
S4P: A Generic Language for
Specifying Privacy Preferences and Policies

Moritz Y. Becker
Microsoft Research, Cambridge, UK

Alexander Malkis
IMDEA Software, Madrid, Spain

Laurent Bussard
European Microsoft Innovation Centre, Aachen, Germany

April 2010, updated August 2010

Technical Report
MSR–TR–2010–32

Microsoft Research
Roger Needham Building
7 J.J. Thomson Avenue
Cambridge, CB3 0FB

United Kingdom

S4P: A Generic Language for

Specifying Privacy Preferences and Policies

Moritz Y. Becker
Microsoft Research, Cambridge, UK

Alexander Malkis
IMDEA Software, Madrid, Spain

Laurent Bussard
European Microsoft Innovation Centre, Aachen, Germany

April 2010, updated August 2010

Abstract

This paper presents S4P, a declarative language for specifying both users’
privacy preferences and services’ privacy policies. Preferences and poli-
cies are uniformly expressed as assertions and queries written in SecPAL
extended with two modal verbs, may and will, and can express both per-
missions and obligations. Checking if a user’s preference is satisfied by a
service’s policy is simple as it only involves evaluating the queries against
the assertions. Expressiveness and applicability are maximized by keep-
ing the vocabulary and semantics of service behaviours abstract. The
language’s model-theoretic semantics is given in terms of abstract service
traces, and formalizes the notion of service compliance with respect to a
policy or a preference.

Contents

1 Introduction 2

2 Related work 5

3 S4P Syntax and Query Evaluation 6

4 Trace Semantics 11
4.1 Trace Semantics of Policies . 12

1

4.2 Trace Semantics of Preferences 13
4.3 Satisfaction and Compliance . 14

5 Protocol for safe data handling 15
5.1 Informal protocol description . 15

5.1.1 User-service encounter . 16
5.1.2 Transitive service-service encounter 16
5.1.3 Policy evolution . 18
5.1.4 Privacy guarantee in general 18

5.2 Formal protocol description . 18
5.2.1 Preliminaries . 19
5.2.2 Privacy guarantee . 20

6 Discussion 24

A Extended Example 32

B Proofs 34

1 Introduction

Businesses have strong economic incentives to aggregate customers’ personal
data over the Internet. However, a US study conducted by the Progress &
Freedom Foundation (PFF) in 2001 reported a surprising finding: within the
course of two years, the amount of personal information collected by commercial
websites had actually dropped significantly [1]. What incentives could there be
for businesses to collect less data?

First of all, the late 1990’s saw increased pressure from regulators with re-
gard to privacy and data protection. The European Union’s privacy directive
95/46/EC was transposed into national laws in 1998; in the US, the Health
Insurance Portability and Accountability Act (HIPAA, enacted 1996) regulates
privacy in the health sector, the Gramm-Leach-Bliley Act (enacted 1999) in the
financial sector, and the Children’s Online Privacy Protection Act (COPPA,
enacted 1998) regarding children’s online data. Indeed, many companies have
faced legal conflicts over online privacy issues (recent examples include Facebook
[17, 31], Google Books [32] and Sony [19]).

Moreover, consumers’ increased concern over online privacy has had an effect
on which companies users are willing to do business with: a study by Forrester
Research concluded that $15 billion in e-commerce revenue was lost in 2001 due
to consumers’ privacy worries [25]. Publicly claiming to collect less personal
information may thus be seen as a competitive advantage.

Indeed, the PFF study also found that by 2001, 99% of the most popular
dot-com websites were posting a privacy policy, a public document describing
a site’s data-handling practices and privacy promises [1]. The intention of such
a policy is to inform users and let them use it as a basis for deciding whether
or not to disclose their data. Nevertheless, despite their concern over privacy,

2

the vast majority of users do not bother reading privacy policies. In any case,
most users would likely not be able to fully comprehend the policies anyway.
Jensen and Potts [24] conclude in their usability study that privacy policies
written in natural language are “essentially unusable as decision-making aids
for a user concerned about privacy”. Moreover, natural language policies are
often ambiguous and inconsistent [2].

Privacy policy languages such as P3P [14] allow online services to specify
and publish their privacy policies in a machine-readable way. The process of
deciding, based on such a policy and the user’s privacy preferences, whether or
not to disclose personal user data to the service can thus be automated. But de-
spite the growing apparent need for such technologies, adoption of P3P has been
slow. This is due mainly to cultural and economical reasons [7] that apply to
other privacy enhancing technologies as well, but existing privacy languages also
suffer from technical limitations. Above all, due to their limited expressiveness
and scope, they cannot express many statements commonly found in natural
language policies. Stufflebeam et al. [30] point out high-level organization-wide
obligations in particular and cite examples from a health insurance’s natural lan-
guage privacy notice (e.g. “[. . .] locations that maintain confidential information
have procedures for accessing, labeling and storing confidential records.”) that
cannot be expressed in P3P and similar existing languages.

More generally, the problem is that policies are highly heterogeneous; they
are spread out both horizontally (coming from a wide variety of application
domains with varying vocabulary and requirements) and vertically (expressed
across all abstraction layers: legislation, organizational and business require-
ments, application requirements, low-level access control).

Academic research in this area has focussed on developing more expressive,
feature-rich privacy languages, or logics that can directly encode temporal and
stateful service behaviours [3, 27, 5, 28]. Although many of these languages are
indeed more expressive than P3P, we believe that these efforts do not adequately
address the problem of limited scope, and are not likely to be widely deployed
in the real world, for the following reasons.

Firstly, many high-level policies such as organization-wide ones or ones in-
volving human interaction still cannot be expressed in these languages, as they
are inherently informal (e.g. “[. . .] we will tell our affiliates to limit their mar-
keting to you [. . .]”, from Citibank’s privacy notice). Secondly, it is often not
necessary to precisely specify the semantics of a service behaviour. For instance,
it is often (though not always) sufficient to view a behaviour such as “delete data
within 7 days” as an atomic entity (with some intuitive meaning), without speci-
fying what “delete” or “within” precisely mean and entail. In such cases, precise
temporal behaviour specifications are an unnecessary overhead, and force policy
authors to think and work at a level of abstraction that is too low. Thirdly,
some amount of ambiguity within the confines of reasonable interpretation is
often even desirable from the point of view of businesses (and in particular their
legal departments). The precise behaviour semantics of these languages leaves
no wiggle room and may thus actually be a deterrent to adoption.

This paper presents a high-level, generic privacy policy language, S4P, that

3

keeps the semantics of behaviours abstract. Its language design was driven by
a small set of design goals to address a number of shortcomings of previous
languages:

1. A privacy language should be generic in the ontology of service behaviours
and hide the semantics of these behaviours by abstraction, in order to
support the widest range of policies, both in a horizontal and vertical
sense.

2. It should uniformly deal with both sides of PII disclosure, namely user
preferences and service policies, and enable satisfaction checking between
the two.

3. It should support, and distinguish between, both permissions and promises
over service behaviours, in both user preferences and service policies.

4. As usability, and readability in particular [24], is a critical aspect in any
practical policy language, its syntax should be reasonably human-readable.

5. The language built on top of the abstract behaviours should be expressive,
supporting parameterized behaviours and data types, transitive and other
recursive conditions and arbitrary constraints.

6. It should support credential-based delegation of authority, which is crucial
for modern decentralised and distributed architectures [12].

Statements in S4P are meta-statements about abstract parameterised service
behaviours. The service behaviours in S4P can be left abstract, which should
be sufficient in most cases, or be instantiated to any required level of detail,
using any of the many existing specification techniques including temporal logic,
obligation languages, transition systems, or even concrete pieces of code. In
other words, concrete behaviour ontologies and semantics can be plugged into
the language in a modular fashion according to need. Furthermore, the language
is also agnostic about how and whether services enforce their policies. This is in
line with the implicit trust model which requires users to trust services to adhere
to their own policies, and is independent of whether enforcement is established
informally via audit trails, or by dynamic monitoring, or static analysis.

At first sight, one might think that, due to the high abstractness of the
language, not much insight can be gained with regards to privacy. We show
that this is not the case. In particular, our contributions, apart from language
design, include the following.

• A proof-theoretic semantics that formalizes which queries are true in a
policy or a preference, and, based on this notion, an algorithm to decide
when a policy satisfies a user’s preference (Section 3). This answers the
question: “should the user agree to disclose her data?”

• A model-theoretic semantics that formalizes the intuitive meaning of poli-
cies and preferences in terms of abstract service behaviours and traces

4

(Section 4). We also show that the satisfaction checking algorithm is
sound with respect to the semantics. This answers the question: “what
does it mean for a service to comply with its own policy, or with a user’s
preference?”

• An operational semantics that formalizes three protocols: one for disclos-
ing personal data, one that additionally allows policy evolution, and one
that allows services to forward user data to third parties (Section 5). This
answers the question: “how can S4P be deployed in a network of collabo-
rating agents to ensure safe communication?” The formalization enables
us to state and prove useful safety properties of the protocols, despite the
language’s abstractness.

Related work is discussed in Section 2. Section 6 concludes the paper with
a discussion on implementation, performance and expressiveness issues. Ap-
pendix A contains an extended example of a S4P preference and policy.

2 Related work

P3P [14] is a language for presenting a website’s privacy notice in a structured,
machine-readable way. User preferences cannot be expressed in P3P, so ad hoc
mechanisms (e.g. the Privacy Tab Slider in Internet Explorer 6 or the syntactic
pattern matching language APPEL [15]) for managing preferences and check-
ing them against policies are required. The downside of this approach is that
the semantic correspondence between preferences and P3P policies is unclear.
Policies can only express what a website may do and cannot express positive
promises (e.g. “we will notify you if [. . .]”). Its vocabulary is fixed and web-
centric, which limits its expressiveness further (cf. [20]). P3P does not satisfy
any of the six design goals in Section 1.

DAMP [6] is a formal framework that links an internal privacy policy of
an enterprise with its published policy. DAMP’s main complexity stems from
supporting hierarchical data types using modal operators. S4P supports hier-
archical types via constraints (not discussed in this paper). Like S4P, DAMP
does not fix the vocabulary of actions and data types, and keeps the semantics
of actions abstract. As such, it satisfies design goal 1 from Section 1, but not
the other goals; for instance, DAMP cannot differentiate between promises and
permissions.

Ardagna et al. [3] propose a unified language for expressing services’ access
control policies, users’ release policies, and services’ data-handling policies. The
language does not support first-class obligations that are independent of access
control rules (cf. [13]), and a user’s release policy (corresponding to “prefer-
ence” in our terminology) cannot express requirements on the service’s privacy
promises. Like P3P, the language is tied to a predefined vocabulary, lacks a
formal semantics, and does not satisfy any of the design goals from Section 1.

