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ABSTRACT

This paper describes how speech recognition confidence
estimation in a typical Directory Assistance scenario can
be improved by taking dialog context into account and re-
calibrating the original recognition confidences using a statis-
tical classifier that employs classification features extracted
from this context. We look at several types of classification
features and investigate their utility with respect to semantic
and sentence error rates with a view to an improved appli-
cation behavior, but also with a long term goal of a more
efficient semi-supervised selection of model training ma-
terial. The method leads to significantly better tradeoffs
between correct and false recognitions with respect to both
error metrics.

Index Terms— Confidence Classification, Dialog Con-
text, Directory Assistance, Feedback Loop

1. INTRODUCTION

Recognition confidences have been used for many years to
cope with errors in Automatic Speech Recognition. A confi-
dence of a recognition hypothesis is an estimate of its reliabil-
ity, of how much we can trust this recognition result. Recog-
nition confidence is often related to the conditional posterior
probability of the recognition hypothesis being correct given
the acoustic signal [1]. One practical interpretation of this re-
lation is that if we take a large number of recognition hypothe-
ses from an ASR system that all share the same confidenceα,
on average100 ∗ α percent of them will be correct. It should
be noticed however that the identity relation between the two
quantities is not strictly required; in practice, having a mono-
tonic dependency is often sufficient. Another view of recog-
nition confidences is embodied in the black box paradigm that
converts a multitude of parameters, properties and resultsof
a particular recognition run into a real number, a relation of-
ten implemented as a statistical classifier. In the latter case —
and this is the one that we adopted for our experiments — the
process of extracting confidence is termedconfidence classi-
fication. For a comprehensive review on confidence measures
in speech recognition, see [1].
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Several factors can lead to recognition mistakes, such as
inaccurate models and difficult/mismatched acoustic condi-
tions. As a result, many authors suggest using accuracy in-
dicators from different abstraction levels, such as acoustic or
phone level, word level and utterance level [2, 3, 4]. These in-
dicators are treated as features for a binary statistical classifier
whose output score (possibly normalized) serves as the final
confidence. Separate confidences can be computed for n-best
hypotheses as well [5]. To train a successful confidence clas-
sifier, one needs a large amount of labeled in-domain training
material. Ideally, we would like to train a separate confidence
classifier for each language domain and speech application.
Alternatively, a generic classifier can be trained and then re-
calibrated in a separate step on domain specific data possibly
using domain specific features [6, 7].

The approach presented in this paper is primarily intended
for interactive human-machine communication scenarios. It
follows the re-calibration scheme but also adds a new dimen-
sion of classification features to the classifier:dialog context.
Our method suggests taking into account information about
previous dialog turns within each given human-machine dia-
log. Unlike other methods that utilize dialog-related features
such as rejections or elapsed time to ascertain quality of the
dialog as a whole (see, for instance, [8, 9]), we stay focused
on utterance level confidences. As a special extension of our
method, we also consider the oracle case where for each utter-
ance not only previous turns but also future turns are allowed
to provide classification features. This extension is useful
if our goal is to collect large amounts of in-domain training
material for future model (re-)training (feedback loop) while
avoiding tedious manual transcription effort.

The remainder of this paper is structured as follows: in
Section 2 we describe the Directory Assistance application
used as a test bed for our experiments. Section 3 explains
how classification features are generated. Section 4 presents
confidence re-calibration experiments forlocality and listing
states of the application with respect to semantic and sentence
error rates. We conclude the paper with a short summary and
propose directions for future investigations.



2. DIRECTORY ASSISTANCE APPLICATIONS

The Directory Assistance application we selected for this ex-
periment is situated within thePremium DAscenario [10].
First the system asks for city and state, and then for a listing
name. If the subsequent business search is successful the cor-
responding phone number is released to the caller. Both steps
allow for confirmation sub-dialogs. In addition, since callers
are paying for this premium service, they always have an op-
tion to get connected to a human operator. This can happen
either following an explicit request by the caller or if the au-
tomated dialog encounters difficulties. A high level diagram
of the application call flow is shown in Figure 1.

The application is implemented usingVoiceXML[11] and
utilizes the available logging functionality to write logtags
about events happening in each call. For instance, one log-
tag entry type contains the original recognition confidencefor
the locality state and another indicates that the call went into
a confirmation sub-dialog after the listing input state, andso
on. There are about 1200 distinct types of logtag entries in
the entire application.

The application is built around the Microsoft speech
recognition engine [12]. The recognizer has a pre-trained
application-independent confidence classifier implemented as
a Multilayer Perceptron that takes a variety of features such
as posterior probability, acoustic stability, language model
fan-out, and others, generated from recognition lattices.

3. CLASSIFICATION FEATURES

In order to make the results of our approach generalizable
to other application scenarios, we decided to adopt a “non-
invasive” strategy and extract classification features forconfi-
dence re-calibration from the information in the already exist-
ing logtag entries. We did not alter the application in any way
to introduce logtags specifically intended to convey informa-
tion we believe would improve confidence re-calibration pro-
cess.

