
L. Chen, C.J. Mitchell, and A. Martin (Eds.): Trust 2009, LNCS 5471, pp. 1–13, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards a Programmable TPM

Paul England and Talha Tariq

Microsoft Corporation, 1 Microsoft Way,
Redmond WA 98052, USA

{paul.england,talhat}@microsoft.com

Abstract. We explore a new model for trusted computing in which an existing
fixed-function Trusted Platform Module (TPM) is coupled with user application
code running on a programmable smart card. We will show that with appropri-
ate coupling the resulting system approximates a “field-programmable TPM.”
A true field-programmable TPM would provide higher levels of security for
user-functions that would otherwise need to execute in host software. Our cou-
pling architecture supports many (but not all) of the security requirements and
applications scenarios that you would expect of a programmable TPM, but has
the advantage that it can be deployed using existing technology.

This paper describes our TPM-smart card coupling architecture and the ser-
vices that we have prototyped. The services include: (1) An implementation of
count-limited objects in which keys can only be used a preset number of times.
(2) More flexible versions of the TPM Unseal and Unbind primitives that allow
sealing to groups of equivalent configurations. And (3) a version of Quote that
uses alternative signature formats and cryptography available within smart
cards but not in the TPM itself.

We also describe the limitations of the coupling architecture and how some
of the limitations could be overcome with a true programmable TPM.

Keywords: Trusted Platforms, Trusted Platform Module, Smart Cards, Secure
Execution.

1 Introduction

Trusted Platform Modules (TPMs) are fixed-function security processors built into
many computer platforms [1]. When combined with Core- and Dynamic-Root-of-
Trust-Measurement facilities (CRTM & DRTM) for reporting platform state, the
TPM provides a basis for a secure and attestable execution environment for system
software and applications.

The TPM provides a variety of services [2] that depend on the platform state.
These include:

Attestation: Cryptographic reporting of platform state to a remote challenger.

Sealing: Protected storage / encryption of data that will only be released / de-
crypted when the platform is in a particular configuration and state.

When these services are combined with a secure software stack, the small set of TPM-
provided functions can bootstrap rich and powerful execution environments running
on the main processors.

2 P. England and T. Tariq

Using the TPM to bootstrap trust into an execution environment like a platform
hypervisor or operating system is adequate for many purposes, however data and
application programs running on the main processors are much less protected from
physical attack than programs and data held inside the TPM. This problem is evident
from the recent hardware attacks on applications utilizing TPMs [3], [4], [5]. The
problems of software robustness are even more challenging: mainstream operating
systems have an ill-defined Trusted Computing Base (TCB) that is generally not se-
cure enough for attestation to be meaningful [6].

Primary OS /
Domain 0

Guest OS

Hypervisor

Programmable TPM

Guest OS (a) (b)

Hypervisor

Smart card
Device
driver

Smart Card

Application
Application

TPM-Core

TPM
Application

TPM Core

Crypto Channel
Endpoint

Fig. 1. (a) Schematic illustration of a programmable TPM and its use in a hypervisor setting.
We assume that the TPM can load and run applications and the services implemented can be
exposed to the hypervisor and guest operating systems. (b) Schematic of one instantiation of
our coupled TPM smart card architecture: The TCB and TPM are coupled to the smart card
using an out-of-band cryptographic marrying step. The cryptographic channels (thick lines)
represent authenticated and secure connections from the smart card to the TPM and the smart
card to the channel end-point.

If the host-platform-based secure environment is not secure enough, we might con-
sider building a secure execution environment inside a TPM such as that illustrated in
Fig 1(a). Such a system should provide much better robustness to hardware and soft-
ware attack than that offered by platform macrocode. And indeed, such devices have
been studied by researchers, but unfortunately they do not yet exist [7].

In this paper we propose an alternative architecture for providing high-assurance
extended TPM services. Instead of making changes to the TPM hardware design, we
describe and evaluate an architecture in which we couple a programmable smart card
to a TPM to provide programmable services that are not possible with either alone.
See Fig. 1 (b). This architecture has many interesting characteristics: First it is a prac-
tical way of providing enhanced security functionality for existing TPMs. Second, it
provides a way of prototyping new TPM functions to assess their usefulness before
committing them to silicon, and finally it allows us to explore the design and assess
the usefulness of a true “programmable TPM.”

