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In this paper, we consider the problem of making a sequential library
safe for concurrent clients. Informally, given a sequential library that
works satisfactorily when invoked by a sequential client, we wish to
synthesize concurrency control code for the library that ensures that
it will work satisfactorily even when invoked by a concurrent client
(which may lead to overlapping executions of the library’s proce-
dures). Formally, we consider a sequential library annotated with
assertions along with a proof that these assertions hold in a sequen-
tial execution. We show how such a proof can be used to derive a
concurrency control for the library that guarantees that the library’s
execution will satisfy the same assertions even when invoked by a
concurrent client. Secondly, we generalize this result by considering
2-state assertions that correspond to relations over a pair of program
states. Such assertions can be used (as postconditions) to specify the
desired functionality of procedures. Thus, the synthesized concur-
rency control ensures that procedures have the desired functionality
even in a concurrent setting. Finally, we extend the approach to
guarantee linearizability: any concurrent execution of a procedure
is not only guaranteed to satisfy its specification, it also appears to
take effect instantaneously at some point during its execution. A no-
table feature of our solution is that it is based on a logical notion of
interference between threads: the derived concurrency control pre-
vents threads from violating properties (by executing statements)
that are to be preserved at a given program point, rather than pre-
venting threads from accessing/modifying specific data.
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1 Introduction

Recent technology trends point to the increasing importance of concurrency.
But even newly developed systems and programs will need to make heavy use of
pre-existing libraries that are too valuable to be just discarded. Unfortunately,
libraries that work perfectly well in a sequential setting may fail to work in a
concurrent setting due to the use of imperative programming languages with
mutable state in the form of global variables or heap-allocated data.

In this paper, we consider the problem of making a sequential library safe for
concurrent clients. Informally, given a sequential library that works satisfacto-
rily when invoked by a sequential client, we show how to synthesize concurrency
control code for the library that ensures that it will work satisfactorily even when
invoked by a concurrent client.

Consider the sequential library in Figure 1 (ignoring the acquire and release
operations). The library consists of one procedure Compute, which applies an
expensive function f to an input variable num. To avoid repeating the expensive
computation on every invocation, the implementation caches the last input and
the last result. If the current input matches the last input, the last computed
result is returned instead.

This procedure works perfectly fine when used by a sequential client. How-
ever, if the procedure is used by a concurrent client, it is possible to have overlap-
ping invocations of the procedure. In this situation, the procedure may return
an incorrect answer. E.g., consider an invocation of “Compute(5)” subsequently
followed by the concurrent invocations of “Compute(5)” and “Compute(7)”. As-
sume that the second invocation of “Compute(5)” evaluates the condition in line
9, and proceeds to line 10. Assume a context switch occurs at this point, and
the invocation of “Compute(7)” executes completely, overwriting lastRes in
line 16. Now, when the invocation of “Compute(5)” resumes, it will erroneously
return the (changed) value of lastRes.

Concurrency Control. Ensuring that programs function correctly in a con-
current setting requires the use of appropriate concurrency control mechanisms
to prevent undesirable interleaving of different threads. However, augumenting
a program with the right amount of synchronization that ensures both correct-
ness and high performance is a challenging task.

In this paper, we address the problem of automatically making sequential
code thread-safe: given some sequential code that works satisfactorily in a se-
quential setting, we wish to synthesize concurrency control that ensures that the
given piece of code works correctly in a concurrent setting as well. Given the
code in Figure 1, our approach is able to automatically synthesize the locking-
based concurrency control mechanism (i.e. the acquire and release operations
with the corresponding locks) shown in the figure. The reader may verify that
this version of the library words correctly even in the presence of overlapping
procedure invocations.
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1 global int lastNum = 0, lastRes = f(0);

2 //@requires lastRes == f(lastNum)
3 //@ensures lastRes == f(lastNum)
4 //@ensures lastNum == num
5 //@returns f(num)
6 Compute(num)

7 {

8 acquire(l);

9 if (lastNum == num) {

10 res = lastRes;

11 } else {

12 release(l);

13 res = f(num);

14 acquire(l);

15 lastNum = num;

16 lastRes = res;

17 }

18 release(l);

19 return res;

20 }

Figure 1: A procedure in a library that applies a function f to an input vari-
able num and caches the result for subsequent invocations. f(x) represents a
mathematical function, such as x3, rather than an imperative procedure.

The Problem. To formalize our problem, we must first formalize the cor-
rectness criterion for a library: what does it mean to say that a library works
correctly in a sequential or concurrent setting? We assume that the desired
properties of the library are specified via a set of assertions. Further, we assume
that library satisfies these assertions in a sequential setting: i.e., any possible
execution of the library, with a sequential client, is assumed to satisfy the given
assertions. Our goal is to ensure that any possible concurrent execution of the
library also satisfies the given assertions.

For our running example in Figure. 1, lines 2-5 provide a specification for
procedure Compute. Line 5 specifies the desired functionality of the procedure
(i.e., Compute returns the value f (num)), while lines 2-4 indicate the invariants
about the library’s own state that the procedure maintains. (In general, the
interpretion of pre/post-conditions in a concurrent execution is complicated; we
will later provide precise definitions of this interpretation.)

Logical Concurrency Control From Proofs. One of the key challenges in
coming up with concurrency control is finding the degree of isolation required
between concurrently executing threads: what interleavings between threads can
be permitted? A very conservative solution may prevent more interleavings
than necessary; hence, it can reduce the concurrency in the system. A very
aggressive solution focused on enabling more concurrency may introduce subtle
bugs.

The fundamental thesis explored in this paper is the following: a proof that
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Figure 2: A control flow graph representation of the procedure Compute. Edges
are labelled by program statements and nodes are labelled by formulas in the
proof.

a piece of sequential code satisfies certain assertions in a sequential execution
precisely identifies the properties relied on by the program at different points
in execution; hence, such a sequential proof clearly identifies what concurrent
interference can be permitted; thus, a correct concurrency control can be sys-
tematically (and even automatically) derived from such a proof.

We now provide an informal overview of our approach by illustrating how
concurrency control can be synthesized for our running example. Figure 2
presents a proof of correctness for our running example (in a sequential setting).
The program is presented as a control-flow graph, with its edges representing
program statements. A proof consists of an invariant attached µ(u) to every
vertex u in the control-flow graph, as illustrated in the figure such that: (a) for
every edge u→ v labelled with a statement s, execution of s in a state satisfying
µ(u) is guaranteed to produce a state satisfying µ(v), and (b) for every edge
u→ v annotated with an assertion ϕ, we have µ(u)⇒ ϕ. Given a specification
for a library’s procedures, existing verification tools can be used to generate such
proofs automatically. Though we discuss this aspect in the paper, the central
focus of the paper is on using such a proof to synthesize concurrency control
code.

Loosely speaking, the invariant µ(u) attached to a vertex u indicates the
property required (by the proof) to hold at u in order to ensure that the proce-
dure’s execution satisfies all assertions of the procedure. We can reinterpret this
in a concurrent setting as follows: when a thread t1 is at point u, it can tolerate
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changes to the state by another thread t2 as long as the invariant µ(u) continues
to hold from t1’s perspective; however, if another thread t2 were to change the
state such that t1’s invariant µ(u) is broken, then the continued execution by t1
may fail to satisfy the desired assertions.

Consider the proof in Figure 2. The vertex labelled u in the figure corre-
sponds to the point before the execution of statement [10]1 (after the if-condition
evaluates to true). The invariant attached to this program point indicates that
the proof of correctness depends on the condition2 “lastRes == f(num)” hold-
ing true at this program point. The execution of statement [13] by another
thread will not invalidate this condition. On the other hand, execution of state-
ment [16] by another thread can potentially invalidate this condition. Thus, we
infer that, when one thread is at point u, a concurrent execution of statement
[16] (by another thread) should be avoided.

