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ABSTRACT
Since the early days of networks, a basic principle has been
that endpoints treat the network as a black box. An end-
point injects a packet with a destination address and the
network delivers the packet. This principle has served us
well, and allowed us to scale the Internet to billions of de-
vices using networks owned by competing companies and
devices owned by billions of individuals. However, this ap-
proach might not be optimal for large-scale Internet data
centers (DCs), such as those run by Amazon, Google, Mi-
crosoft and Yahoo, that employ custom software and cus-
tomized hardware to increase efficiency and to lower costs.
In DCs, all the components are controlled by a single entity,
and creating services for the DC that treat the network as
a black box will lead to inefficiencies.

In DCs, there is the opportunity to rethink the relation-
ship between servers, services and the network. We believe
that, in order to enable more efficient intra-DC services,
we should close the gap between the network, services and
the servers. To this end, we have been building a direct
server-to-server network topology, and have been looking at
whether this makes common services quicker to implement
and more efficient to operate.
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C.2.1 [Network Architecture and Design]: Network topol-
ogy; C.2.2 [Network Protocols]: Routing protocols, Ap-
plications
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1. INTRODUCTION
Internet scale data centers (DCs), such as those run by

Amazon, Google, Microsoft and Yahoo, provide online ser-
vices to millions of individuals distributed across the Inter-
net and host tens of thousands of servers. To cope with this
scale and lower the total costs of ownership, these DCs use
custom software and hardware. On the hardware side, cus-
tomization of servers, racks and power supplies is common-
place, as the scale of the DCs makes it economically feasible
to design and build dedicated hardware, e.g., [18, 8]. Soft-
ware services, such as distributed file systems and databases,
are implemented as custom services, such as BigTable [7],
Map-Reduce [10], Dryad [28], Dynamo [16], Chubby [5], and
GFS [15].

The only component that has not really changed is the
networking, which is heavily influenced by the current In-
ternet architectures and standards. IP routing treats the
network as a black box. However, in these DCs, all the
servers, networking infrastructure and software components
are owned and controlled by a single entity. Why should the
services running inside the DC treat the network as a black
box that opaquely routes packets?

In the last decade, the networking community has been
looking at overlays as a way to overcome the inflexibility
and opaqueness of the Internet and to enable the deploy-
ment of richer services. Many of these overlays are already
being used in data centers; for instance, Facebook is using
application-level trees to perform aggregation of log data [14],
and Amazon leverages gossip-based overlays for end-system
monitoring [3, 4]. Indeed, many of the custom services de-
ployed in DCs today have more than a passing similarity to
an overlay.

In order to make these services easier to build and more
efficient to run in DCs, we investigate the relationship be-
tween services, servers and the network. We borrow ideas
from the fields of high performance parallel computing, dis-
tributed systems and networking. We believe it is possible
to build more efficient services in DCs if we can close the
gap between the servers on which the services run and the
network. To investigate this, we have been examining direct
server-to-server connection network topologies that remove
all dependence on traditional switches, bridges and routers.
We assume that each server has a multi-port network inter-
face card, and each port is connected to a single port on an-
other server. All routing of packets is performed on the NIC,
with packets forwarded directly from server NIC to server
NIC. We assume that the services running on each server are
able to intercept and manipulate the packets in flight. This



flexibility, combined with a fixed and rich network topology
which is explicitly exposed to the services, allows services to
adapt to and exploit the topology. It closes the gap between
the services, the servers, and the network.

In Section 2, we place our work in the context of related
work while, in Section 3, we motivate our approach and out-
line the architecture of our system, based on a k-ary 3-cube
topology. We are developing a number of services to show
the feasibility and the benefits provided by our approach.
These are outlined in Section 4. One of the services de-
scribed is a multi-hope routing service. This service exploits
a novel distance-vector based routing protocol that is able to
handle failures and can support fine-grained load balancing.
Further, we have made the routing protocol energy aware,
and it dynamically scales the number of active links based
on current network load. We are currently evaluating our
approach using a small-scale testbed as well as large-scale
simulations. Preliminary results are reported in Section 5.
Finally, we end the paper in Section 6 with brief concluding
remarks.

