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Executive Summary

Reliable and timely sharing of information across a community of collaborating principals is an integral
part of Microsoft’s vision of the “new world of work” [30]. Examples of Microsoft’s investment in this
vision abound. For one, Sharepoint specifically aims to share information assets across teams, departments,
and organizations while maintaining IT control. Tools like One Note allow information from disparate soft-
ware applications to be conveniently aggregated in a form that can be shared across a community of users.
Longer-range initiatives like HealthVault target the sharing of patient medical records across a wide array
of organizations, ranging from hospitals and insurance provides to employers and the patients themselves.
Microsoft’s partnership with consortiums like the Trans-global Secure Collaboration Program aim to build
a platform for multi-national secure information sharing between government and industry.

Despite its prevalence, widespread information sharing is, clearly, a two-edged sword. While ready ac-
cess to relevant information can make a collaboration more effective, uncontrolled sharing of digital assets
raises many security concerns, e.g., the unintended dissemination of HealthVault records can compromise a
patient’s privacy. This paper describes work currently underway that has as its goal the formal verification
of security properties for distributed information-sharing applications. Our work applies to the setting where
principals have incentives (such as legal contracts) to abide by the security policies placed by data custodi-
ans. In this setting, we wish to make it possible for principals to collaborate with each other (e.g., by sharing
security-critical software) and enforce a system-wide security policy with a high-degree of assurance.

We aim to address a number of concerns. As a first measure, we control information sharing by pro-
tecting resources by a formally specified claims-based access-control policy. Going further, we also address
the specification and enforcement of usage-control policies so that a custodian of a resource can retain some
control over how a resource is used after access has been granted, e.g., to prevent further dissemination of
data. In order to promote as much information sharing as possible without compromising security, policies
are applicable at a fine granularity, e.g., it will be possible to apply security controls to small fragments of
documents rather than only to entire documents. As the number of data sources grows, keeping track of
data dependences becomes important—both for enforcing security policies as well as assisting users with
making sense of complex data sets. We aim to provide principled ways of tracking data provenance so that
accurate records about where a piece of data originated and how it changed can be reliably maintained.
Other concerns include making sure that security mechanisms like cryptography are properly used.

Concretely, our work consists primarily of three aspects: the formal specification of security policies;
verifying the security of source programs; and, proving the security of low-level code.

Formal specification of information-sharing policies. In order to construct formal proofs of security, we
require a means of specifying of a security policy. Towards this end, we have been investigating the use of
SecPAL [7] and DKAL [25], two closely related authorization logics developed at MSR, for the specification
of fine-grained access- and usage-control policies. While there are subtle differences, both these languages
make it possible to formally specify intricate authorization requirements in a concise and intuitive manner.

Programming languages to verify the enforcement of security policies. We are currently implementing
a new dialect of the F# programming language (called FINE) which will make it possible to prove that a
system implementation correctly enforces a security policy. While FINE is general-purpose language, our
intention is for FINE to be used primarily in the construction of security monitors, i.e, software components
that mediate access to system resources by interposing the appropriate security enforcement code on each
read/write to these resources.

Type-preserving compilers for verifiably secure low-level code. We are developing a compiler that trans-
lates FINE source programs to .NET assemblies in a provably secure manner. Our compiler uses a “proof-



carrying” methodology, which makes it possible for a code consumer to verify (using a simple type checker,
similar to the existing .NET bytecode verifier) that a .NET assembly correctly meets a security policy of the
code consumer’s choosing.

The successful completion of these three strands of work will open the door to novel system architectures
for enforcing fine-grained information sharing policies across a distributed system. One architecture we
propose exploring is for principals to construct security monitors by combining code that enforces their
own policies with the proof-carrying modules that enforce the usage control policies of other principals.
Although developed piecemeal by principals with competing interests, our tools will be able to prove that
security monitors correctly enforce end-to-end information-sharing policies throughout a distributed system.



1 Introduction

Whether due to economic incentives, legislation, or political realities, large organizations, often with com-
peting interests, must share sensitive information across administrative boundaries in order to carry out
their daily operations. For example, in the aerospace industry, military contracts are often shared between
rival manufacturers requiring organizations to share critical elements of designs across administrative do-
mains, while still protecting their trade secrets [46]. Similar situations arise in the management of medical
records [33], in e-commerce, in the outsourcing of software development, and in military coalitions [18, 11].

While protecting their own information assets from improper use is the primary goal, principals are also
expected to respect the security policies of their partners, e.g., a partnership may be bound by legal contracts
that place restrictions on how shared data is to be used. Failure to properly carry out their contractual
obligations (e.g., due to faults in the software that manipulates shared data) can have practical consequences,
such as costly legal action. As such, organizations require assurance that their software correctly enforces
both their own security policies as well as those of their partners. Towards this end, we advocate a program
of research with the aim of formally verifying that security-critical software, potentially assembled from
components authored by multiple principals, is in compliance with a security policy.

An example scenario. Consider a situation in which a defense contract for the manufacture of an aircraft
is shared between two companies, Lockheed and Airbus. In this scenario, Lockheed appoints the services of
a third party, TechWriters, to assist with documentation for this project. Employees of TechWriters require
access to critical design documents from both companies. However, each company would like to ensure that
its contributions to the project are properly accounted for in all documentation produced by TechWriters,
i.e., that software used by TechWriters should track information flows so that documents always include
metadata indicating the source (or provenance [14]) of their data. Thus, even after releasing information
to a partner, the owner of the information wishes to exercise some control over how that information is
used. Our example, though fictitious, is inspired by some of the requirements of the Trans-global Secure
Collaboration Program [46].

We wish to make it possible for each principal in this scenario to verify that their software is in com-
pliance both with their own policy and with those of its partners. As such, we intend to provide tools that,
say, Lockheed can use to verify that its in-house policy enforcement software is in compliance with its own
security policy. Additionally, we aim to make it possible for principals to confidently integrate third-party
software with their security critical code so as to enforce originator controls [36]. For example, a reference
monitor implemented by Lockheed can use libraries provided by Airbus to allow Airbus to control how
Lockheed uses data owned by Airbus.

1.1 Outline of proposed work

The Trans-global Secure Collaboration Program (TSCP) is a government-industry partnership chartered
with “developing secure solutions for today’s most critical Aerospace and Defense issues: affordably miti-
gating multi-national compliance and IT security risks inherent in large-scale, collaborative programs.” We
intend to draw on concrete scenarios from the TSCP to guide our research.

Formalizing authorization policies in DKAL. (Section 2.1) Any software verification task begins with a
formal specification of requirements. Over the course of the last fifteen years, researchers have proposed
a variety of policy languages [2, 51, 50, 1, 3, 7, 25, 23, 10, 29, 27, 22, 15] to formally specify security
policies in distributed systems. Despite promising to simplify the management and enforcement of policies,
these frameworks have yet to see widespread use. There are many possible reasons: some languages have



inconveniently verbose syntax (XACML or XrML), others have inefficient decision procedures or are simply
undecidable (PolicyMaker, AF logic), while most include complex notions of trust and delegation that are
hard to use correctly.