In general, assume that we want to avoid the execution of a statement s by
one thread when another thread is at a program point u as s might invalidate a
predicate p that is required at u. We can ensure this by introducing a lock lockp

corresponding to p, and ensuring that every thread holds lock lockp at program
point u and ensuring that every thread holds lockp when executing s. Note that
the lock lockp does not have to correspond to any specific variable. It is a lock
corresponding to a predicate.

Our algorithm for synthesizing concurrency control does precisely this. From
the invariant µ(u) at vertex u, we compute a set of predicates pm(u). (For now,
think of µ(u) as the conjunction of predicates in pm(u).) pm(u) represents the
set of predicates required at u. For any edge u → v, consider any predicate p
that is in pm(v)\pm(u). This predicate is required at v but not at u. Hence, we
acquire the lock for p along this edge. Dually, for any predicate that is required
at u but not at v, we release the lock along the edge. Finally, if the execution
of the statement in edge u→ v can invalidate any predicate p (that is required
at some point), we acquire and release the corresponding lock before and after
the statement (unless it is already a required predicate at u or v).

Our algorithm ensures that the locking scheme does not introduce any dead-
locks by merging locks where necessary, as we will describe later. Finally, we
also optimize the produced solution using a few simple techniques. E.g., in our
example whenever the lock m for lastRes == res is held, the lock l for lastNum
== num is also held. Hence, we can eliminate the lock m as it is redundant.

Figure 1 shows the resulting library with the concurrency control we syn-
thesize. It is easy to see that this implementation satisfies its specification even
in a concurrrent setting. The concurreny control we infer permits a high degree
to concurrency since it allows multiple threads to compute f concurrently. A
more conservative but correct locking scheme would acquire the lock during the
entire procedure.

One distinguishing aspect of our algorithm is that it involves very local rea-
1In the rest of this section, we shall use [l ] as a shorthand for “at line numbered l”.
2Our scheme permits treating the invariant as a single, complex, predicate such as (lastRes

== f(num) ∧ lastNum == num) or as a set of simpler predicates such as { lastRes == f(num),
lastNum == num }.
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soning. In particular, it does not involve reasoning about interleaved executions,
as is common with many analyses of concurrent programs.

Linearizability In general, the approach outlined above can be used to en-
sure thread-safety in any of the following senses: permit only interleavings that
guarantee certain safety properties (such as the absence of null-pointer deref-
erence) or preserve certain data-structure invariants, or even guarantee that
procedures meet their specifications (e.g., given as a precondition/postcondi-
tion pair). While powerful, this may not be completely adequate. Ideally, the
concurrent library implementation should enable the developer of a client of the
library to reason about the client modularly, using the library’s specification.
For this reason, we believe that thread-safety should guarantee linearizability
with respect to the sequential specification: any concurrent execution of a pro-
cedure should not only be guaranteed to satisfy its specification, it should also
appear to take effect instantaneously at some point during its execution. In this
paper, we show how the techniques sketched above can be extended to guarantee
linearizability.

Logical interference Existing concurrency control mechanisms rely on a
data-access based notion of interference: concurrent access to the same data,
where at least one access is a write, is conservatively treated as undesirable
interfence. This is true of pessimistic concurrency control mechanisms (such as
those based on locking), which seek to avoid interference, as well as optimistic
concurrency control mechanisms, which seek to detect interference after the fact
and rollback. One of the contributions of this paper is that it introduces a more
logical/semantic notion of interference and shows that it can be used to achieve
more permissive, yet safe, concurrency control. Specifically, concurrency con-
trol based on this approach permits interleavings that existing schemes based on
stricter notion of interference will disallow. Hand-crafted concurrent code often
permits “benign interference” (e.g., racy accesses to the same data-item) for per-
formance reasons. We believe that formalizing a logical notion of interference,
as done in this paper, is useful for this reason.

While we present a lock-based pessimistic concurrency control mechanism, it
would be interesting to explore the possibility of optimistic concurrency control
mechanisms that exploit a similar weaker notion of interference.

2 The Problem

In this section, we formally define the problem setting, scope, and introduce
required terminology. We introduce a simple language to illustrate our ideas,
but our ideas are more broadly applicable.
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2.1 The Sequential Setting

Sequential Libraries A library L is a pair (P, VL), where P is a set of
procedures of the form described below, and VL = {sv1, . . . , svn} is a set of
variables restricted to the scope of the library and shared by the procedures. We
refer to variables in VL as global variables. We only consider well-encapsulated
libraries, i.e., none of the variables in VL is visible to any procedure outside the
library L.

A procedure P is a pair (GP, VP), where GP is a control-flow graph with
each edge labelled by a primitive statement, and VP = {lv1, . . . , lvk} is a set
of variables restricted to the scope of the procedure. Every control-flow graph
has a unique entry vertex NP (which is assumed to have no predecessors) and a
unique exit vertex XP (which is assumed to have no successors). Primitive state-
ments are either skip statements, assignment statements, assume statements,
or return statements. An assume statement is used to implement conditional
control flow in the usual way We refer to variables in VP as local variables, and
these include the formal parameters of the procedure as well as the procedure’s
local variables. To simplify the semantics, we will assume that the set VP is the
same for all procedures.

We use the notation u
s→ v to identify an edge from u to v labelled with a

primitive statement s.
We close an open library to obtain a whole program that captures all possible

sequences of invocations of the library’s procedures (by any and all clients) as
follows. We define the control graph of a library to be the graph obtained by
taking the union of the control-flow graphs of all the procedures, augmented by
a new vertex w, as well as an edge from every procedure exit vertex to w and
an edge from w to every procedure entry vertex. We refer to w as the quiescent
vertex. Note that a one-to-one correspondence exists between a path in the
control graph of the library, starting from w, and the execution of a sequence of
procedure calls. In the semantics, an edge w → NP from the quiescent vertex
to the entry vertex of a procedure P is treated as representing all possible calls
to procedure P. We will refer to these edges as call edges.

Sequential States We now present the operational semantics of our language.
A procedure-local state σ` is a tuple (pc, v1, . . . , vn) where pc, the program
counter, is a vertex in the library graph and each vi represents the value of local
variable lvi. We represent the set of all procedure-local states by Σs

` . A global
state σg is a tuple (v1, . . . , vk), where each vi is the value of global variable svi.
Let Σs

g represent the set of all global states. A library state σ is a pair (σ`, σg),
where σ` is a procedure-local state, and σg is a global state that is persistent
across procedure calls. The set of all library states is thus Σs = Σs

` × Σs
g. We

say that a state is a quiescent state if its pc value is w and that it is a entry
state if its pc value equals the entry vertex of some procedure.

Sequential Executions The semantics of the library can be captured as a
transition relation  s ⊆ Σs × Σs as follows. Every control-flow edge e induces
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a transition relation e
 s, where σ e

 sσ
′ iff the execution of (the statement la-

belling) edge e transforms state σ to σ′. (In particular, note that this implies
that the pc of σ must be the source of e and that the pc of σ′ must be the
target of e.) The edge w → NP from the quiescent vertex to the entry vertex
of a procedure P models an arbitrary call to procedure P. Hence, in defining
the transition relation, such edges are treated as statements that assign a non-
deterministically chosen value to every formal parameter of P and the default
initial value to every local variable of P. Similarly, the edge XP → w is treated
as a skip statement. We say σ  s σ

′ if there exists some edge e such that
σ

e
 sσ

′.
We define a sequential execution to be a sequence of states σ0σ1 · · ·σk where

σ0 is the initial state of the library and we have σi  s σi+1 for 0 ≤ i <
k. A sequential execution represents the execution of a sequence of procedure
calls, one after another, by the library (where the last call’s execution may be
incomplete). Given a sequential execution σ0σ1 · · ·σk, we say that σi is the
corresponding entry state of σj if σi is an entry state and no state σh is an entry
state for i < h ≤ j.

