

o(w) VM € hmax(u, o), w ¢ M.
otherwise:

p(r(w)) N U aloy,...,0p] (U 5(v)> .
Mehmaz(u,0) \weM veM

(16)

8 (w) =

A copy of the action is spawned for each maximal clique
in hmaz(u, @), and the results are aggregated together. A
node w can only remember the results allowed by the data
access policy.

This novel communication semantics extends the logic
program over an abstraction of the cloud. It incorporates
data distribution, data access policies, communication poli-
cies, and topological dynamics. In our abstraction the point-
to-point communication channels force nodes to explicitly
announce their desires for non-local information. This nat-
urally leads to a simple maximal clique semantics; a clique
is a band of nodes whose members have agreed to work
together. Finally, the horizon nodes and maximal cliques
introduce symmetries into an otherwise non-symmetric set-
ting; these are crucial for automated analysis [9].

Returning to the DocMan system, we can specify a
cloud exhibiting the natural client-server architecture us-
ing a very simple specification. There are two agent types:
client and server, and communication is only allowed be-
tween clients and servers:

Ry | (client, server),
A = {client, server}. F = { (server, client)

(17)
The data access policy states that document and field objects
are confined to clients, while snapshots, copies, and field-
copies stay on servers.

P(Clwnt) = 7V{Document,Field,MemberOf}(E)a
P(Server) = 7—{Snapshot,DocCopy,FldCopy,MemberOf}(Z)-
(18)

Figure 8 shows the flexibility of our extension mechanism
on a sample DocMan cloud. The boxes represent servers
and the circles represent clients. The highlighted regions
are the hmax cliques resulting from various actions. The
regions labeled «; result from the central server executing a
single CopyDocs action. This synchronizing action causes
pairwise communications between the server and the clients
connected to it, resulting in the central server synchroniz-
ing with each client. No two clients exchange information
with each other. Contrarily, s is the same action, but exe-
cuted by a client. In this case, only two pairwise actions are
spawned as the client pushes data up to the servers. Finally,
asg results from a client creating a new document. This ac-
tion is localized to the client, since it has enough access
rights on its own.

The provided semantics requires that each potentially
distributed action is executed as a single transaction; par-
allel actions with intersecting information horizons are thus
serialized. Actions with disjoint information horizons, how-
ever, can be executed in parallel. But, note that the state re-
sulting from arbitrary serializations of a set of independent
actions is always the same. This allowed us to view a cloud
computation as a sequential transition system.

Figure 8. Extending actions over clouds.

6. Synthesizing BAM Applications

We have shown that BAM is a holistic specification lan-
guage for describing the data, behaviors, and communica-
tions rules of a cloud application using structured logic pro-
gramming and novel communication abstractions. Addi-
tionally, BAM has a declarative core and is thus decoupled
from any particular implementation technologies, leaving
ample opportunities for implementation approaches. On the
other hand, BAM’s rich abstractions mean that implemen-
tation is a non-trivial issue.

Moving from specification to implementation creates a
number of real-world challenges:

e Node discovery: There is no centralized source that
knows which nodes are in the cloud. Without this in-
formation, connections cannot be made between nodes
and the system cannot perform useful work.

e Maximal clique calculation: Clique detection is a key
aspect of the communication model. Nodes must col-
laborate to calculate cliques. It is particularly impor-
tant to detect silently failing nodes, as these affect the
maximal cliques.

o Web interface: Users expect a browser-based web
interface, but this necessitates: XHTML, CSS,
JavaScript, a stateful Web Server, and communication
protocols.

e Execution of queries and actions: Queries and actions
must be translated into an executable form. Also, non-
local data must be brought onto whatever node exe-
cutes some query or action.

e Persistence layer: Data needs to be persisted in a reli-
able manner.

In order to address these challenges, we view a BAM
implementation as an integration of many technologies into
one complete system. Of course, this is still leaves a non-
trivial integration problem, but the integration problem can

4 Generated

/Tier | component
| BAM Node Logic
interface G gue L (Operations) RETE Reused
) code” | | network | component
[
BAM Infrastructure Legend —
BAM Cloud (Network logic, Connectivity, Web client fi
Br\évelsoer Web Pefsistence, etc) (22 web clent e
W Server | PNRP I NETH j @ Server tier
Service (Remoting) DBMS
_0S / oS M
-] Web client tier Server tier
CI|er_1t infrastructure infrastructure Node Server
Machine Machine

Figure 9. Architecture of synthesized cloud application.

be solved once for a chosen implementation stack and then
reused. Code generators capture the integration strategy,
and synthesize the necessary business logic on a per ap-
plication basis. In the end, the user gets the best of both
worlds: A state-of-the-art implementation stack based on
known technologies and automatic generation of tedious
and optimized business logic.