2. BACKGROUND
Large-scale DCs are evolving and customization of hard-

ware and software is the norm. Even the physical form fac-
tor of DCs is changing; Google and Microsoft are creating
DCs using storage containers, delivered to site pre-populated
with the hardware required [17, 29]. It has even been pro-
posed that such containers could be sealed, with sufficient
redundancy to allow the container to (probabilistically) keep
functioning for a desired time period. This change is driven
by the fact that a single entity owns the DC and the entire
infrastructure within it, and controls the services that are
run on it.

From a networking perspective, if a single entity owns the
networking infrastructure, then it is feasible to customize
this too. There have been a number of proposals for re-
designing enterprise and DC networking. A number of pro-
posals have focused on scaling Ethernet, such as SEATTLE
[27] for the enterprise, and Monsoon [20], for the DC. In
general, these aim to provide a flat address space where the
IP address of the devices attached to the network is inde-
pendent of their location within the network. This means
that the IP address is not used for routing, instead they rely
on simply using a MAC address. These systems, therefore,
require a scalable and efficient directory service to map IP
addresses, used at layer 3, to a layer 2 MAC address. SEAT-
TLE, for example, uses a one-hop switch based Distributed
Hash Table (DHT). In DCs, this approach is attractive, as
it no longer ties the IP address of a service (or Virtual Ma-
chine, etc) to a particular physical location in a rack or small
set of racks, and makes it feasible to migrate VMs to arbi-
trary servers in a DC without disrupting layer 3 and above
services.

The fat-tree [1] and DCell [21] proposals evaluate new
network topologies for use in the DC. They both maintain a
hierarchical approach where a server’s IP address is still used
to route a packet. In [1], rather than using a traditional tree
of routing and switching elements to provide the DC net-
working, a fat-tree topology is used where the elements are
modified commodity Ethernet switches. This has the bene-
fit of removing the need for high-end routers to act as the
root of the tree, thus increasing the bisectional bandwidth,

by spreading the load across more switches. The approach
proposed in DCell is closest to the approach we are adopt-
ing. In DCell, clusters, or racks, of servers are connected
with each other using a commodity switch, and the clus-
ters are linked by having servers within each cluster directly
connected to other servers in different clusters. This hybrid
approach allows all nodes within a cluster to communicate
efficiently with, and for packets to be routed to, servers in
different clusters via other servers in the cluster. The IP
address encodes the cluster in which a server is located.

3. THE BORG DATA CENTER
In our work, we would like to design a network that makes

building and running services that run in the DC more effi-
cient. Distributed services deployed within large-scale DCs,
such as Dynamo and Dryad, are complex systems, and can
be considered overlays running on top of a physical network.
Like all overlays, they are required to infer properties of the
physical network, such as locality, congestion and available
bandwidth. Many services need to form a logical topology on
top of the physical topology but there is no network support
for this. The interface between the network and services is
very simple, providing only point-to-point packet delivery.

The difficulties are compounded by the relationship be-
tween servers and the network infrastructure, where nor-
mally both are oblivious to the requirements of the other.
Programmable routers and switches provide one opportunity
to begin to address this issue. However, writing a service
that is partly hosted on a server and partly hosted on the
networking infrastructure increases complexity considerably.

We are exploring completely removing the distinction be-
tween the servers and the network infrastructure by integrat-
ing them. Instances of each service run on every server, and
each service receives packets from service instances running
on connected servers. The service is responsible for process-
ing, manipulating and potentially forwarding the packet to
another connected server. Hence, even the core multi-hop
routing protocol is implemented as a service running on the
servers. Indeed, multiple routing protocols could be used
concurrently, and many of the services may choose to per-
form their own routing.

3.1 General Architecture
We assume that the data center is composed of a set of

servers, where each server compromises a general purpose
multi-core processor, memory and persistent storage, either
mechanical or solid state disks, and a high-performance NIC
with multiple ports. We consider a direct-connect topology
where each port is connected directly to another port on
another server. Hence, each server will perform all packet
forwarding and routing. We assume that each NIC is power-
ful enough to support both arbitrary offloaded computation
and packet forwarding at gigabit plus speeds between mul-
tiple ports. For energy savings, this will enable us to, for
example, power off the core CPU while still running ser-
vices. We also assume that the NIC can access all of the
server’s resources, e.g. storage. For example, this allows
services running on the NIC to use persistent storage or
memory to buffer packets for extended periods of time, etc.
We believe that these are reasonable assumptions, and are
feasible in a time horizon of 5 to 10 years. Indeed, already
the NetFPGA project has shown that it is feasible to build



a cheap commodity programmable network card that can
drive four 1-gigabit ports at line rate using FPGAs [31]. In
addition, NICs enhanced with computing capabilities are al-
ready commercially available (e.g. the Killer NIC card [26]
mounts a PowerPC processor running Linux), thus further
confirming the soundness of our assumptions.