A statement of the form u
assume cond→ v has the semantics that execution of

P proceeds to the subsequent statement only for those states that satisfy the
condition cond.

Sequential Assertions and Specifications We augment the underlying
language with an assert statement, a new kind of primitive statement that
specifies a state-level assertion using predicates over program states. We use
the notation σ |=s ϕ to denote that a state σ satisfies the assertion ϕ. Control-
flow edges may now be annotated with such assertions as well. Note that assert
statements have no effect on the execution semantics: we extend the sequential
execution semantics to treat assert statements as skip statements. Assertions
are used only to define the notion of well-behaved executions as follows.

Definition 1. A sequential execution π satisfies the library’s assertions if for
any transition σi

assert ϕ
 s σi+1 in the execution, we have σi |=s ϕ. A sequen-

tial library satisfies its assertions if every execution of the library satisfies its
assertions.

Single-state assertions of the above form can be used to specify the invariants
expected at certain program points. They can even be used to provide functional
specifications of procedures in some cases (as in our running example). However,
in general, functional specifications take the form of two-state assertions, which
relate the input state to output state. So, we enrich the language of assertions
to permit specification of such two-state assertions, by allowing assertions to
use special input variables vin (to refer to the value of the variable in the first
state). E.g., the specification “x == xin + 1” asserts that the value of x in the
second state is one more than its value in the first state. The semantics of such
a specification Φ is defined via a relation (σin, σout) |=s Φ.
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Definition 2. A sequential execution π satisfies the library’s specifications if
for any transition σi

assert Φ
 s σi+1 in the execution, we have (σin, σi) |=s Φ where

σin is the corresponding entry state of σi. A sequential library satisfies its spec-
ifications if every execution of the library satisfies its specifications.

2.2 The Concurrent Setting

Concurrent Libraries Recall that our goal is to augment a sequential li-
brary with concurrency control to ensure that it continues to perform correctly.
This motivates the concurrent language we present now, which augments the
sequential language with lock-based concurrency control constructs.

A concurrent library L is a triple (P, VL, Lk), where P is a set of concurrent
procedures, VL is a set of global variables, and Lk is a set of locks. A concurrent
procedure is like a sequential procedure, with the extension that a primitive
statement is either a sequential primitive statement or a locking statement of
the form acquire(`) or release(`) where ` is a lock.

Concurrent States A concurrent library permits concurrent (i.e., overlap-
ping) invocations of procedures. We associate each procedure invocation with
a thread (representing the client thread that invoked the procedure). Let T de-
note an infinite set of thread-ids, which are used as unique identifiers for threads.
(These may be thought of as representing an unbounded pool of threads used
to process procedure call invocations.)

In a concurrent execution, every thread has a private copy of local variables,
but all threads share a single copy of the global variables. Hence, the local-state
in a concurrent execution is represented by a map from T to Σs

` . (A thread
whose local-state’s pc value is the quiescent point represents an idle thread, i.e.,
a thread not processing any procedure invocation.) We denote the set of all
local states by Σc

`. Thus, Σc
` = T → Σs

` .
All locks are effectively global variables. At any point during execution, a

lock lk is either free or held by one particular thread. We represent the state
of locks during execution by a partial function from Lk to T indicating which
thread, if any, holds any given lock. Let Σc

lk = Lk ↪→ T represent the set of
all lock-states. We denote the set of all global states by Σc

g, and define Σc
g

to be Σs
g × Σc

lk. Thus, the set of all states of L in the concurrent setting is
Σc = Σc

` × Σc
g. Given a concurrent state σ = (σ`, (σg, σlk)) and thread t, we

define σ[t] to be the sequential state (σ`(t), σg).

Concurrent Executions We can capture the concurrent execution seman-
tics as transition relations as well. Let e be any control-flow edge labelled
with a sequential primitive statement, and t be any thread. We say that

(σ`, (σg, σlk))
(t,e)
 c(σ′`, (σ

′
g, σlk)) iff (σt, σg) e

 s(σ′t, σ
′
g) where σt = σ`(t) and σ′` =

σ`[t 7→ σ′t]. The transitions corresponding to lock acquire/release are defined
in the obvious way. We say that σ  c σ

′ iff there exists some (t, e) such that

σ
(t,e)
 cσ

′.
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We define a concurrent execution to be a sequence σ0σ1 · · ·σk, where σ0

is the initial state of the library and σi
`i cσi+1 for every 0 ≤ i < k. We say

that `0 · · · `k−1 is the schedule of this execution. Furthermore, we say that any
sequence ` · · · `m is a feasible schedule if it is the schedule of some concurrent
execution. Consider a concurrent execution σ0σ1 · · ·σk. We say that a state σi

is a t-entry-state if it is generated from a quiescent state by thread t executing
a call edge. We say that σi is the corresponding t-entry state of σj if σi is a
t-entry-state and no state σh is a t-entry-state for i < h ≤ j.

Interpreting Assertions and Specifications In Concurrent Executions
Recall that we denote satisfaction of an assertion ϕ by a sequential state σ by
σ |=s ϕ. In a concurrent setting, assertions are evaluated in the context of the
thread that executes the corresponding assert statement. We say that state σ
satisfies an assertion ϕ in the context of thread ti (denoted by (σ, ti) |=c ϕ) iff
σ[ti] |=s ϕ.

We extend the above definition to two-state assertions in a similar fashion.
For any specification Φ, we say that a given pair of states (σin, σout) satisfies Φ in
the context of thread t (denoted by ((σin, σout), t) |=c Φ) iff (σin[t], σout[t]) |=s

Φ.

Definition 3. A concurrent execution π satisfies the library’s specifications if

for any transition σi
(t,assert Φ)
 c σi+1 in the execution, we have ((σin, σi), t) |=c Φ

where σin is the corresponding t-entry state of σi. A concurrent library satisfies
its specifications if every execution of the library satisfies its specifications.

Frame Conditions Consider a library with two global variables x and y. Con-
sider a procedure IncX whose specification is that it will increment the value of x
by 1. One possible formalization of this specification is (x == xin + 1) && (y == yin).
The condition y == yin is IncX’s frame condition, which says that it will not
modify y. Our above formalization of concurrent specification correctness be-
comes unnecessarily restrictive if frame conditions are explicitly stated as above.
(A concurrent update to y by another procedure, when IncX is executing, would
be considered a violation of IncX’s specification.) Our formalization can be gen-
eralized to handle frame conditions better by treating a specification as a pair
(S,Φ) where S is the set of all global variables referenced (read or updated) by
any execution of the procedure, and Φ is a specification that does not refer to
any global variables outside S. For our above example, the specification will be
({x}, ensures x == xin + 1)).

2.3 Goals

Our goal, formally, is: Given a sequential library L annotated with assertions
satisfied by L in every sequential execution, construct L̂, by augmenting L
with concurrency control, such that every concurrent execution of L̂ satisfies all
assertions, both single-state and two state assertions. In Section 5, we extend
this goal to construct L̂ such that every concurrent execution of L̂ is linearizable.
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3 Preserving Single-State Assertions

In this section we describe our algorithm for synthesizing concurrency control,
but restrict our attention to single-state assertions.

3.1 Algorithm Overview

Definitions. A predicate mapping is a mapping pm from the vertices of GP

to a set of predicates involving variables in VL ∪ VP. A sequential proof is a
mapping µ from vertices of GP to formulae such that (a) for every edge u s→ v,
{µ(u)}s{µ(v)} is a valid Hoare triple, and (b) for every edge u

assert ϕ→ v, we
have µ(u)⇒ ϕ.

Note that the invariant µ(u) attached to a vertex u by a proof indicates
two things: (i) any sequential execution reaching point u will produce a state
satisfying µ(u), and (ii) any sequential execution from point u, starting from a
state satisfying µ(u) will satisfy the invariants labelling other program points
(and satisfy all assertions encountered during the execution).

