
Biocharts: a visual formalism for
complex biological systems

Hillel Kugler1,*,†, Antti Larjo2,† and David Harel3

1Computational Biology Group, Microsoft Research, Cambridge, UK
2Department of Signal Processing, Tampere University of Technology, Finland
3Department of Computer Science and Applied Mathematics, The Weizmann

Institute of Science, Rehovot, Israel

We address one of the central issues in devising languages, methods and tools for the model-
ling and analysis of complex biological systems, that of linking high-level (e.g. intercellular)
information with lower-level (e.g. intracellular) information. Adequate ways of dealing with
this issue are crucial for understanding biological networks and pathways, which typically
contain huge amounts of data that continue to grow as our knowledge and understanding
of a system increases. Trying to comprehend such data using the standard methods currently
in use is often virtually impossible. We propose a two-tier compound visual language, which
we call Biocharts, that is geared towards building fully executable models of biological sys-
tems. One of the main goals of our approach is to enable biologists to actively participate
in the computational modelling effort, in a natural way. The high-level part of our language
is a version of statecharts, which have been shown to be extremely successful in software and
systems engineering. The statecharts can be combined with any appropriately well-defined
language (preferably a diagrammatic one) for specifying the low-level dynamics of the path-
ways and networks. We illustrate the language and our general modelling approach using the
well-studied process of bacterial chemotaxis.
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1. INTRODUCTION

Several notations have been introduced to formalize
biological networks and metabolic pathways. Two of
the best known of these are Kohn diagrams (Kohn &
Aladjem 2006; Kohn et al. 2006) and Kitano process
diagrams (Kitano et al. 2005), which were recently
extended and unified as part of a community effort
(Novère et al. 2009). These approaches attempt to go
beyond the informal diagrams biologists typically use.
They propose a syntax for the visual elements of the
language, which is usually a graph with a variety of
different flavours of arrows, and for some subset of the
notation, they also provide an executable semantics.
Some of these languages are supported by software
tools, e.g. CELLDESIGNER (Funahashi et al. 2003). By
the term executable semantics for a visual language,
we mean a precise way to produce a meaning for any
given model, which is clear and rigorous and provides
all that is required for executing the model on a compu-
ter and analysing the model’s behaviour. This ability to
execute biological models is a prerequisite to performing
in silico experiments, gaining a system-level under-
standing of biological phenomena and making
predictions that can be later validated experimentally.
The premise of the present paper is that when it
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complex diagram starts ‘working’ only upon the occur-
rence of an event that is described in a totally different
part of the diagram, and that some other event causes a
subtle change in the way the said portion works? How
does one depict (again, naturally) the difference
between ‘chunks’ of behaviour that occur concurrently
and those that may also occur independently? These
and many other flavours of the reactive behaviour typi-
cal of complicated biological artefacts can benefit from
having at hand a formalism that is expressively richer
and more modular and comprehensible than pathway
and network diagrams.

In this paper, we suggest a compound, two-tier visual
language for constructing fully executable models of
complex biological systems. Our language, Biocharts,
is based on combining statecharts (Harel 1987), which
capture the high-level state-based strata of system
behaviour, with an appropriately well-defined language
(preferably a diagrammatic one) for specifying the
lower-level dynamics of the pathways and networks.
One of the main goals of our approach is to enable biol-
ogists to actively participate in the computational
modelling effort, in a natural way.

We illustrate Biocharts using the well-studied bio-
logical systems of bacterial chemotaxis (Wadhams &
Armitage 2004) and metabolism. The high-level state-
chart model invokes lower-level modules capturing the
molecular simulation of the pathway involved in chemo-
taxis, as well as solvers tackling the metabolic
modelling. The invocations are carried out based on
the statechart’s active state configuration. The total
combined model is fully executable. We have
implemented the model using RHAPSODY (Harel &
Gery 1997) for the statecharts, STOCHSIM (Novère &
Shimizu 2001) for the molecular simulations, and
Microsoft Solver Foundation (Optima; MSF08 2008)
for metabolism solvers. Here we emphasize the general
ideas and principles of our approach. A detailed defi-
nition of Biocharts and its semantics is beyond the
scope of this paper. Building a generic tool for biological
modelling that supports the Biocharts approach
remains a topic for future work. A website for the Bio-
charts project, containing movies that show bacterial
population dynamics, is available online (Kugler et al.
2009).