We have built several advanced security services to help us understand this archi-
tecture and demonstrate its capabilities. The services described in this paper are:

 Towards a Programmable TPM 3

Count-Limited Objects: An implementation of TPM keys that can only be used to
perform cryptographic operations a preset number of times. This capability is de-
signed to simplify some aspects of key revocation and support rights-management.

Flexible Seal and Unseal: An implementation of the Seal, Unseal, and Unbind primi-
tives that allow more complex policy expressions than the simple Platform Configura-
tion Register (PCR) equality checks supported by the current TPM specifications1. One
policy expression allows sealing to a software publisher or other authority identified by
a public key. In this case the publisher may later authorize any PCR configuration using
a certificate signed using the associated private key. Another policy expression allows
more complex logical expressions of authorized configurations (e.g. PCR configuration
1 or PCR configuration 2). Both of these enhancements are designed to make software
updates and grouping of equivalent programs easier to manage.

Attestation Translation: A smart card service that provides attestation using cryp-
tography and signature formats unavailable within a TPM. This is a proof of concept
of attestation translation: a more sophisticated implementation could provide platform
attestation in more widely used signature and certificate formats like X.509. This
facility should simplify the deployment of attestation because existing servers and
protocols can be used.

The paper is organized as follows. In section 2 we describe the coupling architec-
ture. In section 3 we describe the security primitives that we have prototyped, and in
sections 4 and 5 we describe the limitations of the coupling architecture and possible
further work.

2 TPM to Smart Card Coupling

We seek to approximate a field-programmable TPM in which the secure execution
environment for user extensible application programs is part of the host platform
TPM. However when emulating a programmable TPM using a conventional fixed-
function TPM and an external smart card, the secure execution environment is exter-
nal to the TPM, is independent of the host state, and can be freely roamed between
machines. This creates several challenges that we need to address: First, the execu-
tion environments provided by the host system and a smart card are relatively inde-
pendent. For example, smart card applications can still run if the smart card is moved
between different host machines. Second, TPM-to-host-TCB communications are
relatively well protected (for example TPM communications are on a motherboard
internal bus) whereas in coupling with an external smart card, the smart card bus is
exposed, and communications are sometimes managed by drivers running outside the
TCB (Fig. 1(b)).

2.1 Coupling Security Requirements

If the smart card is to provide TPM-enhanced platform services we need to couple the
smart card and the host platform more tightly.

1 At the time of this writing the current TPM specifications is version 1.2.

4 P. England and T. Tariq

In particular we identify the following security requirements:

1) Smart card applications should be able to determine the host hardware and
the host TCB (e.g. to support a smart card enhanced version of Unseal or
Quote.)

2) The host TCB should be able determine the identity of the smart card and its
applications (e.g. to ensure that TCB confidential data is not improperly re-
leased to an un-trusted smart.)

3) The smart card applications should have a bi-directional confidential channel
to the host. (e.g. to support confidential communication of data passed to a
smart card enhanced version of Seal or confidential communication of data
returned from a smart card enhanced version of Unseal).

Our solution to these requirements is described in the next section.

2.2 Cryptographic Marrying (Smart Card to TPM Binding)

We assume that a trusted authority determines the TPM-to-smart card binding policy.
In the case of an enterprise this might involve an IT department coupling an em-
ployee’s smart card with the TPM on her PC (either under conditions of physical
security, or remotely given knowledge of keys in the devices to be coupled). In the
case of an OEM this might involve shipping a pre-coupled TPM and smart card to-
gether with an associated platform certificate.

We have implemented a system in which a unique TPM is coupled with a single
smart card, but generalizations are straightforward. During this platform binding step
we generate and store the following cryptographic keys to identify the smart card and
associated TPM:

• The TPM generates an Attestation Identity Key (AIK) which is used to iden-
tify the TPM and the host. The public portion of this key is communicated to
the smart card under conditions of physical security in the marrying step, and
is stored in smart card non-volatile storage as shown in Fig. 2.