A procedure that satisfies its assertions in a sequential execution may fail
to do so in a concurrent execution due to interference by other threads. E.g.,
consider a thread t1 that reaches a program point u in a state that satisfies µ(u).
At this point, another thread t2 may execute some statement that changes the
state to one where µ(u) no longer holds. Now, we no longer have a guarantee
that a continued execution by t1 will successfully satisfy its assertions.

The above reasoning also hints at a solution to this problem: when a thread
t1 is at point u, we should ensure that no other thread t2 changes the state to
one where t1’s invariant µ(u) fails to hold. Any change to the state by another
thread t2 can be tolerated by t1 as long as the invariant µ(u) continues to hold.
We can achieve this by associating a lock with the invariant µ(u), ensuring that
t1 holds this lock when it is at program point u, and ensuring that any thread t2
acquires this lock before executing a statement that may cause this invariant to
be broken. An invariant µ(u), in general, may be a boolean formula over simpler
predicates. We could potentially get different locking solutions by associating
different locks with different sub-formulae of the invariant. We now introduce
some definitions to present our solution formally in a generalized setting.

A predicate mapping pm is a basis for a proof µ if every µ(u) can be expressed
as a boolean formula (involving conjunctions, disjunctions, and negation) over
pm(u). A basis pm for proof µ is positive if every µ(u) can be expressed as
a boolean formula involving only conjunctions and disjunctions over pm(u).
Consider a sequential execution that reaches program point u in state σ. Not
all predicates in pm(u) may hold true in state σ. However, our earlier intuition
applies to basis predicates as well: we can still tolerate any concurrent update
to the state as long as no basis predicate is falsified (changed from true to false).

Given a proof µ, we say that an edge u s→ v sequentially positively preserves a
predicate ϕ if {µ(u) ∧ ϕ}s{ϕ} is a valid Hoare triple. Otherwise, we say that the
edge may sequentially falsify the predicate ϕ. Note that the above definition
is in terms of the Hoare logic for our sequential language (semantics), which
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explains our use of the adjective “sequentially”. What we want to formalize is
the notion of a thread t2’s execution of an edge falsifying a predicate ϕ in a
thread t1’s scope. Given a predicate ϕ, let ϕ̂ denote the predicate obtained by
replacing every local variable x with a new unique variable x̂. We say that an
edge u s→ v may falsify ϕ iff the edge may sequentially falsify ϕ̂. (Note that this
reasoning requires working with formulas with free variables, such as x̂. This
is, however, straight-forward as the free variables can be handled just like extra
program variables.)

E.g., consider statement lastRes = res at line [16] in Fig. 1. Consider
predicate lastRes == f(num). By renaming local variable num to avoid nam-
ing conflicts, we obtain predicate lastRes == f( ˆnum). We say that the state-
ment at line [16] may falsify this predicate because the triple {res == f(num)∧
lastNum == num∧lastRes == f( ˆnum)} lastRes = res {lastRes == f( ˆnum)}
is not a valid Hoare triple.

Let pm be a positive basis for a proof µ and R = ∪upm(u). If a predicate
ϕ is in pm(u), we say that ϕ is relevant at program point u. In a concurrent
execution, we say that a predicate ϕ is relevant to a thread t in a given state if
t is at a program point u in the given state and ϕ ∈ pm(u). Our locking scheme
associates a lock with every predicate ϕ in R. The invariant it establishes is
that a thread, in any state, will hold the locks corresponding to precisely the
predicates that are relevant to it. We will simplify the initial description of
our algorithm by assuming that distinct predicates are associated with distinct
locks and later relax this requirement.

Consider any control-flow edge e = u
s→ v. Consider any predicate ϕ in

pm(v) \ pm(u). We say that predicate ϕ becomes relevant at edge e. In the
motivating example, the predicate lastNum == num becomes relevant at the
statement at line [15].

We ensure the desired invariant by adding an acquire of the locks corre-
sponding to every predicate that becomes relevant at edge e. This acquire is
added prior to statement s in the edge. (Acquiring the lock after s may be too
late, as some other thread could intervene between s and the acquire and break
predicate ϕ.)

Now consider any predicate ϕ in pm(u) \ pm(v). We say that ϕ becomes ir-
relevant at edge e. E.g., predicate lastres == f(lastNum) becomes irrelevant
once the false branch at line [9] is taken. For every p that becomes irrelevant at
edge e, we add a release of the lock corresponding to p after statement s.

The above steps ensure that in a concurrent execution a thread will hold a
lock on all predicates relevant to it. The second component of the concurrency
control mechanism is to ensure that any thread that acquires a lock on any
predicate before it falsifies the predicate. Consider an edge e = u

s→ v in the
control-flow graph. Consider any predicate ϕ ∈ R that may be falsified by edge
e. We add an acquire of the lock corrresponding to this predicate before s (unless
ϕ ∈ pm(u)), and add a release of the same lock after s (unless ϕ ∈ pm(v)).
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Managing locks at procedure entry/exit We will need to acquire/release
locks at procedure entry and exit differently from the scheme above. Our al-
gorithm works with the control graph defined in Section 2. Recall that we use
a quiescent vertex w in the control graph. The invariant µ(w) attached to this
quiescent vertex describes invariants maintained by the library (in between pro-
cedure calls). Any return edge u return→ v must be augmented to release all
locks corresponding to predicates in pm(u) before returning. Dually, any proce-
dure entry edge w → u must be augmented to acquire all locks corresponding
to predicates in pm(u).

However, this is not enough. Let w → u be a procedure p’s entry edge. The
invariant µ(u) is part of the library invariant that procedure p depends upon.
It is important to ensure that when p executes the entry edge (and acquires
locks corresponding to the basis of µ(u)) the invariant µ(u) holds. We achieve
this by ensuring that any procedure that invalidates the invariant µ(u) holds
the locks on the corresponding basis predicates until it reestablishes µ(u). We
now describe how this can be done in a simplified setting where the invariant
µ(u) can be expressed as the conjunction of the predicates in the basis pm(u)
for every procedure entry vertex u. (Disjunction can be handled at the cost of
extra notational complexity.) We will refer to the predicates that occur in the
basis pm(u) of some procedure entry vertex u as library invariant predicates.

We use an obligation mapping om(v) that maps each vertex v to a set of
library invariant predicates to track the invariant predicates that may be invalid
at v and need to be reestablished before the procedure exit. We say a function
om is a valid obligation mapping if it satisfies the following constraints for any
edge e = u → v: (a) if e may falsify a library invariant ϕ, then ϕ must be in
om(v), and (b) if ϕ ∈ om(v), then ϕ must be in om(v) unless e establishes ϕ.
Here, we say that an edge u s→ v establishes a predicate ϕ if {µ(u)}s{ϕ} is a
valid Hoare triple. Define m(u) to be pm(u)∪om(u). Now, the scheme described
earlier can be used, except that we use m in place of pm.

Locking along assume edges Recall that we model conditional branching,
based on a condition p, using two edges labelled “assume p” and “assume !p”.
Any lock to be acquired along an assume edge will need to be acquired before
the condition is evaluated. If the lock is required along both assume edges, this
is sufficient. If it is required along only one assume edge, then we will have to
release the lock along the edge where it is not required.

Deadlock Prevention The locking scheme synthesized above may poten-
tially lead to a deadlock. We now show how to modify the locking scheme to
avoid this possibility. For any edge e, let mbf(e) be (a conservative approxima-
tion of) the set of all predicates that may be falsified by the execution of edge
e. We first define a binary relation � on the predicates used (i.e., the set R)
as follows: we say that p � r iff there exists a control-flow edge u s→ v such
that p ∈ m(u) ∧ r ∈ (m(v) ∪mbf(u s→ v)) \m(u). Note that p� r holds iff it is
possible for some thread to try to acquire a lock on r while it holds a lock on p.
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Let �∗ denote the transitive closure of �.
We define an equivalence relation � on R as follows: p � r iff p �∗

r ∧ r�∗ p. Note that any possible deadlock must involve an equivalence class
of this relation. If we map all predicates in an equivalence class to the same
lock, we can avoid deadlocks. In addition to the above, we establish a total
ordering on all the locks, and ensure that all lock acquisitions we add to a single
edge are done in an order consistent with the established ordering.