New authorization logics directly address many of these concerns. For example, SecPal [7] and DKAL [25]
both have simple, terse syntax and are polynomially decidable. Additionally, a useful fragment of DKAL
has been shown to be decidable in near-linear time. DKAL is also attractive for its ability to easily derive
notions like trust and delegation rather than include these as primitives. As such, we propose to ground our
work by using DKAL to specify distributed authorization policies. However, much of the remainder of our
work should apply equally to policies specified in logics like SecPal, DCC [1], and others.

Modular enforcement of label-based policies. (Section 3) Policies like provenance tracking and dissem-
ination controls are most naturally specified by tagging sensitive data with security labels. We propose to
build upon an approach developed in the context of the FABLE calculus [41] to allow the semantics of se-
curity labels to be specified using code libraries that are called enforcement policies. Enforcement policy
libraries define an API that limits how labeled data can be used; a type checker ensures that application
programs always use this API correctly. This approach has been shown to be powerful enough to encode
a range of policy idioms, including information flow controls, provenance tracking, and automaton-based
information release policies [40].

We propose an architecture in which principals collaboratively enforce each others’ label-based usage-
control policies. Principals that wish to share labeled data with others, while still exercising originator
controls on that data, can publish enforcement policy libraries that implement the controls they wish to
apply. Recipients of labeled data can link these with their software in order to comply with the policies
of the data source. This approach has the added benefit of enabling the integration of label-based policies
from multiple principals, each with its own syntax and semantics for labels, e.g., the different hierarchies
of multi-level confidentiality labels used by the US [12] and UK' governments could each be specified by
separate enforcement policy libraries which could then be applied in concert to a piece of software.

Type-preserving compilation of security-typed languages. (Section 4) Of course, prior to linking third-
party libraries with their security-critical code, principals will want assurance that these libraries are safe. We
plan to use type-preserving compilation [35, 31] (a technique to ensure the safety of low-level code) to make
it possible for principals to confidently share code modules and collaboratively enforce end-to-end policies.
Type-preserving compilation has matured to the extent that it has now been used to certify that a large NET
compiler preserves memory safety [16]. We aim to advance this work so as to be able to verify that low-level
code (such as an enforcement policy library) correctly enforces a high-level security policy. In addition to
enabling cross-domain sharing of enforcement policy code, type-preserving compilation produces verified
code with a small trusted computing base. With this technology, bugs in a compiler implementation no
longer pose a threat to system security.

Verifying the enforcement of rich authorization policies, even at the level of source programs, has tra-
ditionally been out of reach. This is largely due to the wide gap between the abstractions used in a policy
specification and those used by a system implementation. However, recent work in security-typed program-
ming has produced new techniques [41, 40, 26, 8] that allow rich authorization logics to be seamlessly
integrated into a programming language, thereby making it possible to verify, for example, that a reference
monitor correctly enforces an authorization policy specified in DKAL.

Of these new security-typed programming languages, the F7 language [8], through its reliance on an
external theorem prover, is the most convenient for source-level programming. We intend, first, to extend F7

lhttp: //en.wikipedia.org/wiki/Classified_information_in_the_United_Kingdom
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Figure 1: Verification workflow

with support for additionally enforcing label-based security policies in the style of FABLE. We then propose
to develop a tool chain in which source programs in this extension of F7 can be compiled to an intermediate
representation based on a calculus called FLAIR [40], a generalization of FABLE. From this intermediate
representation, we propose to enhance existing work on type-preserving compilation to produce binaries
that can be easily checked (e.g., with a lightweight type-checker) to satisfy the security properties verified
for source programs.

Verified implementations of claims-based identity protocols. (Section 5) Identity in loosely-federated
distributed systems can be hard to pin down. The lack of a widespread identity infrastructure may have been
one stumbling block in the adoption of authorization logics—authorization without authentication (to which
identity is central) makes little sense. The appearance of mainstream claims-based federated identity systems
(including Windows Cardspace® and the Geneva framework®) opens the door to building an authorization
management system upon a flexible infrastructure for claims-based authentication.

A key element of our proposed work is to integrate federated claims-based identity networks with the
enforcement of DKAL authorization policies. However, the flexibility afforded by frameworks like Geneva
comes at the price of complexity—verifying that these multi-party protocols are correctly implemented and
provide the necessary security guarantees poses a significant challenge. Again, recent results in symbolic
verification of cryptographic protocols are encouraging—yverified implementations of InfoCard, the protocol
suite underlying Windows Cardspace have been developed [9]. We aim to adapt these results and incorporate
them into a common framework for type-based verification of implementations.

In summary, we contend that several recent advances in the theory of programming languages and the design
of authorization logics mean that the time is ripe for a renewed effort to tackle distributed system security.
This paper proposes to bring together several threads of research in a comprehensive framework to reliably
enforce end-to-end security policies in distributed systems. Figure 1 presents an overview of our verification
workflow. The remainder of the paper describes each of the elements in detail.

2 A Simple Distributed Authorization Scenario

In this section we present a small DKAL policy that formalizes the authorization requirements for the ex-
ample scenario described in Section 1 . We then sketch an architecture for a system in which this policy is

“http://msdn.microsoft.com/en-us/library/aa480189.aspx
3https://connect. microsoft.com/site/sitehome.aspx ?SiteID=642



(T1) TechWriters : Alice MemberOf JSFTeam

(L1) Lockheed . Lockheed Shares Design.doc
(L2) Lockheed . TechWriters TrustedOn (p MemberOf JSFTeam)
(L3) Lockheed : p MemberOf JSFTeam to p «— p MemberOf JSFTeam
(L4) Lockheed . p TrustedOn ¢ Said p MemberOf JSFTeam
(L5) Lockheed :  p CanDownload Labeled(z, Provenance(Lockheed)) «—
p MemberOf JSFTeam, Lockheed Shares x
(Al) Airbus : Airbus Shares Partl.gif
(A2) Airbus . Lockheed TrustedOn (p MemberOf JSFTeam)
(A3) Airbus : p TrustedOn ¢ Said p MemberOf JSFTeam
(A4) Airbus : p CanDownload Labeled(z, Provenance(Airbus)) «

p MemberOf JSFTeam, Airbus Shares x

Figure 2: A small example policy in DKAL

to be enforced, including an example workflow that results in Alice, an employee of TechWriters, success-
fully downloading data from Lockheed and Airbus. The architecture and workflow also serve to illustrate a
number of threats to the security of the system. This section concludes with an outline of the main security
threats to the system and describes how our proposed work addresses each of these concerns.

2.1 Specifying an Authorization Policy in DKAL

DKAL is a new authorization language that exceeds many prior authorization languages in expressiveness,
while still admitting efficient decision procedures for authorization queries. This section informally illus-
trates some of the features of DKAL by example.

2.1.1 Basic DKAL Concepts

DKAL posits the notion of an infon as the basic unit of information. Statements made by principals represent
infons, e.g., the statement “Lockheed Said Alice CanDownload XYZ” is an infon which can be communicated
to Alice. On receiving such an infon ¢ from Lockheed, Alice simply concludes that Lockheed said ¢, but
she does not necessarily believe that ¢ is true—the separation of speech from knowledge is a key feature of
DKAL.