• The smart card generates an RSA key pair which is used to identify the card.
The public portion of the key is communicated to the platform TCB under
conditions of physical security and is secured in host platform secure storage.

The binding and initialization step need only be performed once. At run time code
in the TCB and in the smart card builds a secure authenticated channel based on these
authentication keys.

The explicit software-constructed secure channel is sufficient to support secure
communication between smart card applications and the trusted computing base.
Some of our smart card applications additionally employ cryptographic properties
of the TPM itself without need for further channel security (beyond boot-strapping
with the married AIK). First, the attestation translation and enhanced seal opera-
tions need to determine the current platform configuration. We provide this proof
using the TPM_Quote operation (using the married AIK). This cryptographic
primitive is already designed to work securely in the face of untrustworthy host
software. Second, the count-limited key function uses the TPMs HMAC-based

 Towards a Programmable TPM 5

Generate RSA
Identity key

Load TPMs Key in
SmartCard

SSmmaarrtt
CCaarrdd

PPllaattffoorrmm ++ TTPPMM

Generate AIK

Seal smart card
public key

Export Card Public Key

Export AIK public key

Fig 2. Cryptographic Binding of the TPM and Smart Card

proof-of-password-possession protocols. Finally, the count-limited key function
uses the TPM capability for remote creation and encryption of keys using the TPM
key-storage hierarchy.

In our implementation two more smart card keys are created as part of the marry-
ing step. A symmetric AES key is created for off-card storage of smart card created
sealed data blobs, and an RSA signing key is created for the attestation translation
function. If a new binding is performed all previous bound data becomes inaccessible
and the quote translation key is destroyed (just like installing a new owner in a TPM).

We also need integrity protected host storage for the host TCB to store the married
smart card public key. Since the security model for trusted computing does not gen-
erally assume storage is trustworthy unless protected by cryptography, we use the host
TPM_Seal primitive to integrity protect the married smart card public key. The smart
card has genuine access-protected storage so no cryptographic measures are needed.

Our current implementation assumes that the smart card applications are loaded
prior to the marrying step. A more sophisticated version would provide a user-
accessible smart card execution environment and services that let the smart card ap-
plications authenticate themselves (see section 5).

Our architecture is generic and independent of the nature of host software: it can be
applied to systems that employ a hypervisor, an operating system without a hypervi-
sor, or applications running directly on the computer hardware. From our perspective
all that differs is the nature of the TCB and the PCRs that are used to identify the
platform state. Of course the choice of trusted computing base has practical implica-
tions for the comprehensibility and relevance of host PCR values [6].

3 Smart Card Enhanced TPM Security Primitives

In this section we describe the implementation of three security primitives that dem-
onstrate the possibilities of the TPM to smart card coupling architecture.2 Note that
the smart card functions appear somewhat hard to use. This is because we generally
favor performing only essential security functions in the smart card (which is slow

2 These experiments used a Dell Optiplex 745 running Vista SP1 and containing an Atmel TPM

version 1.2 with firmware version 13.9. The smart card was a Gemalto.NET v2 card with
80Kbyte of memory for code and data.

6 P. England and T. Tariq

and hard to debug) with other logic and complex data structure creation being per-
formed by host software.

3.1 Count Limited Objects

Count-limited key objects are keys that can only be used a preset number of times
[9]. The TPM provides monotonic counters that external software can use to decide
whether a key should be used, but - as we have already observed - the attack resis-
tance of host software is low. Our implementation of count-limited keys uses a key
on the TPM and a use-counter on the smart card and no external software is in-
volved in authorizing the use of the key.

The design is as follows: The smart card creates a TPM key and sets the key use
authorization (the useAuth) to a random value (the TPM will not use the key for cryp-
tographic operations unless the requestor proves knowledge of the useAuth value).
The smart card exports the key as a blob encrypted so that it can only be decrypted by
the married TPM. The smart card associates the (secret) useAuth-value with an inter-
nal counter, and will only authorize use of the key a preset number of times. When the
count is exceeded the key can no longer be used.