Although the chemotaxis model is presented here for
illustrative purposes only, helping to explain the Bio-
charts approach, to the best of our knowledge, it is
unique in its ability to integrate different aspects of bac-
terial behaviour, which were previously modelled in
isolation or in a more qualitative and abstract
manner, into a coherent quantitative systems-level
model. Our model is derived from experimental biologi-
cal data, and it uses as submodels state-of-the-art
models for chemotaxis (using STOCHSIM; Morton-Firth
et al. 1999; Novère & Shimizu 2001) and metabolism
(using flux balance analysis (FBA); Feist et al. 2007)
that were constructed based on the experimental data.
Obviously, the system-level behaviour depends on the
precise way these submodels are connected, but we
leave for future work the goal of demonstrating that
such emerging global models are quantitatively accu-
rate and can make new predictions that can be
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validated experimentally. We feel that the Biocharts
approach is an important step towards achieving such
an ambitious goal.
2. RESULTS

2.1. Biological background

Bacterial chemotaxis is one of the most well-known bio-
logical subsystems, and thus serves as a potentially
promising target for computational modelling, which
in general requires some mechanistic understanding of
the system to construct useful models.

In general, movement is thought to be a selective
advantage in heterogeneous environments, where, for
example, attractants (such as nutrients) and repellents
(toxins) are not spread out evenly. To guide the move-
ment in a beneficial direction, the organism must be
able to sense changes and gradients in its environment.
Most bacteria are generally considered to be so small
that it is usually not possible for them to sense gradi-
ents across their diameter. Thus, they are forced to
sense temporal changes in concentrations during their
motion.

Movement in bacteria is usually composed of a
repeated sequence, consisting of a relatively straight
motion followed by a reorientation to another direction.
By making the reorientations more frequent when the
gradient is in an undesirable direction and less frequent
when it is in a beneficial direction, the bacterium can
relocate itself to a more suitable place.

Our model focuses on Escherichia coli, which typi-
cally has five to eight flagella (helical semi-rigid
filaments), each driven by its own motor complex.
Viewed from behind the cell, a motor can rotate clock-
wise (CW) or counterclockwise (CCW), resulting in the
corkscrew form of the filament. If all the motors (and
flagella) rotate CCW, they form a bundle that propels
the cell forward. If one or more of the flagella change
direction of rotation, the bundle breaks and the cell
tumbles, causing a change in its current direction of
movement, after which all the motors return to CCW
rotation and push it forward in the new direction.
The chemosensory system of E. coli affects the motion
by increasing or decreasing the tumbling frequency,
based on the changes in extracellular chemoattractant
concentrations.

The direction of rotation of the motors is controlled
by the network of chemotactic proteins. A simplified
picture of the chemotactic network is shown in
figure 1. Coarsely, the functioning is such that an extra-
cellular ligand aspartate (Asp) binding the Tar complex
decreases the autophosphorylation (P) of protein
CheA, reducing the amount of phosphorylated CheY
(CheY-P), which makes the motors less bound by this
protein, and has the effect of increased CCW rotation,
which causes longer runs of the bacterium. In addition,
the phosphorylation of CheB is reduced, which
indirectly (but in concert with CheR) has the effect of
increasing the methylation level of the receptor Tar
complex. This, in turn, causes increased CheA autopho-
sphorylation. This feedback mechanism allows for
adaptation to different levels of a chemoattractant.
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Figure 1. Simplified chemotaxis pathway. The shaded area
represents intracellular space.
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Ligand dissociation from the receptor, resulting from a
decrease in the concentration of the chemoattractant,
has roughly the opposite effect, causing a CW rotation,
hence a tumbling behaviour. For additional details, see
Wadhams & Armitage (2004).

2.2. Modelling

2.2.1. Chemotaxis. Modelling bacterial chemotaxis has
been studied widely for many years (see Tindall et al.
2008a,b). Both the structural and biochemical steps in
the pathway have been characterized in detail. In
silico models built based on this knowledge have been
observed to capture the basic chemotactic behaviour
faithfully. Bacterial chemotaxis has been used to
study robustness in Barkai & Leibler (1997) and Alon
et al. (1999) and as a test case for computational
biology modelling tools, e.g. AGENTCELL (Emonet
et al. 2005). Thus, it makes sense to select such a
model to form part of the lower-level basis of a two-
tier Biochart model and to use the combined result to
study new system-level interactions.

