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Abstract—Despite the potential health benefits of being able to 

monitor and log one’s food and drink intake, manually perform-

ing this task is notoriously hard. While researchers are still ex-

ploring methods of automating this process for food, less work 

has been done in automatically classifying beverage intake. In 

this paper, we present a novel method that utilizes optical, ion 

selective electrical pH, and conductivity sensors in order to sense 

and classify liquid in a cup in a practical way. We describe two 

experiments, one that uses a high end commercial off-the-shelf 

spectrometer, and the other which uses a cheap sensor package 

that we engineered. Results show both that this method is feasible 

and relatively accurate (up to 79% classification for 68 different 

drinks), but also that we would be able to build this in such a way 

as to make it practical for real-world deployment. We describe 

the vision for building a sensor rich cup capable of determining 

the kind of liquid a person is drinking, as well as the opportuni-

ties that the success of such sensors may open.  

Keywords-Drink classification, spectrometer, food, caloric 

intake, weight loss, cup, sensor, pH, conductivity, and health 

I.  INTRODUCTION 

Even with widespread attention in the news, popular media, 
and a multitude of commercial products, weight management 
and proper nutrition remains a very real and pressing problem 
for Americans and a growing segment of the world population. 
Obesity creates a range of lifestyle, psychological, and social 
challenges as well as contributing to long term health problems 
ranging from diabetes to heart disease. It is not surprising that 
31% of the US population is actively trying to lose weight [9].  

At its most basic, weight management is a mismatch be-
tween the number of calories a person consumes and the num-
ber of calories they expend. Research has shown that people 
often struggle at managing this balance [6], and that they are 
only able to maintain behavior changes for short periods of 
time [21]. For dieticians and counselors to help their patients, 
they use their patient’s exercise routines, their daily caloric 
intake, and their food choices for the day and why they made 
those choices. Technology has helped in many regards, pedo-
meters and more advanced calorie counting systems have been 
developed in recent years to provide greater insight into where 
individuals expend calories [4]. However, methods for under-
standing what a person has consumed are still largely manual 
and self-reported, with the most common method being 24 
hour recall surveys, where people are asked to remember the 
foods they have eaten in the past 24 hours. Using this informa-
tion, a patient’s energy intake and nutrition can be estimated. 
However, continuous manual tracking requires a non-trivial 

amount of effort and many people find it difficult to keep to a 
diligent regiment. 

One particularly important piece of information about one’s 
diet is the amount and types of fluids consumed throughout the 
day. Drinks make up a surprisingly large portion of daily calor-
ic intake with some research suggesting that 21% of a person’s 
daily caloric intake comes from beverages (458 calories) [5]. 
These tend to be ‘optional’ calories, not consumed exclusively 
to satiate hunger, and thus potentially easier to eliminate or 
replace with healthier alternatives. There is also some evidence 
to suggest that even drinking diet soft drinks can actually cause 
an increase in weight gain, making it important to also keep 
track of these low calorie beverages [7].  

In our work, we attempt to design and build a cup capable 
of non-destructively identifying the liquid inside it. To enable 
long term monitoring on the scale of months and years, it is 
important that the technology be unobtrusive and require mi-
nimal effort. This is particularly important because people tend 
to drink much more frequently than they eat, which makes ma-
nual logging even harder. Our approach to long term fluid in-
take monitoring, is a smart cup which combines pH, conductiv-
ity, and light spectrum to fingerprint different liquids and allow 
us to distinguish different beverages. 

In this paper, we first describe related work and then our 
design goals and the sensors we used. We then present an 
overview of our approach for sensing beverages and the proto-
type sensing system we built. Next, we discuss the results of 
classifying a variety of drinks across multiple days. We then 
present a low cost prototype sensor package and the results of 
an experiment testing its performance. Finally, we discuss how 
we might build a deployable version of our approach.  

II. RELATED WORK 

Detecting food behaviors had been of great interest to the re-
search community, one of the earliest examples is Gellersen et 
al.’s [8] MediaCup. MediaCup was a coffee cup augmented 
with an accelerometer and temperature sensor along with infra-
red communication. Butz et al. [22] created a similar system 
except using an augmented beer placemat for interacting with 
drinking cups. 