Simple Privacy Language (SIMPL) [27] is a restricted subset of English for
specifying both preferences and policies. The language is equipped with a small

5

set of specific constructs such as constraining the “verification level” of services
or deleting data within some time. Its expressiveness is thus rather limited, but
it does satisfy design goals 2, 3 and 4 from Section 1. Only a small part of
SIMPL’s model-theoretic semantics is currently formally defined.

Barth et al. [5] use linear temporal logic to specify positive and negative
temporal constraints on the global trace of a network of principals sending
user data between each other. Satisfaction between preferences and policies
is equivalent to checking entailment between two formulas. Hence for data
sending actions, their logic satisfies our design goals 2 and 3 (but not the others).
Behaviours other than sending data are not supported (in particularly not non-
monotonic actions such as deletion), and extensions would be non-trivial as the
effects of behaviours on the state are modelled explicitly. Their formalism could
be seen as an example of how temporal logic could be employed to elegantly
model our abstract behaviours on a more detailed level, if required.

EPAL [4] is a language for specifying and enforcing organizations’ internal
rules for accessing user data; essentially, it is an access control language (com-
parable to XACML [29]) with a privacy-centric vocabulary. It does not deal
with specifying user preferences and matching them against policies.

3 S4P Syntax and Query Evaluation

This section defines the syntax and query evaluation semantics of S4P.

Informal overview. In an encounter between a user and a service, the service
requests some personally identifiable information (PII1) from the user, and the
user may agree or disagree to the disclosure. Disclosure depends on the service’s
properties and its privacy policy, a document that details how the service is
going to handle users’ data. To automate this decision process, the policy is
written in S4P, a formal language that machines can interpret. Furthermore,
the user also has a document written in S4P, called preference, which specifies
her requirements on the service’s properties and on its policy for this encounter.

We assume that there is a predefined collection of parameterised PII-relevant
service behaviours, and a corresponding vocabulary for representing these be-
haviours. This vocabulary generally depends on the application domain and may
include phrases such as “use Email for Stats”, “delete Email within 13 days”,
and “have procedures to label records”. S4P is not tied to a particular set of
behaviours; rather, these can be plugged into the language depending on the
application domain.

Both policies and preferences consist of a set of assertions and a query.
Assertions in a preference express what a service may, or is permitted to, do
with the user’s PII. They make use of the special modal verb “may”, and are
thus also called may-assertions. In other words, they specify an upper bound on
a service’s behaviours with respect to the PII. In the may-assertions below, the

1For our purposes, the term PII can actually be rather loosely interpreted as any kind of
valuable private data that a user possesses and that may be disclosed to services. By a slight
abuse of grammar, we will use the plural “PIIs” to mean “pieces of personally identifiable
information”.

6

User Preference Service Policy
Permissions may-assertions may-query

(upper bounds) User gives permissions Service asks for permissions
Promises will-query will-assertions

(lower bounds) User asks for promises Service gives promises

Figure 1: Dualities of may and will assertions and queries.

user Alice permits booking services to use her email address for any purpose
apart from marketing and statistics, and allows any service to not retain her
email addresses. During an encounter, the placeholder 〈Svc〉 gets dynamically
instantiated with the identity of the service.

(U1) Alice says 〈Svc〉 may use Email for purp if 〈Svc〉 is a BookingSvc

where purp /∈ {Marketing, Stats}
(U2) Alice says 〈Svc〉 may delete Email within t

The second part of any preference is a will-query, which specifies a lower bound
on a service’s properties and behaviours. In other words, it expresses obligations,
i.e. the behaviours that a service must exhibit. Alice’s will-query (UQ) below
requires services to delete her email address within 30 days.

(UQ) ∃t (〈Svc〉 says 〈Svc〉 will delete Email within t? ∧ t ≤ 30 days?)

Assertions in a policy express what a service will certainly do, or promises
to do, with the user’s PII. They make use of the special modal verb “will”, and
are thus also called will-assertions. In other words, they specify a lower bound
on a service’s behaviours with respect to the PII. In the following will-assertion,
eBooking promises to delete email addresses within 7 days.

(S1) eBooking says eBooking will delete Email within 7 days

The second part of any policy is a may-query, which specifies an upper bound on
a service’s behaviours. In other words, it expresses and advertises all possible
relevant behaviours of the service. In the may-query below, eBooking asks for
permission to use the collected email address for sending out newsletters. The
placeholder 〈Usr〉 gets instantiated with the user’s identity during an encounter.

(SQ) 〈Usr〉 says eBooking may use Email for News? ∧
〈Usr〉 says eBooking may delete Email within 7 days?

With this may-query, the service declares that it will not exhibit any other
relevant behaviours than the specified ones. Fig. 1 summarises the dualities
between preference and policy, permissions and promises, assertions and queries,
and the may and will modalities.

Appendix A contains a longer example of a preference and a policy.

Preference/policy syntax. A phrase of syntax is ground iff no variables
occur in it, and closed if no free variables (i.e., in the scope of a quantifier)
occur in it.

7

The phrases in S4P are built from a first order function-less signature Σ
with constant symbols Const and some set of predicates Pred. As usual, an
atom a is a predicate symbol applied to an expression tuple of the right arity.
The predicate symbols are domain-specific, and we often write atoms in infix
notation, e.g. Alice is a NicePerson.

In order to abstractly represent PII-relevant service behaviours, we assume a
further set of predicate symbols BehSymb. Atoms constructed from predicates
in BehSymb are called behaviour atoms. These are also usually written in
infix notation and may include atoms such as 〈delete Email within 1 yr〉 and
〈allow x to control access to FriendsInfo〉.

Further, we assume a domain-specific first order constraint language whose
relation symbols are disjoint from Pred, but which shares variables and con-
stants with Σ. A constraint is any formula from this constraint language. The
only further requirement on the constraint language is the existence of a com-
putable ground validity relation |=, i.e., we can test if a ground constraint is true
(written |= c). The constraint language may, for example, include arithmetic
operations and relations, regular expressions and environmental constraints.

An assertion α is of the form 〈E says f0 if f1, . . . , fn where c〉, where
E is a constant2 from Const, the fi are facts (defined below), and c is
a constraint on variables occurring in the assertion. In an assertion α =
〈e says f if f1, . . . , fn where c〉, the keyword “if” is omitted when n = 0; likewise,
“where c” is omitted when c = true.

Henceforth, we keep to the following conventions for metavariables: x, y
denote variables, E,U, S constants from Const, e denotes an expression (i.e.,
either a variable or a constant), c a constraint, a an atom, b a behaviour atom,
B a ground behaviour atom, B a set of ground behaviour atoms, f a fact,
F a ground fact, α an assertion, and A a set of assertions. We use θ for
variable substitutions, and γ for ground total variable substitutions (mapping
every variable to a constant).

We can now define the syntax of facts f :

Fact f ::= a
| e can say f
| e may b
| e will b

The syntax of queries q is defined as follows.

Query q ::= e says f?
| c?
| ¬q
| q1 ∧ q2
| q1 ∨ q2
| ∃x(q)

2Intuitively, E is of type user or service, but it is not necessary to formally distinguish
constant types (such as user, service, PII category) until Section 5, even though we do use
them informally.

8

Facts with can say are used to express delegation of authority and have a
special query evaluation semantics, as defined in the proof system below. Facts
involving may and will are not treated special by query evaluation, but are
essential for the privacy-related model semantics in Section 4.

Since many of our further definitions are parameterized by the encounter,
we introduce the following definition.

Definition 3.1. A user-service pair is a pair of a user name and a service
name during an encounter. Formally: a user-service pair τ = (U, S) is a pair of
constants.

Recall that the lower bound on service behaviours specified in users’ pref-
erences and the upper bound specified in services’ policies are expressed as a
will-query and a may-query, respectively, as defined below.

Definition 3.2. Let τ = (U, S) be a user-service pair.

• A τ -will-query qw is a query in which no subquery of the form
〈S says S will b?〉 occurs in the scope of a negation sign (¬).

• A τ -may-query qm is a query in which no subquery of the form
〈U says S may b?〉 occurs in a disjunction or in the scope of an existential
quantifier or a negation sign.

The definition above syntactically restricts the query occurring in a policy or
a preference to those that can be given an intuitive meaning in terms of an upper
or a lower bound on behaviours, such that the formal query evaluation semantics
described later in this section matches this meaning. Disjunction and, similarly,
existential quantification are allowed and have an obvious intuitive meaning
within a will-query, e.g.

∃t (S says S will delete Email within t? ∧ t ≤ 2yr?).

A may-query, however, represents an upper bound on a service’s behaviour,
and disjunction does not make much sense in this context. If a service wanted
to state that it may possibly use the user’s email address for contact or for
marketing (or possibly not at all), it would specify a conjunctive query:

U says S may use Email for Contact? ∧ U says S may use Email for Marketing?

If this query is successful in the context of U ’s preference, the service is permitted
to use the email address for contact, for marketing, or for both, or to not use it
at all.

We can now define the syntax of preferences and policies.

Definition 3.3. A τ -preference Πpr is a pair (Apr, qw) where Apr is a set of
assertions and qw a closed τ -will-query. A τ -policy Πpl is a pair (Apl, qm) where
Apl is a set of assertions and qm a closed τ -may-query.

Atomic query evaluation. A query is evaluated in the context of a set of
assertions; a closed query evaluates to either true or false. Our query evaluation

9

semantics is a slightly simplified variant of the one from SecPAL [8]. We first
define a two-rule proof system that generates ground judgements of the form
A ` E says F :

〈E says f if f1, . . . , fn where c〉 ∈ A |= γ(c)
For all i ∈ {1, . . . , n} : A ` E says γ(fi)

A ` E says γ(f)

A ` E1 says E2 can say F
A ` E2 says F

A ` E1 says F

The first rule is derived from the standard modus ponens rule, and the second
rule defines delegation of authority using can say.

Example. Continuing the example from above, suppose Alice has a third
preference assertion

(U3) Alice says CA can say x is a BookingSvc,

and eBooking has a credential (i.e., a digitally signed assertion) issued by CA:

(S2) CA says eBooking is a BookingSvc.

Then if A is the set of assertions (U1, 2, 3) and (S1, 2) (with 〈Usr〉
instantiated to Alice and 〈Svc〉 to eBooking), we can prove A `
Alice says eBooking may use Email for News, since (U3) and (S2) together
imply Alice says eBooking is a BookingSvc.

In the example, Alice uses (U3) to delegate authority over BookingSvc role
membership to CA. Authority delegation has long been recognized as an essential
feature in decentralized authorization and access control. Although delegation
is just as important in the privacy context, it has not been supported in any
previous privacy language.