3.2 The Borg Topology
In principle, the Borg approach could be enabled by any

direct server-to-server connection topology, i.e. by all topolo-
gies in which servers are directly connected to neighbors
without any dedicated routing or switching elements. Tra-
ditional topologies explored in the high performance com-
puting field include tree-based topologies, multi-dimensional
cube topologies, hypercubes, and more complex topologies
such as butterflies and De Bruijn graphs [11].

In the context of high performance computing, the metrics
used to evaluate the topologies are usually performance ori-
entated, such as bisection bandwidth and network diameter.
In contrast, we believe that in DCs metrics like energy, fault
tolerance, wiring complexity and cost are equally important.

Fault tolerance is already an issue for current DCs because
server and link failures are expected to occur frequently.
Proposals to reduce the energy-consumption due to cool-
ing by raising the operating temperature of DCs [19] will
also increase the failure rates. If sealed containers are used,
then repairing internal components will be difficult, which
will further drive the need for fault tolerance. Topologies
which provide significant path redundancy between servers
will achieve better resilience to failures. Even without fail-
ures, this path diversity can also be potentially exploited to
load balance and provide energy savings.

Other important metrics are wiring complexity, hardware
costs and energy consumption. Indeed, potentially attrac-
tive topologies may be infeasible in practice due to the effort
required to physically wire all servers or the prohibitive costs
to set up such infrastructure.

Using all these metrics, the feasibility of some topologies
proposed in literature becomes debatable, e.g. the fat-tree
and DCell topologies yield high bisection bandwidth and low
diameter at the expense of resilience to failures and wiring
complexity. For example, in DCell the network can be par-
titioned even if less than 5% of the servers or links fail.

In our work, we have started using a k-ary 3-cube, which
is a 3-dimensional cube topology with k servers along each
axis. Each server is connected to each of its 6 neighbors
(conceptually, the predecessor and successor on each axis)
and the edge servers of the cube are wrapped. Figure 1
shows an example of a 3-ary 3-cube.

The topology has many advantages such as simple wiring
(especially in a container-based DC) and high path redun-
dancy, which makes it resilient to link and server failures,
e.g. the topology is highly unlikely to partition even with
nearly 50% of the servers or links failed. The redundancy
and symmetric structure of the topology allows regions of
the cube to fail, without impacting the performance of the
remaining servers. As we will show, we can also exploit
the redundancy to place under-utilized links in lower power
states without partitioning the network.

We assume that a number of the servers have an extra port
that allow network traffic to be routed in and out of the DC.
Intuitively, we want to distribute these across the faces of
the cube. This provides both redundancy and ensures every

Figure 1: 3-ary 3-cube.

server is close to an ingress/egress point. This is important
because the k-ary 3-cube has a relatively high network di-
ameter, at 8,000 and 27,000 servers the network diameter
would be 30 and 45 hops, respectively. This is high, but we
expect the per-hop latency to be in the order of microsec-
onds, meaning the end-to-end latency will still be under a
millisecond. Distributing the gateways and using location-
aware service placement can exploit the expansion factor of
the topology, for example within a 10 hop radius, over a
thousand servers can be reached.

3.3 Network API
The geometric topology makes it easy for programmers

to reason about its structure and to build distributed ser-
vices on it. We are currently working on defining an API
for the network, and here we provide a high-level overview.
In general, we have taken inspiration from previous work on
defining APIs for overlays [9] and are also gaining the expe-
rience from building the services described in Section 4. In
general, a service can be implemented directly on the API,
or can use both the API and information provided by other
services, supporting a layered approach.