The model we have built describes basic chemotactic
behaviour of bacteria, combined with their metabolic
response. The overall system-level behaviour is mod-
elled using the object-oriented version of the
statecharts language (Harel 1987; Harel & Gery
1997), and is implemented in RHAPSODY (Harel &
Kugler 2004). Each relevant biological subsystem
(environment, bacterium, motor, etc.) is represented
by a class. The multiplicities of objects (such as the
number of bacteria and the number of motors a bacter-
ium has) are easy to control by creating or deleting
(statically or during runtime) instances of these classes.
The dynamic behaviour of instances of a class is pre-
scribed by states whenever this makes sense and is
represented by the statecharts. Examples include the
swimming state of a bacterium (Run versus Tumble;
figure 2) and the direction of rotation of a single
motor (CW versus CCW).

The main component of our system is theBacterium
class, which contains Motor and MolecularState
classes (figure 3). The Motor class represents the flagel-
lar motor that drives the movement of the bacteria. Our
model allows the instantiation of several such motors,
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which is required, since, for example, E. coli can have
up to eight motors (Levin et al. 1998). Motor switching
is controlled by CheYp concentration and for this we
used a two-threshold, hysteresis model (Morton-Firth &
Bray 1998). The thresholds were selected to produce,
in uniform concentration environment, rotation charac-
teristics (average tumbling and run times, CW bias)
matching, as closely as possible, those measured exper-
imentally. As reported in Weis & Koshland (1990),
despite differences in the tumbling frequency, the
chemotactic response towards attractants is still about
the same. Thus, because our model of the chemotactic
machinery is supposedly accurate, even without tuning
the motor parameters to perfect concordance between
the measured and simulated tumbling frequencies, the
chemotactic response should be very close to real
bacterial behaviour.

The molecular-level pathway behaviour is modelled
in the class MolecularState, and it activates the
STOCHSIM (Novère & Shimizu 2001) simulation engine.
The differential equations representing the interactions
of the network and the initial levels of molecules
are handed to STOCHSIM, which simulates the state of
the network using a stochastic simulation method
(Novère & Shimizu 2001) that is similar to the Gillespie
algorithm but capable of handling multi-state molecules
(e.g. ones with multiple methylation states such as the
Tar receptor here) much more efficiently and has been
shown to perform well in chemotactic simulations
(Morton-Firth & Bray 1998). Relevant parameters are
sent to STOCHSIM and the results of the calculations
are obtained on the fly. Our intracellular simulations
are non-spatial; i.e. they assume fast enough diffusion
of substances within a cell. Simulating the spatial
aspects within a cell would be a nice possible extension
of our model.

The detailed chemotaxis modelling in our work
follows Morton-Firth et al. (1999). In real cells,
properties such as steady-state behaviour and adap-
tation time can vary as the protein concentrations are
not equal from cell to cell but the precision of adap-
tation is robust (Alon et al. 1999), suggesting that for
a realistic model an important aspect is adaptation,
and otherwise we can allow variations in behaviour.
The model we use allows for practically perfect adap-
tation, and thus arguably captures the most crucial
characteristics of a chemotactic network.

The Tar complex is assumed to have two conforma-
tional states, active and inactive (Asakura & Honda
1984; Barkai & Leibler 1997). For ligand–receptor
interaction (i.e. aspartate–Tar complex), we assume
equilibrium binding, so that the fraction of bound recep-
tors in inactive conformation is p ¼ [L]/(KD þ [L]),
where [L] denotes the ligand concentration and
KD ¼ 1.71 mM denotes the dissociation constant.
Similarly, for receptor occupancy p* in active confor-
mation, we use the dissociation constant KD*¼ 12 mM
(see Emonet et al. 2005).
2.2.2. Metabolism. Our model enables one to investigate
the influence of metabolic activity (growth, ATP
requirements for swimming, etc.) on chemotactic
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behaviour. For metabolism, we used a whole-cell stoi-
chiometric model (Feist et al. 2007). Such models do
not incorporate kinetic information and they are usually
simulated using FBA (Varma & Palsson 1994; Bonarius
et al. 1997; Edwards et al. 2001), which assumes the
metabolic network to be in a steady state. Formally,
FBA involves the following.

— A steady-state assumption dc/dt ¼ Sv ¼ 0, where c
is a vector of metabolite concentrations, S is the stoi-
chiometric matrix and v is a vector of reaction rates.
This assumption states that each metabolite is
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consumed at the exact same rate as it is being
produced, thus there is no accumulation of any
metabolite.