DKAL incorporates a notion of knowledge by using a relation Knows between principals and infons,
e.g, (Knows Alice 1) is a fact about Alice’s knowledge of the infon ¢. A principal p knows infons ¢ either by
directly asserting them or by using the TrustedOn relation. DKAL includes the inference rule (7dOn) below
to connect the TrustedOn and Knows relations:

(TdOn) Knows(q, p TrustedOn 7) AND Knows(q, p Said 2) = Knows(q, ?)

This rule states that if a principal g trusts another principal p to make statements 7; and, if at some point
q knows that p did in fact say ¢; then, ¢ knows (believes) ¢ to be true. The example policy of the next section
will illustrate a use of TrustedOn to delegate the task of authenticating users from one principal to another.



2.1.2 A Simple DKAL Policy for Cross-Domain Information Sharing

Figure 2 shows a simple DKAL policy that is intended to capture the informal requirements of the example
scenario described in Section 1. The policy consists of a number of statements of the form p: A, each of
which represents an assertion A made by a principal p. The policy of the TechWriters principal is particularly
simple. Assertion (T1) just states that Alice is a member of a group JSFTeam.

The Lockheed principal’s policy aims to restrict access to resources owned by Lockheed to principals
who are known to be part of a privileged group, JSFTeam. Lockheed’s policy begins with a set of facts of
the form (LL1) asserting that Lockheed is willing to share specific documents.

Assertions (L2-L4) have to do with how Lockheed manages claims about the identities of principals. The
assertion (L2) states that the contractor TechWriters is trusted to state that a principal p (presumably one of its
employees) is a member of the JSFTeam. That is, using the inference rule (7dOn), if Lockheed can conclude
that TechWriters Said Alice MemberOf JSFTeam, then, Lockheed believes this fact to be true. The assertion
(L3) is a rule that states that Lockheed is willing to certify that p is a member of the JSFTeam (to p), so long
as Lockheed knows this fact to be true. Assertion (L4) may appear strange—it states that any principal p
can claim that another principal g certified that p is a member of the JSFTeam. Obviously, assertions like
(R3) must be used with care—Lockheed must be careful to check (using, say, digital signatures) that p does
not falsely claim that it was granted a permission by q. However, the DKAL policy leaves unspecified the
implementation details that ensure the authenticity of claims.

The final rule (L5) states that all files that Lockheed serves to members of the JSFTeam should be tagged
with a security label of the form Provenance(Lockheed). The intention is that recipients of labeled data will
ensure that all operations on labeled data properly keep track of metadata recording that this data originated
from Lockheed. Of course, proper enforcement of such a label-based policy requires first, that the recipient
understand what the label means, and that its interpretation of the meaning be consistent with the intended
meaning of Lockheed. The DKAL policy itself is silent on these enforcement details, much as the DKAL
policy is silent about the mechanism by which cryptography ensures the authenticity of policy statements.
In Sections 2.2 and 3 we discuss how the semantics of label-based policies can be specified and enforced.

In this example, the policy of Airbus is similar to Lockheed’s policy. In general, of course, Airbus’
policy may be completely different. The assertion (A1) states that an image, Partl.gif, is shared by Airbus.
The assertion (A2) states that Airbus only trusts Lockheed to define membership in the JSFTeam group—
TechWriters, being a contractor to Lockheed, may not even be known to Airbus. The assertion (A3) is
analogous to Lockheed’s assertion (L5)—Airbus must use cryptography to protect against forgery. And,
finally, (A4) requires all downloaded resources to be tagged with Airbus’ provenance label.

2.2 An Architecture for Collaborative Policy Enforcement

Figure 3 (a) depicts each of the principals in our scenario. At the right we show the systems of Lockheed and
Airbus. Each of these systems implements a reference monitor that protects access to a database of sensitive
resources, i.e., Lockheed’s database contains Design.doc, while Airbus’ database contains Partl.gif .

Each system is configured using a security policy and the reference monitors are expected to enforce
these policies. The policy of each principal includes the appropriate assertions from the DKAL policy
of Figure 2. In addition, each policy also includes a code library that defines the security controls on
labeled data once that data leaves the direct control of its owner. For example, the library |.dll is Lockheed’s
implementation of provenance tracking for its data. This library may include functions that allow strings
to be copied out of Design.doc. These functions would be careful to ensure that the copied string is also
tagged with the label Provenance(Lockheed) so as to indicate the source of that string. The corresponding
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Figure 3: An architecture and workflow to authenticate Alice and to authorize her to access shared resources

enforcement policy for Airbus’ labels is shown as a.dll.

Since Lockheed may have to manipulate Airbus’ data, and vice versa, the reference monitors of each
principal are shown to be linked with the enforcement policy libraries of the other. The client application
of Alice, an employee of TechWriters, is shown in the middle of the figure. Since she must work with
documents from both Lockheed and Airbus, her application is shown to be linked with enforcement policy
libraries from both principals. Of course, enforcement policy libraries can simply be treated as another form
of resource. The means by which these libraries are distributed to other principals can also be governed by
a security policy. Although not depicted, Alice’s client may also have its own DKAL policy to protect her
personal data.

At the left of the figure, we show an identity service run by TechWriters. This service is only meant
to issue claims to authenticate its employees to Lockheed and Airbus, e.g., claims that attest that Alice is a
member of the JSFTeam. As such, it does not require the enforcement policies of the other principals since



it is not supposed to receive their data. It also does not publish any enforcement policies.

2.3 Authorization Workflow

The process by which Alice is authorized to download shared resources is an instance of Appel and Felten’s
proof-carrying authorization approach [3]. When Alice requests a resource she is challenged to produce a
claim that proves that she is authorized to access that resource. Obtaining claims can themselves result in
other challenges being posed to Alice. A reference monitor must check that the proofs of claims presented
by principals are valid before granting access to a resource. Figure 3 (b) shows a workflow as a series of
messages.

The workflow begins with Alice requesting Design.doc from Lockheed and, at step 2, she is challenged
by Lockheed to produce a claim from ZechWriters attesting that Alice is a member of JSFTeam. At step
3, Alice approaches her employer’s identity service to request this claim and the identity server issues the
necessary claim at step 4. After presenting this claim to Lockheed at step 5, Alice receives the content of
Design.doc at step 6, labeled with Lockheed’s provenance label.

Alice’s interaction with Airbus begins at step 7 when she requests Partl.gif. Airbus challenges her to
produce a claim from Lockheed, and after fetching the claim from Lockheed (in steps 9 and 10), Alice
presents the issued claim to Airbus in step 11. Finally, Airbus responds with the requested resource, but
makes sure to label the content Provenance(Airbus), as required by the policy.

This workflow does not illustrate the manner in which the enforcement policies installed on Alice’s
machine track provenance. Section 3 describes the working of enforcement policies is greater detail.

2.4 Mitigating Threats to Security

In this section we mention a number of threats and describe how we intend to counter them. We also mention
threats that are outside the scope of the proposed research.