TPM key use is authorized by means of an HMAC-based protocol that does not re-
veal the useAuth authorization data in plain-text and is replay resistant (with some
assumptions – see [8]). This means that host software cannot use keys without the
cooperation of the smart card.

In more detail, the smart card exposes a pair of functions to support this functional-
ity. CreateCountLimitedKey creates a key with a random useAuth value and exports
it encrypted so that it can only be loaded into the married TPM. This function also
creates a counter set to the maximum number of uses and associates it with the freshly
created secret useAuth. Later, host software can load the key into the TPM and ask
the smart card to provide authorization for its use through GetCountLimitedUseAuth.
In this function the smart card decrements and then checks that the counter limit has
not been exceeded. If not, the requested command is authorized.

The command pseudo-code is as follows:

CreateCountLimitedKey
Input:

A TPM parent storage public key p,
Algorithm parameters for the key to be created a,
The number of times the key can be used n

Output:
An encrypted key that can be loaded into a TPM, an identifier for
the counter c

Actions:
1) Create a new RSA key with parameters supplied
2) Create a new counter set to value n
3) Create a new random useAuth value a for the key and associate

it with the counter
4) Encode the RSA key and useAuth into a TPM key structure

then encrypt with the provided TPM parent public key
5) Return the key blob and an identifier for the counter

 Towards a Programmable TPM 7

GetCountLimitedUseAuth
Input:

The TPM command string to be authorized s,
The counter identifier c

Output:
20 byte authorization value for the supplied command string or an
error

Actions:
1) Decrement the counter c. If the counter does not exist or the

count value is less than zero return an error
2) Return the HMAC of the command string s using the authoriza-

tion secret associated with the counter

Some scenarios demand that it be proven that count-limited keys are created under
conditions of physical security. For instance in our simple implementation it is not
possible to prove to an outside party that the key is indeed count-limited. There are
many variations of the simple design that overcome this shortcoming: E.g. rather than
creating the key inside the smart card it could be created on a secure server (or a Host
Security Module) and the count limit and useAuth data could be separately communi-
cated to the smart card. Alternatively the smart card could certify the key that it
created.

Our counters share some of the features of the implementation of TPM-supported
monotonic counters proposed by Sarmenta et al. [9]. In particular our counters can be
used as part of the authorization policy for key or other object use.

3.2 Flexible Sealing and Binding

Sealing encrypts data together with a tag indicating some expected future platform
state encoded in PCR values. The related Unseal function will only decrypt and reveal
the data if the platform is in the pre-authorized state. Sealing is a powerful feature of
the TPM, but unfortunately it is often hard to predict future configurations because of
unexpected changes in the platform configuration and state. The sealing capability
(and related capabilities for associating keys with PCR states, Unbinding, etc.) would
be easier to use if the TPM had more flexibility in the expression of authorized con-
figurations.

We have extended the simple TCG binding model to provide more powerful seal-
ing policy specifications using code implemented on the smart card. The cases we
have implemented are:

• Sealing and binding to any one of a list of PCR configurations.
• Sealing and binding to a public key so that the key owner can later authorize

any PCR configuration with a signed certificate.
In the latter case, when an Unseal or Unbind operation is attempted, the caller must
also provide a valid digital certificate authorizing the current configuration from the
policy-associated signature authority.

In both cases the smart card must check that the current married TPM PCR values
represent a state authorized by the sealer. In our implementation the smart card

8 P. England and T. Tariq

performs this check in the same way that any other remote entity would determine the
platform configuration: i.e. the smart card demands that host software provide evi-
dence for the current state by means of the output of a Quote operation using the mar-
ried AIK and a smart card provided nonce (to prevent replay). If host software can
respond with evidence of an authorized configuration, the smart card will release the
sealed data to the TCB.

We describe the smart card operations that support the Seal and Unseal implemen-
tations; Unbind is similar to Unseal.

