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Abstract 

In this paper, we propose an HMM trajectory-guided, real 

image sample concatenation approach to photo-real talking 

head synthesis. It renders a smooth and natural video of 

articulators in sync with given speech signals. An audio-visual 

database is used to train a statistical Hidden Markov Model 

(HMM) of lips movement first and the trained model is then 

used to generate a visual parameter trajectory of lips 

movement for given speech signals, all in the maximum 

likelihood sense. The HMM generated trajectory is then used 

as a guide to select, in the original training database, an 

optimal sequence of mouth images which are then stitched 

back to a background head video. The whole procedure is fully 

automatic and data driven. With an audio/video footage as 

short as 20 minutes from a speaker, the proposed system can 

synthesize a highly photo-real video in sync with the given 

speech signals. This system won the FIRST place in the 

Audio-Visual match contest in LIPS2009 Challenge, which 

was perceptually evaluated by recruited human subjects.   

Index Terms: visual speech synthesis, photo-real, talking 

head, trajectory-guided 

1. Introduction 

Talking heads are useful in applications of human-machine 

interaction, e.g. reading emails, news or eBooks, acting as an 

intelligent voice agent or a computer assisted language 

teacher, etc. A lively, lip sync talking head can attract the 

attention of a user, make the human/machine interface more 

engaging or add entertainment ingredients to an application. 

Generating animated talking heads that look like real people is 

challenging. A photo-real talking head needs to be not just 

photo-realistic in a static appearance, but exhibit convincing 

plastic deformations of the lips synchronized with the 

corresponding speech, realistic head movements and 

emotional facial expressions. In this paper, we focus on the 

articulator movements (including lips, teeth, and tongue), 

which is the most eye-catching region on a talking face. 

To synthesize articulator movements from video training 

data, various approaches have been proposed before, roughly 

in three categories: key-frame based interpolation, unit 

selection synthesis and HMM-based synthesis. 

The key-frame-based interpolation method [2] is based 

upon morphing between 2-D key-frame images. The most 

frequently used key-frame set is visemes (visual phonemes), 

which form a set of images spanning a large range of mouth 

shapes. Using morphing techniques, the transitions from one 

viseme to other viseme can be computed and interpolated 

automatically.  

The unit selection, or sample-based method starts with 

collecting representative samples. The samples are then 

parameterized by its contextual label information so that they 

can be recalled according to the target context information in 

synthesis. Typically, minimal signal processing is performed 

to avoid introducing artifacts or distortions unnecessarily. 

Video snippets of tri-phone have been used as basic 

concatenation units [3-5]. Since these video snippets are 

parameterized with phonetic contextual information, the 

resulting database can become too large. Smaller units like 

image samples have shown their effectiveness in improving 

the coverage of candidate units. In LIPS2008 Challenge, Liu 

demonstrated a photo-real talking head [6] in a sample-based 

approach, which is an improved version of the original work 

of Cosatto and Graf [1].  

The Hidden Markov Model (HMM) based speech 

synthesis has made a steady but significant progress in the last 

decade [7]. The approach was also tried for visual speech 

synthesis [8,9]. In HMM-based visual speech synthesis, audio 

and video are jointly modeled in HMMs and the visual 

parameters are generated from HMMs by using the dynamic 

(“delta”) constraints of the features [8]. Convincing mouth 

video can be rendered from the predicted visual parameter 

trajectories. One drawback of the HMM-based visual speech 

synthesis method is its blurring due to feature dimension 

reduction in PCA and the maximum likelihood-based 

statistical modeling. Therefore, further improvement is still 

needed to make a high quality, photo-real talking head. 

Inspired by the newly proposed HMM-guided unit 

selection method in speech synthesis [10,11], we propose the 

trajectory-guided real sample concatenating method for 

generating lip-synced articulator movements for a photo-real 

talking head. In particular, in training stage, an audio/visual 

database is recorded and used to train a statistical Hidden 

Markov Model (HMM). In synthesis, trained HMM is used to 

generate visual parameter trajectory in maximum likelihood 

sense first. Guided by the HMM predicted trajectory, a 

succinct and smooth lips sample sequence is searched from the 

image sample library optimally and the lips sequence is then 

stitched back to a background head video.  