System security is contingent upon each principal implementing reference monitors that perform the
appropriate policy checks before granting access to resources. A failure to perform the appropriate check
constitutes a failure of complete mediation—there are number of ways in which this could happen.

o Failure to issue appropriate challenges in response to a request. Due to a software fault, Lockheed
could respond directly to Alice’s request with the content of Design.doc. Or, Lockheed could challenge
Alice to present a claim that is unrelated to the policy to be enforced. Programming errors that result
in these access control bypasses are not uncommon in large systems [39]. Our use of security-typed
programming languages to embed the authorization logic within a program will ensure that a reference
monitor always presents the appropriate challenge.

e Failure to properly check proofs of claims. Issuing the appropriate challenges is only worthwhile
if we can guarantee that the proofs of claims presented are valid. The soundness proofs of our type
systems will guarantee that every proof is checked properly.

¢ Installing malicious/incorrect enforcement policy code. Installing third-party enforcement policy
libraries can compromise the security of a reference monitor, e.g., a malicious library could provide
a backdoor to sensitive data store that bypasses access control checks. Through the use of type-
preserving compilation, we will allow principals to easily verify the safety of libraries before they
install them.



o Failure of end-to-end enforcement due to improper use of an enforcement policy. Our collabo-
rative scheme for the end-to-end enforcement of label-based policies depends on using enforcement
policy libraries in accordance with their APIs. Our type-based verification technique will guarantee
that application code built using our tools will always use these APIs as intended. The same mecha-
nisms will also be used to ensure that resources are labeled properly, e.g., that Lockheed always serves
content tagged with the Provenance(Lockheed) label.

Principals that choose not to use our tools may be vulnerable to each of these above threats. Of course,
regardless of whether a principal is negligent or malicious, it is important to ensure that a single rogue
principal cannot compromise the security of the entire system. We address these issues within the broader
context of outsider threats.

Outsiders are principals that cannot be authenticated and should not have access to any part of the
system. Outsiders stand to gain illegitimate access to the system by intercepting communication between
principals, or by injecting messages into the network. For example, although it is convenient for DKAL
policies to include statements like g TrustedOn (p said ¢ CanDownload ), system security crucially depends
on it being impossible for ¢ to fraudulently claim that a statement was made by p. An attacker who is able
to forge such a claim will be able to gain unauthorized access. We aim to defend against such threats by
relying on verified implementations of cryptographic protocols. The techniques we intend to use provide
secrecy and authenticity properties which generally take into account the abilities of an active adversary that
may have succeeded in compromising one or more insiders.

While cryptography helps prevent outsiders from gaining access to a system, attackers may still compro-
mise system security by exploiting other vulnerabilities, e.g., bugs in an operating system or web browser.
Outsiders may also be able to violate security by exploiting side channels, e.g., network traffic, timing, or
power consumption patterns. Both these kinds of threat are outside the scope of our proposed work.

3 Modular Enforcement of Label-based Security Policies

In this section we describe how principals can author libraries to enforce security policies on labeled data.
Through the use of a novel type system called FABLE, we can ensure that programs use these libraries
correctly, and, as a consequence enjoy useful security properties. We begin with a brief review of label-
based security policies and their enforcement using type systems.

In her classic work Denning [21] developed a canonical form of label-based security policies to enforce
multi-level confidentiality policies. Nearly two decades later, Volpano et al. [49] showed how, by refining the
types of a programming language to include security labels, such policies could be enforced by a compiler.
For example, the type int#i&" represents the set of all Hi gh-security integers; File“°¥ could represent the
type of a Low-security file that can be read by all users. Volpano et al. define a type system that tracks the
flow of information through the constructs of a core programming formalism and can detect programs that
reveal information about their Hi gh-security inputs on Low-security outputs. A large body of work [38] has
extended these basic ideas of security typing to incorporate information flow analyses of the programming
constructs of real languages (e.g., exceptions, higher-order functions, objects etc.).

3.1 Enforcing Label-based Policies in FABLE

In our work on FABLE, we observed that a wide variety of security policies are enforceable by associating
labels with data in the types, where the label expresses the security policy for that data. What varies among
policies is the specification and interpretation of labels, in terms of the actions that are permitted or denied.



By allowing the syntax and semantics of labels to be defined in libraries, we benefit from the high degree of
assurance provided by security typing while still retaining the flexibility to enforce a range of policies.

Enforcing a label-based policy in FABLE proceeds in two steps. First, a policy designer defines custom
security labels and associates them with the data they protect using dependent types [4]. Next, rather than
“hard-code” their semantics, policy enforcement is parametrized by a programmer-provided interpretation
of labels, specified in a privileged part of the program—we call this privileged part of the program the
enforcement policy. The type system forbids application programs from manipulating data with a labeled
type directly. Instead, in order to use labeled data, the application must call the appropriate functions in
the enforcement policy that interpret the labels. By verifying the interpretation of labels, and relying on
the soundness of the type system, policy implementers can prove that type-correct programs enjoy relevant
security properties.

For instance, a programmer can define a label High, and give a high-security integer value a type that
mentions this label, Labeled Int High. As another example, the programmer could define a label ACL(Alice, Bob)
to stand for an access control list and give an integer a type such as Labeled Int (ACL(Alice, Bob)). For the policy
of Figure 2, we could use labels of the form Provenance(Airbus) and give values Labeled types that mention
these labels. Programmers define the interpretation of labels in an enforcement policy, a library of privileged
functions distinguished from the rest of the program. Thus, in order to capture the intuition that an integer
with the type Labeled Int (ACL(Alice, Bob)) is only to be accessed by Alice or Bob, one writes an enforcement
policy function like the following:

policy access_simple (acl:Lab, x:Labeled Int acl) = if (member user acl) then unlabel x else —1

Here, access_simple takes a label acl as its first argument (like ACL(Alice, Bob)), and an integer protected by
that label as its second argument. If the current user (represented by the variable user) is a member of x’s
access control list acl (according to some function member, not shown), then x is returned with its label
removed, expressed by the syntax unlabel x, which coerces x’s type to Int so that it can be accessed by the
main program. If the membership test fails, it returns —1, and x’s value is not released.

The slightly more complex enforcement policy function below shows how to track provenance when
concatenating strings.

policy prov_cat (p:Lab, x:Labeled String p, g:Lab, y:Labeled String q) = relabel (strcat(unlabel x, unlabel y)) (Union(p,q))

This function takes the labeled strings x and y as arguments, tagged with the labels p and g respectively. In
the body of the function, we unlabel x and y, coercing their types to String before calling the strcat function
from the standard library to actually concatenate the strings. To ensure that the result records the provenance
of its arguments, we use the relabel operator to tag the result with the union of the two argument labels.

By preventing the main program (i.e., the non-policy part) from directly examining data with a labeled
type, we can ensure that all its operations on data with types like Labeled String (Provenance(Airbus)) are pre-
ceded by calls to the appropriate policy function, which performs any authorization checks and propagates
the labels as necessary to the results of the operation , i.e., the type system guarantees complete mediation.

