
Vertical Paxos and Primary-Backup Replication

Leslie Lamport, Dahlia Malkhi, Lidong Zhou
Microsoft Research

1. Introduction
Large-scale distributed storage systems built over failure-
prone commodity components are increasingly popular. Fail-
ures are common in those large systems, and replication is
often the solution to data reliability. A clear gap remains be-
tween the well-known consensus algorithms and the practical
replication protocols in real systems: consensus algorithms
such as Paxos [2] are used mostly to maintain global config-
uration information, not for the actual data replication.

The gap is not accidental; the abstract models that de-
fine the classic consensus algorithms do not fully capture
the requirements of real distributed systems. In the classic
consensus problem, there is a single replica group consisting
of a fixed set of n processes, at most f of which can fail. In
practice, a distributed system consists of a large number of
overlapping replica groups, each responsible for maintain-
ing a subset of the system’s data. Only a small number
of servers (usually f + 1, with a small f) are deployed for
each particular replica group. When replicas fail, they are
replaced promptly with new ones—a procedure called re-
configuration—before additional failures lead to permanent
data loss. The entire system has an abundance of servers,
facilitating reconfiguration and new replica deployment.

We bridge the gap with two new algorithms in a family
of algorithms called Vertical Paxos [3] that is derived from
the Paxos consensus algorithm. Vertical Paxos allows the
configuration to change in the middle of a single consensus
decision, using reconfiguration directives from an auxiliary
configuration master. The configuration master can be im-
plemented using the replicated state machine approach with
ordinary Paxos. Such a master is natural in practice for
maintaining the configurations of the many replica groups
in the system. The master is called upon only for reconfig-
urations, which should be infrequent, so a single master can
serve many separate replica groups.

Our treatment has particular relevance to the primary-
backup approach. Classic primary-backup replication proto-
cols, common in practical distributed systems, use only f +1
servers to tolerate f faults. To get around the lower bound
of 2f + 1 processes needed to solve the consensus problem,
a primary-backup protocol must either use an external ser-
vice such as our configuration master or make more restric-
tive assumptions about failures. We know of no previous
primary-backup protocol based on an external service that

Copyright is held by the author/owner(s).
ACM X-XXXXX-XX-X/XX/XX.

has a rigorous correctness proof. Our two Vertical Paxos al-
gorithms lead to two provably correct primary-backup pro-
tocols. One is a rigorous formulation of existing protocols.
The second is a new variation that can be useful in practice.

2. From Paxos to Vertical Paxos
Like ordinary Paxos, Vertical Paxos implements a replicated
state machine by executing a sequence of logically separate
instances of a consensus algorithm, instance i choosing the
ith state machine command. The actions of different in-
stances are easily distinguished using explicit indices, but
may interleave in time due to asynchrony.

There are four roles: clients submit commands to be
added to a totally ordered sequence of commands. Learners
implement the state machines: they learn what command
is chosen at each instance and execute the commands in
order. Leaders and acceptors execute a protocol for reach-
ing consensus decisions. Certain sets of acceptors are called
quorums; any two quorums have a nonempty intersection.
The set of acceptors and its quorum structure is called the
configuration for the consensus. A client sends requests to
any active leader. A single process can play multiple roles.

For fault tolerance, a new leader must be activated when a
previous leader fails to make timely progress. As in ordinary
Paxos, the execution of a consensus instance may consist of
multiple leader activations, each activation attempting to
reach a decision. Leader activations are called (for histor-
ical reasons) ballots; each ballot has a unique number. A
replicated state-machine execution progresses both horizon-
tally as a sequence of consensus instances and vertically with
increasing ballot numbers.

At the heart of the consensus algorithm is a protocol per-
formed by a leader with a new ballot. As in ordinary Paxos,
a new leader must discover, for all instances, if any command
was chosen at lower-numbered ballots. At the same time, the
new leader must stop lower-numbered ballots from choosing
any further commands. The leader then tries to ensure the
choice of a command in any instance for which a command
was proposed by a previous leader but possibly not chosen.
For instances in which no command has been proposed, it
can propose new ones. A command is chosen at a ballot if
a quorum of acceptors have acknowledged that command at
this ballot. A leader of a later ballot may similarly query
for the past proposed commands and block new ones by
contacting a quorum of acceptors. In standard Paxos, the
leader of a new ballot performs the following actions.

Phase 1: The leader performs one round of message ex-
changes with acceptors. When it hears back from a



quorum of acceptors, it learns for every instance ei-
ther (i) a command c that might have been chosen, or
(ii) that no command was chosen. In this exchange,
the leader also obtains a commitment from the accep-
tors not to respond to any further proposals in lower-
numbered ballots (which in an asynchronous system
could arrive at any time).

Phase 2: For every instance in which case (i) holds, the
leader proposes the command c to the acceptors. For
instances in which case (ii) holds, it proposes new com-
mands as it receives them from clients.

