MindFinder: Image Search by Interactive Sketching and
Tagging

Changhu Wang
Microsoft Research Asia
No. 49, Zhichun Road
Beijing 100190, P.R.China

chw@microsoft.com

ABSTRACT

In this technical demonstration, we showcase the MindFinder
system — a novel image search engine. Different from ex-
isting interactive image search engines, most of which only
provide image-level relevance feedback, MindFinder enables
users to sketch and tag query images at object level. By con-
sidering the image database as a huge repository, MindFinder
is able to help users present and refine their initial thoughts
in their mind, and finally turn thoughts to a beautiful im-
age(s). Multiple actions are enabled for users to flexibly de-
sign their queries in a bilateral interactive manner by lever-
aging the whole image database, including tagging, refining
query by dragging and dropping objects from search results,
as well as editing objects. After each action, the search re-
sults will be updated in real time to provide users up-to-date
materials to further formulate the query. By the deliberate
but easy design of the query, MindFinder not only tries to
enable users to present on the query panel whatever they
are imagining, but also returns to users the most similar
images to the picture in users’ mind. By scaling up the im-
age database to 10 million, MindFinder has the potential
to reveal whatever in users’ mind, that is where the name
MindFinder comes from.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Query for-
mulation, Search process; H.5.2 [User Interfaces|: User-
centered design

General Terms

Algorithms, Design, Experimentation

Keywords

MindFinder, interactive search, sketching, tagging

1. INTRODUCTION

With the prevalence of the Internet and digital cameras,
effective and efficient image retrieval techniques have be-
come an important research direction in both commercial
and academic circles. There are mainly two basic problems
in image retrieval. The first one is query formulation, that
is how to interpret an implicit query in a user’s mind such as
“I want to find a scene in which a couple is standing together

Copyright is held by the author/owner(s).
WWW2010, April 26-30, 2010, Raleigh, North Carolina.

Zhiwei Li
Microsoft Research Asia
No. 49, Zhichun Road
Beijing 100190, P.R.China

zli@microsoft.com

Lei Zhang

Microsoft Research Asia
No. 49, Zhichun Road
Beijing 100190, P.R.China

leizhang@microsoft.com

Sea

Figure 1: An implicit query in a user’s mind: i.e. “I
want to find a scene in which a couple are standing
together by the sea at sunset.”

| ,
~ ; g&‘:_’i - T
= P > L. J.

Bing Search: %o ==
Lg 7> :‘ § ok

Figure 2: Top row: the top 3 search results of Bing
Image Search using query “sunset sea couple moun-
tain”. Bottom row: the top 3 search results of
MindFinder.

MindFinder:

by the sea at sunset”, as shown in Fig. 1, into an explicit
query expressed by some features the computer can easily
process. The second one is query matching, that is how to
find the images that best fit for the explicit query. Since
the solution to the second problem highly depends on the
first problem, query formulation should be given primary
importance in image retrieval.

Currently, based on the types of query formulation meth-
ods, text-based and content-based image retrieval frame-
works become very popular in commercial and academic
circles. Although both these two kinds of frameworks have
been widely studied and applied in commercial and aca-
demic systems, their query formulation methods are far from
satisfactory for a user to express his/her boundless imagina-
tion. For example, a user may want to find a scene in which
a couple is watching sunset by the sea, which is simply il-
luminated in Fig. 1. It is really not easy to search images
similar to such a complex scene. The top results using key-
words “sunset sea couple mountain” as the query in Bing
Image Search' are shown in Fig. 2. It is quite clear that

http://www.bing.com/images



the results are not satisfactory. For query by example, it is
also difficult to interpret the user’s mind by finding a query
image for retrieval. While the ongoing work about specific
image retrieval [1] seems far from practical applications.

In order to better formulate a user’s implicit query in
mind, some interactive techniques have been developed, most
of which can be classified into two categories, i.e. search
result-based interactive methods and query-based interactive
methods. Search result-based interactive methods try to
catch users’ intentions by interactively refining the search
results guided by users’ interactions. Relevance feedback [2]
is a typical approach in this category. Query-based inter-
active approaches become more and more popular in recent
years, which try to enable more user interactions by provid-
ing certain attributes that could be specified by users. For
example, Xcavator? enables users to draw points or lines
on the query image, and then use them to emphasize key
color features and their spatial relationships during search.
Color-structured image search [3] enables users to draw a
few color strokes to indicate the intent to improve search
quality. SkyFinder [4] defines several attributes for sky im-
age retrieval, which could be specified by users.