We have shown that this basic idea in FABLE is powerful enough to encode the enforcement of various
styles of access control, data provenance, and information flow policies. A generalization of FABLE, a
calculus called FLAIR, goes further to handle the enforcement of policies that deal with mutable state. We
discuss FLAIR in greater detail in Section 4.2.

3.2 Collaborative enforcement by sharing enforcement policies

It should be clear that properly enforcing end-to-end policies (like provenance tracking) requires intercepting
all the operations that a program can perform on protected data. The semantics of such a policy is closely



tied to specific operations of a program and, as such, these policies are most naturally specified as code.
FABLE’s enforcement policies enable just this kind of specification while the type system guarantees proper
enforcement.

Our proposal to use enforcement policy libraries is similar in spirit to microkernel-style library operat-
ing systems where common services are linked as libraries rather than implemented in separate components.
Principals implement reference monitors that enforce their own policies, and link in libraries to handle the
enforcement of policies on data that belong to other principals. By allowing principals to publish enforce-
ment policies, and to have these policies applied in the software systems of their partners, we effectively
allow organizations to retain control over their data even after that data has left their system.

To make this approach work in practice, we must be careful to ensure that enforcement policy functions
compose well. For example, multiple principals could use labels with the same syntax, but their correspond-
ing enforcement policies could interpret these labels in conflicting ways. We have begun exploring simple
techniques to ensure that policies always compose well [40]. However, more complex notions of composi-
tion may become necessary as policies grow more involved. Recent work on resolving conflicting policies
using many-valued logics may provide some guidance [13].

Accounting for changes to policies will also require some care [43]. One advantage of specifying en-
forcement policies as code is that this code can periodically inspect policies published by the code authors
and enforce the most recent version, e.g., Airbus’ enforcement policy can poll Airbus’ servers for the most
current policy. Our verification methodology would have to ensure that unintended or malicious information
leaks do not take place via this form of network communication. More significant updates to a policy may
require the implementation and deployment of entirely different enforcement policies. Such updates could
make use of existing patch-deployment infrastructure, or potentially even make use of dynamic software
updates [34].

4 Type-preserving Compilation of Security-typed Languages

This section describes a tool chain that is intended to allow the construction of modular and verifiably se-
cure reference monitors. We begin by briefly describing the F7 programming language and argue that, with
extensions to support the enforcement of label-based policies, it is appropriate for verifying the enforcement
of DKAL-like policies. However, F7 requires a large trusted computing base (TCB), including a state-of-
the-art theorem prover. To reduce the TCB we propose translating F7 source programs to an intermediate
representation called FLAIR, introduced earlier. In Section 4.2 we describe FLAIR and show how F7 pro-
grams that enforce DKAL policies can be translated to FLAIR. Finally, in Section 4.3 we discuss how to
compile FLAIR programs to produce provably secure mobile code.

4.1 Verifying Security in F7 with Refinement Types

F7 is an extension of the F# programming language [44], itself a dialect of ML. Like other languages in the
ML family, F7 is mostly functional and strongly typed. In this section, we sketch how to develop a small
reference monitor in F7 that enforces a fragment of our example DKAL policy. Figure 4 shows an F7 listing,
which we describe in several steps.*

“We alter the notation of F7 slightly to simplify the presentation and to avoid confusion with the notation of FABLE.
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(* Basic DKAL constructs *) 28 (* Lockheed’s policy *)
type prin = 29 (x LI %)
| Self of (pubkey x privkey) 30 assume(Knows(lockheed, Shares(‘‘Design.doc’’)))
| Other of pubkey 31 (x L2 %)
32 assume(forall p.
type infon = 33 Knows(lockheed,
| Said of prin x infon 34 TrustedOn(techWriters, JSSFTeam(p))))
| TrustedOn of prin x infon 35 (x L3 %)
| CanDownload of prin x string 36 assume(forall p.
| JSFTeam of prin 37 Knows(lockheed, JSFTeam(p)) =
| Shares of string 38 Knows(lockheed,
| CanSayTo of prin x infon 39 CanSayTo(p, JSFTeam(p))))
40 (x L4 %)
type krel = Knows of prin x infon 41 assume(forall p,q.
42 Knows(lockheed,
(x Typed interface for Lockheed’s reference monitor ) 43 TrustedOn(p, Said(q, JSFTeam(p)))))
val lockheed:prin 44 (% L5 *)
val techWriters:prin 45 assume(forall p,x.
46 Knows(lockheed, JSFTeam(p)) A
type (a; p:prin) channel 47 Knows(lockheed, Shares(x)) =
48 Knows(lockheed, CanDownload(p, x)))

type (i uri:string) res = (id:{x:string | x=uri}, data:c) 49
50 (x General DKAL inference rules x)
val send: (a; p) channel — 51 (* TdOn x)
{(cy; uri)res | 52 assume(forall p,g,x.
Knows(lockheed, CanDownload(p, uri))} — 53 Knows(p, TrustedOn(q, i)) A
unit 54 Knows(p, Said(q, i)) = Knows(p, i))

Figure 4: An F7 interface to check the enforcement of Lockheed’s DKAL policy

4.1.1 Representing basic DKAL constructs

Figure 4 begins by defining datatypes for various basic DKAL structures like principals, infons, and knowl-
edge. These are shown on lines 1-15. We do not make use of any F7-specific constructs in these types—
similar types could be declared in any functional language.

We start by defining a representation for principals; for simplicity, we assume that all principals have
public keys. The type prin is defined as an algebraic type (a kind of tagged union)—the Self constructor holds
a public and private key pair, while the Other constructors holds only a public key. For example, Lockheed’s
reference monitor would include a value Self(pk, sk) of type prin to represent the Lockheed principal. It would
have values of the form Other(pk) to represent other principals like TechWriters.

Next, at line 6, we define the type infon to represent the DKAL concept of infons. This algebraic type is
the type of values like Said(p, CanDownload(q, ‘‘Foo’")), the our representation of DKAL statements like p Said
CanDownload((q), “Foo”). Line 14 defines the krel type, a direct representation of DKAL’s Knows relation.

4.1.2 A secure interface for sensitive operations

Lines 16-27 in Figure 2 defines an interface that must be satisfied by an implementation of Lockheed’s
reference monitor. This interface gives special types to sensitive operations that the reference monitor may
have to perform, e.g., allowing a principal to download sensitive data. These types include constraints
derived from the DKAL policy and prior to performing a sensitive operation, an implementation must prove
that these constraints have been met.
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Lines 17 and 18 are straightforward. They simply state that Lockheed’s reference monitor will use the
prin-typed values lockheed and techWriters to hold the key material of the corresponding principals.

Line 20 defines the type of a communication channel. This is an indexed type, which is parametrized
by a type variable o and term variable p of type prin. That is, channel represents a family of types, where
members of this family are types of the form (String, alice) channel, where alice is a prin-typed value. We will
use types like (String, alice) channel to represent a network connection that can be used to send String data to
the principal alice. The underlying representation of values of this type are unimportant—so, line 20 leaves
the channel type abstract (i.e., there is no definition).