Optimizations We now discuss some optimizations that can improve the ba-
sic locking scheme and result in better performance.

Our scheme can sometimes introduce redundant locking. E.g., assume that
in the generated solution a lock `1 is always held whenever a lock `2 is acquired.
Then, the lock `2 is redundant and can be eliminated. Similarly, if we have a
predicate ϕ that is never falsified by any statement in the library, then we do
not need to acquire a lock for this predicate. We can eliminate such redundant
locks as a final optimization pass over the generated solution.

Note that it is safe for multiple threads to simultaneously hold a lock on
the same predicate ϕ if they want to “preserve” it, but a thread that wants
to “break” ϕ needs an exclusive lock. Thus, we can use reader-writer locks to
improve concurrency. However, since it is unsafe for a thread that holds a read-
lock on a predicate ϕ to try to acquire a write-lock ϕ, using this optimization
also requires an extension to the basic deadlock avoidance scheme.

Proofs via Predicate Abstraction The sequential proof required by our
scheme can be generated using verification tools, e.g., predicate-abstraction
based tools such as SLAM [3], BLAST [10] and Synergy [9]. Since a minimal
proof and a minimal basis, in general, can lead to better concurrency control,
approaches such as BLAST and Synergy are preferable since they construct lazy
and local abstractions, where a predicate is added to a set pm(u) as and when
necessary.

3.2 Complete Schema

We now present a complete outline of our schema for synthesizing concurrency
control.

1. Construct a sequential proof µ that the library satisfies the given assertions
in any sequential execution.

2. Construct a positive basis pm and an obligation mapping om for the proof
µ.

3. Compute a map mbf from the edges of the control graph to R, the range
of pm, such that mbf(e) (conservatively) includes all predicates in R that
may be falsified by the execution of e.

4. Compute the equivalence relation � on R.
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5. Generate a predicate lock allocation map lm : R → L such that for any
ϕ1 � ϕ2, we have lm(ϕ1) = lm(ϕ2).

6. Compute the following quantities for every edge e = u
s→ v, where we use

lm(X) as shorthand for { lm(p) | p ∈ X } and m(u) = pm(u) ∪ om(u):

BasisLocksAcq(e) = lm(m(v)) \ lm(m(u))
BasisLocksRel(e) = lm(m(u)) \ lm(m(v))
BreakLocks(e) = lm(mbf(e)) \ lm(m(u)) \ lm(m(v))

7. We obtain the concurrency-safe library L̂ by transforming every edge u s→
v in the library L as follows:

(a) for every predicate p in BasisLocksAcq(u s→ v), we add an acquire(lm(p))
before s;

(b) for every predicate p in BasisLocksRel(u s→ v), we add a release(lm(p))
after s;

(c) for every predicate p in BreakLocks(u s→ v), we add an acquire(lm(p))
before s and a release(lm(p)) after s.

All lock acquisitions along a given edge are added in an order consistent
with a total order established on all locks.

3.3 Correctness

We now present a formal statement of the correctness claims for our algorithm.
Let L be a given library with a set of embedded assertions satisfied by all
sequential executions of L. Let L̂ be the library obtained by augmenting L with
concurrency control using the algorithm presented in Section 3.2. Let µ, pm,
and om be the proof, the positive basis and the obligation map used to generate
L̂.

Consider any concurrent execution of the given library L. We say that a
thread t is safe in a state σ if (σ, t) |=c µ(u) where t’s program-counter in state
σ is u. We say that thread t is active in state σ if it’s program-counter is
something other than the quiescent vertex. We say that state σ is safe if every
active thread t in σ is safe. Recall that a concurrent execution is of the form:
σ0

`0−→ σ1
`1−→ · · ·σn, where each label `i is an ordered pair (t, e) indicating that

the transition is generated by the execution of edge e by thread t. We say that
a concurrent execution is safe if every state in the execution is safe. It trivially
follows that a safe execution satisfies all assertions of L.

Note that every concurrent execution π of L̂ corresponds to an execution π′ of
L if we ignore the transitions corresponding to lock acquire/release instructions.
We say that an execution π of L̂ is safe if the corresponding execution π′ of L is
safe. The goal of the concurrency control is to ensure that all possible executions
of L̂ are safe.
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We say that a transition σ
(t,e)−→ σ′ is interference-free if for every active

thread t′ 6= t whose program-counter in state σ is u (a) for every predicate
ϕ ∈ pm(u) the following holds: if (σ, t′) |=c ϕ, then (σ′, t′) |=c ϕ, and (b)
if e = x → y is an entry edge, then none of the predicates in pm(y) are in
om(u). A concurrent execution is termed interference-free if all transitions in
the execution are interference-free.

Theorem 1. (a) Any interference-free concurrent execution of L is safe. (b)
Any concurrent execution of L̂ corresponds to an interference-free execution of
L. (c) Any concurrent execution of L̂ satisfies every assertion of L. (d) The
library L̂ is deadlock-free.

Proof. (a) We prove that every state in an interference-free execution of L is
safe by induction on the length of the execution.

Consider a thread t in state σ with program-counter value u. Assume that t
is safe in σ. Thus, (σ, t) |=c µ(u). Note that µ(u) can be expressed in terms of
the predicates in pm(u) using conjunction and disjunction. Let SP denote the
set of all predicates ϕ in pm(u) such that (σ, t) |=c ϕ. Let σ′ be any state such
that (σ′, t) |=c ϕ for every ϕ ∈ SP. Then, it follows that t is safe in σ′. Thus,
it follows that after any interference-free transition every thread that was safe
before the transition continues to be safe after the transition.

We now just need to verify that whenever an inactive thread becomes active
(representing a new procedure invocation), it starts off being safe. We can es-
tablish this by inductively showing that every library invariant must be satisfied
in a given state or must be in om(u) for some active thread t at vertex u.

(b) Consider a concurrent execution of L̂. We need to show that every
transition in this execution, ignoring lock acquires/releases, is interference-free.

This follows directly from our locking scheme. Consider a transition σ
(t,e)−→ σ′.

Let t′ 6= t be an active thread whose program-counter in state σ is u. For
every predicate ϕ ∈ pm(u) ∪ om(u), our scheme ensures that t′ holds the lock
corresponding to ϕ. As a result, neither of the conditions for interference can
be satisfied.

(c) This follows immediately from (a) and (b).
(d) This follows from our scheme for merging locks.

4 Extensions For 2-State Assertions

We now show how the algorithm presented in the previous section can be ex-
tended to ensure that any concurrent execution of the library will satisfy given
2-state assertions. As explained earlier, 2-state assertions are useful in writing
functionality specifications.

Instrumented semantics. We now define an instrumented semantics that
will allow us to treat these 2-state assertions (in the original semantics) as single-
state assertions (in the instrumented semantics). Informally, the instrumented
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semantics corresponds to the following program transformation. We augment
the set of local variables with a new variable ṽ for every (local or shared) variable
v in the original program and add a primitive statement LP at the entry of every
procedure, whose execution essentially copies the value of every variable v to
the corresponding instrumented variable ṽ.

The Hoare logic for the standard semantics can be extended to this instru-
mented semantics in a straightforward fashion. The semantics of the statement
LP, in Hoare logic, is specified by: {ϕ[x̃ 7→ x, · · · ]} LP {ϕ}. In other words, the
weakest-precondition of ϕ, with respect to LP, is obtained by replacing every
instrumentation variable in ϕ by the corresponding base variable.