In spite of the success of existing interactive image search
techniques, most of them are one-side interactive search and
only consider how to leverage users’ effort to catch their
intentions, rather than help users to express their queries
by leveraging the image database. Furthermore, most of
them only use one type of interaction. For example, rel-
evance feedback approaches only use interactive indication
from users to tell whether those results are relevant or not.
Xcavator and color-sturcture image search only involve vi-
sual content features. SkyFinder is particularly designed for
sky image retrieval. Recently, Chen et al. [5] develop an
image montage system, i.e. Sketch2Photo, to stitch several
images together in agreement with the sketch and tags pro-
vided by users. In spite of the leverage of both sketching
and tagging of the queries, users need to draw the implicit
query in mind onto the query panel totally in one time and
there is no user interaction at all. Moreover, the purpose of
Sketch2Photo is to stitch images representing different ob-
jects into the resulting image, rather than to find images in
the database to meet what in the user’s mind.

In this work, we develop the MindFinder system, which
is a bilateral interactive image search engine by interactive
sketching and tagging. Different from existing interactive
image search engines, most of which only provides query-
based or search result-based interaction, MindFinder enables
a bilateral query«— search result interactive search, by con-
sidering the image database as a huge repository to help
users express their intentions. Moreover, MindFinder also
enables users to tag during the interactive search, which
makes it possible to bridge the semantic gap. Multiple ac-
tions are enabled for users to flexibly design their queries
in a bilateral interactive manner by leveraging the whole
image database, including tagging, refinding query by drag-
ging and dropping objects from search results, as well as
editing objects. After each action, the search results will be
updated in real time to provide users up-to-date materials
to further formulate query. Besides the contributions in the
query formulation stage, in order to support the real time
interactions between the system and users, a novel object-

2http://www.xcavator.net

based indexing and retrieval algorithm is also developed for
query matching. Therefore, MindFinder not only trys to
enable users to present on the query panel whatever they
imagine in their mind, but also returns to users the most
similar images to the picture in users’ mind. Fig. 2 shows
the top 3 images retrieved by MindFinder according to the
query in a user’s mind shown in Fig. 1. In this techni-
cal demonstration, users can try their own searching on the
MindFinder system.

2. SYSTEM OVERVIEW

In this section, we introduce the MindFinder system. Ten
million images together with corresponding textual labels
are indexed at back-end to support the interactions between
users and the system, which will be introduced in Section 3.

There are two panels on the interface of MindFinder, i.e.
query panel and data panel, out of which the query panel
is used for users to design and edit the query and the data
panel returns the interactive search results in real time for
users’ further exploitation. We still use the example query
aforementioned to guide our tour on MindFinder system,
that is, a user wants to find a scene in which a couple
are standing together by the sea at sunset, which has been
shown in Fig. 1.

We support the following actions to enable a user to in-
teractively draw the scene in his/her mind onto the query
panel: (See Fig. 3 for the contents of the two panels after
each action. Notice that the data panel will be automati-
cally updated in real time according to users’ actions.)

1. Tagging and Text-based Image Search

User: Draw a curve® at the top left corner of the
query panel. Then type the tag “sunset” in it.

System: Images related to sunset are displayed in
the data panel in real time. In this stage, text-based
image search technique is used.

2. Object Drag-Drop and Object-based Image Search

User: Find an interesting image that contains a sun
in the data panel. Then draw a curve around the sun,
and drag this region and drop it to the region contain-
ing the tag “sunset” in the query panel. The size of
the sun will automatically scale up or down to fit for
the size of the region containing the tag “sunset”.

System: Images in the data panel are updated ac-
cording to both the visual similarities between images
in database and the sun in the query panel, as well as
the distance between the spatial position of the sun in
images and the sun in the query panel. Technical de-
tails in this part will be introduced in the next section.

3. Object Spatial Transformation and Object-based
Image Search

User: If the user is not satisfied with the position
or the scale of the sun he just placed, he can translate,
resize, or rotate the sun into another position or scale.