This paper is organized as follows. Section 2 gives an 

overview of the synthesis framework. Section 3 introduces the 

HMM-based visual parameter trajectory generation. Section 4 

proposes the trajectory-guided sample selection method. 

Section 5 discusses the experimental results, and section 6 

draws the conclusions.  

2. Overview of Synthesis Flow 

Fig. 1 illustrates the synthesis framework of the proposed 

trajectory-guided sample selection approach. In training, first 

the original image samples   are encoded in low-dimensional 

visual feature vector  . Then the features   are used to train 

statistical HMM model   . In synthesis, for any arbitrary 

natural or Text-to-Speech (TTS) synthesized speech input  , 

the trained model   generates the optimal feature trajectory  ̂ 
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in the maximum likelihood sense. The last step is to 

reconstruct  ̂  back to  ̂  in the original high-dimensional 

sample space, so that the synthesis results can be seen/heard. 

To put it briefly, there are four main modules:      
       ;        ̂  and   ̂   ̂. The main contribution of 

this paper is the last processing module,  ̂   ̂, which is our 

proposed trajectory-guided real sample selection method for 

converting the low-dimensional visual parameter trajectory to 

samples in the original sample space. In particular, guided by 

the HMM predicted trajectory  ̂, a succinct and smooth image 

sample sequence  ̂  is searched optimally from the sample 

library and the mouth sequence is then stitched back to a 

background head video. 
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Fig. 1. Synthesis framework with trajectory-guided sample selection. 

3. HMM-based Visual Parameter 

Trajectory Synthesis 

3.1. Visual parameter extraction (   ) 

Training the talking head requires a small, about 20-minutes of 

audio-visual data of a speaker recorded in reading prompted 

sentences. Since the speaker moves his/her head naturally 

during recording, head pose varies among the raw image 

frames. With the help of a 3D model-based head pose tracking 

algorithm, head poses of all frames are normalized and aligned 

to the full-frontal view. The lip images can then be cropped 

out with a fixed rectangle window and a library of lips sample 

is made. We obtain eigen-lips (eigenvectors of the lip images) 

by applying PCA to all the lip images. The top 20 eigen-lips 

contained about 90% of the accumulated variance. The visual 

feature of each lips image is formed by its PCA vector,  

                                                        

where   is the projection matrix made by the top 20 eigen-

lips. 

3.2. Audio-Visual HMM modeling (     ) 

We use acoustic vectors       
     

      
    and visual 

vectors       
     

      
    which is formed by 

augmenting the static features and their dynamic counterparts 

to represent the audio and video data. Audio-visual HMMs,  , 

are trained by maximizing the joint probability          over 

the stereo data of MFCC(acoustic) and PCA(visual) training 

vectors. In order to capture the contextual effects, context 

dependent HMMs are trained and tree-based clustering is 

applied to acoustic and visual feature streams separately to 

improve the corresponding model robustness. For each AV 

HMM state, a single Gaussian mixture model (GMM) is used 

to characterize the state output. The state   has mean vectors 

  
   

 and   
   

  In this paper, we use the diagonal covariance 

matrices for   
    

and   
    

, null covariance matrices for 

  
    

and  
    

, by assuming the independence between audio 

and visual streams and between different components.  

3.3. Visual trajectory generation (     ̂) 

Given a continuous audio-visual HMM  , and acoustic feature 

vectors      
    

      
   , we use the following algorithm 

to determine the best visual parameter vector sequence 

     
    

      
    by maximizing the following likelihood 

function. 

                                                                       

is maximized with respect to  , where   is the state sequence.  