Each server has a unique identifier, which represents its
location in the physical topology, and in the case of our
topology this takes the form of a 3-d coordinate. The coor-
dinate is assigned by a bootstrap protocol that is run when
the DC is commissioned. The bootstrap protocol, as well as
assigning identifiers of the form (x, y, z), also detects wiring
inconsistencies. This bootstrap protocol is important, as
manually checking and configuring a DC is expensive, and
automating the process is necessary, especially as we move
towards sealed storage containers.

The bootstrap protocol achieves this by selecting a ran-
dom node to be the conceptual origin (0, 0, 0), and uses a
decentralized algorithm to determine each server’s location,
exploiting a priori knowledge of the topology. This works in
the presence of link and server failures, as well as with wiring
inconsistencies. It can tolerate up to 25% of the links either



failed or wired inconsistently and still assign each server in
the DC its correct identity.

The API is link-orientated, with each server having a set
of six one-hop neighbor links. A service running on a server
can register to be informed when a link fails, as well as
accessing statistics about each link, such as the number of
packets currently queued on a link. The API provides simple
calls to send a packet directly to a one-hop neighbor on a
specific link, as well as to broadcast a packet to all one-hop
neighbors. The API also allows for links to be deactivated,
enabling a link to be put into a low power state.

The API allows services to be written such that at each
hop they can intercept, modify and drop a packet. It should
be noted that, by default, we provide no multi-hop rout-
ing capability in the base API. The routing is implemented
as a extendable service which runs on top of the API, thus
demonstrating its flexibility. Conceptually, the environment
provides a natural way to implement many large-scale dis-
tributed systems.

4. SERVICES
In this section, we consider how a small sample set of

services could be written, or re-written, to benefit from
tighter integration with the network. Typical DCs run ex-
ternal services used by end-users that are composed of many
other interacting internal services executed within the DC.
These internal services are the building blocks. For instance,
Google has publically described several internal services it
uses, including MapReduce [10], BigTable [7], Chubby [5]
and Google File System (GFS) [15]. Different companies
use different sets of services, but the philosophy is the same.

We are currently building many different examples of in-
ternal services, selected to understand how our approach
impacts them. The services range from core services that
are the building blocks of other services (e.g., routing, nam-
ing services and failure detector services) to higher-level ser-
vices, like VM-image distribution. In general, the higher-
level services we have implemented exploit information or
functionality provided by other services, as well as using the
base API to interact with the network.

We now briefly outline a number of internal DC services
that we are building and evaluating: multi-hop routing ser-
vice, group communication, failure detection, VM-image dis-
tribution service, server load balancing and naming service.

4.1 Multi-hop Routing Service
Routing a packet between two arbitrary servers in the DC

is a core service, requiring multiple servers to forward the
packet. This service only requires the base API, and the
routing protocol that it uses leverages the properties of the
topology. It exploits the path diversity to be able to handle
link and server failure, as well as for load balancing and
energy efficiency.

In principle, any routing protocol can be used and, if
needed, multiple routing protocols can co-exist together. For
example, a service could implement its own routing protocol
to provide particular properties that it requires. The routing
service currently uses a novel distance vector-protocol with
support for multipath, extended to support energy-saving.
We considered various routing protocols. Given the struc-
tured topology, a greedy routing protocol appeared initially
attractive, requiring no control traffic, as routes are discov-

ered based on the topology. However, in the presence of
link and server failures, greedy routing can end up in lo-
cal minima. In two-dimensional topologies, techniques like
perimeter routing [25] can be used to overcome this prob-
lem, but this is not currently possible in three-dimensional
topologies [13].

Another approach would be to use a link-state based pro-
tocol, such as OSPF [30]. These protocols demand each
server to maintain information about every link in the topol-
ogy, which requires link-state change information to be dis-
seminated throughout the entire network. As we want to
save energy by scaling the number of active links dynam-
ically, based on the current bandwidth demands, this can
lead to high overheads, as each time a link changes state
this information has to be propagated to all other servers.