Chang et al. [3] developed a dining table made up of mul-
tiple weighing and RFID reader surfaces capable of tracking 
the movement of tagged food containers and interactions with 
them. Amft et al. [16] have worked with a number of different 
sensing modalities such as neck based EMG for swallowing 
detection, bone conduction microphones for chewing detection, 
and inertial sensing for detecting intake (eating) gestures. They 



also showed that it was possible to distinguish 19 different food 
items with 80% accuracy using chewing sounds alone. Man-
koff et al. [14] used grocery receipts as a proxy for measuring 
food intake while Patterson et al. [17] used RFID tagged ob-
jects to infer cooking and food preparation activities. Kranz et 
al. [11] have used an augmented kitchen with microphones, a 
load sensing knife, and smart cutting board to classify six dif-
ferent foods being cut with 85% accuracy.  

All of these systems use sensors on the user or the envi-
ronment to infer the foods people are eating. Another approach 
has been to use camera images to track what foods people have 
been eating. Wu and Yang [20] developed a system which uses 
a wearable web camera to recognize the fast food items people 
are eating. They are able to recognize food from 9 different 
restaurants with 73% accuracy. In the nutritional field the re-
mote food photography method (RFPM) has been used to help 
supplant food surveys and recall studies. Participants take pic-
tures of the food before and after they eat, and these pictures 
are shown to trained clinicians who analyze the pictures by 
matching them up to a library of stored foods and estimating 
their size. Martin et al. [15] tested their system by providing a 
cooler with pre-weighed foods to 52 subjects, who consumed 
the food, and showed -5.1% and -6.6% accuracy in laboratory 
and free living conditions (consistent underestimates). 

While these approaches share our goal of monitoring con-
sumption, the most similar technical work comes from the 
fields of food chemistry and materials analysis. Because food 
production is highly automated and controlled there are many 
advanced systems targeted at very specific applications. For 
example, using microwave transmission to measure the mois-
ture in salted-butter [19]. In contrast to the majority of these 
systems, which measure particular features of a known food, 
we seek to identify liquids. In this realm, Liu et al. [13] devel-
oped a system which used visible and near infra-red spectros-
copy to discriminate between 5 different types of instant tea 
using a neural network with 98.7% accuracy. Ketola et al. [10] 
used a mass spectrometer to identify 13 different cola beverag-
es with 93.8% accuracy. Sádecká et al. [18] used fluorescent 
spectroscopy to differentiate 13 different brandies and 30 dif-
ferent wines. While most of the approaches rely on expensive 
hardware in a controlled laboratory environment, we sought to 
develop an approach that could detect what liquid a person is 
drinking simply by pouring it into our cup 

Another area of similar research interest is the development 
of chemical or electronic nose sensors. One of the main disad-
vantages of electronic noses sensors is that they are very ex-
pensive. Zhang et al. [24] use a different approach to create 
inexpensive electronic nose sensors to classify 14 different soft 
drinks with <2% misclassification rate. Rather than using a 
MEMS sensor, Zhang uses an array of 25 chemically respon-
sive dyes in a ~1cm square. When the dyes are exposed to a 
liquid they change color, depending upon the signature of the 
color changes in the 25 dyes the liquids can be distinguished 
from one another.  

III. SENSING BEVERAGES 

We are usually very good at determining what liquid is in 
our glass, because we almost always know, a priori, what we 
poured into it. When we are presented with an unknown drink 

we primarily use our sense of vision, smell, and taste. Visually 
we are limited to categorizing drinks based on colors, for ex-
ample brown soft drinks versus green sports drinks. Flavor, a 
combination of our sense of smell and taste, is our primary tool 
for identifying the specific drink. Our sense of smell is a reusa-
ble chemical sensor capable of detecting thousands of different 
compounds; combined with our sense of taste we have a very 
accurate chemical sensing system to discriminate liquids with. 
Drinks are also tailored to human tastes, they are designed to be 
appealing and recognizable, so our sense of flavor is especially 
well suited to this task. 