Sealing to a List of PCR Configurations

The following smart card functions support sealing to a list of configurations. Seal-
ToConfigurationList is the smart card function that protects the data. The sealer need
only specify the hash of the list of authorized configurations at this stage. Unseal-
ConfigurationList is the corresponding unseal function. Here the caller must specify
the whole configuration list (which the smart card will hash to ensure it matches the
specified policy) and the policy element number that the smart card should attempt to
satisfy. The smart card must also be given proof of the current platform configuration
by means of the output of a TPM_Quote operation over the relevant PCRs. Replay
resistance for the quoted configuration is provided by a smart card provided nonce,
which must be obtained using the smart card GetNonce function.

In more detail, the pseudo-code for the commands follows:
SealToConfigurationList

Input:
A secret s,
the hash of a list of authorized configurations l

Output:
A sealed encrypted blob

Actions:
 Integrity-protect and encrypt the concatenation of s, and l

GetNonce

Input:
None

Output:
A 20 byte random nonce

Actions:
 Create and return a random nonce

UnsealConfigurationList

Inputs:
A sealed blob, b
The expected configuration list, l
The list element number that we expect to satisfy, i
The output of a TPM Quote on the current configuration, q

Outputs:
The previously sealed data or an error

 Towards a Programmable TPM 9

Actions:
1) Decrypt the sealed blob b returning the secret s and the policy

list hash h
2) Check that the hash of l matches the policy hash h
3) Check that the TPM signature q is formed signature using the

married AIK over the l[i] (the configuration element that we
expect to match) and the previously supplied nonce

4) Return the secret data s if all of the above checks succeed, else
return an error

Sealing to a Configuration Authorized by a Public Key

The following smart card functions support sealing to PCR configurations authorized
by a public key. SealToPublicKey encrypts a secret and the public key of an entity
trusted to authorize future platform configurations. UnsealPublicKey is the corre-
sponding unseal function. UnsealPublicKey must be provided with the original
sealed blob and a signed statement from policy key holder authorizing a PCR configu-
ration. The caller must also provide the result of a TPM_Quote operation that proves
compliance with the specified configuration. If policy compliance is proven the
sealed data is released. As before, the caller must obtain a fresh nonce from the smart
card and have it incorporated into the Quoted data structure.

In pseudo code:

SealToPublicKey

Input:
A secret s,
A public key k

Output:
An encrypted blob

Actions:
 Integrity-protect and encrypt the concatenation of s, and k

GetNonce
 See above

UnsealPublicKey

Inputs:
A bound blob b,
An authorized PCR configuration from the server c,
A signature over the authorized PCR configuration from the server S,
The output of a TPM Quote operation q

Outputs:
 The sealed data or an error
Actions:

1) Decrypt the sealed blob b returning the secret s and the public key k
2) Validate that the signature S is valid for the configuration c using

the public key k

10 P. England and T. Tariq

3) Validate that q is a TPM signature over the configuration c using the
married TPM AIK and the expected nonce

4) Return the secret s if the above checks succeed, else return an error

One detail is omitted from the description above. The TPM implementation of Seal
records PCR values at the time of sealing for the purposes of source platform and
configuration authentication. Our implementation of Seal also takes the output of a
Quote operation over a smart card provided nonce to provide similar capabilities.

All data communicated between the TCB and the smart card is passed over the se-
cure channel described in section 2. The channel endpoints are authenticated using
the married TPM and smart card keys.

3.3 Enhanced Quotes

The TPM_Quote operation creates a signature using an AIK over a data structure that
includes TPM internal state as reflected in PCR values, and externally provided data
(for freshness, or to associate the configuration with some other cryptographic object).
This building block is designed to be used in cryptographic protocols that prove
knowledge of the AIK and prove the current platform state. Unfortunately the TPM
signature format is non-standard, and this is one of the things that has made it difficult
to adopt TPM attestation technology.

We have prototyped a smart card function that translates the platform configuration
provided by the TPM into another format. Our proof of concept also uses non-
standard data structures, but a more sophisticated implementation would use a certifi-
cate format like X.509. Such certificates could be used for network access control, or
in an email or document signing scenario to prove the machine and machine configu-
ration when the document was signed [11],[12].