Let σ′ denote the projection of an instrumented-semantics state σ′ to a state
in the standard semantics obtained by forgetting the values of the instrumenta-
tion variables. Given a 2-state assertion Φ, let Φ̃ denote the single-state assertion
in the instrumented semantics obtained by replacing every vin by ṽ. As formal-
ized by the claim below, the satisfaction of a 2-state assertion Φ by executions in
the standard semantics corresponds to satisfaction of the single-state assertion
Φ̃ in the instrumented semantics.

Lemma 1. (a) A schedule ξ is feasible in the instrumented semantics iff it is
feasible in the standard semantics. (b) Let σ′ and σ be the states produced by a
particular schedule with the instrumented and standard semantics, respectively.
Then, σ = σ′. (c) Let π′ and π be the executions produced by a particular
schedule with the instrumented and standard semantics, respectively. Then, π
satisfies a single-state assertion ϕ iff π′ satisfies it. Furthermore, π satisfies a
2-state assertion Φ iff π′ satisfies the corresponding one-state assertion Φ̃.

In the sequel, we will not distinguish between vin and the instrumentation
variable ṽ and use just vin.

Synthesizing concurrency control. Since 2-state assertions reduce to single
state assertions in the instrumented semantics, we can now apply the techniques
discussed in Section 3 for synthesizing concurrency control that preserves single-
state assertions. Note that, in this setting, predicates may also involve variables
of the form xin. However, this just represents the local variable ṽ and the
notions of a proof, basis, and and breaking predicates are the same as before.

5 Guaranteeing Linearizability

In the previous section, we showed how we can derive concurrency control to
ensure that each procedure satisfies its sequential specification even in a concur-
rent execution. However, this may still be too permissive, allowing interleaved
executions that produce counter-intuitive results. E.g., consider the procedure
Increment shown in Figure 3, which increments a shared variable x by 1. The
figure shows the concurrency control derived using our approach to ensure spec-
ification correctness. Now consider a multi-threaded client that initializes x to
0 and invokes Increment concurrently in two threads. It would be natural to
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1 global int x;

2 //@ensures x == xin + 1 ∧ returns x
3 Increment () {

4 int tmp;

5 acquire(l(x==xin)); tmp = x; release(l(x==xin));

6 tmp = tmp + 1;

7 acquire(l(x==xin)); x = tmp; release(l(x==xin));

8 return tmp;

9 }

Figure 3: A non-linearizable implementation of the procedure Increment

expect that the value of x would be 2 at the end of any execution of this client.
However, this implementation permits an interleaving in which the value of x at
the end of the execution is 1: the problem is that both invocations of Increment
individually meet their specifications, but the cumulative effect is unexpected.

This is one of the difficulties with using pre/post-condition specifications
to reason about concurrent executions. We can enable clients to reason about
concurrent executions in a modular fashion by guaranteeing that the concurrent
library is linearizable [11]. with respect to its sequential specification. In this
section, we formally define linearizability and we show how our approach can
be extended to derive concurrency control mechanisms that guarantee lineariz-
ability.

5.1 Linearizability

We now adapt and extend the earlier notation to define the notion of lineariz-
ability. Without loss of generality, we assume that each procedure returns the
value of a special local variable ret.

Linearizability is a property of the library’s externally observed behavior. A
library’s interaction with its clients can be described in terms of a history, which
is a sequence of events, where each event is an invocation event or a response
event. An invocation event is a tuple consisting of the procedure invoked, the
input parameter values for the invocation, as well as a unique id. A response
event consists of the id of a preceding invocation event, as well as a return value.
Furthermore, an invocation event can have at most one matching response event.
A complete history has a matching response event for every invocation event.

Consider sequential executions. A sequential history consists of an alter-
nating sequence inv1, r1, · · · , invn, rn of invocation events and corresponding
response events. We will abuse our earlier notation and use σ + invi to denote
an entry state corresponding to a procedure invocation consisting of a valuation
σ for the library’s global variables and a valuation invi for the invoked proce-
dure’s formal parameters. We will similarly use σ + ri to denote a procedure
exit state with return value ri. Let σ0 denote the value of the globals in the
library’s initial state. Let Φi denote the specification of the procedure invoked
by invi. We say that a sequential history is legal if there exist valuations σi,
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1 ≤ i ≤ n, for the library’s globals such that (σi−1 + invi, σi + ri) |=s Φi for
1 ≤ i ≤ n.

We say that a complete interleaved history H is linearizable if there exists
some legal sequential history S such that (a) H and S have the same set of
invocation and response events and (b) for every return event r that precedes
an invocation event inv in H, r and inv appear in that order in S as well. An
incomplete history H is said to be linearizable if the complete history H ′ ob-
tained by appending some response events and omitting some invocation events
without a matching response event is linearizable.

Finally, a library L is said to be linearizable if every history produced by L
is linearizable.

5.2 Linearization Points

In the sequel, we present an algorithm for synthesizing concurrency control that
guarantees linearizability, which takes a linearization point specification (defined
below) as an extra parameter, inspired by the classical notion of linearization
points. We define a linearization point set, for a procedure, to be a set S of
edges in its control-flow graph such that (a) every path from the entry vertex
to exit vertex passes through some edge in S and (b) the procedure does not
update any global variable along any path from the entry vertex to any edge in
S. A linearizability point specification consists of a linearization point set for
every procedure in the library.

In the sequel, the reader may assume the simple linearizability point spec-
ification consisting of the entry edge for every procedure. (Handling a more
general linearizability point specification requires treating a reference to xin

in a postcondition as denoting the value of x when the procedure invocation
executes its linearization point. Correspondingly, in our algorithm, we adapt
the control-flow graph representation by instrumenting every linearization point
(edge) by the statement LP defined in Section 4.)

5.3 Synthesizing concurrency control for linearizability

We now show how our approach can be extended to guarantee linearizability
modulo a sequential specification and a linearization point specification. Our
ambitious approach of locking predicates, rather than data-items, makes this
goal challenging, as ideas from conventional approaches (based on locking data-
items) do not necessarily carry over. Thus, we study few tricky cases and shed
light on the problem of extracting greater concurrency than conventional ap-
proaches (based on locking data-items) by allowing interleavings not permitted
by conventional approaches.

We start by characterizing non-linearizable interleavings permitted by our
earlier approach. We classify the interleavings based on the natures of incon-
sistencies they cause. For each class of interleavings, we describe an extension
to our approach to generate additional concurrency control to prohibit these
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interleavings. Finally, we prove correctness of our approach by showing that all
interleavings we permit are linearizable.

Delayed Falsification The first issue we address, as well as the solution
we adopt, are not surprising from a conventional perspective. Informally, the
problem with the Increment example can be characterized as “dirty reads” and
“lost updates”: the second procedure invocation reads the original value of x,
instead of the value produced by the the first procedure invocation; dually, the
update done by the first procedure invocation is lost, when the second procedure
invocation updates x. From a logical perspective, the second invocation relies
on the invariant x == xin early on, and the first invocation breaks this invariant
later on when it assigns to x. This prevents us from reordering the execution to
construct an equivalent sequential execution (while preserving the proof). To
achieve linearizability, we need to avoid such “delayed falsification”.

The extension we now describe prohibits such interference by generating
concurrency control to ensure instructions that may falsify predicates and occur
after the linearization point will appear to execute atomically along with the
linearization point. We achieve this by modifying the strategy to acquire write
locks as follows.

• We generalize the earlier notion of may-falsify. We say that a path may-
falsify a predicate ϕ if some edge in the path may-falsify ϕ. We say that a
predicate ϕ may-be-falsified-after vertex u if there exists some path from u
to the exit vertex of the procedure that does not contain the linearization
point and may-falsify ϕ.

• Let mf be a predicate map such that for any vertex u, mf(u) includes any
predicate that may-be-falsified-after u.