Compound queries. The relation ` so far only deals with the case where the
query is of the basic form 〈e says f?〉. We extend it to all closed queries in a
straightforward way, by interpreting compound queries as formulas in first-order
logic. Formally, let A be a set of assertions and q be a closed query, Massr =
{α | A ` α} and Mconstr = {c | |= c}. Then A ` q iff Massr ∪Mconstr |= q in
first order logic.

Example. Simplifying (we will speak about placeholders later), the query (SQ)
is evaluated by separately evaluating all conjuncts and checking that each of
them is true.

Satisfaction. Should a user agree to the disclosure of her PII? This depends
on whether the service’s policy satisfies her preference. Checking that a policy
satisfies a preference consists of two steps. Firstly, every behaviour declared
as possible in the policy must be permitted by the preference. Therefore, it
is checked that the upper bound specified in the policy is contained in the
upper bound specified in the preference. Intuitively, a service must ask for
permission upfront for anything that it might do with a user’s PII. Secondly,
every behaviour declared as obligatory in the preference must be promised by the
policy. Therefore, it is checked that the lower bound specified in the preference

10

is contained in the lower bound specified in the policy. Intuitively, a user asks
the service to promise the obligatory behaviours.

Since these dualities are reflected in the language syntax (cf. Fig. 1), check-
ing if a service policy satisfies a user preference is straightforward. We just need
to check if the may-query in the policy and the will-query in the preference are
both satisfied. In general, queries are not satisfied by a single assertion but by
a set of assertions. This is because assertions may have conditions that depend
on other assertions, and authority over asserted facts may be delegated to other
principals. Hence the queries have to be evaluated against the union of the
assertions in the policy and the preference.

Definition 3.4. A τ -policy Πpl = (Apl, qm) satisfies a τ -preference Πpr =
(Apr, qw) iff Apl ∪ Apr ` qm ∧ qw.

Example. The (Alice,eBooking)-policy consisting of assertions (S1, 2) and
query (SQ) satisfies the preference consisting of assertions (U1, 2, 3) and query
(UQ), because both queries are derivable from the union of the assertions.

We assume that on an encounter between U and S, user U provides a (U, S)-
preference and service S provides a (U, S)-policy. In practice, preferences and
policies are written with placeholders that get instantiated when the encounter
is initiated, with values that are specific to the encounter. In particular, the
concrete syntax may include 〈Usr〉 and 〈Svc〉 that get instantiated with U and
S, respectively. The formal sections in this paper assume that such placeholders
in preferences and policies have all been instantiated.

Def. 3.4 induces an algorithm, based on query evaluation, for checking if a
policy satisfies a preference, but it does not show that the algorithm is correct.
Indeed, there is as yet no definition of what we mean by “correct”. The fol-
lowing section formalizes a notion of correctness and proves correctness of the
satisfaction checking procedure.

4 Trace Semantics

Policies and preferences specify upper and lower bounds on services’ behaviours.
So what we are interested in is whether a particular run, or trace, of a service
complies with a policy or a preference. Since we are only interested in which PII-
relevant behaviours a trace exhibits, we keep the notion of trace as abstract as
possible. We assume a set whose elements are called traces, as well as an abstract
behaviour function Beh which maps each trace to a set of ground behaviour
atoms. In order to maximize generality of our language, we make no further
assumptions on Beh. Intuitively, a trace t exhibits exactly the behaviours in
Beh(t). (And conversely, every ground behaviour atom can be seen as a trace
property.)

Definition 4.1. A trace t complies with a set of traces T iff t ∈ T . A set of
traces T1 is at least as strict as a set of traces T2 iff T1 ⊆ T2.

In the following, we define a model-theoretic semantics for S4P policies and
preferences by mapping them to sets of traces. Furthermore, we will show that

11

B |=wa
τ,A Apl Behaviours B include all the promises made by the will-assertions in A ∪Apl.

B |=mq
τ,A qm Behaviours B are contained in the behaviours for which permission is asked for

in the τ -may-query qm, in the context of A.

B |=ma
τ,A Apr Behaviours B are contained in the behaviours permitted by the may-assertions in

A ∪Apr.
B |=wq

τ,A qw Behaviours B include all the obligations required by the τ -will-query qw, in the context
of A.

[[Πpl]]
pl
τ,A Set of all traces that comply with policy Πpl, in the context of A.

[[Πpr]]
pr
τ,A Set of all traces that comply with preference Πpr, in the context of A.

Figure 2: Overview of the formal notation in Section 4

if a policy satisfies a preference, then the set of traces induced by the policy is at
least as strict as the set induced by the preference. Consequently, checking that
a policy satisfies a preference is sufficient for proving that the trace exhibited
by the service complies with the user preference, assuming that the trace also
complies with the service’s own policy. This follows from the simple lemma
below:

Lemma 4.2. Let t be a trace and T1, T2 be sets of traces. If t complies with
T1 and T1 is at least as strict as T2 then t also complies with T2.

Fig. 2 provides an overview of the formal notation introduced in this section.

4.1 Trace Semantics of Policies

We first define two auxiliary relations that are used for specifying the trace
semantics of a policy.

Promised obligations. Let τ = (U, S), let A, Apl be sets of assertions, and
B a set of ground behaviour atoms. The relation B |=wa

τ,A Apl holds if the be-
haviours in B include all behaviours promised by will-assertions in Apl, together
with the foreign assertions A in the context (later, A will be instantiated to the
assertions from the user preference):

B |=wa
τ,A Apl iff B ⊇ {B | A ∪ Apl ` S says S will B}

Queried permissions. Let τ = (U, S), A be a set of assertions, B a set of
ground behaviour atoms, and qm a τ -may-query. The relation B |=mq

τ,A qm holds
if all behaviours in B are contained in the behaviours that may be exhibited,
as specified by qm, in the context of A (later, A will be instantiated to the
assertions from both the service policy and the user preference). The relation

12

is defined as the smallest relation satisfying:

B |=mq
τ,A U says S may B? if B ⊆ {B}

B |=mq
τ,A q1 ∧ q2 if there exist B1,B2 such that

B = B1 ∪ B2 and
B1 |=mq

τ,A q1 and B2 |=mq
τ,A q2

∅ |=mq
τ,A q if A ` q and no subquery of the form

〈U says S may B?〉 occurs in q

Trace semantics. The following definition formalizes the intuitive meaning of
a policy: a policy characterizes all those traces that respect both the lower bound
and the upper bound on behaviours (as expressed by the will-assertions and the
may-query, respectively, in the context of some additional set of assertions A).

Definition 4.3. Let τ = (U, S), Πpl = (Apl, qm) be a τ -policy, and A a set of

assertions. Then [[Πpl]]
pl
τ,A denotes the set of all traces t such that

Beh(t) |=wa
τ,A Apl and Beh(t) |=mq

τ,Apl∪A qm.

Example. If τ = (Alice, eBooking), Πpl consists of assertions (S1, 2) and
query (SQ), and A consists of assertions (U1, 2, 3) (with placeholders instanti-

ated by τ), then [[Πpl]]
pl
τ,A denotes the set of all traces t such that

{delete Email within 7 days} ⊆ Beh(t) ⊆ {delete Email within 7 days, use Email for News}.

4.2 Trace Semantics of Preferences

Again, we first define two auxiliary relations

Permissions. Let τ = (U, S), let A, Apr be sets of assertions, and B a set
of ground behaviour atoms. The relation B |=ma

τ,A Apr holds if all behaviours
in B are contained in the set of behaviours permitted by the may-assertions
in Apr, together with the foreign assertions A in the context (later, A will be
instantiated to the assertions from the service policy):

B |=ma
τ,A Apr iff B ⊆ {B | A ∪ Apr ` U says S may B}

Obligations. Let τ = (U, S), A be a set of assertions, B a set of ground
behaviour atoms, and qw a τ -will-query. The relation B |=wq

τ,A qw holds if the
behaviours in B include all behaviours specified as required by qw, in the con-
text of A (later, A will be instantiated to the assertions from both the service
policy and the user preference). The relation is defined as the smallest relation

13

satisfying the following:

B |=wq
τ,A S says S will B? if B ⊇ {B}

B |=wq
τ,A q1 ∧ q2 if B |=wq

τ,A q1 and B |=wq
τ,A q2

B |=wq
τ,A q1 ∨ q2 if B |=wq

τ,A q1 or B |=wq
τ,A q2

B |=wq
τ,A ∃x(q) if there exists E ∈ Const :

B |=wq
τ,A q[E/x]

B |=wq
τ,A q if A ` q and no subquery of the form

〈S says S will B?〉 occurs in q

Trace semantics. The following definition formalizes the trace semantics of
a preference in the context of a set of assertions.

Definition 4.4. Let τ = (U, S) be a user-service pair, Πpr = (Apr, qw) a pref-
erence, and A a set of assertions. Then [[Πpr]]

pr
τ,A denotes the set of all traces t

such that

Beh(t) |=ma
τ,A Apr and Beh(t) |=wq

τ,Apr∪A qw.

Example. If τ = (Alice, eBooking), Πpr consists of assertions (U1, 2, 3)
and query (UQ) and A consists of assertions (S1, 2) (with placeholders in-
stantiated by τ), then [[Πpr]]

pr
τ,A denotes the set of all traces t such that

〈delete Email within T 〉 ∈ Beh(t) for some constant T ≤ 30 days and
Beh(t) ⊆ {delete Email within T ′ | T ′ ∈ Const} ∪ {use Email for P | P 6=
Marketing ∧ P 6= Stats}.

4.3 Satisfaction and Compliance

Our main correctness theorem, Theorem 4.8, is based on two lemmas.
Lemma 4.5 shows that checking a policy’s may-query against a set of asser-
tions is sufficient for guaranteeing that a set of behaviours respects the upper
bound specified by the assertions, given that the set of behaviours also respects
the upper bound specified by the may-query. Similarly, Lemma 4.6 shows that
checking a preference’s will-query against a set of assertions guarantees that a
set of behaviours respects the lower bound specified by the will-query, given that
the set of behaviours also respects the lower bound specified by the assertions.

Lemma 4.5. Let A be a set of assertions, qm a closed τ -may-query, and B a
set of ground behaviour atoms. If A ` qm and B |=mq

τ,A qm then B |=ma
τ,A A.

Lemma 4.6. Let A be a set of assertions, qw a closed τ -will-query, and B a set
of ground behaviour atoms. If A ` qw and B |=wa

τ,A A then B |=wq
τ,A qw.

Based on these two lemmas, Lemma 4.7 states that checking that the policy
satisfies the preference (by checking that all queries are successfully evaluated)
is sufficient for guaranteeing that the set of traces represented by the policy is
at least as strict as the set of traces represented by the preference.