6.1. The Implementation Stack

Figure 9 shows the implementation stack and integration
strategy. A BAM application consists of many communicat-
ing BAM nodes. Each node is itself split into two tiers: The
web client tier and the server tier. The web client tier im-
plements the browser-based web interface for a single node
of the application. Each node also has its own server tier
with a local stateful web server producing web pages for a
browser. The server tier contains the majority of the im-
plementation for each BAM node, and acts as a gateway
from the browser to the larger cloud. (See the “cloud” in
Figure 9.) The left-hand side of the figure summarizes the
components of the web client tier, and the right side shows
the server components. The dashed components are synthe-
sized by code generation. We now discuss some of these
components in more detail.

6.2. Node discovery

Node discovery is a central problem in peer-to-peer net-
works; we use an industrial-strength and widely-available
discovery protocol for peer-to-peer networks called PNRP
(Peer Name Resolution Protocol) [16]. PNRP is part of the
Microsoft peer-to-peer infrastructure, and is present in all

versions of Windows Vista and most versions of Windows
XP. It allows nodes to be discovered with multicasting and
requires only a few reachable servers for bootstrapping.

Each BAM node (repeatedly) uses the PNRP API to re-
quest the IP addresses of all other BAM nodes. This triggers
an iterative process causing other machines running PNRP
to pass this request throughout the network. Eventually, the
request will arrive at nodes that have registered themselves
as “BAM nodes” to the PNRP service. When this happens,
the discovered BAM node will return its IP address, port
information, and agent type to the requesting node. After
a requesting node receives this information it can directly
connect to the discovered BAM nodes.

6.3. Data persistence

A commercial database is the most obvious choice for a
serious persistence layer; we use Microsoft SQL server for
this purpose. However, proper configuration of the database
requires:

e Data definition scripts: SQL scripts containing com-
mands for table creation.

e Data Objects: The OOP counterparts of database ta-
bles. A program manipulates these objects, and then
their changes must be persisted in the database.

e Data Access Objects: Objects that execute operations
on the database (queries or updates). These objects
perform tasks on behalf of the data objects.

Managing these various artifacts is notoriously tedious.
We use a new programming language technology called
LINQ (Language-Integrated Query) [10] that allows queries

Execute: newDoc |

Tile No output parameters

Figure 10. Synthesized monitor showing a running DocMan application.

to be embedded directly into a native programming lan-
guage using data objects. LINQ generates the data access
objects that interact with the database, and returns the re-
sults in form consumable as data objects. The code gen-
erator emits C# code with embedded LINQ queries to im-
plement BAM actions, and also generates SQL scripts that
initialize the SQL database.

6.4. Maximal Clique Construction

We use an incremental version of the algorithm pre-
sented in [15]. Every node u asks information about its
neighbors’ connections until » has a full picture of its in-
duced neighborhood. Next, u locally calculates its maximal
cliques from its local knowledge of its neighborhood.

More specifically, whenever a node w attempts to con-
nect to a node w it also sends a list V(u) of its neighbors
to w. If w accepts u’s connection request, then w adds a
new edge (u,v) for each v € (N(u) N N(w)) to its lo-
cal knowledge of its induced neighborhood. Next, node w
replies with a list of its neighbors N (w). Node u updates its
internal neighbor list, and then notifies its neighbors if new
edges are created, and the procedure repeats.

The induced neighborhoods must also change whenever
a node leaves the network. If a node exists gracefully, then
it will notify its neighbors and they will remove this node
from their lists. BAM nodes also send heartbeat messages to
detect nodes that failed or became disconnected due to net-
work connectivity. When a node detects a heartbeat failure,
it will notify its neighbors of this failure and the induced
neighborhood will be updated.

6.5. User interface

Each node should have an interface allowing the user to
access its functionality; user expectations dictate that this
should be a browser-based web interface. Two application
tiers are needed for this: The web client tier, for interface
presentation, and the server tier, for hosting web pages, exe-
cuting node logic, and communicating with the larger cloud.
We address these requirements using Microsoft Volta [11],
a new compiler technology for automatic tier splitting of
web applications.

Our code generators synthesize a single C# application
where the methods have additional annotations. These an-
notations indicate which methods run in the browser and
which methods run on the server. Next, the monolithic ap-
plication is compiled into a .NET assembly with the anno-
tations preserved at the binary level. The Volta compiler an-
alyzes the byte code and converts the C# methods intended
for the browser into JavaScript. GUI objects are also con-
verted to XHTML objects backed by JavaScript and CSS.
Next, a stateful web server is generated for the server tier.
Finally, CGI-based communication between the client and
server tiers is constructed. Volta significantly reduces the
complexity of producing a realistic BAM application.

6.6. Other Components

Some other important components used in the im-
plementation are .NET remoting, Rete networks, and
templating-based code generators. The .NET remoting API
is a mature technology for calling methods on remote ob-
jects. It uses an optimized binary communication protocol
to pass data between remote objects, and uses proxy objects
to make a remote object appear like a local one. BAM nodes

use PNRP to discover each other, but then switches to .NET
remoting for all remaining communications.