Unfortunately, there are no readily available chemical sen-
sors which can replicate our sense of flavor. While there have 
been attempts to develop electronic nose sensors there are none 
that are cheap, compact, readily available, and easily used. In-
stead of focusing on replicating our human senses we have to 
go beyond these senses and use technologies which can help 
bridge the gap in our technological shortcomings. In doing so 
we can take advantages of several properties of beverages that 
make automatic classification possible. First, there are a rela-
tively small number of beverages with reduced variance. The 
commercial nutritional database, Axxya [23] contains 35,000 
items; only 2,200 items (6%) are beverages, a small fraction. 
Most beverages are mass produced at bottling plants, which 
have a vested interest in producing similar drinks over long 
periods of time. Liquids also tend to be homogeneous, meaning 

       
Table 1. Drinks sampled during data collection using the spectrometer, pH 

sensor, and conductivity probe. 

1 1% Chocolate Milk

2 2% Reduced Fat Milk

3 Fat Free Milk

4 Talking Rain - Black Raspberry

5 Talking Rain - Ice orange mango

6 Talking Rain - Lemon Line

7 Talking Rain - Pink Grapefruit

8 Talking Rain Natural

9 Talking Rain Peach Nectarine

10 Talking rain - kiwi strawberry

11 Gatorade Berry Rain

12 Gatorade Blue Berry Low Calorie

13 Gatorade Fruit Punch

14 Gatorade Lime Rain

15 Cherry Coke

16 Coke

17 Coke Zero

18 Coke Zero Vanilla

19 Diet Chery Coke

20 Diet Coke

21 Diet Coke Caffeine Free

22 Diet Coke Lime

23 Diet Coke with Splenda

24 AW Root Beer

25 Diet AW Root Beer

26 Dr Pepper

27 Diet Dr Pepper

28 Diet Barqs Root Beet

29 Pepsi

30 Diet Pepsi

31 Caffeine Free Pepsi

32 Mountain Dew

33 Diet Mountain Dew

34 Diet Mug Root Beer

35 Mug Root Beer

36 Fresca - Original Citrus

37 Ginger Ale

38 Orange Crush

39 Orange Juice

40 Sprite

41 Sprite Zero
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42 Alaskan Amber

43 Fat Tire

44 Heineken

45 Pilsner Urquell

46 Red Bull

47 Redhook ESB

48 Samuel Adams Octoberfest

49 Stella Artois

50 Chardonnay

51 Merlot

52 Sauvignon Blanc

53 Shiraz

54 Monster Lo-Carb

55 Rockstar Energy Drink

56 Apple Juice

57 Cranberry Juice

58 Grape Juice

59 Grapefruit Juice

60 V8

61 Coffee Decaf 

62 Coffee Decaf - with half and half

63 Coffee Regular 

64 Coffee Regular - with half and half

65 Coco

66 Nestea Lemon Iced Tea

67 Distilled Water

68 Water
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Figure 1. (top) Experimental data collection setup using a OceanOptics LS1 

tungsten light source, a laser cut plastic sample cuvette holder, and a fiber 

optic probe connected to our spectrometer. (bottom) pH and conductivity 

probes collected readings from samples in glass containers. 

 

    
Figure 2. (left) Example spectrum of a tungsten light source (top curve) from a 

Vis-NIR spectrometer. The bottom curve is the output after the light source 

passes through a sample of water. The received spectrum ranges from 345nm 

to 1040nm. (right) USB4000 spectrometer used to capture the spectrum and 

measures 89mm x 63 mm x 34mm. 

 

you only need to sample a small portion to determine the ma-
keup of the entire glass. Finally, people tend to drink similar 
sets of drinks for long periods of time, so most often; we only 
need to recognize a smaller subset of drinks 

To find technologies to assist in our task we looked to the 
medical science fields to identify technologies which were be-
ing used to analyze unknown substances. The most promising 
technologies were spectroscopy, ion selective electrode (ISE) 
sensing, and radio frequency (RF) sensing. Our goal of devel-
oping a technology which could be integrated into a glass re-
quires sensors that would: 

• Be sanitary to use over long periods of time; 

• Not require replacement reagents or user cleaning of sam-
pling tubes or chambers; 

• Not destroy or make the liquid undrinkable; and 

• Have the potential of being deployed cheaply to a large 
segment of the population 

While we investigated RF sensing as well, we found that 
optical sensing and ISE were sufficient for the number of 
drinks people usually consume. 