14

Lemma 4.7. Let Πpl = (Apl, qm) be a τ -policy and Πpr = (Apr, qw) a τ -

preference. If Πpl satisfies Πpr then [[Πpl]]
pl
τ,Apr

is at least as strict as [[Πpr]]
pr
τ,Apl

.

Theorem 4.8 is a corollary of Lemma 4.7 and links up the proof-theoretic
notion of satisfaction with the model-theoretic notion of compliance: assuming
that a service trace complies (cf. Def. 4.1) with the service’s own policy, suc-
cessfully evaluating all queries is sufficient for guaranteeing that the trace also
complies with the preference.

Theorem 4.8. Let Πpl = (Apl, qm) be a τ -policy and Πpr = (Apr, qw) a τ -

preference. If a trace t complies with [[Πpl]]
pl
τ,Apr

and Πpl satisfies Πpr, then t

complies with [[Πpr]]
pr
τ,Apl

.

Note that this theorem is completely independent of any concrete instantia-
tion of the behaviours, and of the Beh mapping in particular. We are thus able
to prove the essential correctness property for S4P despite its abstractness. Of
course, if behaviour-specific properties are to be proved, then Beh needs to be
filled with some structure. We show an example of such a partial instantiation
of Beh in Section 5.1.2.

5 Protocol for safe data handling

In this section we describe a protocol for PII disclosure in a network of users
and services that use S4P to express their preferences and policies, respectively.
The protocol also regulates transitive communication of PIIs to third parties
and evolution of privacy policies. The protocol guarantees privacy of users’
PIIs.

We describe the protocol on a high level, abstracting away from the internal
details of the services and of the communication. However, our description
presents an example of how the a notion of a trace from S4P can be instantiated.

Informally, we fix an arbitrary run of a set of services and users and show the
conditions that the protocol imposes on the services in the run. The protocol
allows the services to operate with PIIs only in the following ways:
• send PIIs to services;
• receive PIIs from services and users;
• change policies on-the-fly.

(Incorporating additional actions, like forgetting PIIs, into the protocol leads to
similar safeness results; for simplicity we are keeping the protocol small in the
current presentation.)

5.1 Informal protocol description

Now we informally describe what actions a service may execute and how.
A service may involve in an encounter with a user, it may involve in an en-

counter with another services, it may alter its own policy or execute an internal
action.

We assume that a service attaches a distinct preference and a distinct policy
to each received PII of each user. On internal events, the service is required

15

to keep preferences, policies and stored PIIs unchanged. Now we describe the
communication events and policy evolutions.

5.1.1 User-service encounter

Now we show how a user discloses a PII to a service.
If a service S wishes to collect a PII from a user U , then the following steps

should happen (here, τ = (U, S)):
• U and S decide on a τ -preference Πpr and a τ -policy Πpl, respectively, to

be used for this encounter. The protocol allows any way of obtaining the
policy and the preference: these may be fixed or result from some auto-
mated or manual negotiation, e.g. U may use checkboxes in a graphical
user interface to customize a protocol template provided by S.

• If Πpl satisfies Πpr, then U sends PII to S, otherwise the protocol is
aborted. The protocol allows any trusted way of checking satisfaction.
The trust relations should dictate who checks satisfaction:

– U , as the main stakeholder, wishing to keep even the preference secret
to a widest possible extent;

– or S, wishing to keep those parts of its policy secret which are irrel-
evant for the current encounter;

– or a trusted third party.
From the viewpoint of maintaining privacy U is the safest choice.

• S keeps a copy of Πpl and Πpr together with the PII.
Real-world devices have limited resources. For example, mobile devices are
restricted in the size of the fetched policies, in the ability to customize them
and in the computation time, which might require S or a third party to provide a
fixed policy and check satisfaction. Congested services may not want to compute
satisfaction checks, shifting this task to U or to a third party. Communication
with distant third parties incurs additional delays, leaving the task to U or S
(or a third party on the communication channel between U and S). Relying on
trust relations gives us freedom to choose the most adequate way of determining
the preference and the policy and the cheapest way of checking satisfaction.

The scheme where the only actions are internal ones and user-service dis-
closures guarantees that at any point of time, if a service possesses a PII of
the user, then the user must have disclosed it to the service in the past, and
the service associated the PII with the policy and the preference during the
encounter. Furthermore, assuming that the service complies with its policy, it
also complies with the preference.

5.1.2 Transitive service-service encounter

Now we show how a service discloses a PII to another service.
Once a PII has been collected by a service, it may be sent on to third-party

services, which may in turn disclose the PII further. In most scenarios, disclosing
a PII P to a third party S′ represents a privacy-relevant behaviour, which should
be controlled by preferences and policies. If third-party disclosures should be
controlled, atoms of the form 〈send P to S′〉 (like 〈send Email to eMarketing〉)

16

should be among the behavioural atoms and Beh should keep track of those
atoms.

Many privacy languages like P3P/APPEL allow preferences to check if a
service S1 who initially received a PII wants to share it with third parties like
S2. But those languages don’t control the disclosures made by S2, which is
in most scenarios privacy-relevant. Our protocol controls disclosures along an
arbitrarily long chain of services.

A service S may thus only disclose a PII to a third party S′ if
1. The policy of S allows the disclosure, and
2. The policy of S′ complies with the preference of U . Again, the protocol

allows any trusted way of checking satisfaction. The trust relations should
dictate who check satisfaction:
• U , who is the main stakeholder;
• or S, who may not trust S′ on checking;
• or S′, who may not trust S on handling the policy of S′

• or a trusted third party.
Although from the viewpoint of maintaining privacy U is the safest choice,
U can’t be expected to be always physically available. Thus S is the best
choice from the viewpoints of privacy and responsiveness.

As before, limited computational resources influence the choice of place to check
satisfaction. The network architects are free to choose any trusted place, fully
controlling the trade-off between privacy and available resources like time, space
and bandwidth.

Disclosing a PII without knowing the future chain of recipients is
perfectly alright in theory: the informal “the service should revoke
the user’s cookies within 2 years” is expressible as a set of queries
“U says S will revoke cookies within 2 yr?” for all user identifiers U and
all service identifiers S. However, if the set of principals is finite but large or
infinite (to model new principals appearing in the course of the time), naively
maintaining such a set of queries (i.e. storing a plain text query for each U and
S) is infeasible in the finite case and impossible in the infinite case.

The aforementioned placeholders 〈Usr〉 and 〈Svc〉 resolve the issue:
the above set of queries is stored and transmitted as a single sentence
“〈Usr〉 says 〈Svc〉 will revoke cookies within 2 yr?”. The placeholders are
instantiated during encounters by the current user-service pair just before check-
ing satisfaction. Besides keeping the instantiated policy and preference attached
to the stored PII of the user, the recipient S must retain the original, uninstan-
tiated “sticky” preference template along with the PII, so that it can later be
instantiated using τ ′ = (U, S′) when S prepares to disclose the PII to S′. Sim-
plifying, we ignore placeholders in the formal model.

The scheme where the only actions are the internal ones and the user-service
and service-service disclosures guarantees that at any point of time, if a service
S possesses a user’s PII, then S either got it from the user directly (as before),
or S obtained it in the past via a third-party exchange from some service Sndr
which possessed the PII at that time. In the latter case, assuming that Sndr
complies with its own policy, the may-assertions in the user’s preference permit
the third-party disclosure by Sndr represented by the 〈send P to S〉 behaviour

17

atom. Furthermore, assuming that S complies with its own policy, it will also
comply with the user’s preference.

5.1.3 Policy evolution

Now we show how a service can change its policy.
A service may wish to alter its policy even after having collected a PII. For

example, a service S may want to disclose the PII to a previously unknown third
party after the original encounter, even though the behaviour corresponding to
the disclosure to that third party was not declared in the may-assertions in
the policy of S. Or it may wish not to exhibit a behaviour it had previously
promised in the will-query of the policy, e.g. not to notify the user despite having
promised to notify her.

Strictly speaking, both cases represent compliance violations of the service’s
own original policy.

However, if the new behaviours still comply with the user’s original pref-
erences, architects of a particular network may wish to permit such violations
(one can argue, for instance, about amending typos in the policy part which is
irrelevant for the user). In this scheme, the service would need to alter its policy
in such a way that the new behaviours comply with the new policy. It then has
to check if the new policy still satisfies the preference. If so, the service may
start complying with the new policy, otherwise it must continue complying with
the original policy.

Assuming that the only actions are the internal ones, user-service disclosure
and policy amendment, this scheme guarantees that at any point of time, if a
service possesses a PII of a user, then the user must have disclosed it to the
service in the past, and the service associated the PII with some (possibly dif-
ferent from the current) policy and the current preference during the encounter.
Furthermore, if the service complies with the current policy, it also complies
with the user’s preference.

5.1.4 Privacy guarantee in general

Now we show the most general privacy guarantee assuming that all actions are
allowed: internal, policy amendment, user-service disclosure and service-service
disclosure.

The protocol guarantees that if all services comply with their own policies,
then at any point of time, if a service possesses a PII of a user, then
• either the user has sent P earlier to S directly,
• or else S obtained P via a third-party exchange from some service S̃

which possessed P at that time, and the user’s preference says that
S̃ may send P to S.

• In either case, S complies with the user’s preference.

5.2 Formal protocol description

Now we formalize the protocol and prove privacy guarantees.

18

5.2.1 Preliminaries

The protocol is formalized using the following definitions.
Let Usr and Svc be mutually disjoint subsets of Const and PII ⊆ Const.

A user identifier is an element of Usr, a service identifier is an element of Svc,
a principal identifier is an element of Usr∪̇Svc, a PII category is an element of
PII. We redefine a user-service pair to be an element of Usr×Svc (all previous
claims were of the form ”for all (U, S) ∈ Const2 . . .” and thus remain valid).

An S-state label for S ∈ Svc is a partial function that takes (U,P) ∈ Usr×
PII and returns (Πpl,Πpr) where Πpl is a (U, S)-policy and Πpr is a (U, S)-
preference.

A T -transition label for T ∈ Svc ∪ Usr is one of the following pairwise
different terms:
• receive event rcv〈Sndr, U, P,Πpl,Πpr〉 whenever T ∈ Svc where Sndr ∈

Usr ∪ Svc, U ∈ Usr, P ∈ PII, Πpl is a (U, T)-policy, Πpr is an (U, T)-
preference;

• sending event snd〈Rcvr, U, P,Πpl,Πpr〉 where Rcvr ∈ Svc, U ∈ Usr, P ∈
PII, Πpl is a (U,Rcvr)-policy, Πpr is a (U,Rcvr)-preference;

• policy changing event chg〈U,P,Πpl〉 whenever T ∈ Svc where U ∈ Usr,
P ∈ PII, Πpl is a (U, T)-policy;

• internal event ε.
A trace is an infinite sequence of T -transition labels for some fixed principal

identifier T . Within the paper, all indices are from the set of non-negative
integers N0. Unless otherwise stated, indexing starts from zero.