We designed a distance-vector based protocol where each
server stores a hop distance and next hop for all other servers.
This may appear expensive in terms of memory require-
ments, but using efficient data structures, the routing state
for 100,000 nodes, for example, can be stored in only 2MB
of RAM. Bootstrapping the routing service could also be
expensive, but given that we know the base topology, we
pre-compute all routing state locally, including alternative
backup routes on startup. Knowledge of the topology is also
exploited to perform efficient failure detection and to avoid
the traditional count-to-infinity issues. In general, link fail-
ures only need to be disseminated to nodes whose route dis-
tances are affected by the failure, and we rely on this to
minimize the control traffic required while still maintaining
accurate routing state.

When routing, we take advantage of the multiple paths
between servers, and use metrics like hop count and link
utilization to decide where to forward traffic. In general,
there are multiple links that traffic can be forwarded on to
reach the same destination, and we exploit this to achieve
load-balancing across links.

4.1.1 Energy Awareness
An integral part of our multi-hop routing service is energy

awareness. While the current generation of NICs do not
support such functionality, it has been shown that switching
off links can lead to significant energy savings [32]. In fact,
according to [22], an idle link at 1 Gbps consumes around
1000mW, whereas the consumption of a link in sleep mode
drops to around 50mW. There is an IEEE task force [23] that
is currently standardizing the way to switch links on and off
for energy efficiency, and hence we believe this functionality
will soon be standard.

Leveraging these efforts, we exploit the multiple paths be-
tween servers to ensure energy efficiency. In particular, links
are explicitly placed into a low power state to reduce power
consumption if they are redundant. The decision to put
a link into a low power state is done locally without any
global coordination, and simply requires an agreement be-
tween both end-points of the link. This can be highly effec-
tive, and initial experiments show that 66% of all links can
enter lower power state without partitioning the network.
Disabling links reduces the available bandwidth, and there-
fore, the link selection process is dynamic, ensuring that the
network does not partition and that it can support the cur-
rent bandwidth demands. If demand increases, links can be
rapidly re-enabled, again without global coordination.



4.1.2 Extending Functionality
The routing service allows other services to intercept pack-

ets that it is routing on their behalf. This enables other
services to easily extend the functionality of multi-hop rout-
ing service. For example, this can be used to implement
more sophisticate approaches for reliability and congestion
control. To highlight this, think of delivering a file from a
source server to a destination server, where the source spec-
ifies a deadline by when the destination needs to receive the
file. Assuming that destination is k-hops away, there will be
at least k − 1 intermediate servers that will be required to
receive and forward the file. Traditionally, the end-to-end
approach would be constrained by the dynamic bottleneck
bandwidth on this path. In contrast, a per-link approach
would allow each intermediate node to buffer all or part of
the file on longer term persistent storage, before forwarding
to the next hop. This therefore enables servers to buffer
packets during transient network congestion, as well as en-
suring lost packets result in retransmission only on a single
link. Also, it allows the data to be quickly transferred up to
the bottleneck link where it can be buffered until the next
link becomes decongested. This, in fact, can result in a file
being delivered faster than using the end-to-end approach if
links already traversed then become the bottleneck link for
the end-to-end approach.

4.2 Group Communication
Many services running in a DC require multicast or con-

vergecast operations. We are exploring building a number of
different group communication services that exhibit different
properties. The first is a traditional group communication
service using a multicast tree, which is usually created by
taking the union of the paths from the members of the group
to a root node. We can use techniques similar to those used
in application-level multicast [6] to build and maintain the
tree. The tree can be used for both multicast and converge-
cast, where can perform complex aggregation operations in
the tree [14]. We exploit the local link failure detection pro-
vided by the base API to detect when we need to repair the
tree. We can also adapt the tree maintenance algorithms
to handle links that are placed in sleep states, to control
whether we repair the tree or bring the link up again if it is
required. Without failures, there is no control communica-
tion overhead required in steady state, with each server that
is an interior node in the tree maintaining state associated
with the tree.

For applications that have a small set of receivers, or
where the set of receivers varies dynamically and frequently,
bootstrapping a dedicated tree is expensive. We therefore
also provide a light-weight group communication implemen-
tation to support such scenarios that would otherwise re-
quire separate point-to-point transmissions. This exploits
the state maintained by the multi-hop routing service, and
at each hop, identifies the smallest set of next hops that a
message needs to be forwarded to in order to minimize the
number of copies of the packet traveling on each link.