Our configuration rewriting function is called TranslateQuote. It must be called
with fresh evidence of the current configuration by means of the output of the
TPM_Quote operation over a smart card nonce. TranslateQuote checks the quote
signature is properly formed and is issued by the married AIK. If both conditions
hold, the smart card generates a signature over the TPM-specified state, and an exter-
nal nonce.

In pseudo code:

GetNonce
 See above

TranslateQuote

Inputs:
The data structure supplied to the TPM_Quote operation q,
The TPM-quoted signature s over this data structure and the previ-
ously obtained nonce,
External data to sign d

Outputs:
A smart card created signature or an error

 Towards a Programmable TPM 11

Actions:
1) Check that s is a valid signature over the data q and the nonce using

the married AIK
2) If the check succeeds return a smart card signature over a translation

of q and the external data d, else return an error

4 Programmable TPMs

Our coupling architecture strikes a useful balance between flexibility and deployabil-
ity using today’s generally available commodity hardware since it requires no modifi-
cation to the current specifications of the TPM3 and uses general purpose
programmable smart cards, but it is interesting to speculate on the design and im-
proved functionality of a future programmable TPM.

There are many possible models for a programmable TPM. Useful starting places
include multi-application programmable Java or .Net smart cards, or the Trusted Exe-
cution Model (TEM) described by Costan et al. [13]. Perhaps the simplest conceptual
design for a programmable TPM is to replicate the security model for code executing
outside the TPM but applied to user-code running inside the TPM. The TPM already
has a model for authenticating security modules executing outside, which is the notion
of locality coupled with the DRTM launch procedure [14]. This secure late-launch
procedure has been used by the Oslo project [15] and Flicker [16]. Applying this idea
to an execution environment inside the TPM would involve the definition of a new
locality for access by TPM applications, and new PCR-registers dedicated to their
measurements. See Fig. 3. However, beyond privileges associated with access local-
ity, internal TPM applications would have the same access to other TPM functions
and keys as applications running outside the TPM.

TPM-CoreTPM

DRTM-Launched Security
Kernel

Other Host Software

T-RTM-Launched
Security Application

Other Host Software

DRTM-Launched
Security Kernel

Locality-Locked PCR
Locality-Locked PCR

Fig. 3. Left: A TPM supporting a DRTM-launched security kernel. The DRTM procedure and
platform hardware and firmware ensures that a special PCR contains a reliable measurement of
the external security kernel, and that the TPM can authenticate commands originating from the
security kernel. Right: Applying this model to a programmable TPM would define a new local-
ity and associated “TPM-Root-of-Trust-of-Measurement” (T-RTM) to hold measurement of the
TPM internal programmable security functions.

3 As of this writing the current version of TPM Specifications is 1.2.

12 P. England and T. Tariq

Unfortunately there are limits to the types of functions that can be supported us-
ing this sort of programmable TPM because TPM protected data is not accessible to
the user applications. So while it would be possible to create a new class of storage
key with sophisticated migration features with this design, it would not be possible
to provide this migration capability to the storage root key (SRK) because the SRK
private data is inaccessible. Allowing third party code access to TPM private keys
and other protected data changes the TPM security model profoundly, so we gener-
ally prefer designs that supplement existing functionality rather than replacing or
modifying it.

5 Conclusions and Future Work

We currently only support applications that are pre-loaded onto the card prior to TPM
card marrying. This is probably adequate for most enterprise use (the enterprise will
load line-of-business applications onto the smart card prior to issuance) but does not
exercise the full potential of the coupling architecture.

To go beyond pre-loaded applications we must provide an isolated execution envi-
ronment for applications in the smart card, and provide a means for these applications
to authenticate themselves to the host computer. The isolation and authentication
primitives are necessary because we can no longer necessarily trust the applications
running on the card. This seems most straightforwardly solved by re-applying the
principles of authenticated operation but within the smart card. In particular we
would need to modify the smart card application loader to measure and record the
application digest (or other authentication data) and provide the smart card application
with sealing and attestation services. Smart card applications could use these primi-
tives to prove to the platform TCB that it is communicating with a trustworthy card
and card application.