This definition exemplary instantiates the previous abstract notion of a trace.
A single service run for S ∈ Svc is a sequence 〈σi, λi〉i≥0 where σi is an

S-state label and λi is an S-transition label (i ≥ 0). The kth trace of a single
service run R for k ∈ N0 is tracek(〈σi, λi〉i≥0) = 〈λi〉i≥k.

A single user run for U ∈ Usr is an infinite sequence of U -transition labels.
A synchronized run is a function R̃ mapping service identifiers S to single

service runs for S and user identifiers U to single user runs for U such that the
following synchronization condition holds:
assuming that for each S ∈ Svc we have trace0(R̃(S)) = 〈λSi 〉i≥0 and that for

each U ∈ Usr we have R̃(U) = 〈λUi 〉i≥0, we have for all k ∈ N0, Rcvr, Sndr, U ,
P , Πpl and Πpr that

λRcvr
k = rcv〈Sndr, U, P,Πpl,Πpr〉 iff λSndrk = snd〈Rcvr, U, P,Πpl,Πpr〉.

For the purpose of transitive third-party disclosure (and only for this purpose)
we assume that behavioural atoms include 〈send P to S〉 for all P ∈ PII,
S ∈ Svc.

An evolving run with transitive disclosures is a synchronized run R̃ such that
for all S ∈ Svc with single service runs (σi, λi)i≥0 = R̃(S) and k ∈ N0, either
• λk is of the form rcv〈Sndr, U, P,Πpl,Πpr〉 for some Sndr, U , P , Πpl, Πpr

such that Πpl satisfies Πpr, and σk+1 = σk[(U,P) 7→ (Πpl,Πpr)], and, if
Sndr ∈ Usr, then Sndr = U ;

• or λk is of the form snd〈Rcvr, U, P,Πpl,Πpr〉 for some Rcvr, U , P , Πpl,
Πpr such that there is a (U, S)-policy Π′pl and (U, S)-preference Π′pr such

19

that σk(U,P) = (Π′pl,Π
′
pr) and 〈send P to Rcvr〉 ∈ Beh(tracek(R̃(S)))

and σk = σk+1;
• or λk is of the form chg〈U,P,Πnew

pl 〉 for some U , P , Πnew
pl such that there

are Πold
pl and Πpr such that σk(U,P) = (Πold

pl ,Πpr) and Πnew
pl satisfies Πpr

and σk+1 = σk[(U,P) 7→ (Πnew
pl ,Πpr)];

• or λk = ε and σk = σk+1.
A basic run is an evolving run with transitive disclosures in which transition

labels of all services are only internal and receiving events.
An evolving run is an evolving run with transitive disclosures in which transi-

tion labels of all services are only internal, receiving and policy changing events.
A run with transitive disclosures is an evolving run with transitive disclosures

in which transition labels of all services are only internal, receiving and sending
events.

For a single service run 〈σi, λi〉i≥0 for S ∈ Svc, k ≥ 0, (U,P) ∈ dom(σk),
the receiving position of P for U before k is

max{i < k | λi is of the form rcv〈. . . , U, P, . . . , . . .〉}

whenever the maximum is defined; the receiving position is undefined otherwise.

5.2.2 Privacy guarantee

Now we are going to prove preservation of privacy for all four types of runs.
All the theorems follow the same scheme and have similar proofs. We start

with the simplest one for basic runs and finish with the most general one for
evolving runs with transitive disclosures.

For that, we fix an evolving run with transitive disclosures R̃ such that for
all S ∈ Svc we have R̃(S) = 〈σSi , λSi 〉i≥0 and for each U ∈ Usr we have R̃(U) =
〈λUi 〉i≥0. Let τ = (U, S) ∈ Usr × Svc, P ∈ PII, Πpl = (Apl, qm) a τ -policy,
Πpr = (Apr, qw) a τ -preference, k ≥ 0, (U,P) 6∈ dom(σS0) and (Πpl,Πpr) =
σSk (U,P).

Theorem 5.1 (Privacy for basic runs). If R̃ is a basic run, then the re-
ceiving position r of P for U before k in R̃(S) is defined and λUr =

snd〈S,U, P,Πpl,Πpr〉. Furthermore, if tracer(R̃(S)) complies with [[Πpl]]
pl
τ,Apr

,

so it does with [[Πpr]]
pr
τ,Apl

.

Proof. Induction on k.
• k = 0. We can’t simultaneously have (U,P) 6∈ dom(σS0) and (Πpl,Πpr) =
σSk (U,P), a contradiction.

• k > 0. The transition label of S at position k − 1 can be of two forms.

– λSk−1 is of the form rcv〈Ŝndr, Û , P̂ , Π̂pl, Π̂pr〉 for some principal identi-

fier Ŝndr, user identifier Û , PII category P̂ , (Û , S)-policy Π̂pl that sat-

isfies the (Û , S)-preference Π̂pr and σSk = σSk−1[(Û , P̂) 7→ (Π̂pl, Π̂pr)].
We have two cases.
∗ (U,P) 6= (Û , P̂). Apply the induction hypothesis. Notice that

the receiving position of P for U before k is the same as before
k − 1.

20

∗ (U,P) = (Û , P̂). Then Π̂pl = Πpl and Π̂pr = Πpr and the re-
ceiving position of P for U before k is r = k − 1. By definition

of a synchronized run, λŜndrr = snd〈S, Û , P̂ , Π̂pl, Π̂pr〉. Since the
run is basic, Sndr 6∈ Svc, so Sndr ∈ Usr. By definition of a
synchronized run, Sndr = Û . Thus λSr = rcv〈U,U, P,Πpl,Πpr〉
and λUr = snd〈S,U, P,Πpl,Πpr〉. Since Πpl satisfies Πpr, apply

Thm. 4.8 to tracer(R̃(S)).
– λSk−1 = ε. Then σSk−1 = σSk , apply the induction hypothesis and

notice that the receiving position of P for U before k− 1 is the same
as the receiving position of P for U before k.

Theorem 5.2 (Privacy for evolving runs). If R̃ is an evolving run, then
the receiving position r of P for U before k in R̃(S) is defined and λUr =

snd〈S,U, P,Πorig
pl ,Πpr〉 for some Πorig

pl . Moreover, if tracer(R̃(S)) complies with

[[Πpl]]
pl
τ,Apr

, so it does with [[Πpr]]
pr
τ,Apl

.

Proof. Induction on k.
• k = 0. Then σS0 is both defined and undefined at (U,P), a contradiction.
• k > 0. There are three cases for the event label.

– λSk−1 is of the form rcv〈Ŝndr, Û , P̂ , Π̂pl, Π̂pr〉 for some principal identi-

fier Ŝndr, user identifier Û , PII category P̂ , (Û , S)-policy Π̂pl that sat-

isfies the (Û , S)-preference Π̂pr and σSk = σSk−1[(Û , P̂) 7→ (Π̂pl, Π̂pr)].
We have two cases.
∗ (U,P) 6= (Û , P̂). Apply the induction hypothesis. Notice that

the receiving position of P for U before k is the same as before
k − 1.

∗ (U,P) = (Û , P̂). Then Π̂pl = Πpl and Π̂pr = Πpr and the re-
ceiving position of P for U before k is r = k − 1. By defini-

tion of a synchronized run, λŜndrr = snd〈S, Û , P̂ , Π̂pl, Π̂pr〉. Since
the run is evolving, Sndr 6∈ Svc, so Sndr ∈ Usr. Thus λSr =
rcv〈U,U, P,Πpl,Πpr〉 and λUr = snd〈S,U, P,Πpl,Πpr〉. Since Πpl

satisfies Πpr, apply Thm. 4.8 to tracer(R̃(S)).

– λSk−1 is of the form chg〈Û , P̂ , Π̂new
pl 〉 for some Û ∈ Usr, P̂ ∈ PII and

a (Û , S)-policy Π̂new
pl . There are two cases.

∗ (U,P) 6= (Û , P̂). Then σSk−1(U,P) = (Πpl,Πpr). Apply the
induction hypothesis. Notice that the receiving position of P for
U before k is the same as before k − 1.

∗ (U,P) = (Û , P̂). By definition of an evolving run, Πpl = Π̂new
pl

and there is a (U, S)-policy Π̂old
pl and a (U, S)-preference Πpr such

that σSk−1(U,P) = (Π̂old
pl ,Πpr) and Π̂new

pl satisfies Πpr. Then

Πpl satisfies Πpr. By Thm. 4.8, if tracer(R̃(S)) complies with

[[Πpl]]
pl
τ,Apr

, it also complies with [[Πpr]]
pr
τ,Apl

. Apply the induction

assumption to k−1 and σSk−1(U,P) = (Π̂old
pl ,Πpr) to obtain Πorig

pl

21

and the receiving position r of P for U before k− 1. Notice that
r is also the receiving position of P for U before k.

– λSk−1 = ε. Then σSk−1 = σSk , apply the induction hypothesis and
notice that the receiving position of P for U before k− 1 is the same
as the receiving position of P for U before k.

Theorem 5.3 (Privacy for runs with transitive disclosures). If R̃ is a run with
transitive disclosures, then the receiving position r of P for U before k in R̃(S)
is defined and either
• λUr = snd〈S,U, P,Πpl,Πpr〉,
• or there is Sndr ∈ Svc such that λSndrr = snd〈S,U, P,Πpl,Πpr〉

and σSndr
r (U, S) is of the form (Π′pl,Π

′
pr) for some τ ′ = (U,Sndr)-

policy Π′pl = (A′pl, q′m) and τ ′-preference Π′pr = (A′pr, q′w).

In this case, if tracer(R̃(Sndr)) complies with [[Π′pl]]
pl
τ ′,A′

pr
, then

{send P to S} |=ma
τ ′,A′

pl
A′pr.

Furthermore, if tracer(R̃(S)) complies with [[Πpl]]
pl
τ,Apr

, so it does with

[[Πpr]]
pr
τ,Apl

.

Proof. We are going to show a slightly stronger property by induction on k.
Namely, in addition to the stated claim, we will show that Πpl satisfies Πpr.
• k = 0. Then σS0 is both defined and undefined at (U,P), a contradiction.
• k > 0. There are three cases for the event label.

– λSk−1 is of the form snd〈R̂cvr, Û , P̂ , Π̂pl, Π̂pr〉 for some R̂cvr, Û , P̂ ,

Π̂pl, Π̂pr. Then σSk−1(U,P) = (Πpl,Πpr). Apply the induction hy-
pothesis. Then notice that the receiving position before k is the same
as receiving position before k − 1.