— Boundaries for reaction rates a � v � b. Setting
lower bounds allows us to define some reactions as
irreversible, and upper bounds can be defined
based on, for example, information about enzyme
kinetics. These bounds are also used to define the
inputs to the network; i.e. the medium composition
of the environment.

— A definition of the objective function as a linear com-
bination of reaction rates, i.e. f . v. Most often this is
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the biomass function, which is determined from
experimental data to reflect the energy and biomass
constituent needs of the cell. This has been found to
be a reasonable assumption, particularly for E. coli
under certain growth conditions (Edwards et al.
2001; Schuetz et al. 2007).

Thus, the FBA is a linear programming problem and
we solve it using Microsoft Solver Foundation (MSF08
2008). To account for the fact that the extracellular
concentrations can change, the metabolic steady state
was updated (using the normal FBA) in response to
such changes. This is called dynamic flux balance analy-
sis (dFBA) in Mahadevan et al. (2002). The condition
we use for updating was that a certain amount of
time had elapsed since the last update or that the
input concentration changes had exceeded a given
threshold. At each iteration, the aspartate consumption
was calculated as D[Asp] � vAspex

X(t)Dt and biomass
formation as X(t þ Dt) ¼ X(t) þ m(t)X(t)Dt, where
vAspex

is the rate of aspartate uptake, Dt is the time
between iterations, X(t) is the amount of biomass at
time t and m(t) is the biomass growth rate.

Glucose uptake rate was modelled as in Mahadevan
et al. (2002), with the reaction rate being VGlcmax

[Glcex]/
(Km þ [Glcex]) (mmol/gDWh), where the maximum
value is VGlcmax

¼ 10 mmol/gDWh, Km ¼ 0.015 mM
(experimental values) and [Glcex] is the extracellular
glucose concentration (Mahadevan et al. 2002; Wong
et al. 1997). Aspartate uptake was modelled in a similar
manner using experimental values obtained from
Schellenberg & Furlong (1977).

We also modelled the division of bacteria by consid-
ering a biomass threshold for cell division. If a
bacterium exceeds this threshold it enters a cell division
state and divides its biomass into two by creating a new
instance of bacterium.

We chose to use a stoichiometric metabolic model
using FBA instead of trying to model with, for example,
ordinary differential equations (ODEs), because it
allows us to model a more complete metabolism and
to simulate most of the metabolic functions and beha-
viours of a cell. In addition, the dFBA approach is
well suited to our purposes since it works in a state
based manner, where each steady state is a state of its
own. It is also a relatively fast operation to perform,
in comparison with large ODE models. Moreover,
FBA in its objective function inherently contains an
implicit turning-off of most of the unused reactions.
This could also be done with an ODE model but
would appear to be considerably more difficult and
require many more parameters. Our objective function
is also very easy to modify during the simulation, to
correspond to, for example, different growth phases.

FBA methods have been observed to produce results
close to experimental ones (Edwards et al. 2001) and
the model we use is comprehensive and well tested, so
that the results are bound to be fairly accurate. The
inevitable errors in our metabolism modelling are
likely not to have a large effect on the phenomena we
wish to model here: chemotaxis driven by changing che-
moattractant concentrations resulting from metabolism
consuming these attractants. In our current study, the
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most crucial factor is the fact that the aspartate is con-
sumed from the environment, with the rate being a
function of its concentration. Since this rate is exper-
imentally determined, it should be sufficiently correct.

2.2.3. Environment. The environment in our model
consists of a tube modelled as having a rectangular
cross section. Using a tube as the environment was
motivated by real chemotactic assays, such as those
described in Adler (1966). For simulating spatially
varying concentrations, the tube was divided into
slices along the longitudinal axis. The walls of the con-
tainer were considered to be reflective boundaries for
the bacteria. Initially, the tube was set to have a uni-
form minimal media with aspartate added at a
concentration of 1 mM. Owing to the metabolic activity
of the bacteria, the aspartate concentrations within
each sub-box can vary. Diffusion was modelled using
Fick’s law.

In our model, the environment subsystem serves as
one of the links through which the chemotaxis and
metabolism subsystems communicate. Specifically, the
metabolism changes the local concentrations within
the environment that have an effect on the chemotaxis.
On the other hand, chemotaxis moves the bacterium
in the environment to areas with possibly different
concentrations, which affects metabolism.

2.3. Utilizing Biocharts

There are several features of the Biocharts method that
make it especially useful for the type of biological
modelling described here.