Executing actions over a clique requires the nodes in the
clique to elect a leader that will execute the action. Also,
the other nodes in the clique must send relevant data to the
leader before it can evaluate this action. In order to support
this, we analyze the logic program and generate a dataflow
network, called a Rete network [7], that incrementally cal-
culates the result of an action as new data arrives. Thus,
the body of actions are evaluated outside of the persistence
layer, using synthesized code optimized for this task. The
persistence layer is affected only after the results of the ac-
tion are known.

Finally, the code generators are a combination of special
purpose generators, e.g. the Rete synthesizer, and C# text
templates. Text templating allows the majority of the gen-
erator to be written directly in the language that it emits.
Additional control flow fragments are written in C#. This
simplifies the code generators and improves maintainabil-

1ty.
6.7. DocMan Running on the Cloud

Figure 10 shows a bird’s-eye view of the running Doc-
Man system through a cloud monitor. This cloud moni-
tor is automatically generated as part of the implementa-
tion, and displays the state of the cloud. Nodes can also be
created/destroyed and connected/disconnected through the
interface. Panel 1 reflects the current connectivity of the
cloud. Different node types are assigned different icons:
The black icons are servers and the gray icons are clients.
Note, that this figure shows an extended version of the Doc-
Man application that allows servers to directly communi-
cate and exchange copies. Panel 2, to the right of 1, con-
tains a list of generated network tools for modifying the
state of the cloud. (The cloud can also evolve on its own.)
Panel 3 shows the maximal cliques and information hori-
zons calculated by the selected node, and Panel 5 displays
messages passed between nodes. Finally, Panel 4 is an em-
bedded web-browser for navigating to the web interface of
an arbitrary node. The monitor can navigate to any of these
generated web-pages.

7. Conclusion

In this paper we reported on a logic programming ap-
proach for specifying and synthesizing cloud applications.
Our approach advocates a layered specification process, al-
lowing engineers to reason about how their data invariants
and actions will be extended over a cloud state. We also
demonstrated one implementation approach employing a
state-of-the-art technology stack with code generators. Fi-
nally, along the way we built a document managements sys-

tem with a simple BAM specification, and then produced a
full implementation from this specification. Our first exper-
iments show that BAM is a powerful approach for end-to-
end development of cloud applications.

References

[1] L. Aldred, W. M. P. van der Aalst, M. Dumas, and A. H. M.
ter Hofstede. Communication abstractions for distributed
business processes. In CAISE 2007, pages 409423, 2007.

[2] C. Atkinson and T. Kiihne. Model-driven development:
A metamodeling foundation. IEEE Software, 20(5):36-41,
2003.

[3] R. Breu, M. Breu, M. Hafner, and A. Nowak. Web service

engineering - advancing a new software engineering disci-
pline. In ICWEO5, pages 8-18, 2005.

[4] L. Cardelli and A. D. Gordon. Mobile ambients. In FoSSaCS
1998, pages 140-155, 1998.

[5] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Com-
plexity and expressive power of logic programming. ACM
Comput. Surv., 33(3):374-425, 2001.

[6] E. A. Emerson and V. Kahlon. Parameterized model check-
ing of ring-based message passing systems. In CSL 2004,

pages 325-339, 2004.

[7]1 A. Gupta, C. Forgy, and A. Newell. High-speed implemen-
tations of rule-based systems. ACM Trans. Comput. Syst.,
7(2):119-146, 1989.

[8] E. Jackson, W. Schulte, and J. Sztipanovits. The power of
rich syntax for model-based development. Technical Report
MSR-TR-2008-86, Microsoft Research, June 2008.

[9] E. K. Jackson and W. Schulte. Compositional modeling for
data-centric business applications. In Software Composition,
pages 190-205, 2008.

[10] D. Kulkarni, L. Bolognese, M. Warren, A. Hejlsberg,
and K. George. LINQ to SQL: .NET Language-
Integrated Query for Relational Data. MSDN .NET Frame-
work Developer Center (http://msdn.microsoft.com/en-

us/library/bb425822.aspx), March 2007.

[11] D. Manolescu, B. Beckman, and B. Livshits. Volta: Devel-
oping distributed applications by recompiling. [EEE Soft-
ware, 25(5):53-59, 2008.

[12] R. Marelly, D. Harel, and H. Kugler. Multiple instances and
symbolic variables in executable sequence charts. In OOP-
SLA 2002, 2002.

[13] J. Minker. Logic and databases: A 20 year retrospective. In
Logic in Databases, pages 3—57, 1996.

[14] Object Management Group. Unified Model-
ing Language: Superstructure version 2.1.1,

http://www.omg.org/docs/formal/07-02-06.pdf, 2007.
[15] F. Protti, F. M. G. Franca, and J. L. Szwarcfiter. On comput-

ing all maximal cliques distributedly. In JRREGULAR 97,
pages 37-48. Springer-Verlag, 1997.

[16] M. TechNet. Peer name resolution protocol. Mi-
crosoft TechNet (http://technet.microsoft.com/en-
us/library/bb726971(TechNet.10).aspx), September
2006.

[17] J. Varia. Cloud architectures. Technical report,

http://aws.typepad.com/aws/2008/07/white-paper-on.html,
July 2008.