– λSk−1 is of the form rcv〈Ŝndr, Û , P̂ , Π̂pl, Π̂pr〉 for some principal identi-

fier Ŝndr, user identifier Û , PII category P̂ , (Û , S)-policy Π̂pl that sat-

isfies the (Û , S)-preference Π̂pr and σSk = σSk−1[(Û , P̂) 7→ (Π̂pl, Π̂pr)].
We have two cases.
∗ (U,P) 6= (Û , P̂). Apply the induction hypothesis. Notice that

the receiving position of P for U before k is the same as before
k − 1.

∗ (U,P) = (Û , P̂). Then Π̂pl = Πpl and Π̂pr = Πpr and the re-
ceiving position of P for U before k is r = k − 1. In particular,
Πpl satisfies Πpr. By Thm. 4.8, if tracer(R̃(S)) complies with

[[Πpl]]
pl
τ,Apr

, it also complies with [[Πpr]]
pr
τ,Apl

. There are two pos-

sibilities for Ŝndr.
· Ŝndr ∈ Usr. By definition of a run with transitive disclo-

sures we have Ŝndr = Û , so Ŝndr = U . By definition of a
synchronized run, λUk−1 = snd〈S,U, P,Πpl,Πpr〉.
· Ŝndr ∈ Svc. Let Sndr = Ŝndr. By definition of a synchro-

nized run, λSndrk−1 = snd〈S,U, P,Πpl,Πpr〉. Let τ ′ = (U,Sndr).
By definition of a run with transitive disclosures there is a τ ′-

22

policy Π′pl = (A′pl, q′m) and a τ ′-preference Π′pr = (A′pr, q′w)

such that σSndr
k−1 (U,P) = (Π′pl,Π

′
pr) and 〈send P to S〉 ∈

Beh(t′) where t′ = tracek−1(R̃(Sndr)). By induction hy-
pothesis, Π′pl satisfies Π′pr. Assume that t′ complies with

[[Π′pl]]
pl
τ ′,A′

pr
. By Thm. 4.8, t′ complies with [[Π′pr]]

pr
τ ′,A′

pl
. By

Def. 4.4, Beh(t′) |=ma
τ ′,A′

pl
A′pr. By definition of permis-

sions allowed by preferences, Beh(t′) ⊆ {B | A′pr ∪ A′pl `
U says Sndr may B}. Thus {〈send P to S〉} ⊆ {B | A′pr ∪
A′pl ` U says Sndr may B}. So {〈send P to S〉} |=ma

τ ′,A′
pl
A′pr.

– λSk−1 = ε. Then σSk−1 = σSk , apply the induction hypothesis and
notice that the receiving position of P for U before k− 1 is the same
as the receiving position of P for U before k.

Theorem 5.4 (Privacy for evolving runs with transitive disclosures). If R̃ is
an evolving run with transitive disclosures, then the receiving position r of P
for U before k in R̃(S) is defined and either

• λUr = snd〈S,U, P,Πorig
pl ,Πpr〉 for some Πorig

pl ,

• or there is Sndr ∈ Svc such that λSndrr = snd〈S,U, P,Πorig
pl ,Πpr〉

and σSndr
r (U, S) is of the form (Π′pl,Π

′
pr) for some τ ′ = (U,Sndr)-

policy Π′pl = (A′pl, q′m) and τ ′-preference Π′pr = (A′pr, q′w).

In this case, if tracer(R̃(Sndr)) complies with [[Π′pl]]
pl
τ ′,A′

pr
, then

{send P to S} |=ma
τ ′,A′

pl
A′pr.

Moreover, if tracer(R̃(S)) complies with [[Πpl]]
pl
τ,Apr

, so it does with [[Πpr]]
pr
τ,Apl

.

Proof. We are going to show a slightly stronger property by induction on k.
Namely, in addition to the stated claim, we will show that Πpl satisfies Πpr.
• k = 0. Then σS0 is both defined and undefined at (U,P), a contradiction.
• k > 0. There are four cases for the event label.

– λSk−1 is of the form snd〈R̂cvr, Û , P̂ , Π̂pl, Π̂pr〉 for some R̂cvr, Û , P̂ ,

Π̂pl, Π̂pr. Then σSk−1(U,P) = (Πpl,Πpr). Apply the induction hy-
pothesis. Then notice that the receiving position before k is the same
as receiving position before k − 1.

– λSk−1 is of the form rcv〈Ŝndr, Û , P̂ , Π̂pl, Π̂pr〉 for some principal identi-

fier Ŝndr, user identifier Û , PII category P̂ , (Û , S)-policy Π̂pl that sat-

isfies the (Û , S)-preference Π̂pr and σSk = σSk−1[(Û , P̂) 7→ (Π̂pl, Π̂pr)].
We have two cases.
∗ (U,P) 6= (Û , P̂). Apply the induction hypothesis. Notice that

the receiving position of P for U before k is the same as before
k − 1.

∗ (U,P) = (Û , P̂). Then Π̂pl = Πpl and Π̂pr = Πpr and the re-
ceiving position of P for U before k is r = k − 1. In particular,
Πpl satisfies Πpr. By Thm. 4.8, if tracer(R̃(S)) complies with

23

[[Πpl]]
pl
τ,Apr

, it also complies with [[Πpr]]
pr
τ,Apl

. There are two pos-

sibilities for Ŝndr.
· Ŝndr ∈ Usr. By definition of an evolving run with transitive

disclosures we have Ŝndr = Û , so Ŝndr = U . By definition of
a synchronized run, λUk−1 = snd〈S,U, P,Πpl,Πpr〉.
· Ŝndr ∈ Svc. Let Sndr = Ŝndr. By definition of a synchro-

nized run, λSndrk−1 = snd〈S,U, P,Πpl,Πpr〉. Let τ ′ = (U,Sndr).
By definition of an evolving run with transitive disclosures
there is a τ ′-policy Π′pl = (A′pl, q′m) and a τ ′-preference

Π′pr = (A′pr, q′w) such that σSndr
k−1 (U,P) = (Π′pl,Π

′
pr) and

〈send P to S〉 ∈ Beh(t′) where t′ = tracek−1(R̃(Sndr)).
By induction hypothesis, Π′pl satisfies Π′pr. Assume that t′

complies with [[Π′pl]]
pl
τ ′,A′

pr
. By Thm. 4.8, t′ complies with

[[Π′pr]]
pr
τ ′,A′

pl
. By Def. 4.4, Beh(t′) |=ma

τ ′,A′
pl
A′pr. By definition

of permissions allowed by preferences, Beh(t′) ⊆ {B | A′pr ∪
A′pl ` U says Sndr may B}. Thus {〈send P to S〉} ⊆ {B |
A′pr∪A′pl ` U says Sndr may B}. So {〈send P to S〉} |=ma

τ ′,A′
pl

A′pr.
– λSk−1 is of the form chg〈Û , P̂ , Π̂new

pl 〉 for some Û ∈ Usr, P̂ ∈ PII and

a (Û , S)-policy Π̂new
pl . There are two cases.

∗ (U,P) 6= (Û , P̂). Then σSk−1(U,P) = (Πpl,Πpr). Apply the
induction hypothesis. Notice that the receiving position of P for
U before k is the same as before k − 1.

∗ (U,P) = (Û , P̂). By definition of an evolving run with transi-

tive disclosures, Πpl = Π̂new
pl and there is a (U, S)-policy Π̂old

pl

and a (U, S)-preference Πpr such that σSk−1(U,P) = (Π̂old
pl ,Πpr)

and Π̂new
pl satisfies Πpr. Then Πpl satisfies Πpr. By Thm. 4.8,

if tracer(R̃(S)) complies with [[Πpl]]
pl
τ,Apr

, it also complies with

[[Πpr]]
pr
τ,Apl

. Apply the induction assumption to k − 1 and

σSk−1(U,P) = (Π̂old
pl ,Πpr) to obtain Πorig

pl and the receiving posi-
tion r of P for U before k− 1. Notice that r is also the receiving
position of P for U before k.

– λSk−1 = ε. Then σSk−1 = σSk , apply the induction hypothesis and
notice that the receiving position of P for U before k− 1 is the same
as the receiving position of P for U before k.

6 Discussion

Privacy vs. access control. S4P’s syntax is based on SecPAL [8], a lan-
guage for specifying access control policies in decentralized systems. We chose

24

to adopt the syntax of an access control language because of the close links
between privacy management and access control. In access control, a service
specifies an access control policy consisting of assertions that govern who can
access which resources, and user requests trigger queries against this policy. In
privacy management, the roles of permission granter and seeker are reversed.
It is now the user who wishes to protect her data, but we can reuse the same
mechanisms as in access control: the user specifies a privacy preference consist-
ing of assertions that govern which services may use her data, and disclosure
requests trigger queries against the preference assertions.

Privacy management is not only concerned with permissions but also with
promises and obligations. However, we realized that promises can be viewed
as dual to permissions, and can be expressed as assertions on the service’s
side, and queries on the user’s side. Consequently, we can reuse the query
evaluation mechanism from the access control language to check satisfaction
between privacy policies and preferences.

From the rather large family of existing access control languages (see Sec-
tion 2), we chose SecPAL because its syntax is close to natural language and its
design is very abstract. Apart from the special can say construct, it does not
commit to any vocabulary, hence it can be instantiated to serve a wide range of
different purposes. In particular, it lets us introduce the may and will modali-
ties to express permissions and promises in privacy management. Additionally,
SecPAL provides the basic infrastructure for specifying highly expressive poli-
cies: parameterized predicates, if-clauses, arbitrary constraints, and fine-grained
delegation of authority.
Implementation. Our implementation of S4P is based on the SecPAL [8]
evaluation engine, extended with generic predicates and the may/will-constructs.
The evaluation process begins by translating each assertion into one or more con-
strained Datalog [23] clauses. Queries against the resulting constrained Datalog
program are evaluated using a resolution algorithm with tabling [18], in or-
der to guarantee termination even with recursive policies and preferences. The
translation preserves S4P’s query semantics in the sense that a query is true in
the context of a S4P policy or preference iff the corresponding Datalog query
evaluates to true against the Datalog program.

We also developed a number of tools that help debug policies and prefer-
ences. The result of a successful query can be visualized by a proof viewer that
graphically displays the deduction steps in the form of a proof graph. Failed
queries can be analyzed using our tool based on logical abduction [9], which
computes a set of missing S4P facts that would have satisfied the query.