IV. PROTOTYPE BEVERAGE SENSING SYSTEM 

Our prototype beverage sensing system has two compo-
nents: the optical spectrometer and the pH/Conductivity probes, 
illustrated in Fig. 1. 

A. Optical Sensors 

Spectroscopy is the measurement of radiation (such as light 
energy) as a function of wavelength. A spectrometer contains a 
1D camera which uses optics to disperse incoming light across 
the surface of the sensor. This allows us to measure the compo-
sition of the light, in our spectrometer, the OceanOptics 
USB4000, our camera is a 3648x1 CCD where each pixel is 
approximately 0.2nm wide, and our spectral resolution is about 
1.5nm. Fig. 2 shows an example spectrum received showing 
the ~300nm (ultraviolet) to 1100nm (near infrared, NIR) range 
of our spectrometer. The spectrometer has a variable integra-
tion time (time during which light accumulates across the sen-
sor before a reading), from 3.8ms to 65s. Longer times allow 
more light inside. In our work, we use a 10mS integration time, 
except for very opaque liquids, such as chocolate milk, where a 
longer integration time is used to let more light enter the spec-
trometer. The advantage of using a small integration time is 
that the system is more responsive and is more immune to am-
bient lighting. For very short integration times, there is almost 
no signal present even from very bright ambient room lighting.  

While mass spectrometry, x-ray, and nuclear magnetic re-
sonance are all forms of spectroscopy and would provide useful 
data, only visible and NIR spectroscopy are readily available 
and appropriate for low-cost portable solutions.  

B. Acquiring Spectra from Liquid Samples 

Our optical setup mirrors standard spectrometer setups, 
where liquid is poured into a 1cm square plastic container 
called a cuvette. One side is illuminated with a controlled light 
source, light travels through the liquid, and depending upon the 
chemical composition of the liquid, different parts of the light 

source’s spectrum are absorbed at various rates. The spectro-
meter reads the light which passes through the liquid. Our sys-
tem is constructed using off the shelf parts in a fairly simple 
configuration. Rather than enclosing the system in a box or 
using very specific alignment of parts we wanted to make sure 
our system was robust and did not require precision alignment 
of the various components. This gives us a better confidence 
that our system will function outside of laboratory conditions 
and is robust enough to be used by non-experts. 

C. Ion Selective Electrode Sensors 

Ion Selective Electrodes (ISE) are sensors which react to 
specific ions in a solution and allow their concentrations to be 
measured. For example, pH is a measurement of H+ ions in a 
solution. The pH range is from 0 (very acidic) to 14 (very alka-
line) with 7 being a neutral pH. pH is measured by the amount 
ion interactions with the electrode, the reading is calibrated 
against a known sample inside the probe.  

One drawback with ISE probes is that they do require ions 
to be exchanged across a membrane. For pH probes this mem-
brane is usually glass which is simple to keep clean, long last-



ing, and durable. For other ISE probes a crystal disk or plastic 
membrane, is used. These probes tend to have limited lifetimes 
- they can only be exposed to a certain number of solutions 
before they must be replaced - and are slightly less sanitary. 
Because of the limited life spans of crystal and polymer mem-
brane ISE sensors we only use pH measurements in our system. 
The one short coming of glass pH probes is that they usually 
must be stored in a buffer solution to avoid drying out. Howev-
er, it is feasible that probes could be made robustly enough to 
function without being stored this way. In addition there are 
other optical based methods for measuring pH which could 
reasonably last long enough [12] and estimates suggest these 
pH sensors can be manufactured for pennies. 

The other electrode sensor used in our system is not neces-
sarily an ion selective sensor, but instead a probe which meas-
ures the ability of the solution to conduct an electric current. 
Conductivity provides some information on the salinity is in 
the drink; for example, Coke is much more conductive than 
milk (due to its high sodium content, not its sugar as is often 
believed. Sugar is a non-electrolyte, so it does not conduct elec-
tricity very well in water; salt does however). 