4.3 Failure Detection
Virtually every distributed service running in a DC re-

quires a failure detection mechanism. This is often imple-
mented by each service, where processes will explicitly probe
or send heartbeats to other processes on which they are de-

pendent. This will be combined with timeouts used to de-
tect unresponsive processes, either because of network con-
nectivity issues or because application load is high. Often,
more complex failure services are used: for example, Ama-
zon employs a gossip-based distributed failure detection and
membership protocol in their Dynamo service [16]. However,
tuning such systems is complex. If too small an interval is
used, the overhead becomes significant, and under critical
circumstances it can even hamper the correct behavior of
the system [3]. On the other hand, if it is too large, the
detection delay can become high, which results in external
users experiencing poor performance. A recent study [2]
states that, for every 100ms of latency, Amazon looses 1%
of sales, and for Google, if a page takes more than 500ms to
load, the site traffic drops by 20%.

Our failure service allows for both server and process mon-
itoring. First, we exploit the information stored per-server
by the multi-hop routing service to detect coarse server fail-
ure. This simply leverages information already maintained
by that service. When a server fails, all other servers will
be aware of the failure a few milliseconds later. Further, the
failure service allows a process to register for notifications
that a server has failed, and if it is informed of a server
failure while waiting for a response from that server, it can
opportunistically assume the response will not be received
and re-issue the request.

The failure service also allows process monitoring, exploit-
ing ideas similar to those in the overlay FUSE [12]. A process
registers that it would like to be informed when a particular
process becomes unresponsive. The service builds a multi-
cast tree using the group communication service. The failure
server locally monitors the liveness of the monitored process,
and should it become unresponsive, uses the multicast tree
to distribute a failure notification.

4.4 VM-image Distribution Service
Many large-scale DCs rely on virtualization to simplify

deployment. This requires that large multi-gigabyte VMs
be distributed across the DC. The same service can also be
used to distribute large-scale files, such as multi-gigabyte
search indexes.

Currently, distributing these images by either IP-multicast
or point-to-point is less than ideal. Using IP-multicast means
the maximum distribution rate is limited by the speed of the
most constrained or congested link in the IP-multicast tree.
Further, IP-multicast is normally best-effort, and therefore,
a repair mechanism is required. The point-to-point approach
limits the distribution rate to the outgoing bandwidth of the
source of the VM-image.

Our VM-image distribution service is implemented using
a simple multicast tree, where each interior node can cache
the VM-image on local disk. The service is implemented in
just a few hundred lines of code. Each recipient joins the
multicast tree of the group associated with the given VM.
All group packets sent per-link are intercepted and cached
locally. These are then forwarded to the children of the node,
and if a link is congested, this does not delay transmission to
the other children. Packet loss requires retransmission from
a parent. Node failure is handled as application-level mul-
ticast trees handle failure. Unlike IP multicast, and like
application-level multicast systems, transmission speed is
constraint by link delay rather than end-to-end delay.



4.5 Other Services

4.5.1 Server Load Balancing
Information on current server performance (e.g., CPU and

disk I/O load) is important for load balancing across mul-
tiple instances of the same service. For instance, in the
Microsoft Autopilot management platform [24], the collec-
tion service is responsible for monitoring the server load and
identifying suitable servers to host cloud applications. This
information can be obtained either by proactively polling
or by using an aggregation approach, for example with the
Astrolabe gossip protocol [4] as used by Amazon, or with
an explicit convergecast tree as used by Facebook. We are
also currently exploring the feasibility of implementing this
by the piggy-back of state information on packets already
traversing the links.

4.5.2 Naming Service
Naming services are key to DCs and can either be im-

plemented centrally, or as a decentralized component. For
a centralized naming service, it is necessary to ensure that
it can scale, and that it can be replicated to provide fail-
ure resilience. Decentralized approaches tend to distribute
the service over a larger number of machines, but this then
requires some complexity to ensure that information is main-
tained in a consistent way and that the service is resilient to
failures. Implementing a decentralized service that exploits
the fact that the topology defines a namespace is straight-
forward and reminiscent of GHT [33]: keys are hashed into
cube coordinates, and the key-value pair is stored at the
set of nodes nearest to the hash of the key. This service
generates no additional maintenance overhead because the
structure is already maintained.