At frame t,               are given by 
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We only consider the optimal state sequence   by 

maximizing the likelihood function          with respect to 

the given acoustic feature vectors   and model  . Then, the 

logarithm of the likelihood function is written as 

                  (   ̂     ̂    ) 
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The constant   is independent of  . The relationship 

between a sequence of the static feature vectors   
   

    
      

    and a sequence of the static and dynamic 

feature vectors   can be represented as a linear conversion, 

                                                         

where    is a transformation matrix described in [7]. By 

setting
 

  
               , we obtain  ̂    that maximizes 

the logarithmic likelihood function, as given by 

  ̂      (  
  ̂      

  )
  

  
  ̂      

 ̂              

4. Trajectory-Guided Sample Selection 

( ̂   ̂) 

The HMM predicted visual parameter trajectory is a compact 

description of articulator movements, in the lower rank eigen-

lips space. However, the lips image sequence shown at the top 

of Fig. 2 is blurred due to: (1) dimensionality reduction in 

PCA; (2) ML-based model parameter estimation and trajectory 

generation. To solve this blurring, we propose the trajectory-

guided real sample concatenation approach to constructing  ̂ 

from  ̂. It searches for the closest real image sample sequence 

in the library to the predicted trajectory as the optimal 

solution. Thus, the articulator movement in the visual 

trajectory is reproduced and photo-real rendering is guaranteed 

by using real image sample.  

4.1. Cost function 

Like the unit selection in concatenative speech synthesis, the 

total cost for a sequence of T selected samples is the weighted 

sum of the target and concatenation costs: 
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Fig. 2. Illustration for trajectory-guided sample selection approach. 
The top-line lips images (gray) are the HMM predicted visual 

trajectory. The bottom images (colored) are real samples lips 

candidates where the best lips sequence (red arrow path) is selected by 
Viterbi decoding.   

 

The target cost of an image sample  ̂  is measured by the 

Euclidean distance between their PCA vectors. 

   ( ̂   ̂ )  ‖ ̂   ̂ 
 
 ‖                                       

The concatenation cost is measured by the normalized 2-D 

cross correlation (NCC) between two image samples  ̂  and  ̂ , 

as Eq. 13 shows. Since the correlation coefficient ranges in 

value from -1.0 to 1.0, NCC is in nature a normalized 

similarity score, which is an advantage superior to other 

similarity metrics.  
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Assume that the corresponding samples of  ̂  and  ̂  in the 

sample library are    and   , i.e.,  ̂    , and  ̂    , where, 

p and q are the sample indexes in video recording. And hence 

   and     ,     and    are consecutive frames in the original 

recording. As defined in Eq. 14, the concatenation cost 

between  ̂  and  ̂ is measured by the NCC of the    and the 

     and the NCC of the       and   .  

            ( ̂   ̂ )    (     ) 
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Since    (     )     (     )     we can easily derive, 

  (       )    (       )    

So that it would encourage the selection of consecutive frames 

in original recording.  

4.2. Optimal sample sequence 

The sample selection procedure is the task of determining the 

set of image sample  ̂ 
 so that the total cost defined by Eq. 11 

is minimized: 

 ̂ 
        

 ̂   ̂     ̂   
 ( ̂ 

   ̂ 
 )                                

Optimal sample selection can be performed with a Viterbi 

search. However, to obtain near real-time synthesis on large 

dataset, containing tens of thousands of samples, the search 

space must be pruned. This has been implemented by two 

pruning steps. Initially, for every target frame in the trajectory, 

K-nearest samples are identified according to the target cost. 

The beam width K is 40 in our experiments. The remaining 

samples are pruned with the concatenation cost.    

5. Experimental Results 

5.1. Experimental setup 

We employ the LIPS 2008/2009 Visual Speech Synthesis 

Challenge data [12] to evaluate the proposed trajectory-guided 

sample selection methods. This dataset has 278 video files 

with corresponding audio track, each being one English 

sentence spoken by a single native speaker with neutral 

emotion. 

The video frame rate is 50 frames/sec. For each image, 

Principle Component Analysis projection is performed on 

automatically detected and aligned mouth image, resulting in a 

60-dimensional visual parameter vector. Mel-Frequency 

Cepstral Coefficient (MFCC) vectors are extracted with a 

20ms time window shifted every 5ms. The visual parameter 

vectors are interpolated up to the same frame rate as the 

MFCCs. The A-V feature vectors are used to train the HMM 

models using HTS 2.1 [7]. 