The pH and conductivity probes are simply immersed in 
liquid samples to measure their respective properties. Separate 
containers are used for convenience because the pH and con-
ductivity probes cannot be both sampling at the same time in 
the same liquid, otherwise the two would emit signals that 
would confuse one another. When integrated into a glass the 
two sensors would take turns, one would sample while the oth-
er would sit idle. 

D. Data Processing 

Our light source does not illuminate the entire range of our 
spectrometer, we remove portions of the spectrum that do not 
contain useful information. For the Ocean Optics LS1 light 
source, this ends up being between 433nm to 988nm. This 
range is found by examining the emission spectrum of the light 
source, on its own, and finding the range which contains 95% 
of the energy. Depending on the emission spectrum of different 
light sources, a different range might be more appropriate. Us-
ing this subset of wavelength data we correct for intensity vari-
ations by aligning each signal to a stored free air reference sig-
nal from our light source. This alignment helps to counteract 
problems with slight misalignments in the optical system and 
changes in sample concentrations (for thicker liquids like V8 or 
coffee). The normalization helps make the system more im-
mune to variations in samples; however, it does throw out some 
useful information about how much light actually was absorbed 
by the liquid, rather than the shape of the absorption curve.  

We select 974 bins from the spectral data and use them as 
features for our classifier. We also use feature weighting to 
store an equal number of pH/conductivity features. The 
pH/conductivity data is discretized into bins of increasing size 
to avoid over fitting to specific pH/conductivity readings. 

Data from the primary data collection experiment and our 
prototype sensor package was organized and classified using 
the Naïve Bayes classifier in the Weka machine learning soft-
ware. Although Weka offers several classifiers, each produces 
roughly similar results and rather than picking the classifier 

with highest performance, we selected Naïve Bayes as it pro-
vides an effective, simple, and common classifier which is well 
suited to modeling the distributions of large sets of features and 
which requires relatively small amounts of training data. 

V. PRIMARY DATA COLLECTION 

To test if our system could distinguish different drinks from 
one another we collected the spectrum, pH, conductivity, and 
temperature of 68 different beverages, listed in Table 1. We 
collected two sets of data on different days, all beverages ex-
cept the Gatorade, Energy Drink, Wine, and Beer drinks were 
collected from new cans of each drink. For the other groups, 
we resealed the containers to see if beverages left overnight 
would change significantly enough to cause our system to fail, 
no such drastic change was observed. 

A. Experimental Protocol 

We refer to our two datasets as Run 1 and Run 2. The 
drinks were randomly ordered and sampled for Run 1. Run 2 
used the same order but in reverse. Drinks were processed in 
groups of approximately 6 drinks. As each sample was 
processed it was opened, and ~1.5mL of each drink was placed 
into a plastic cuvette. The process for collecting the spectra 
data from the spectrometer was as follows: 

1. selected the sample from a menu 

2. recorded the temperature of the liquid in the cuvette 

3. before placing the liquid sample cuvette into the holder the 
spectra of light emitted from the light source was recorded  

4. the sample was placed into the sample holder as show in 
Fig. 1 

5. the user indicated that the sample was inserted and ready 
and the system began an automated data collection 
process. 10 blocks of samples were recorded of the light 
spectrum of the sample. Each block consisted of 500 spec-
tra using a 10 millisecond exposure 

6. each block took approximately 5 seconds and in all around 
1 minutes worth of data was collected taking approximate-
ly 3 minutes with processing and data saving in between 
each block 

7. the data collector then removed the sample and a post 
empty spectrum was recorded from the light source 

After completing this procedure the data collection for that 
sample was complete. The data collector was presented with a 
view of the raw spectrum collected and asked to review any 
spectra which were quite dissimilar from the rest. Samples va-
ried for primarily two reasons 1) bubbles from carbonation and 
2) subtle variations in liquids like V8, grapefruit juice, and very 
dense liquids like cocoa. Opaque samples like coffee, cocoa, 
and V8 had an additional data collection run where an integra-
tion time longer, varying from 500ms to 1s was used. This ad-
ditional data was collected because the 10ms exposure had 
such a small amplitude. 