4.6 Summary
We have briefly described a number of internal services

we are currently implementing that explore the benefits of
closing the gap between the network and services. There
are many more examples, including application and data
placement. For example, parallel job execution platforms
like Map-Reduce and Dryad, which execute operations on
large data sets distributed across the DC and perform in-
network aggregation of the results, can also benefit.

Finally, in order to deploy an internal service, it is impor-
tant that all nodes run an instance of the core-logic of the
service. We are currently exploring how new services can be
easily deployed, using a service deployment mechanism, and
whether it is possible to scope the deployment of services to
regions within the DC.

5. ONGOING WORK
We are currently building a prototype DC, comprising 27

servers, which uses the direct server-to-server cube topology.
In this prototype DC, we are running early versions of the
custom services, as well as some legacy services to under-
stand performance. Due to the small scale of our prototype,
we also are using large-scale simulations.

In order to test our protocols, we are applying techniques
widely used in the development of distributed systems. In
networking, when testing a protocol, it is common practice
to treat a device as a black box and have a reference im-
plementation, and monitor the behavior of the device being

tested. Messages are injected and the responses checked
against the expected response. This process tests the local
state transitions but does not attempt to check any global
consistency. For example, in the group communication ser-
vice, state needs to be maintained on each server about
children, parents and, for the convergecast aggregated state
needs to be maintained per server. We use the same code
base in simulations and when running on the real testbed.
When running simulations, we can check global consistency
of state, for example ensuring the tree is loop free. The
services are written in C# and are executed as a user-level
process on the real testbed. This process allows us to simu-
late large-scale behavior and debug the code in a controlled,
deterministic and reproducible way, and then deploy it for
real on the testbed. Such approaches have been widely used
in the overlay-building community and have been effective
at allowing the development of advanced overlays supporting
complex interactions.

The prototype DC has 27 servers, connected in a 3x3x3
cube topology. Each machine is running Windows Server
2003 and is equipped with two 4-port 100 Mbps D-Link
Ethernet adapters. Currently we statically link all services
required into a single executable, but we intend to develop
a mechanism that allows dynamic registration and deregis-
tration of services. We use a kernel driver, per port, which
allows the user-level process to send and receive raw Eth-
ernet frames directly to and from each port, and the local
TCP/IP stack is not bound to any of these ports.

To support unmodified legacy TCP/IP-based services run-
ning on the prototype DC, we install another driver per
server that effectively presents a virtual network interface
to which the TCP/IP stack is bound. All outbound pack-
ets generated by a TCP/IP stack are intercepted by this
driver and passed to the user-level process. These packets
are then encapsulated in one of our packets and routed us-
ing the multi-hop routing service to the destination. Finally,
when the packet reaches the destination, the user-level pro-
cess de-encapsulates the packet, and it is then injected into
the local TCP/IP stack. The only exception to this is ARP
packets, which we identify, and we currently use a static IP
address to MAC address mapping. This mapping allows us
to identify the destination based on the MAC address used
in the packet.

In general, handling the packets in user-space incurs an
overhead. However, the advantage is that it allows us to
rapidly develop and debug new distributed services. In the
future, we expect the processing power of the NIC or the
number of cores on the main CPU to be sufficient to enable
us to really deploy the services.

Initial results are promising; simulation results for a 8,000-
server network (20x20x20) confirm the feasibility of our multi-
hop routing service to scale, demonstrating high resilience to
failures with low overhead. The selected topology with our
routing service is able to sustain up to 50% link or server fail-
ures, generating on average less than 0.025 messages per link
failure on each server and 8.89 messages per server for each
failure, only slightly higher than one per outgoing link per
server. A server failure has a larger impact because we need
to eventually inform all servers in the network. Further-
more, using the routing service we are able to support 8,000
concurrent flows between random sources and destinations
with a throughput of 300 Mbps each without congestion.



6. CONCLUSIONS
We asked the question: why should we integrate services,

servers, and networking in a data center? In this paper, we
have tried to demonstrate the benefits to services of clos-
ing the gap between these. Using a direct server-to-server
topology that incorporates large path redundancy and a sim-
ple base API, we have outlined how a number of services,
ranging from a multi-hop routing protocol to a high-level
VM-image distribution service, can be easily and efficiently
created.
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