Next, we have to decide on a representation for resources, i.e., the data objects that are to be protected
by the reference monitor. One could choose any of several representations for resources. Here, we choose
to represent resources as a record with two fields, id and data. For example, the Design.doc resource would
be represented as a record (id=""Design.doc’’, data=0x0f...)—the id field contains the name of the resource and
the data field contains, in this case, the raw bytes of the document.

The res type defined at line 22 is to be the type of resources. The definition is a little subtle because
it makes use of F7’s distinctive feature—refinement types. First, just like channel, res is really a family of
types indexed by a type « and a string uri. For example, the type (bytes; *‘Design.doc”’) res will be the type we
give to the record (id=""Design.doc”’, data=0x0f...). As we will show shortly, by using the uri to index the type,
we will be able to specify constraints on how resources are allowed to be used.

If we were to define res as a standard F# record, its definition would be (id:string, data:«v). However, we
want to ensure that the uri index of the res type is consistent with the actual uri stored in the id field of
the record. We can use F7’s refinement types to express this constraint. The set-comprehension notation
{x:string | x=uri} stands for the type of a string value x for which the proposition x=uri is known to be true. The
F7 type checker ensures that this constraint is always satisfied. For example, the only type that can be given
to (id=""Design.doc”’, data=0x0f...) is (bytes; ‘‘Design.doc”’) res, as desired.

Finally, at line 24, we give a type to the send function that a program can use to send resources that
hold data of type « to a principal p. The first argument to send is channel of type («, p) channel. The
second argument is a resource of type («, uri) res. However, not any resource of this type will do. We, of
course, want to ensure that we only send resources that we know p is authorized to download. So, we use a
refinement type again, and constrain the second argument of send to only be resources for which the formula
Knows(lockheed, CanDownload(p, uri)) is known to be true—the next section describes how such formulas are
proved. The send functions accepts these two arguments, sends the resource to p, and can returns a dummy
Unit value. The types allow us to ensure that the necessary authorization checks have been performed.

Note that we have made a simplification here by removing the constraint that requires the resource to
be labeled with Lockheed’s provenance label. Expressing and enforcing label-based policies in F7 is not
particularly easy. Part of our proposed work is to extend F7 with this capability.

4.1.3 Proving the security of implementations

On its own, a formula like Knows(lockheed, CanDownload(p, uri)) has no meaning in F7. They can only be
interpreted in the context of a set of rules describing the DKAL policy. On the left side of Figure 4, we show
how assumptions about a DKAL policy can be introduced into an F7 program.

Lines 28-48 show assumptions that correspond to each of the assertions in the DKAL policy of Figure 2.
Each assumption is a fairly direct translation from DKAL, so we do not describe them in detail. Lines
50-54 show a translation of the DKAL house rule (TdOn) that interprets the TrustedOn relation. A full
implementation would include assumptions about the other house rules of DKAL. Of course, assumptions
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must be used with care—the validity of the various constraints induced by refinement types depends on the
validity of the assumptions.

The snippet of code below illustrates how an implementation is checked.

val designDoc: (bytes; ‘‘Design.doc’’) res

val monitor: p:{ p:prin | Knows(lockheed, Said(p, Said(techWriters, JSFTeam(p))))} — (bytes; p) channel — unit
let monitor p ¢ = send ¢ designDoc

Here, we show a function monitor which is executed in a context where the variable designDoc has the type
(bytes; “‘Design.doc’’) res. The monitor function expects two arguments, p and c. The first argument represents
a principal, but the refinement type of p is very specific. In particular, p is a principal for which the formula
Knows(lockheed, Said(p, Said(techWriters, JSFTeam(p)))) (call it ¢) is known to be true. The second argument ¢
is a channel to the principal p. We ignore for the moment the issue of how specific formulas like ¢ come
to be known—in Section 5 we discuss how cryptography can be used to safely introduce such formulas as
assumptions. The point here is to show how in the presence of general policy assumptions, and with specific
facts like the formula ¢, F7 proves that implementations are secure.

In the body of monitor function, we call the send function whose type was discussed in the previous sec-
tion. For this program to be secure, we must be able to show that Knows(lockheed, CanDownload(p, ‘‘Design.doc”’).
In order to establish this goal, F7 collects all the assumptions and known facts in the current context (i.e,
assumptions L1-L5, TdOn, the specific formula ¢, and the formulas that appear in the definitions of type
constructors like res) and leaves it to the Z3 theorem prover [20] to decide if the goal can be proved from
the assumptions. In this case, Z3 would successfully find a proof, using all the assumptions (except (L3)) in
a chain of deductions that results in the goal.

The use of Z3 to discharge proof obligations is one of the reasons why programming in F7 is simpler
than in other languages of comparable expressiveness, e.g., FABLE, FLAIR, or Aura [26]. Rather than ex-
plicitly construct proofs of the authorization decisions, programmers get to write relatively familiar code like
send p ¢ while Z3 takes care of cumbersome proof manipulations. However, this approach has some down-
sides. First, Z3 must be in the TCB, e.g., a bug in Z3 could compromise the security of the system. Second,
in the mobile code setting (e.g., requiring principals to use each others’ enforcement policy libraries), we
would like to allow code consumers to be able to independently verify that the code they download is secure.
Requiring them to implement state-of-the-art theorem provers to do so defeats the purpose. Finally, both
ourselves [42] and others [48] have argued that it is useful to construct explicit authorization proofs. For
instance, these proofs can be logged and inspected later if an audit becomes necessary. Additionally, in a
proof-carrying authorization regime, principals may be required to present complete derivations of autho-
rization decisions, rather than simply presenting digital certificates that attest to the satisfaction of a goal.
We stand to gain the best of both worlds (i.e., ease of programming and a small TCB etc.) by compiling F7
source programs to FLAIR, a simpler intermediate language in which all authorization proofs are explicit.

4.2 FLAIR: A Core Calculus with Explicit Authorization Proofs

In this section we give a flavor of the FLAIR calculus and show how F7 source programs that enforce DKAL
policies can be translated into a core calculus with explicit authorization proofs. FLAIR aims to be a mini-
mal calculus, suitable as an intermediate representation for a compiler. To that end, the fragment of FLAIR
shown here is a fairly standard dependently-typed second-order lambda calculus, i.e., System F(2) [24]. Ver-
sions of (non-dependently-typed) System F have previously been used in several type-preserving compilers,
including the Glasgow Haskell Compiler [28], and the TIL [45] and TILT [37] compilers for Standard ML.
We expect a type-preserving compiler for FLAIR to be able to profitably use this extensive body of prior
work as a point of departure.
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Figure 5: Syntax of FLAIR (partial)

Figure 5 shows the syntax for a fragment for FLAIR. FLAIR programs are type checked in the presence
of a signature S, which represents a standard prelude that gives types ¢ to base terms B and also defines a
set of type constructors 7 and their kinds K. The terms in the language include (in order) variables, base
term constants, lambda abstraction, application, type abstraction, type application, and a pattern matching
construct.