Delivering the promise of Trusted Computing has been delayed by a number of
problems. These include the relative unavailability of mainstream operating systems
and hypervisors with useful security properties, problems balancing the high levels of
security provided by the TPM and ease of management, and problems using the TPM
to enhance existing security applications and scenarios. Our work demonstrates that
logic and cryptographic operations running on a smart card coupled with the host
platform and TPM can mitigate all of these issues, and is also an interesting prototyp-
ing environment for experimenting with new functionality that could be incorporated
into future TPM designs.

The three applications we implemented were chosen to exercise local- and re-
mote-trust verification, and to mitigate some of the problems that the authors have
experienced in trying to apply trusted computing to real problems. Other candidate
applications included keys with more sophisticated key management and migration
functions, a software-TPM on the smart card, a “roaming-TPM” for use in an enter-
prise, and general experimentation on the correct definition of security primitives
for future TPM designs.

 Towards a Programmable TPM 13

References

1. Trusted Computing Group TPM Specification Version 1.2 Revision 103 (2007),
https://www.trustedcomputinggroup.org/specs/TPM/

2. England, P., Peinado, M.: Authenticated operation of open computing devices. In: Batten,
L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 346–361. Springer, Heidelberg
(2002)

3. Sparks, E.R.: A Security Assesment of Trusted Platform Modules. Dartmouth College,
Technical Report. TR2007-597

4. Halderman, J.A., et al.: Lest We Remember: Cold Boot Attacks on Encryption Keys. In:
Proc. 2008 USENIX Security Symposium (2008)

5. Bruschi, D., et al.: Attacking a Trusted Computing Platform. Improving the Security of the
TCG Specification. Technical Report. Università degli Studi di Milano. Milan (2005)

6. England, P.: Practical Techniques for Operating System Attestation. Proceedings of Trust
(2008)

7. Costan, V., et al.: The Trusted Execution Module: Commodity General-Purpose Trusted
Computing. In: Eighth Smart Card Research and Advanced Application Conference

8. Offline dictionary attack on TCG TPM weak authorisation data, and solution. In: Chen, L.,
Ryan, M.D., Grawrock, D., Reimer, H., Sadeghi, A., Vishik, C. (eds.): Future of Trust in
Computing, Vieweg & Teubner, 2008 (2008)

9. Sarmenta, L.F., et al.: Virtual Monotonic Counters and Count-Limited Objects using a
TPM without a Trusted OS (Extended Version), Mit Technical Report MIT-CSAIL-TR-
2006-064 (2006)

10. George, P.: User Authentication with Smart Cards in Trusted Computing. In: Arabnia,
H.R., Aissi, S., Mun, Y. (eds.) Security and Management, SAM 2004, pp. 25–31. CSREA
Press, Las Vegas (2004)

11. Balacheff, B., et al.: A trusted process to digitally sign a document. In: Proceedings of the
2001 workshop on New security paradigms. pp. 79–86 (2001) 1-58113-457-6

12. Giraud, J.-L., Rousseau, L.: Trust Relations in a Digital Signature System Based on a
Smart Card. In: Proceedings of 23rd National Information Systems Security Conference,
Baltimore

13. Costan, V.: The Trusted Execution Module Commodity General-Purpose Trusted Comput-
ing. In: The Eighth Smart Card Research and Advanced Application Conference

14. Grawrock, D.: The Intel Safer Computing Initiative: Building Blocks for Trusted Comput-
ing, 1st edn. Intel Press (2006) 0976483262

15. Kauer, B.: OSLO: Improving the Security of Trusted Computing. In: Proceedings of the
16th Usenix Security Symposium (2001)

16. McCune, J.M., et al.: Flicker: An Execution Infrastructure for TCB Minimization. In: Pro-
ceedings of the ACM European Conference on Computer Systems (EuroSys 2008) held in
Glasgow (2008)