The syntax of our language has been designed to make preferences and poli-
cies as human-readable as possible. However, while professional hosting services
may be able to directly write their policies in S4P using a dedicated editor with
tool support, end users cannot be expected to be willing to learn the language,
so where would they get their preferences from? First of all, users are offered
to select amongst a small number of predefined default preferences for specific
types of services. Preferences could be customized using application-specific or
browser-specific user interfaces that do not offer the full expressiveness and flex-
ibility of the underlying language, but let the user extend or define exceptions

25

to the predefined preferences. User agents may also be able to download default
preferences provided by trusted third parties for specific application domains.
Furthermore, the task of managing preferences and of checking satisfaction be-
tween policies and preferences could be delegated to an external adviser acting
as a user agent. We are working on a method based on the abductive tool men-
tioned above to make suggestions to the user on how her preference could be
modified, in the case of a mismatch, in order for a service policy to satisfy it.

Complexity. The computational complexity of policy evaluation is usually
given in terms of parameterized data complexity, where the size of the rules
(assertions with conditions) is fixed, and the parameter is the number of facts
(assertions without conditions). The data complexity of S4P is polynomial in
general and linear for ground policies and preferences; this follows from com-
plexity results on logic programming [16, 22].

We have found that for typical policies, queries are evaluated within a few
milliseconds. More expensive queries could be constructed in principle, but
performance is not a vital issue in this context, as the satisfaction check is
usually not performed by the (possibly congested) service, but by the user.
Moreover, privacy policies and preferences tend to be small and simple compared
to authorization policies (which may typically contain millions of facts).

Expressiveness. We now discuss frequent features of natural language privacy
policies for which the mapping to S4P is not completely straightforward.

Many policies allow users to access their own data. For instance, Facebook’s
privacy policy3 states that “users may modify or delete any of their profile
information at any time by logging into their account”. One might think that
in order to encode such a statement in S4P, the service policy would need to
contain may-assertions. (Recall that only preferences contain may-assertions,
while policies contain may-queries.) However, the purpose of such statements
is not to express an upper bound on the user’s behaviours, but to promise to
provide the user access to her data. Hence such statements should be expressed
as will-assertions, just like other obligations:

FB says FB will allow 〈Usr〉 to
delete data of type ProfileInfo

Many services allow the user to opt in or opt out of specific service be-
haviours. Ebay.com is a prime example for this feature, providing a web page
on which users can configure more than 50 options regarding email notifications.
Other services specify the options in the natural language privacy policy itself.
We have chosen not to model user options directly in the language. Instead, ex-
ternal mechanisms can be used to negotiate a policy and a preference between
the service and the user. For example, ticking an opt-in checkbox on a web
page provided by the service and displayed by the user agent could automati-
cally add a conjunction to the service’s may-query and a may-assertion to the
user’s preference.

3Specific privacy policies mentioned in this section refer to versions retrieved from respec-
tive public websites on 01/02/2010.

26

Real-world preferences and policies usually contain a large number of asser-
tions, for instance if there are many different types of PIIs for which preferences
and policies have to be specified. We dealt with this complexity by implement-
ing hierarchical predicate parameters, and to specify PII types (and possibly
other types such as usage purposes) to be hierarchical. Under this scheme, the
fact Alice says 〈Svc〉 may use /Addr for p automatically implies that 〈Svc〉 can
also use /Addr/Email, /Addr/Email/Secondary, /Addr/Postcode etc.

However, combining hierarchical types with may-queries and will-queries can
lead to subtle results. For example, the will-query

Alice says 〈Svc〉 will delete /Addr within 30 days?

is not satisfied by the will-assertion

eBooking says eBooking
will delete /Addr/Email within 30 days

even if the PII to be disclosed is the email address. For the query to be satisfied,
the service actually has to promise to delete /Addr or / (i.e., the top-level PII
type).

An alternative solution (which can be combined with hierarchical parame-
ters) would be to introduce a placeholder 〈PII〉 that gets instantiated before the
satisfaction check with the PII type in question, and a simple syntactic scoping
construct that takes advantage of the hierarchy on PII types:

Include if 〈PII〉 � /Addr {
[. . .]
Alice says 〈Svc〉 will delete 〈PII〉 within 30 days?
[. . .]

}

The importance of being abstract. In designing S4P, we have
deliberately tried to keep the language as abstract as possible, while still being
able to express the essence of privacy policies and preferences, namely upper
and lower bounds on service behaviours. Abstractness has many advantages.
It avoids premature commitment to a limited set of features suitable for one
particular application domain, but not necessarily for another. It allows concrete
ontologies and semantic specifications to be plugged in flexibly, depending on the
context and needs. Abstractness is thus conducive to a more modular language
design, which also simplifies formal reasoning. As we have seen, a number
of useful correctness properties can be established with relatively little effort,
without having to instantiate the temporal and stateful semantics of behaviours.

S4P is abstract in several aspects. First of all, we have kept the vocabulary
abstract. Even though most websites’ natural language privacy statements have
a similar structure (more or less adhering to the EU-US Safe Harbor Privacy
Principles4), with details on notification, user choice, third party disclosure,

4http://www.export.gov/safeharbor/

27

user access, and security measures, their choice of vocabulary varies greatly, es-
pecially across different application domain. For example, travel booking web-
sites use verb phrases such as “make travel arrangements on your behalf” and
constants such as “frequent flyer membership number” (from Expedia.co.uk),
whereas a webmail service may require behaviours such as “preventing unso-
licited bulk email” and constants such as “contact list” (from Gmail.com). But
vocabularies also differ within the same application domain. For example, the
Microsoft HealthVault policy refers to people with delegated access rights to
health data as “custodians”, whereas the corresponding term in the Google
Health privacy policy is “people you trust”.

Secondly, we have kept the semantics of behaviours abstract by assuming
a mapping from traces to behaviour atoms. In most cases it is sufficient to
agree on the semantics of behaviours only informally, especially in the case of
behaviours that involve human interaction. Our framework facilitates such par-
tial informality by providing the abstract level of behaviour atoms. If a more
formal treatment is needed, our framework can be used to concretize the mean-
ing of behaviours to any desired level. Part 5.2 presents an example of how
the abstract behaviour mapping can be partially concretized: the definition of
an evolving run with transitive disclosures gives semantics to the 〈send to 〉
behaviour, and stating and proving a correctness property about just this spe-
cific behaviour is relatively easy because all other behaviours have been kept
abstract. The works by Ni et al. [28] on modelling complex privacy obligations,
and by Barth et al. [5] on using temporal logic to express trace constraints, are
examples of how our abstract notion of behaviour could be concretized.

Finally, we are not tied to a specific compliance enforcement model. In prac-
tice, it is often unfeasible and unnecessary to automatically enforce compliance;
instead, informal methods such as auditing are used. To automate enforcement,
the most straightforward solution is to implement a reference monitor for dy-
namically checking the permissions, accompanied by an obligation monitoring
system (e.g. [11, 21, 26]). For simple systems, it may be possible to enforce
compliance by static analysis, as opposed to dynamic monitoring, as has been
done for cryptographic protocols and access control policies [10]. We plan to
investigate this direction in future work.

In conclusion, we believe that the abstractness of S4P, in conjunction with
the other design goals from Section 1, makes it a particularly attractive pri-
vacy language in terms of expressiveness, applicability, usability, and for formal
analysis.

References

[1] W. Adkinson, J. Eisenach, and T. Lenard. Privacy online: a report on the
information practices and policies of commercial web sites. Progress and
Freedom Foundation, Mar 2002.

28

[2] A. Antón, J. Earp, D. Bolchini, Q. He, C. Jensen, W. Stufflebeam, et al.
The lack of clarity in financial privacy policies and the need for standard-
ization. In IEEE Symposium on Security & Privacy, pages 36–45, 2004.

[3] C. A. Ardagna, M. Cremonini, S. D. C. di Vimercati, and P. Samarati.
A privacy-aware access control system. Journal of Computer Security,
16(4):369–397, 2008.

[4] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enterprise
Privacy Authorization Language (EPAL 1.2). Technical report, IBM, Nov.
2003.

[5] A. Barth, A. Datta, J. Mitchell, and H. Nissenbaum. Privacy and con-
textual integrity: Framework and applications. In IEEE Symposium on
Security and Privacy, pages 184–198. IEEE Computer Society, 2006.

[6] A. Barth and J. Mitchell. Enterprise privacy promises and enforcement.
In Proceedings of the 2005 Workshop on Issues in the Theory of Security,
pages 58–66. ACM, 2005.

[7] P. Beatty, I. Reay, S. Dick, and J. Miller. P3P adoption on e-Commerce
web sites: a survey and analysis. IEEE Internet Computing, pages 65–71,
2007.

[8] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and semantics of a
decentralized authorization language. In IEEE Computer Security Foun-
dations Symposium, pages 3–15, 2007.

[9] M. Y. Becker and S. Nanz. The role of abduction in declarative autho-
rization policies. In 10th International Symposium on Practical Aspects of
Declarative Languages (PADL), 2008.

[10] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis.
Refinement types for secure implementations. In 21st IEEE Computer
Security Foundations Symposium, pages 17–32, 2008.

[11] C. Bettini, S. Jajodia, X. Wang, and D. Wijesekera. Obligation monitoring
in policy management. In Policies for Distributed Systems and Networks,
2002.

[12] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management.
In IEEE Symposium on Security and Privacy, pages 164–173, 1996.

[13] M. Casassa Mont and F. Beato. On parametric obligation policies: En-
abling privacy-aware information lifecycle management in enterprises. In
IEEE International Workshop on Policies for Distributed Systems and Net-
works, pages 51–55, 2007.

[14] L. Cranor, B. Dobbs, S. Egelman, G. Hogben, J. Humphrey, M. Langhein-
rich, M. Marchiori, M. Presler-Marshall, J. Reagle, M. Schunter, D. A.
Stampley, and R. Wenning. The Platform for Privacy Preferences 1.1

29

(P3P1.1) Specification. W3C, Nov. 2006. http://www.w3.org/TR/P3P11.

[15] L. Cranor, M. Langheinrich, and M. Marchiori. A P3P Preference
Exchange Language 1.0. W3C, Apr. 2002. http://www.w3.org/TR/

P3P-preferences.

[16] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and ex-
pressive power of logic programming. In CCC ’97: Proceedings of the 12th
Annual IEEE Conference on Computational Complexity, 1997.

[17] E. Denham. Report of findings into the complaint filed by the Canadian
Internet Policy and Public Interest Clinic (CIPPIC) against Facebook Inc.
Office of the Privacy Commissioner of Canada, 2009. http://priv.gc.

ca/cf-dc/2009/2009_008_0716_e.pdf.

[18] S. W. Dietrich. Extension tables: Memo relations in logic programming.
In Symposium on Logic Programming, pages 264–272, 1987.

[19] Federal Trade Commission. Sony BMG Music settles charges its music fan
websites violated the Childrens Online Privacy Protection Act, Dec 2008.
http://www.ftc.gov/opa/2008/12/sonymusic.shtm.