In objective evaluation, we measured the performance 

quantitatively using mean square error (MSE) between  ̂ and 

 ,  ̂ and  , as defined in Eq. 16 and 17.  In a closed test where 

all the data are used in training, the evaluation is done on all 

the training data. In open test, leave-20-out cross validation is 

adopted to avoid data insufficiency problem. In subjective 

evaluation, the performance of the proposed trajectory-guided 

approach was evaluated by 20 native language speaking 

subjects in the audio/visual consistency test in LIPS2009 

challenge.  
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5.2. Objective test 

Fig. 3 shows an example of the HMM predicted trajectory  ̂ in 

both the closed and open tests. Comparing with the ground 

truth  , the predicted visual trajectory  ̂ closely follows the 

movement trends in  . Three mean square errors (MSE) are 

calculated for the open test. 

1. ‖ ̂   ‖ : This measure shows how good the HMM 

predicted trajectory which will be used as a guide later is. 

The model parameters, like the numbers of tied states for 

the audio and visual streams, are optimized in closed test. 

The MSE distortion is 7.82x105 between the HMM-

predicted trajectory and the ground truth in open test.  

2. ‖ ̂   ‖ ( ̂   ) : This measure is to evalutate the 

performance of trajectory-guided sample selection by 

ignoring the trajectory prediction error, or ideally we can 

assume the predicted trajectory is perfect, i.e., ̂   . In 

this oracle experiment, we take the ground truth trajectory 

as the perfect guidance in order to test the sample 

selection performance alone. For each test sentence, we 

use the image samples from other sentences to do the 

selection and concatenation. The MSE distortion of the 

sample selection is 1.77 x105. 

3. ‖ ̂   ‖ : It is the total distortion in the synthesis, 

including both the trajectory prediction errors and sample 

selection errors. The total distortion 9.42x105 is slightly 

less than the summation (7.82x105+1.77x105=9.59x105) 

of the first two distortions.   



5.3. Pruning of sample library 

Some samples in the sample library are rarely or never 

selected because they are too far away from the model 

predicted trajectory. We conducted a large scale synthesis test 

in order to estimate the frequency of selection for all the image 

samples in the library. The experiment is to synthesize 10,000 

phonetic balanced sentences and compute the frequency of 

selection of all 61,244 images. As shown in Fig. 4, all the 

61244 image samples in the library are rank ordered according 

to their occurrence count in the final best path (red curve) and 

k-nearest pre-selection (blue curve), respectively. It shows that 

there are less than 46% samples used in the pre-selection, 

while about 20% samples used in the final best path. The 

pruning is good because misaligned and outlying mouth 

images are discarded. Meanwhile, we achieve the same output 

quality but at a much faster speed (5 times) by keeping only a 

small subset (20%) of the original library. 

5.4. Subjective Test 

We participate in the LIPS2009 Challenge contest with the 

proposed photo-real talking head. The contest was conducted 

in the AVSP (Auditory-Visual Speech Processing) workshop 

and subjectively evaluated by 20 native British English 

speaking subjects with normal hearing and vision. All 

contending systems were evaluated in terms of their audio-

visual consistency. When each rendered talking head video 

sequence was played together with the original speech, the 

viewer was asked to rate the naturalness of visual speech 

gestures (articulator movements in the lower face) in a five 

point MOS score. Fig. 5 shows the subjective results. Our 

system got the highest MOS score 4.15 among all other 

participants, which is only inferior to the 4.8 MOS score of the 

original AV recording.  

6. Conclusions 

We propose a trajectory-guided, real sample concatenating 

approach for synthesizing high-quality photo-real articulator 

animation. It renders a photo-real video of articulators in sync 

with given speech signals by searching for the closest real 

image sample sequence in the library to the HMM predicted 

trajectory. Objectively, we evaluated the performance of our 

system in terms of MSE and investigate the pruning strategies 

in terms of storage and processing speed. Our talking head 

took part in the LIPS2009 Challenge contest and won the 

FIRST place with a subjective MOS score of 4.15 in the 

Audio-Visual match evaluated by 20 human subjects. 

 

Fig. 3. Closed test predicted (blue curve), open test predicted (red 

curve) vs. actual (black curve) trajectories of the 1st (up) and 2nd 
(bottom) PCA coefficients for a testing utterance. 

 
Fig. 4. Re-ranking by sample occurrence. 

 
Fig. 5. MOS (Audio-Visual Match) of all the participant systems in 

LIPS Challenge 2009. 
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