• We generalize the original scheme for acquiring write locks. We augment
every edge e = u

S→ v as follows:

1. For every lock ` in lm(mf(v))\lm(mf(u)), we add an “acquire(`)”
(write lock) before S

2. For every lock ` in lm(mf(u))\lm(mf(v)), we add an “release(`)”
(write lock) after S

This extension suffices to produce a linearizable implementation of the ex-
ample in Figure 3.

Altering Control Flow One interesting aspect of our scheme is that it per-
mits interference that alters the control flow of a procedure invocation if it
does not cause the invocation to violate its specification. Such interference may
seem benign, but it can lead to non-linearizable behavior. Consider procedures
ReduceX and IncY shown in Figure 5. The specification of ReduceX is that it
will produce a final state where x < y, while the specification of IncY is that it
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will increment the value of y by 1. ReduceX meets its specification by setting x
to be y − 1, but does so only if x ≥ y. Initially, x = y = 0.

Now consider a client that invokes ReduceX and IncY concurrently. The
problematic interleaving is the following. Assume that the ReduceX invocation
enters the procedure. Then, the invocation of IncY executes completely. The
ReduceX invocation continues, and does nothing since x < y at this point.
This interleaving produces the final state x = 0, y = 1, This is, however, not
consistent with a sequential execution where ReduceX executes first, followed by
an execution of IncY, which should produce a final state where x < y− 1. (The
interleaving is consistent with a sequential execution of the procedures in the
opposite order; however, we can enrich the example with other statements that
force the sequential execution to be in the order ReduceX; IncY.)

Figure 5 also shows a sequential proof and the concurrency control derived
by the scheme so far, assuming that the linearization points are at the procedure
entry. A key point to note is that ReduceX’s proof needs only the single predicate
x < y. The statement y = y + 1 in IncY does not falsify the predicate x < y;
hence, IncY does not acquire the lock for this predicate. We can characterize
the interference in this example as positive interference: IncY does something
that helps, rather than hinders, ReduceX. Unfortunately, this means that when
we try to linearize the execution, ReduceX does not meet its obligation.

We avoid such problems by ensuring that interference by concurrent threads
cannot affect the execution path one thread takes. We achieve this by strength-
ening the notion of positive basis we use as follows: (a) The set of basis predi-
cates at a branch node must be sufficient to express the assume conditions on
outgoing edges using disjunctions and conjunctions over the basis predicates,
and (b) The set of basis predicates at neighbouring vertices must be positively
consistent with each other: for any edge u s→ v, and any predicate ϕ in the basis
at v, the weakest-pre-condition of ϕ with respect to s must be expressible using
disjunctions and conjunctions of the basis predicates at u.

In the current example, this requires the predicate x ≥ y to be added to
the basis for ReduceX. As a result, ResultX will acquire lock lx≥y at entry,
while IncY will acquire the same lock at its linearization point and release the
lock after the statement y = y + 1. Again, it is easy to see that the resulting
implementation is linearizable.

Affecting Return Values There is still one hurdle we must overcome for
linearizability. The extensions so far ensure that interference will not affect a
procedure invocation’s ability to meet its specification. However, it is still possi-
ble for interference to affect the actual value returned by a procedure invocation,
leading to non-linearizable executions.

Consider procedures IncX and IncY in Figure 4, which increment variables
x and y respectively. Both procedures return the values of x and y. However,
the postconditions of IncX (and IncY) do not specify anything about the final
value of y (and x respectively). Let us assume that the linearization points of
the procedures are their entry points. Initially, we have x = y = 0.
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Consider the following interleaving of a concurrent execution of the two pro-
cedures. The two procedures execute the increments in some order, producing
the state with x = y = 1. Then, both procedures return (1, 1). This execution
is non-linearizable because in any legal sequential execution, the procedure ex-
ecuting second is obliged to return a value that differs from the value returned
by the procedure executing first.

The left column in Figure 4 shows the concurrency control derived using
our approach with the previously described extensions. This is insufficient to
prevent the above interleaving. The reason this interference is allowed is that
the specification for IncX allows it to change the value of y arbitrarily; hence, a
concurrent modification to y by any other procedure is not seen as a hindrance
to IncX.

Our next extension is designed to prohibit such interference. To do this
within our framework, we need to determine whether the execution of a state-
ment s can potentially affect the return-value of another procedure invocation.
We will do this by computing a predicate φ(ret′) at every program point u that
captures the relation between the program state at point u and the value re-
turned by the procedure invocation eventually (denoted by ret′). We can then
check if the execution of a statement s will break predicate φ(ret′), treating ret′

as a free variable, to determine if the statement could affect the return value of
some other procedure invocation.

Formally, we assume that each procedure returns the value of a special vari-
able ret. (Thus, “return exp” is shorthand for “ret = exp.) We introduce a
special primed variable ret′. We compute a predicate φ(u) at every program
point u such that (a) φ(u) = ret ’== ret for the exit vertex u, and (b) for every
edge u s→ v, {φ(u)}s{φ(v)} is a valid Hoare triple. In this computation, ret′ is
treated as a free variable. In effect, this is a weakest-precondition computation
of the predicate ret ’== ret from the exit vertex.

Next, we augment the basis at every vertex u so that it includes a basis for
φ(u) as well. We now apply our earlier algorithm using this enriched basis set.

The middle column in Figure 4 shows the augmented sequential proof of cor-
rectness of IncX. The concurrency control derived using our approach starting
with this proof is shown in Figure 4. The lock lmerged denotes a lock obtained by
merging locks corresponding to multiple predicates simultaneously acquired/re-
leased. It is easy to see that this implementation is linearizable. Also note that
if the shared variables y and x were not returned by procedures IncX and IncY
respectively, we will derive a locking scheme in which accesses to x and y are
protected by different locks, allowing these procedures to execute concurrently.

5.4 Correctness

We now present a proof that with the above extensions, our approach guarantees
linearizability.

Theorem 2. Given a library L that is totally correct with respect to a given
sequential specification, the library L̂ generated by our algorithm is linearizable
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with respect to the given specification.

Proof. Consider any interleaved execution produced by a schedule ξ. We as-
sume, without loss of generality, that every procedure invocation is executed by
a distinct thread. Let t1, . . . , tk denote the set of threads which complete exe-
cution in the given schedule, ordered so that ti executes its linearization point
before ti+1. Let `0, `1, . . . , `n represent steps in the schedule ξ, where `j is an
ordered pair (t, e) representing the execution of edge e by thread t ∈ {t1, . . . , tk}.
We use the notation t(`j) to represent the thread executing `j , e(`j) to repre-
sent the statement executed at `j and u(`j) to represent the source vertex of the
statement e(`j). Let σ0 denote the initial state. We show that ξ is linearizable
by showing that ξ is equivalent to a sequential execution of the specifications of
the threads t1, . . . , tk executed in that order.

Let ξi denote a projection of schedule ξ consisting only of execution steps by
threads in the set { t1, · · · , ti }.

Lemma 2. ξi is a feasible schedule.

Proof. We prove the lemma by contradiction. Assume that ξi is not feasible.
Let `j be the first infeasible step in ξi. Note that ξi is obtained from a feasible
schedule ξ by omitting steps executed by some threads. Thus, `j must corre-
spond to some branch: i.e., `j must contain a statement assume(φ) such that
φ is true when `j is executed in ξ, while φ is false when `j is executed in ξi.
But our extension for linearizability prevents exactly this kind of interference
(by ensuring that one thread’s actions cannot alter the control flow of another
thread), as shown below.

Let u0
s1→ u1 · · ·uk be the path executed by thread t(`j) prior to infeasible

step `j . By construction, there exist sets of predicates Xp ⊆ µ(up), for 1 ≤ p ≤
k, such that each Xp is sufficient to ensure Xp+1 in the sense explained below
(for 1 ≤ p < k) and Xk = {φ,¬φ}. We say that Xp is sufficient to ensure Xp+1

if for every ψ in Xp+1, the weakest-precondition of ψ with respect to sp can be
expressed using predicates in Xp using conjunctions and disjunctions.