[20] H. Hochheiser. The platform for privacy preference as a social protocol: An
examination within the U.S. policy context. ACM Transactions on Internet
Technology, 2(4), 2002.

[21] K. Irwin, T. Yu, and W. H. Winsborough. On the modeling and analysis
of obligations. In CCS ’06: Proceedings of the 13th ACM conference on
Computer and communications security, pages 134–143, 2006.

[22] A. Itai and J. A. Makowsky. Unification as a complexity measure for logic
programming. Journal of Logic Programming, 4(2), 1987.

[23] J. Jaffar and M. J. Maher. Constraint logic programming: a survey. Journal
of Logic Programming, 19/20:503–581, 1994.

[24] C. Jensen and C. Potts. Privacy policies as decision-making tools: an
evaluation of online privacy notices. In CHI ’04: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 471–478, New
York, NY, USA, 2004. ACM.

[25] C. M. Kelley, A. Denton, and R. Broadbent. Privacy concerns cost eCom-
merce $15 billion. Forrester Research, Sep 2001.

[26] K. Krukow, M. Nielsen, and V. Sassone. A logical framework for history-
based access control and reputation systems. Journal of Computer Security,
16(1):63–101, 2008.

[27] D. Métayer. A formal privacy management framework. In Formal Aspects
in Security and Trust, pages 162–176, 2009.

[28] Q. Ni, E. Bertino, and J. Lobo. An obligation model bridging access control

30

policies and privacy policies. In ACM symposium on access control models
and technologies, pages 133–142, 2008.

[29] OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0
core specification, 2005. At www.oasis-open.org/committees/xacml/.

[30] W. H. Stufflebeam, A. I. Antón, Q. He, and N. Jain. Specifying privacy
policies with P3P and EPAL: lessons learned. In ACM workshop on privacy
in the electronic society, pages 35–35, 2004.

[31] Superior Court of California, County of Orange. Elisha Melkonian et al.
vs. Facebook Inc., No. 30-2009, 2009.

[32] United States District Cout for the Southern District of New York. Mem-
orandum of points and authorities in support of EPIC’s motion to in-
tervene. Case No. 05 CV 8136-DC, 2009. http://epic.org/privacy/

googlebooks/EPIC_Brief-GBS.pdf.

31

A Extended Example

Alice’s privacy preference. Alice cares about online child protection, so her
privacy preference for web content providers contains the following will-query:

〈Svc〉 says 〈Svc〉 will allow 〈Usr〉 to Edit ParentalControls? ∧
Alice says 〈Svc〉 complies with COPPA?

(1)

According to this will-query, Alice requires web content services she interacts
with to allow her to edit parental control settings. Furthermore, she requires
services to comply with the Federal Trade Commission (FTC) Children’s On-
line Privacy Protection Act (COPPA). Of course, Alice does not exactly know
which businesses comply with COPPA, so she delegates authority over COPPA
compliance to privacy seal programs that certify COPPA compliance, using a
“can say” assertion. But she does not know the entire list of such programs
either, so she delegates authority over such schemes to the FTC. She also has a
statement from the FTC saying that TRUSTe is such a scheme.

Alice says x can say y complies with COPPA if

x is member of COPPACompliancySchemes (2)

Alice says FTC can say x is member of COPPACompliancySchemes (3)

FTC says TRUSTe is member of COPPACompliancySchemes (4)

Alice’s may-assertions allow any service to use cookies for any purpose as
long as the service promises that the cookies expire within five years. The last
two assertions are default statements that allow service behaviours that should
obviously be allowed. A more realistic privacy preference would of course include
many more may-assertions.

〈Usr〉 says 〈Svc〉 may use Cookies for x if

〈Svc〉 will revoke Cookies within t

where t ≤ 5yr (5)

〈Usr〉 says 〈Svc〉 can say 〈Svc〉 will revoke Cookies within t (6)

Alice says 〈Svc〉 may allow Alice to action object (7)

Alice says 〈Svc〉 may revoke Cookies within t (8)

In our scenario, Alice uses MSN Client to access content from MSN, and
has an assertion stating the version number of the client software (she may also
have additional assertions stating other environment variables):

Alice says Alice is using software MSNClient version 9.5 (9)

32

Microsoft’s privacy policy. The English statements in italics are taken
verbatim from Microsoft’s Online Privacy Statement5.

Microsoft is a member of the TRUSTe Privacy Programme. This means that
Microsoft complies with a number of privacy standards including, in particular,
COPPA.

TRUSTe says MS complies with COPPA (10)

If you have an MSN Premium, MSN Plus or MSN 9 Dial-Up account, and
use MSN Client software version 9.5 or below, you can choose to set up MSN
Parental Controls for the other users of that account.

MS says MS will allow 〈Usr〉 to Edit ParentalControls if

〈Usr〉 is member of msntype,

msntype supports parental controls,

〈Usr〉 is using software MSNClient version v

where v ≤ 9.5 (11)

MS says MSNPremium supports parental controls (12)

MS says MNSPlus supports parental controls (13)

MS says MSN9DialUp supports parental controls (14)

The various types of MSN membership are delegated to MSN:

MS says MSN can say x is member of MSN (15)

MS says MSN can say x is member of MSNPremium (16)

MS says MSN can say x is member of MSNPlus (17)

MS says MSN can say x is member of MSN9DialUp (18)

In particular, MSN knows that Alice has a MSNPremium account. In our im-
plementation, such assertions can be created on the fly and fetched during eval-
uation using interfaces to database management systems and directory services
such as SQL Server and Active Directory.

MSN says Alice is member of MSNPremium (19)

MSN trusts users on the version of their software:

MS says 〈Usr〉 can say 〈Usr〉 is using software MSNClient version v . (20)

5Retrieved from http://privacy.microsoft.com/en-gb/fullnotice.mspx, version from July
2009.

33

When we display online advertisements to you, we will place a [sic] one or
more persistent cookies on your computer in order to recognize your computer
each time we display an ad to you.

〈Usr〉 says MS may use Cookies for AdTracking? (21)

The cookies we use for advertising have an expiry date of no more than 2 years.

MS says MS will revoke Cookies within 2yr (22)

The may-query above is conjoined with a number of trivial statements declar-
ing all relevant behaviours for this encounter:

〈Usr〉 says MS may revoke Cookies within 2yr? ∧
〈Usr〉 says MS may allow 〈Usr〉 to Edit ParentalControls? (23)

Satisfaction evaluation Does the policy satisfy Alice’s preference? Satis-
faction is checked by evaluating Alice’s will-query and the service’s may-query
against the union of the assertions in both preference and policy. The will-query
(1) first checks whether the service allows Alice to edit parental control set-
tings. The answer is yes according to assertion (11), because Alice is a member
of MSN Premium according to MSN (19) which has been delegated authority
over MSN Premium memberships (16). Furthermore, MSN Premium accounts
support parental controls according to (12), Alice is using a version of MSN
client that supports parental controls (9), and is trusted on this fact (20).

The second part of (1) checks compliance with COPPA. This is established
via a delegation from Alice to TRUSTe using (2) and (10). The condition in (2)
is satisfied by another delegation chain, from Alice to FTC, using (3) and (4).

The may-query (21,23) also consists of multiple conjuncts. The first one (21)
is satisfied by Alice’s assertion (5) which in turn depends on (6) and Microsoft’s
will-assertion (22). The remaining two conjuncts (23) are satisfied by Alice’s
may-assertions (7) and (8).

Hence Alice’s preference is satisfied by the policy.

B Proofs

Restatement of Lemma 4.5. Let A be a set of assertions, qm a closed
τ -may-query, and B a set of ground behaviour atoms. If A ` qm and B |=mq

τ,A qm
then B |=ma

τ,A A.

Proof. By structural induction on qm. We assume (a) A ` qm and (b) B |=mq
τ,A

qm. It is sufficient to show that B ⊆ B′ = {B | A ` U says S may B}. There
are three cases to consider.

34

In the first case, qm is of the form U says S may B?. From (a), B ∈ B′.
From (b), B ⊆ {B}. Hence B ⊆ B′.

In the second case, qm is of the form q1 ∧ q2. From (b) and the induction
hypothesis, either there exist B1 and B2 such that B = B1∪B2 and B1 ⊆ B′ and
B2 ⊆ B′; therefore B ⊆ B′. Or else this case is subsumed by the last and third
case below.

In the third case, no subquery of the form U says S may B? occurs in qm.
From (b), B = ∅, hence trivially B ⊆ B′.

Restatement of Lemma 4.6. Let A be a set of assertions, qw a closed
τ -will-query, and B a set of ground behaviour atoms. If A ` qw and B |=wa

τ,A A
then B |=wq

τ,A qw.

Proof. By structural induction on qw. We assume (a) A ` qw and (b) B ⊇ B′ =
{B | A ` S says S will B}.

Consider the case where qw is of the form S says S will B?. From (a), B ∈ B′.
Together with (b), this gives B ⊇ {B}, and hence B |=wq

τ,A qw. The other cases
follow from (a) and the induction hypothesis.

Restatement of Lemma 4.7. Let Πpl = (Apl, qm) be a τ -policy and Πpr =

(Apr, qw) a τ -preference. If Πpl satisfies Πpr then [[Πpl]]
pl
τ,Apr

is at least as strict

as [[Πpr]]
pr
τ,Apl

.

Proof. Suppose t ∈ [[Πpl]]
pl
τ,Apr

. Let B = Beh(t). We need to show that t ∈
[[Πpr]]

pr
τ,Apl

, that is, (a) B |=ma
τ,Apl

Apr and (b) B |=wq
τ,Apl∪Apr

qw.

From the assumption, B |=mq
τ,Apl∪Apr

qm. From the definition of satisfaction

and Lemma 4.5, B |=ma
τ,Apl∪Apr

Apl ∪ Apr. By definition of |=ma
τ,Apl∪Apr

, we also

have (a) B |=ma
τ,Apl

Apr.
From the definition of satisfaction we get Apl ∪ Apr ` qw. Furthermore,

from the assumption we get B |=wa
τ,Apr

Apl, which is equivalent to B |=wa
τ,Apl∪Apr

Apl ∪Apr by definition of |=wa
τ,Apl∪Apr

. Hence Lemma 4.6 can be applied to get

(b) B |=wq
τ,Apl∪Apr

qw.

Restatement of Theorem 4.8. Let Πpl = (Apl, qm) be a τ -policy and

Πpr = (Apr, qw) a τ -preference. If a trace t complies with [[Πpl]]
pl
τ,Apr

and Πpl

satisfies Πpr, then t complies with [[Πpr]]
pr
τ,Apl

.

Proof. This is a corollary of Lemma 4.7 and Lemma 4.2.

35