3The curve is unnecessary to be closed. Naive method could
be used to close a curve.



Object removal is also enabled.

System: Similar to the system action of stage 2, the
images are updated in real time.

4. Object Drag-Drop, Spatial Transformation, and
Object-based Image Search

User: If the user find there is one image containing
both the sunset and the sea, he can directly crop some
part of the sea and then drag-drop it into the query
panel*. Then rotate, rescale, and place it to a proper
position in the query panel.

System: Similar to the system action of stage 2, the
images are updated according to both the visual and
spatial information of the two objects, i.e. the sun and
the sea.

5. Add Other Objects to the Query Panel and
Find the Most Similar Images to the Query
Panel
User: Similar to the stage 1 and 2, put objects “a
couple” and “mountain” onto the query panel.

System: Similar to the system action of stage 4, the
images are updated according to the whole scene, ob-
jects, and tags in the query panel.

2.1 Discussion: Implicit Label Tool

During the object drag-drop action after users add tags in
the query panel, users have implicitly associate the object
in the source image in data panel with the tags. Since in
current standard image datasets, tags are usually associated
with images rather than objects, and manually associating
tags with objects are really tedious and time-consuming,
our MindFinder system dose provide an effective method
to naturally collect users’ label information in object level
when they search images using MindFinder.

3. TECHNICAL DETAILS

In order to support very specific queries, about ten mil-
lion Panoramio® images together with corresponding textual
tags are indexed by two 64-bit machines, each of which has
4 cores and 8GB memory. By a well designed index archi-
tecture, the system can respond user’s query in 1 second.
Common text retrieval techniques, such as filtering by in-
verted list and then reranking by cosine similarity of tf-idf
features, are used to support text-based image search. These
techniques are not discussed in this paper. For object-based
image search, we propose an efficient and effective multi-
model retrieval algorithm.

3.1 Local Feature-based Multi-Model Algorithm

for Object-based Image Search

Because the query is expressed as multiple objects and
tags with positional information in the query panel, and we

10f course, the user can repeat the user action of stage 1
and 2 to put object “sea” into the query panel. Here we
achieve it in a different way.

Shttp://www.panoramio.com/

=

(1). Tagging and text-based image search.

e o

(2). Object drag-drop and object-based image search.

b

(3). Object spatial transformation and object-based image
search.

Sunset

Sunset

Sunset

(4). Object drag-drop, spatial transformation, and object-
based image search.

(5). Add other objects to the query panel and find the most
similar images to the query panel.

Figure 3: The query panel and the top three images
in the data panel after each action.

want to find images with those objects at similar positions,
we use a kind of local features to represent both the query
and the images in the database. The detailed feature ex-
traction and indexing process are shown in Fig. 4. The
query panel is uniformly divided into 10 x 10 patches, and
all the images in database are also divided into patches in
the same manner. Each patch in an image has a {cz, cy}-
coordinate to show its position in the image. For each patch,
we extract three kinds of features: 44-dim correlogram, 6-
dim color moment, and 14-dim texture moment features.
On average, we got about 750 million patches for 10 million
images. The amount of patches is extremely high. Most
of existing indexing approaches cannot be applied to index



® Feature Vector

0.03 075 | 0154 nmw 0.895

N -
-~
N - /
o — /\@ /
‘ PCA Hashing ‘

® ¥

= 40-bit hash code

(X,Y)

Hamming
Encoder

Figure 4: The proposed indexing approach consists
of six steps: dividing images into local patches, ex-
tracting visual feature for patches, performing di-
mension reduction by PCA, encoding positions by
a Hamming encoder, quantizing features to 0-1 bit
vectors (i.e. hash code), and building inverted in-
dex.

them. Therefore we propose a novel indexing solution. The
core of this solution is an algorithm to generate very compact
and representative hash codes for patches, which is termed
as PCAHashing. The PCAHashing algorithm consists of
three steps:

1. Randomly sample 100K patches, and train a k-dim
PCA model;

2. Apply the PCA matrix to reduce the dimensionality of
all patch features in the database to be k-dim;

3. Quantize each component of a k-dim feature to be 1 if
it is no less than 0, otherwise 0.

In this way, each patch is quantized as a k-bit 0-1 vector,
which is termed as a hash code in this paper. Actually, this
approach seeks to divide the feature space to be some fixed
grids, i.e. quadrant. Patches in the same grid are encoded
as the same hash code. By performing PCA, we find an or-
thogonal subspace for the original feature space. In the sub-
space, image patches symmetrically distribute around the
axes which are orthogonal to each other. Thus by the quan-
tizing rule, we are likely to get grids with almost equal num-
ber of patches in each of them. This property is critical for
a hash algorithm and consequently indexing algorithms. In
our system, k is set to be 32.