The syntax of types includes type variables «; dependent function types are written (x:t) — t', where x
names the argument of type ¢ and is in scope within the return type ¢'; V.t is a type ¢ universally quantified
over all types a. We also include type constructors 7 which are organized into three kinds. Nullary type
constructors are given the kind %, the kind of normal types. For example, the nullary type constructor Int
has kind x and can be used to classify base terms like O, the data constructor that stands for the integer
0. Data constructors themselves may take arguments, e.g, the integer 1 can be represented as Succ(O),
an application of the Succ constructor to the term O. We give Succ the type Int = Int to indicate that it
constructs a term of type Int from an argument of type Int. Of the remaining two kinds of type constructors,
* — K classifies type constructors ¢ that can be applied to any normal type ¢’ using the notation ¢ ¢'. Finally,
the kind ¢ — K is the kind of a dependent-type constructor ¢’; these may be applied to any term term e of
type t using the notation ¢’ e. For example, the label terms like Acl(Alice, Bob) that we used in Section 3 can
be given the type Lab which has kind . The Labeled type constructor, which we used to construct types like
Labeled Int (Acl(Alice,Bob)) can be given the kind x — Lab — *.

4.2.1 Translating F7 to FLAIR

Translating F7 to FLAIR essentially requires handling two constructs—refinements and assumptions. Here
we briefly sketch the main ideas.

Recall that our objective is to make explicit in FLAIR those proof-related operations that are implicit in
an F7 program. For example, the F7 refinement type {i:infon | Knows(lockheed, i)} is the type of infons i for
which the proposition Knows(lockheed, i) can be proved by Z3 to be true. Our translation to FLAIR will the
proof explicit by representing this type as a pair, where the first element of the pair is the infon i and the
second element is a term that represents a proof of the relevant proposition. Our first task then is to give
propositions a type in FLAIR and then, using the Curry-Howard isomorphism, represent proofs of these
propositions (types) as terms.

The sub-language of propositions that can appear in F7 refinements is untyped, so a specific type of
propositions is not needed in F7. While this is convenient at the source level, it does permit writing down re-
finements that do not make sense, e.g, {x:string | x = 17}. FLAIR is stricter; so, when translating F7 programs
that enforce DKAL policies to FLAIR, we will define the type constructor Knows::Prin — Infon — % to repre-
sent the propositions about the knowledge of principals. Here, Prin and Infon are themselves nullary type
constructors in FLAIR. For example, the F7 type {i:infon | Knows(lockheed, i)} will be translated to the FLAIR
type V a.((i:Infon) — (Knows lockheed i) — ) — «v. This latter FLAIR type is simply a higher-order encoding of
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a pair type—using the more familiar notation of a dependent pair, it may be written (i:Infon x Knows lockheed i)

Next, we need a way to construct explicit proofs in FLAIR and to ensure that every well-typed proof is
logically valid. To achieve this, we will translate every assumption in an F7 program into a term constant in
FLAIR. For example, the DKAL inference rule for the TrustedOn relation will be represented in FLAIR using
the following function-typed constant.

tdOn: p:Prin — q:Prin — i:Infon — Knows q (TrustedOn p i) — Knows q (Said p i) — Knows q i

Every implicit proof discharged by Z3 that relies on the (TdOn) assumption, will be translated into an
explicit FLAIR term that includes an application of the tdOn function above. Similarly, each policy-specific
assumption (e.g., L1-L5) will also be translated into term constants in FLAIR. Importantly, we need to
ensure that the only way in which proof terms are built in FLAIR is through the use of these constants that
represent policy rules or basic axioms. We will achieve this by ensuring that datatypes that will be used as
propositions in proofs (like the Knows type) will have no data constructors that are usable in untrusted code.

4.3 Compiling FLAIR to Mobile Code

This final step in producing verifiably secure libraries that can be safely shared between (dis)trusting princi-
pals is to compile FLAIR programs to a low-level representation that still contains sufficient type information
for verification. We are not the first to propose type-preserving compilation for security-typed code. There
has been prior work on compiling security-typed dialects of Java to bytecode [5, 6] as well as more theoret-
ical work on producing typed assembly language from a security-typed language [54, 53] and also to typed
assembly languages. However, these efforts have focused mainly on the enforcement of noninterference-
based information flow security policies. While these policies are of interest to us (we have shown that they
can also be enforced in FLAIR), we aim to go beyond this.

Another shortcoming of prior work on type-preserving compilation of security-typed languages is that
they assume that policies are statically known. However, most realistic policies are highly dynamic [47, 55],
and FLAIR specifically targets dynamic label-based policies. Expressing these kinds of policies requires, at
the very least, some simple forms of dependent types.

Dependently typed assembly languages have also been proposed before [52]. However, this line of work
has focused primarily on enforcing memory safety properties, proving the correctness of array-bounds-
check elimination optimizations etc. We are proposing to compile dependently languages to prove the
correctness of security enforcement in mobile code. That is, we propose to define DTAL-S, a dependently
typed assembly language for security.

We expect to have to overcome a number of challenges. For example, while it is relatively easy to include
dependent types in functional source-level programs, working with dependent types in a computational
model where side-effects are pervasive may be difficult. We might consider using existing work on Hoare
type theory for this purpose [32]. Another concern will be efficiency of the generated code. While carrying
explicit proofs in mobile code makes verification simple, it may not be so good for efficiently executable
code. We imagine adapting work on using phantom types to maintain a strict phase separation between
terms that have operational significance and those that do not [40], e.g., by isolating proof terms into a
separate phase, these may be conveniently erased at run-time, if efficiency is a concern. Otherwise, these
may be logged for auditing etc.
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type (as;i:prin,u:prin) chan 13 val send: (infon; i,u) chan — (;i) speech — (;i) skey — unit
type Gi:prin) speech = {x:infon | Said(i, x)} 14 let send c s signingKey =
type Gi:prin,u:prin) knowledge = 15 let mac = sign s signingKey in
{x:infon | Knows(i, Said(u, x))} 16 Net.send c (serialize(mac, s))
17
type akey 18 val recv: (infon; i,u) chan — (;i,u) vkey — (;i,u) knowledge
type (i:prin) skey = (;i) speech key 19 let read c verificationKey =
val sign: (;i) speech — (;i) skey — bytes 20 let (mac,i) = unserialize(Net.recv ¢) in
21 match (verify (mac,i) verificationKey) with
type Gi:prin,u:prin) vkey = (i,u) knowledge key 22 | Some k — k
val verify: (bytes * infon) — (;i,u) vkey — 23 | None — raise FailedSignatureAuth

(;i,u) knowledge option

Figure 6: A verifying the authenticity of messages (partial)

5 Verified Implementations of Cryptographic Protocols

In Section 4.1.3 we showed F7 can be used to check the security of implementations in the presence of
types like, {p:prin | Knows(q, Said(p, Said(techWriters, JSFTeam(p))))}.In this section, as promised, we show how
values of this type can be safely constructed using cryptography. Happily for us, the same mechanism in
F7 that we used to check authorization policies can be applied to verifying authenticity properties. The
construction we develop here follows a similar construction shown by Bengston et al [8].