Our locking scheme ensures that t(`j) holds locks on all predicates in Xp

when it is at up. This implies that if φ is false prior to step `j in execution ξi,
then the extra steps performed by other threads in execution ξ cannot make φ
true. Hence, step `j must be infeasible in ξ as well, which is a contradiction.

Next, we show that the projected schedules ξi preserve the return values of
procedure invocations.

Lemma 3. The value returned by ti in the execution of ξi is the same as the
value returned by ti in the execution of ξ.

Proof. This lemma follows from the extension that prevents a procedure from
affecting the value returned by another invocation. In a manner similar to the
proof of lemma 2, we can show that this extension ensures that any step sw from
threads (ti+1, . . . , tk) that can affect the return value of ti, appears to execute
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after the linearization point of ti. Furthermore, any steps in ti that affect the
return value appear to occur with or before the linearization point of ti.

Let σi be the state obtained by executing schedule ξi from initial state σ0.
Let Φi denote the specification for the procedure executed by thread ti. Consider
the sequence of states S = σ0, σ1, . . . , σk. The following holds for every pair of
states (σi−1, σi).

Lemma 4. ((σi−1, σi), ti) |=c Φi

Proof. Let σlp
i represent the program state at the linearization point of thread

ti. From Theorem 1, we know that ((σlp
i , σi), ti) |=c Φi.

Consider any step ` such that t(`) 6= ti and e(`) updates shared state. If no
such step exists, the lemma trivially holds. Let φ be a predicate that e(`) may
break. If there exists any step `′ from thread ti such that φ ∈ u(`′), then our
algorithm would generate concurrency control in ti to prevent interference from
` while φ is required to hold in ti. It follows that such a step ` could only have
executed before the linearization point of ti (since the linearization point of ti
occurs after the linearization point of tj , 0 ≤ j < i in ξ). Since none of the basis
predicates of any step in ti are falsified, the lemma holds.

Note that the sequence S represents the sequence of intermediate states of
a sequential execution of the specifications of the library. This proves that any
concurrent schedule ξ of L̂ is equivalent (corresponding procedures return the
same values) to a sequential execution of the specifications.

The above theorem requires total correctness of the library in the sequential
setting. E.g., consider a procedure P with a specification ensures x==0. An
implementation that sets x to be 1, and then enters an infinite loop is partially
correct with respect to this specification (but not totally correct). In a concur-
rent setting, this can lead to non-linearizable behavior, since another concurrent
thread can observe that x has value 1, which is not a legally observable value
after procedure P completes execution.

6 Implementation

We have built a prototype implementation of our algorithm. Our implementa-
tion takes a sequential library as input. A pre-processing phase transforms each
procedure of the library into a valid C program containing just that procedure
(renamed to main), its assertions and all global variables. In the first phase of
our analysis, we use an existing predicate-abstraction-based software verifica-
tion tool, adapted to emit a proof of correctness for each of the programs. We
compute a positive basis from the proof. A subsequent phase identifies points
at which a given procedure breaks predicates in the basis of other procedures.
A third phase implements an algorithm for detecting and eliminating deadlocks
in the locking scheme and emits the final concurrency control.
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Library Description
compute.c+ See Figure 1
increment.c+ See Figure 5
reduce.c+ See Figure 4
average.c+ Two procedures that compute the sum

and average of a set of numbers
device cache.cOne procedure that reads data from a

device and caches the data for subse-
quent reads [6]. The specification re-
quires quantified predicates.

Table 1: Examples used in our evaluation.

Table 1 shows some of the benchmark programs we have experimented with.
Our implementation could automatically generate a proof and derive concur-
rency control automatically for libraries marked with +. We were restricted
to a small class of programs due to limitations of the software model checker
in handling complex assertions in libraries that use arrays, pointers and dy-
namic memory allocation. We have also manually applied our technique to a
few libraries that could not be proved correct automatically. For example, we
generated a proof of correctness for device cache library in [6] and used the proof
to derive the same concurrency control scheme described in the paper.

7 Related Work

Most existing work [8, 4, 7, 14, 12, 16] on synthesizing concurrency control fo-
cuses on automatically inferring lock-based synchronization for atomic sections
to guarantee atomicity. Linearizability relative to a sequential specification,
which we pursue, is a weaker requirement that permits greater concurrency than
the notion of atomic sections. Furthermore, existing lock inference schemes for
atomic sections identify potential conflicts between atomic section at the gran-
ularity of data items and acquire locks to prevent these conflicts, either all at
once or a two-phase locking approach. Our approach is novel in using a logical
notion of interference (based on predicates), which can potentially permit more
concurrency. Finally, the locking disciplines we infer do not necessarily follow
two-phase locking, yet guarantee linearizability.

Vechev et al. [17] address the problem of automatically deriving linearizable ob-
jects with fine-grained concurrency, using hardware primitives to achieve atom-
icity. The approach is semi-automated, and requires the developer to provide
algorithm schema and insightful manual transformations as its first step.

Synthesis and Repair of Concurrent Programs: Early work in [1, 2]
synthesizes individual processes in a concurrent program from a detailed multi-
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process CTL specification. [15] is a partial synthesis technique that adds missing
synchronization by iteratively exploring the space of candidate programs for a
given thread schedule, and pruning the search space based on counterexample
candidates. [13] uses a model-checking based approach to repair errors in a con-
current program by pruning erroneous paths from the control-flow graph of the
interleaved program execution. In [18], the key goal is to obtain a maximally
concurrent program for a given cost. This is achieved by deleting transitions
from the state-space based on observational equivalence between states, and in-
specting if the resulting program satisfies the specification and is implementable.
[5] allows users to specify synchronization patterns for critical sections, which
are used to infer appropriate synchronization for each of the user-identified re-
gion.

8 Extensions and Future Work

Our work opens up a number of interesting ideas and problems that appear
worth pursuing.

Optimistic Locking of Library Invariants: A library typically has in-
variants characterizing its stable state. (These are invariants associated with the
quiescent point in our proof). In our scheme, a procedure P holds on to a lock
corresponding to a predicate p if it relies on p later in the computation. This
approach may be pessimistic for library invariants, since any other procedure
that breaks this property is guaranteed to eventually reestablish the invariant
again. An alternative scheme, in such a case, would be for P to release the lock
on p when it does not immediately require it but acquire it again when needed.
Dually, any procedure would acquire the lock before breaking the property and
release it only after reestablishing it.

Choosing Good Solutions: This paper presents a space of valid locking
solutions that guarantee the desired properties. Specifically, the locking solution
generated is dependent on several factors: the sequential proof used, the basis
used for the proof, the mapping from basis predicates to locks, the linearization
point used, etc. Given a metric on solutions, generating a good solution accord-
ing to the given metric is a direction for future work. E.g., one possibility is to
evaluate the performance of candidate solutions (suggested by our framework)
using a suitable test suite to choose the best one.

Fine-Grained Locking: It would be interesting to explore generalizing our
approach to infer fine-grained locking. (A fine-grained locking scheme uses an
unbounded number of locks, e.g., one associated with each element of a linked
list.)

Modular Linearizability Proofs: It would be worth exploring the use of
ideas presented here to derive more modular proofs of linearizability of hand-
crafted (e.g., lock-free) concurrent data structures, for either automatic or semi-
automatic verification.
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1 global int x, y;

2 //@ensures y = yin + 1
3 IncY() {

4 acquire(ly==yin )

5 [true]

6 LP : yin = y

7 [y == yin]
8 y = y + 1;

9 [y = yin + 1]
10 release(ly==yin )

11 }

1 //@ensures x < y
2 ReduceX () {

3 acquire(lx<y)

4 [true]
5 LP
6 [true]
7 if (x ≥ y) {

8 [true]
9 x = y - 1;

10 }

11 [x < y]
12 release(lx<y)

13 }

Figure 5: An example illustrating interference in control flow.
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