The object-oriented nature of the Biocharts language
allows specifying behaviours on a class level and then
creating multiple objects of this class that interact to
produce the emerging biological behaviour. In our che-
motaxis model, this is used on several levels, by
having several motors for each bacteria and modelling
bacterial populations by instantiating multiple
bacteria, which can later go on and divide.

The framework allows for easy crosstalk between
subsystems. Different subsystems can, for example, gen-
erate events that are handled by the responsible
subsystems, and subsystems can query each other
through an interface. In our case, for example, the mol-
ecular-level simulation is responsible for simulating the
level of CheYp, which is then sent to the motor control-
lers (state Flagella in figure 2), which in turn trigger
an event in the corresponding motor if the level
thresholds are crossed. This event is then received by,
for example, the subsystem responsible for the physical
movement of the bacterium (state Swimming in
figure 2).

Mutations can have a significant effect on chemo-
taxis. A natural way to capture this in our model is to
add to the bacterium statechart orthogonal states for
each of the potential relevant mutations. The STOCHSIM

code would then be activated with a modified set of
reactions, where, for example, a reaction may be
removed if the protein altered by the mutation orig-
inally participated in the reaction but does not
participate in the mutated strain. The effect of a
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mutation can also be modelled by a change in the reac-
tion rate. Two interesting mutants in our model are the
R2 B2 and the T2 W2 Z2 strains (Levin et al. 1998).
The first of these lacks the methylating enzyme CheR
and the demethylating enzyme CheB, while the
second lacks the Tar receptor, CheW and CheZ. A
diagrammatic representation of the pathway for the
R2 B2 mutant appears in figure 4.

At runtime, we can observe the model’s behaviour
and can investigate the state of the different com-
ponents. A graphical depiction of a sample execution
of a single wild-type bacterium appears in figure 5.
The path of the bacterium according to the simulation
in three-dimensional space is shown; positions in which
the bacterium is in the tumble state and reorients the
movement direction are marked by x. Snapshots of
the statechart of a bacterium during the execution are
shown in figures 6 and 7. Using the orthogonal state
feature of the statecharts language (i.e. ‘and’ state),
figure 6 shows a bacterium simultaneously in the
Tumble state of the Swimming component, in the
Growth state of the Metabolism component and in
the Flagella Apart state of the Flagella component.
The Metabolism state is responsible for running the
FBA method, which solves and computes, among
other variables, the biomass. The growth of the biomass
above a given threshold triggers a transition to state
division, which causes the bacterium to divide, as
shown in figure 7.

The Metabolism state is also responsible for inter-
acting with the environment, by affecting the local
concentrations of different substances based on the
rates of consumption of the metabolites. This is illus-
trated in figure 8, where the model has been executed
for a population of bacteria in a rectangular tube, as
described above. The motivation for such simulations
is that in chemotactic assays bacteria often form pro-
gressing bands, which result from the bacteria
consuming a chemoattractant in their environment,
thus creating a gradient along which the population
starts to move (Adler 1966).

Our model allows one to study this phenomenon
both on the population level and on the single bacter-
ium level, using the ability of Biocharts to support
capturing the mutual effects of different pathways and
biological processes. In our case, we want to integrate
the effects of metabolism on the actual bacterial chemo-
taxis pathway and their effect on population-level
dynamics. Movies showing bacterial population
dynamics are available online (Kugler et al. 2009) and
illustrate some of the current capabilities of the
Biocharts model. Among other things, our approach
allows for experimenting with simulations using several
different parameter values and replacing certain mod-
ules by more abstract representations, which can give
valuable insight into the functioning of the full system.

As an example, we can follow in detail the process of
band formation and monitor properties such as spatial
and temporal distribution of tumbling bacteria or
CheYp concentrations within each bacterium. For
example, a study of the online simulation movie
suggests that at the beginning of the simulation, the
fact that there are many bacteria consuming aspartate
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from a common small area, the effect is a rather rapid
depletion of aspartate, which results in a higher pro-
portion of the bacteria being in their tumbling state.
This has the effect of these bacteria staying in the
same area while consuming aspartate, so that they
eventually create a large concentration gradient.