Bubbles caused by carbonation appeared as variations in 
the intensity of the sample, for example if a bubble floated 
through the section of the sample being analyzed there would 



 
Figure 4. Plot of all 68 beverages’ spectrum recorded for Run 1. 

be dip in the intensity of light received (as the bubble typically 
scattered the light). Carbonation bubbles were not considered a 
challenge for the system to overcome because they are easily 
detected by variations in the signal. In a deployed system they 
can be detected and avoided if necessary and can be physically 
eliminated using an ultrasonic actuator to automatically ‘tap’ 
the wall of the glass to remove bubbles in front of the sampling 
window, if necessary. For samples where variations were 
found, we avoided manually picking measurements to get a 
consistent sample. Instead we ran through our data collection 
procedure a second or third time to ensure we were getting 
consistent readings of the current sample and used them as is. 
Fig. 4 contains an overlaid plot of the various light spectrums 
recorded for the first data set. 

For pH and conductivity data, we placed approximately 
25mL of each liquid in a small glass beaker and placed the pH 
and conductivity probes inside. We waited a few seconds for 
the reading to stabilize and then began collecting data from pH 
sensor, and then the conductivity sensor. Conductivity readings 
tended to vary over time, with the reading increasing slightly if 
the probe was stirred. pH readings were usually very consistent 
and stabilized within a few seconds of being placed inside the 
liquid.  

The only sample for which the pH reading was inconsistent 
was distilled water. pH values are actually not valid for sub-
stances which are too pure, substances with very few free ions 
to measure result in nonsensical readings from the pH sensor. 
Samples with conductivities below 10µSiemens1 (µS) were 
considered distilled/pure water and were set to a pH of 7 (neu-
tral). From our data set, only distilled water samples required 
this modification, with a measured conductivity of 6µS and 
2µS. The next highest value was tap water with a conductivity 

                                                           
1 Water with conductivity <10µS is considered distilled water by the National 

Committee for Clinical Laboratory Standards  

of 56µS and 886µS. Fig. 3 shows the pH and Conductivity data 
recorded from Run 1 and Run 2. 

VI. RESULTS 

Table 2 shows the confusion matrix for our drink classifica-
tion scheme. We achieved an overall accuracy of 79.4% with a 
precision and recall of 77.5% and 79.4%, respectively. These 
results are especially encouraging considering that random 
chance is 1.5% for a 68-class problem.  

Upon closer inspection, many of the misclassifications oc-
curred with similar drinks of that class, such as the root beers. 
Interestingly, we were still able to classify among different 
types of drinks. For example, we could see the difference be-
tween coke and diet coke, which both appear visually similar, 
but have very different nutritional content. Moreover, there was 
strong predictive power in differentiating between the juices 
and milks. 

 
Figure 3. Conductivity and pH values for drinks collected in Run 1 and Run 2. The difference between recorded pH values was 3.1% (std. dev. 3.1%). The differ-

ence between recorded conductivity values was 8.8% (std. dev. 17.8%).  



 
Table 3. Clustering results from our primary data collection. The average 

accuracy is 77.2% with a precision of 81.7% and recall of 77.2%. 

 
Table 2. (left) Confusion matrix for drink classification using leave-one out training with training data from Run 1 and test data from Run 2. Overall accuracy is 

69.1% with precision of 68.7% and recall of 69.1%. (right) Confusion matrix using leave-one out training with training data from Run 2 and testing data from Run 

1. Each run contains 10 separate measurements of the same sample, the coloring indicates the number of classified measurements in a particular cell. Overall 

accuracy is 79.4% with precision of 77.5% and recall of 79.4%. Random chance is 1 out of 68 or 1.5%. The ~10% accuracy between the left and right confusion 

matrix is caused by additional confusion with ‘Sauvignon Blanc’, ‘distilled water’, and slightly poorer performance with ‘Diet Coke with Splenda’. 