5.1 A Simple MAC-based Protocol for Authenticity

Figure 6 shows a F7 listing that verifies the authenticity of messages using a simple protocol based on a
message authentication code (MAC) using asymmetric keys. Our goal is ultimately to provide an interface
that allows a reference monitor to receive messages m on a channel and safely conclude that m was from
the intended sender. The first step towards this goal is to revise the type of channels that we used in Figure 4
so that it can be used to both send and receive messages. At line 1, we show the type («i,u) chan, which is
the type of a channel on which the principal i can send a-typed messages to u and also receive messages of
the same type from u, i.e., this is the type of a duplex channel between i and u.

Next, we define the type (i) speech. This is the type of an infon that a principal i wants to send on a
channel. Deciding that it is permissible for i to do so is a matter governed by i’s authorization policy. The
corresponding type on the side of the receiver of a message is (;i,u) knowledge. On receiving an infon x from
u, i would like to conclude that u actually said x.

In order to safely construct values of the knowledge type, we will require messages to be signed when
they are sent on a channel. Receivers will only admit a message into their knowledge after verifying the
signature. At lines 5-12 we define the types of keys that will be used in this protocol. The type akey is an
abstract type of a key that can be used to sign or verify messages of type «. The type of a signing key is
(i) skey. Using the sign function a principal i can sign an infon and obtain the raw bytes of the MAC. The
type of a verification key is (;i,u) vkey and is the key that the principal i uses to verify messages sent by u.
The function verify takes a pair of a MAC and an infon as its first argument, a verification key as the second
argument, and, if the verification succeeds, it returns a knowledge infon; if it fails, it returns a dummy value
None.

At the right of Figure 6 we show the implementation of send and recv functions on channels. The first
argument of send is an (infon;i,u) chan on which the principal i wishes to send a speech infon s (the second
argument) to the principal u; the final argument is i’s signing key. In the body of the function, at line 15, we
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construct a mac for the message by signing the speech infon and, at line 16, we convert the message to some
low-level wire format and call the library function Net.send to send the message on c.

The recv function is used by i to receive infons from u and to admit these infons into its knowledge. The
first argument of recv is the channel ¢ and the second argument is the key i uses to verify messages from u
(say, u’s public key). At line 20, we call the Net.recv library function and block until a message is received.
Once it is received, we unmarshall the message into a mac and an infon i. Next, we check the signature. If it
succeeds, we return k, the knowledge infon; otherwise, we raise an exception.

5.2 Extensions

While this simple MAC-based protocol gives a flavor of the authenticity properties that can be checked in
F7 (and, by translation in FLAIR etc.), a number of extensions are required to use this scheme in practice.

To begin with, our example protocol is not sufficiently strong to be used with DKAL. One of the key
feature of DKAL is the ability of principals to quote other principals, e.g., principals can construct infons
like Said(qg, Said(p, x)). The protocol in Figure 6 simply requires an infon to be signed once, i.e., the principal
g can construct an infon like Said(g, Said(p, x)) just by signing this with g’s signing key. To prevent forgeries,
we must require the nested infon Said(p,x) to contain a signature from p. Verifying a message would have to
recursively check signatures within quoted infons.

In a situation where every principal can be identified by a public key, our MAC based protocol (extended
to account for DKAL quotations) may be sufficient. However, in practice, we will need to support more
flexible claims-based identity protocols, e.g., in our example policy, Alice is only identified to Lockheed and
Airbus by claims that TechWriters issues about her and not a public key.

The protocols used in claims-based identity systems like Geneva and Windows Cardspace are substan-
tially more complex than our simple MAC-based protocol. In a recent paper [9], we constructed formal
models of the protocols underlying Windows Cardspace—some of the three-party authentication schemes
require several rounds of communication, with some messages containing up to 20 different cryptographic
operations like signatures, message digests, and encryptions. Verifying that these protocols are correctly im-
plemented and that they give the desired authorization properties is decidedly non-trivial. Using a tool chain
unrelated to F7, we have verified implementations of these protocols. We propose to adapt these results for
use in a common framework for type-based verification in F7, FLAIR, and DKAL.
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6 Project Plan

In this section, we outline a number of tasks that we intend to undertake in order to deliver the tools and
technologies described in this paper. While there are some dependencies between the tasks, we expect
several of these efforts to proceed in parallel.

I. Formalization of TSCP scenarios in DKAL. (Joint work with Yuri Gurevich.) We anticipate formal-
izing concrete descriptions of TSCP scenarios in DKAL. This formalization will have to unify a number
of disparate policy elements into a single framework. For example, claims-based authentication policies in
Geneva are currently specified using WSDL [17] and we will have to find ways to ensure that authentication
elements in a DKAL policy are consistent with the corresponding elements of a WSDL policy. Addition-
ally, end-to-end labeling policies like provenance tracking have, in prior work, not been integrated with
authorization policies. We expect that a DKAL policy that elegantly brings together these three elements
(traditional authorization, WSDL-style policies, and end-to-end labeling policies) will be of independent
interest.

I1. Implementation of DKAL libraries in F7. We plan continue development on a prototype that al-
lows DKAL policies to be expressed and enforced in F7 programs. We aim for DKAL support to be pro-
vided mainly through libraries that implement core DKAL features (infons, inference rules etc.). However,
some enhancements of the F7 compiler are expected. We also intend to provide library support for veri-
fied implementations of simple authentication policies, e.g., extending the MAC-based protocol described
in Section 5.1 to properly handle quotations etc. We intend to use an elaboration of the example policy of
Section 2.1 as a test case. It is possible that completing this work will require some substantial ingenuity
and, again, may be of independent interest.

II1. Formal foundations for secure compilation of source programs. This task represents the theoretical
work that will be necessary before we can implement our type-preserving compilation. A paper about
a dependently typed bytecode language and a preliminary implementation of a compiler is planned for
submission to POPL in July 2009.

IV. Design and implementation of FINE: F7 augmented with labeling policies compiled with explicit
proofs. (With Juan Chen and a summer ’09 intern) With the assistance of an intern in the summer of
2009, we expect to complete an implementation of a compiler for a source language, tentatively called
Fine. This compiler would also include a translation to the FLAIR intermediate language and emit .NET
bytecodes that includes explicit proofs. We expect to use this compiler in the fall of 2009 and use Fine to
build a prototype distributed reference monitor. A target application is a web-based document management
system that enforces authorization and provenance policies. Our prior experience with SEWiki, a web-
based document management system with provenance tracking [19], makes this a natural choice. One could
imagine even enhancing the current implementation of SEWiki so as to make it compatible with a security
infrastructure developed using our new tools. We plan for a submission to Oakland in November 2009.

V. Implementation of type-preserving compilers for F9. (Joint work with Juan Chen.) This is work that
we expect to carry out in the latter part of 2009 and into 2010. This is likely to involve adapting Bartok,
an existing type-preserving compiler for NET MSIL to produce a dependently typed assembly language as
output.

VI. Verified implementations of Cardspace protocols in Fine. Concurrent with the development of the
Fine compiler, we plan to explore adapting prior results on the verification of the InfoCard protocol suite [9]
in a manner that allows it to be integrated with the rest of our enforcement infrastructure. This work would
require collaboration with members of the Samoa project in MSR Cambridge.
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