It is important to recall that the main aim of this
paper is to introduce the modelling language, and hence
the scope of our modelling effort is focused on the move-
ment of a single bacterium or of small populations (up
to 100 bacteria). Creating simulations for larger
populations of bacteria (Tindall et al. 2008a) can be
supported as a natural extension, as was done in some
of the previous statechart modelling efforts carried out
in the last-listed author’s research group (Efroni et al.
2007; Setty et al. 2008). However, the additional path-
way-related computations that the Biocharts require
add to the challenge of running such massive simulations
efficiently. Ideas for future work on handling this com-
plexity include approximating the behaviour described
in particular states by simpler and less computationally
intensive behaviour, caching results of computations
and distributing the model to run on a cluster.
3. DISCUSSION

The Biocharts language and its underlying approach
were designed to tackle some of the fundamental chal-
lenges in making the modelling of complex biological
systems more accessible and mainstream.

In general, as the biological system becomes more
complex, suggested models and diagrams grow in size
and can become extremely difficult to understand. In
an attempt to help alleviate this problem and ease
both the modelling and the comprehension of the
models, we suggest a general solution in which the
model can be decomposed naturally on a behavioural
basis (not necessarily a structural one). To that end,
we use a language genuinely intended for reactive
behaviour, which supports a variety of temporal
relationships between ‘pieces’ of low-level behaviour,
including sequentiality, concurrency, inclusion and
more. Wise use of the hierarchy of states and orthogonal
components available in statecharts allows one to
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construct more succinct representations of the model in
a natural way. We are thus using constructs and con-
cepts that have proven to be powerful and natural in
software and systems engineering. The combination
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becomes a state-based description of the reactive
dynamics of a complex biological system, with the
molecular dynamics—possibly continuous and feedback-
oriented in nature—taking place on the lower tier of
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Figure 7. Incorporating metabolism and division. The state of the bacterium during a division phase (indicated by the highlighted
Division state that was entered after the biomass passed a critical value and the bacterium starts dividing). Here the
bacterium is in the Run state, is dividing and its flagella are bundled.
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Figure 8. Depiction of the environmental aspartate concen-
tration during an execution of the model on a population of
bacteria in a tube. The box in the top portion of the figure rep-
resents the tube; the diamonds are bacteria in their running
state and the ‘x’s are bacteria in their tumble state. The diam-
eter of the tube is 200 mm. Bacteria shown in red were born as
the result of divisions taking place within the last 1.5 s.
Initially the size of the population is 30 bacteria. Aspartate
concentration inside the tube is shown by the curve beneath
the box. The figure represents the state of the system after
40 s of simulated time.
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our two-tier approach, that is, within any of the states
at any level of the statechart hierarchy.

In some of the existing notations, the same network
may in principle be activated in several different ways,
J. R. Soc. Interface
but it is far more difficult to specify if all possible com-
binations can actually occur in reality or under which
conditions. The essence of the Biocharts approach is
to enable a flexible, modular and hierarchical breakup
of networks and pathways based on their behaviour,
in any way that is deemed natural by the experts of
the subject matter. Thus, by embedding the relevant
parts of the networks and their behaviour within the
states, the upper-tier statecharts can be made to cap-
ture the dynamic and temporal inter-relationships
between those network portions. Moreover, this intra-
state network information can be incorporated as it
becomes available and for any set of experimental
conditions.

If the behaviours described within the states are
given in some diagrammatic form, say of the Kitano
or Kohn flavours, Biocharts become doubly visual,
but this need not be the case. Our proposal is for a
language consisting, first and foremost, of statecharts,
with some form of bioprocesses embedded within.
These could be given, for example, as process algebras
or calculi (Regev et al. 2001; Ciocchetta & Hillston
2008), as Petri nets (Reddy et al. 1996) or directly as
differential equations. Anything that provides dynamics
for molecular interactions or pathways is acceptable as
the ‘internal language’ of the proposed combination.
The new combined two-tier language inherits the
power of statecharts to talk about modularity of the
dynamics, time, causality, concurrency, and in general
to provide answers to ‘what happens when’ questions.
It may be beneficial to use the Biocharts approach
with a scenario-based language, e.g. live sequence
charts (Damm & Harel 2001), as the high-level
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modelling language (Kam et al. 2008), which remains a
future research direction.

A crucial advantage of embedding the network and
pathway pieces in the statecharts is that as long as
the former are endowed with enough dynamic infor-
mation, the entire model of the biological system is
fully executable, as we illustrated here. This allows
one to use the existing theory and tools for the simu-
lation, analysis, verification and visualization of
complex biology. We hope that it will also encourage
the development of more powerful such tools, tailored
specifically for biological modelling.

We thank the anonymous reviewers for valuable comments on
the manuscript. Part of this work was carried out during
A.L.’s internship at Microsoft Research, Cambridge, UK.
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