From our initial results, we observed we were not able to 
differentiate between caffeinated (diet Coke) and non-
caffeinated drinks (caffeine free diet Coke), because they typi-
cally have very similar chemical compositions. Caffeine is also 
a tasteless, colorless, and odorless substance that does not ma-
nifest itself in our optical or conductive features space. More 
work is needed in identifying a low-cost and practical approach 
to automatically detecting caffeine. The closest commercial 
system capable of performing caffeine detection requires a 
spectrometer with range much further into the infrared (up to 
2500nm as opposed to our current instruments 1040nm range) 
[2]. Miniature spectrometers with capabilities in this range are 
not common because there is relatively little demand for such 
systems. Also at higher infrared wavelengths more and more 
light is absorbed by water, making it more difficult to analyze 
liquid samples. This problem can be overcome by using a nar-
rower interaction field (decreasing the amount of water light 
passes through before reaching the sensor) or increasing IR 

light output using high intensity LEDs or laser diodes. 

We also found that all of the features were important in 
classifying drinks. The use of pH only and resistivity only fea-
tures yielded an accuracy of 11.62% and 31.02%, respectively. 
The optical data definitely appeared to be the most critical in 
the classification scheme by being able to discern over half of 
the drinks when used alone.  

A. Clustering Drinks 

If we are only interested in what logical group a drink be-
longs to we can use a simpler classifier to cluster our drinks 
together into groups. Instead of recognizing a particular brand 
of soft drink we simply care about soft drinks as a group. Using 
the data from our data collection run we grouped the drinks 
into a dozen categories and classified them as shown in Table 
3. Average accuracy is 77.2% with a great deal of confusion 
between diet and regular soft drinks. If we combine these two 
groups together our accuracy increases from 77.2% to 81.9%. 

VII. PROTOTYPE SENSOR PACKAGE 

While the primarily data collection using the OceanOptics 
spectrometer showed that we could achieve promising results 
from a wide variety of liquids, we would eventually like this 
system to be integrated into something which costs a few dol-
lars or ideally less than a dollar. The cheaper the components of 
the system the more likely it can be widely used and accepted 
by people throughout the world.  

The spectrometer that we currently use costs about $3,000 
USD. The majority of these costs are from engineering and 
support and not actual parts costs. The basic components of a 
spectrometer are a linear imager (like those found in flatbed 
scanners), a few mirrors, and a diffraction grating. These parts 



 
Figure 5. (left) Prototype sensor package. The sensor is submerged inside a 

drink along with the pH and conductivity sensors to record a fingerprint of the 

liquids response to various illumination sources. (right – top) Avago ADJD-

S371 color sensor (right – bottom) LED color array 

 
Table 4. Combined confusion matrix of prototype sensor package. We per-

formed four iterations of leave one out classification (train on 3 test on 1), the 

above confusion matrix is the sum of those 4 confusion matrices, average 

classification accuracy was 60% using the prototype sensor data only. Adding 

in pH and conductivity data increased accuracy to 97.5% 

already cost under $50 in large quantities and could be made 
for much less. However, one alternative to taking existing spec-
trometers and making them less expensive, is to make a similar 
sensor using cheap discrete components. We constructed a pro-
totype sensor package made up of a color sensor (Avago 
ADJD-S71) and 8 different discrete LEDs that cost less than 
US$10, shown in Fig. 5 along with the pH and conductivity 
probes. Our sensor package uses UV, IR, and visible LEDs to 
get a characteristic fingerprint of the liquids absorption and 
transmission. Whereas the spectrometer used light intensity for 
different wavelengths, we measured the intensity output from 
the color sensor (Red, Green, Blue, and Clear) with different 
combinations of our 8 LEDs illuminating the sample. Using 
our prototype sensor package we collected an example data of 
set of 10 liquids, shown in Table 4. The 10 liquids were chosen 
to represent a cross section of our original data set and what 
someone might drink during the week, with a few difficult to 
classify variations (i.e. Coke vs. Diet Coke) chosen to ensure 
the subset contained some more difficult comparisons. 

We performed 4 data collection runs for each liquid, each 
time recording data from the prototype sensor, pH, and conduc-
tivity sensor. The average accuracy of the sensor was 60% with 
a precision of 52% and recall of 60%. While reduced in scale 
and complexity, this is comparable to our performance using 
the full spectrometer data alone to classify our 68 drink data 
set, which achieves an average accuracy of 52%. Adding in pH 
and conductivity data to our prototype data set boosts the accu-
racy tremendously to 97.5% due to the limited number of poss-
ible liquids. This effect would disappear as the number of liq-
uids increased; which would make the pH and conductivity 
ranges more crowded as illustrated in Fig. 3. 