To incorporate the positional information of patches in the
hash code, we concatenate 8 bits to the hash code of each
patch, in which 4 bit are code for x coordinate, and the other
4 bits are for y coordinate. These bits are coded in a Ham-
ming code manner. That is to say, if the Euclidean distance
of two patches are bigger than 2, their Hamming distances
will be bigger than 2. Therefore, we get a 40-bit hash code
for each patch, and the Hamming distances of hash codes of
patches can reflect both their visual similarities and spatial
distances.

To make the on-line search process extremely efficient,
we deem each hash code as a word as in text retrieval, and
consequently build inverted index for them. To tolerate nec-
essary variances within similar patches, for a hash code, h,
(i.e. a word), we assign patches, whose Hamming distances
to h are no bigger than 3, in h’s inverted list. It is noted
that, even if two patches are very similar in terms of vi-
sual content, they are far from each other spatially, they

will be assigned into different lists. This property prevents
patches at positions, which are far from the position of a
query patch, from being returned as similar patches.

Let @ represent the query panel, and I represent an im-
age in the database. We use Q, = {z4} to denote the set
of patches that are partly or totally covered by the object
regions in the query panel, and use w, to denote the cover
rate® of patch z,. Let” s(zq4,I) = max,,crexp ITa==ilz,
We can calculate the similarity between query panel @) and
image I as follows:

sim(Q,I) = Z wq * $(xq, [) + Bsimiag(Q,I) (1)

g €Qy

where simiqq(Q, I) is the similarity between the tags labeled
in the query panel and the textual description of image I,
in which cosine similarity is used. [ is a trade-off parameter
to balance the textual query and visual query®. We use
sim(Q, I) to rank images in our database and show the top-
ranked images in the data panel.

4. CONCLUSIONS

The main contributions in this work can be summarized
as follows:

1. We develop the MindFinder system, which is a bilat-
eral interactive image search engine.

2. MindFinder enables multiple actions for users to flexi-
bly design their queries in a bilateral interactive man-
ner by leveraging the image collection in real time.

3. A novel local feature-based multi-model retrieval al-
gorithm is proposed for object-based image search to
ensure the system to return to users the most similar
images to the picture in a user’s mind.

4. MindFinder provides an effective method to naturally
collect users’ label information in object level when
they search images using MindFinder.

5. REFERENCES

[1] C. Liu, D. Wang, X. Liu, C. Wang, L. Zhang, and B.
Zhang. Robust Semantic Sketch based Specific Image
Retrieval. TechReport, Tsinghua University.,
http://166.111.138.19 /paper/CailiangLITU_TR2010
_SketchQuery.pdf, 2010.

[2] X.S. Zhou and T. S. Huang. Relevance feedback in
image retrieval: A comprehensive review. Multimedia
systems, 2003.

[3] J. Wang, X. S. Hua, and Y. Zhao. Color-structured
image search. TechReport, MSR-TR-2009-82, 2009.

[4] L. Tao, L. Yuan, J. Sun. SkyFinder: attribute-based
sky image search. ACM SIGGRAPH, 2009.

[5] T. Chen, M. M. Cheng, P. Tan, A Shamir, and S. M.
Hu. Sketch2Photo: internet image montage. ACM
SIGGRAPH ASIA, 2009.

5The cover rate is defined as the ratio of the area of the patch
covered by the object region to that of the patch itself.

"In practice, to be efficient, we use x4 to retrieval the top
k patches in the database. If all the patches of image I are
not in the top k patches of x4, s(zq, I) will be set to be zero.
8In practice, we set 8 to be a very large value to give the
textual query higher priority.