The acceptors accept, store, and acknowledge a leader’s pro-
posal, unless they were instructed by a leader of a higher-
numbered ballot to ignore this ballot.

Vertical Paxos generalizes the traditional Paxos algorithm
in two ways. The first is that Vertical Paxos allows a dif-
ferent configuration to be associated with each ballot. A
separate auxiliary configuration master decides and main-
tains the mapping from ballot numbers to the corresponding
configurations. Reconfiguration therefore takes place “verti-
cally”, across the ballot numbers.

The second generalization is that it distinguishes read
quorums from write quorums of acceptors, where any write
quorum intersects with any other quorum; the first phase of
the protocol involves a read quorum, while the second a write
quorum. This generalization has appeared before [1], but be-
comes especially significant when the configuration changes
from ballot to ballot. In particular, primary-backup replica-
tion uses configurations where read and write quorums are
distinct, and reconfigures upon a failure.

In Vertical Paxos, a new ballot is started by the configura-
tion master, which chooses its number, leader, and configu-
ration. The two phases of Vertical Paxos work as follows. In
the first phase, the leader communicates not only with a read
quorum of acceptors in the configuration of the new ballot,
but also with read quorums in the configurations of lower-
numbered ballots. It thus learns of any commands chosen
in lower-numbered ballots and, at the same time, prevents
any new commands from being chosen in those ballots.

The second phase of Vertical Paxos is the same as in the
standard Paxos, except that the leader contacts a write quo-
rum in the configuration of the current ballot.

An old configuration becomes obsolete, and its read quo-
rums no longer contacted, when all the possibly-chosen com-
mands stored on its acceptors are known to acceptors for
higher-numbered ballots. This occurs through a state trans-
fer process, where a leader reads the commands stored on
read quorums of lower-numbered ballots and writes the
possibly-chosen commands to a write quorum in the new
ballot. The two variants of the Vertical Paxos algorithm
differ on when a configuration is considered active with re-
spect to the state transfer.

Vertical Paxos II ensures that there is a single active con-
figuration at any time. A new leader initiates state transfer
from the current active configuration to the new one, and
only after the state transfer completes does it request the
master to activate the new configuration.

The Vertical Paxos II leader protocol is adapted from the
Paxos leader protocol as follows. In the first phase, the
leader contacts a read quorum of acceptors in the currently
active ballot. The second phase is broken into several stages.

A: For every instance at which the leader learns a command
c that might have been chosen, the leader proposes c
to a write-quorum of acceptors in the second phase.

B: When the second phase for all those instances is com-
pleted, the leader asks the master to activate the new
ballot number (and the new configuration).

C: For other instances (where no command has been cho-
sen), the leader waits for the next proposed command
from a client and proposes the value in phase 2 of the
protocol.

In Vertical Paxos I, the master makes the new configuration
active immediately. The configuration remains active until
the master hears from a leader that the configuration’s state
has been transferred to the acceptors of a higher-numbered
ballot. This algorithm allows multiple configurations to be
active at the same time. Upon starting a new ballot, the
master informs the new ballot’s leader which configurations
are active. Readers are referred to [3] for full descriptions of
both Vertical Paxos protocols.

3. Vertical Paxos and Primary-Backup
The most interesting case of Vertical Paxos is when any sin-
gle acceptor forms a read quorum and the only write quo-
rum is the set of all acceptors. Such a configuration allows
f -fault tolerance with only f + 1 acceptors. Moreover, we
can make the leader one of the acceptors and, upon recon-
figuration, choose the new leader from among the current
acceptors. The new leader by itself is then a read quorum
for the previous ballot, and it can perform phase 1 all by
itself. This means that, in Vertical Paxos II, the only state
transfer needed is between the leader and any new acceptors.
With the leader as the primary and all other acceptors as
backups, we obtain a traditional primary-backup system.

Most primary-backup protocols maintain a single active
configuration, as captured by Vertical Paxos II, which re-
quires state transfer before reconfiguration. In practical sys-
tems, state transfer tends to involve copying a large amount
of data and is therefore costly. By allowing multiple ac-
tive configurations, Vertical Paxos I decouples state trans-
fer from reconfiguration. A new configuration can be acti-
vated to accept new requests while the state is transferred
from the old configuration. This simple variation of the
existing primary-backup protocols has a practical benefit:
a replica group can be promptly reconfigured to replace a
non-responsive replica, the new configuration becoming ac-
tive and accepting new commands without waiting for the
costly state transfer to the new replica.

4. References
[1] Roberto De Prisco, Butler Lampson, and Nancy Lynch.

Revisiting the Paxos algorithm. In Marios Mavronicolas
and Philippas Tsigas, editors, Proceedings of the 11th
International Workshop on Distributed Algorithms
(WDAG 97), pages 111–125. Springer-Verlag, 1997.

[2] Leslie Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16(2):133–169,
May 1998.

[3] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou.
Vertical Paxos and primary-backup replication.
Technical Report MSR-TR-2009-63, Microsoft, May
2009.