VIII. DISCUSSION 

We have described our approach of coupling an optical 
spectrometer together with pH and conductivity probes in order 
to sense and classify different fluids that a user may consume. 
Results from our first experiment demonstrate the feasibility of 
using relatively high end commercial off-the-shelf sensors and 
employing a fingerprinting methodology. Encouraged by these 
results, we built a prototype sensor package to investigate 
whether this would hold true with a cheaper and less well cali-
brated implementation of the spectrometer. Results from that 
experiment suggest that this is indeed possible as well.  

Although the aim of this work was to show the feasibility of 
automatically classifying drinks among a collection of known 
fingerprints, we have carefully considered how one might build 
a fully deployable system in the future. We started by creating 
design sketches of different objects in which one may embed 
such sensors. Ideas ranged from stirrers to artificial ice cubes to 
cups and mugs themselves. For various pragmatic reasons, we 
settled on the cup being the most practical for everyday use.  

Interestingly, the vision of an instrumented cup is not too 
far reaching. Manufactures such as Hamamatsu, Inc. [1] are 
already building spectrometers in integrated circuit form. These 
mini-spectrometers are only a few centimeters on each side, 
which could be integrated into the bottom portion of standard 
200-300 ml cup. The integration of the pH sensing is also poss-
ible through new advances in IR-based detection schemes. This 
contactless approach is critical for ensuring safety and durabili-

ty. Like most technology, the cost of these sensors will likely 
drop over time, especially as spectrometers are integrated into 
mainstream consumer-oriented markets. Cheaper sensors 
would enable users to have more than one instrumented cup, 
for example a coffee cup for hot drinks, wine glass, mug, or 
regular glass. Specialized glasses would also help to make the 
classification problem simpler (users are much more likely to 
have wine in a wine glass). 

One benefit of instrumenting the cup is that we would also 
be able to measure volume and weight in order to infer not only 
the actual amount of the beverage consumed, but also the par-
ticular rate and patterns with which it was consumed. We could 
also add a cheap output modality to the cup itself in order to 
present information to the user.  

That said, we should caution that the current work does 
have one major limitation, which we hope to resolve in future 
work. Although our system shows promise for identifying 
drinks, we do not believe our sensors are sensitive enough to 
isolate and sense specific chemical compounds. Improved sen-
sors and further analysis might make this possible. 



With sensors that can sense specific chemical compounds, 
we could extend the applications we have motivated this work 
with, namely the desire to measure beverage consumption for 
the purpose of health metrics such as calorie management. For 
example, cups in bars and nightclubs in the future might con-
tain sensors like these that are able to sense certain chemical 
compounds, such as gamma-hydroxybutyric acid or benzodia-
zepines, better known as date rape drugs. It would also be use-
ful to be able to sense the alcoholic content of fluids in a cup to 
know how much one has been drinking. One could also envi-
sion building such devices to sense water quality in distribution 
wells and pipes, or at infrastructure endpoints (e.g. the faucet in 
your home). 

IX. CONCLUSION 

We have described a vision for building a sensor rich cup 
capable of determining the kind of liquid a person is drinking, 
as well as the opportunities that the success of such sensors 
may open. Our feasibility experiments show that a novel com-
bination of optical and ion selective electrical pH, and conduc-
tivity sensors can enable the sensing and classification of liq-
uids. We described two feasibility experiments that suggest that 
it is possible to reliably classify specific drinks with up to 79% 
classification accuracy for 68 different drinks. Although more 
verification and larger datasets are needed these results are very 
promising. We hope that researchers will begin to explore this 
kind of approach for automatically logging daily fluid intake 
and eventually spur interest in technology to support automatic 
food journaling. Although our work is based on the use of 
commercial test equipment, we feel that building a practical 
version of this approach is not too far reaching, especially 
when considering many of the necessary sensors needed for 
this technology are already becoming available in small form 
factor. We have already shown that is possible to build a low-
cost version of an instrumented cup using readily available 
electronics costing under $10 that can identify up to 10 drinks. 
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