Thus, the first subtask of the feature extraction task be-
came to automatically reverse-engineer definition domains
for each of the 1200 logtag types thrown by the application.
This has been done on a random set of 40K calls. Based on
this analysis about 200 logtags have been dismissed as they
did not occur enough in the sample. Of the remaining one
thousand, 90% ended up being binary (presence) features and
the rest was equally split among numerical, categorical and
string feature types.

From the perspective of each utterance subjected to confi-
dence re-calibration, all features can be grouped into fourcat-
egories according to how much call context1 and deep knowl-
edge of the application is needed to generate them. These
categories (levels) are described below.

1From now on, we will be using the termcall contextinstead ofdialog
contextas it reflects the DA domain more adequately.

1. First level featuresneither require any knowledge of
the dialog future, nor pre-suppose any additional ap-
plication insights. They include all logtags that have
been thrown prior or during recognition of the utter-
ance in question, up to the moment when new input
was solicited or obtained from the caller. While these
logtags do extend past the point of actual decision mak-
ing for an utterance in the application, all information
in them can be used to change recognizer behavior and
ultimately improve caller’s experience.

2. Second level featuresstill do not look into the future.
However, they assume intimate understanding of the
application as they have been compiled by a human
expert who analyzed information in logtags and sug-
gested how to extract helpful bits from it. One example
is a binary feature that is set to 1.0 if and only if the
utterance constitutes user’s second attempt to provide
locality name after the first one failed (something one
can derive from other logtags). Another example is a
feature that indicates that the recognized locality had
a name of a U.S. state in it. This kind of information
is certainly already contained in the first-level features
implicitly, but is hard to derive from them using tradi-
tional data mining methods and without understanding
the mechanisms behind the application.

3. Third level features add the possibility of looking into
the future, but only future human-machine interactions.
Namely, if the caller was later redirected to a human
operator, no information in the logtags describing the
subsequent human-human interaction is accessible for
confidence re-calibration. This is a reasonable restric-
tion to make, considering how few speech applications
involve a human back-up.

4. Forth level features additionally extract information
from the caller’s interactions with a human operator in
cases where an operator did get involved. The logtags
from these interactions are available to us because, once
the operator has decided to release a phone number, the
control is passed back to the system in order to relay
it to the caller. This allows us to define classification
features such as whether the recognized locality was
the same as the locality of the phone number released
by the operator.

In addition to the features based on logtag values, we also
compute time intervals between the utterance in question and
those logtags (and also other input states). These featuresare
then grouped into the four levels as well.
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Fig. 1. Call flow of Directory Assistance application.

4. CONFIDENCE RE-CALIBRATION
EXPERIMENTS

4.1. Data Sets and Evaluation Metrics

We collected and transcribed two corpora forlocality andlist-
ing states of the application. The locality corpus contains
3882 utterances with all cases recognized as special keywords
(such as requests for an operator that most of the time were
reliably recognized) filtered out. Three quarters of these ut-
terances are first requests and the rest are repeats. The listing
corpus contains 4375 utterances selected in the same manner.

Our production recognizer is evaluated in terms of ase-
mantic error rate: each recognition hypothesis is associated
with corresponding semantics that are used by the dialog
manager to continue the dialog; for instance, in the request:
“Hi, it’s in eh... Mountain View I think” the semantics is a
codewordmountainview@ca, and in the non-informational
“well... wait a second.”, semantics are empty.Correct Accept
rate (CA) is the proportion of recognition hypotheses with
non-empty correctly guessed semantics in the entire corpus,
andFalse Accept rate (FA)is the proportion of recognition
hypotheses with non-empty but incorrectly guessed seman-
tics. We ignore the hypotheses with empty semantics, since
confidence re-calibration would add little practical value
there. Each hypothesis is also associated with a confidence
score (the one we are about to re-calibrate). By changing the
confidence threshold that this score has to exceed in order for
the hypothesis to be accepted in the first place, we get a curve
of different tradeoffs between these two metrics. The goal of
re-calibration is to make this curve more concave (extending
towards the upper-left corner; see below).

While correctly recognizing semantics is crucial for suc-
cessful dialog continuation, it is the word and sentence er-
ror rates that are of more importance when the goal is to se-

lect “good” utterances for model re-training and adaptation.
The differences between semantic and sentence error rates
are large for both locality and listing utterances. In the lo-
cality state, semantics are automatically associated witheach
recognition hypothesis by the decoder. However, not all of
the recognized words participate in semantics determination.
For listing recognition, the difference is even more striking,
as a specialized search back-end is used to convert the recog-
nized word string into business ID. Therefore, we also need
to extend our effort to predict recognition problems on the
sentence error rate metric.

4.2. Confidence Re-calibration for Locality Recognition

The first experiments have been conducted to re-calibrate con-
fidences in the locality state of the application. The tran-
scribed and labeled corpus was split into five equal subsets
for 5-fold cross-validation while making sure that no two ut-
terances from the same call end up in different folds. Then, a
binary statistical classifier (SVM) was trained to predict cor-
rectness of recognized utterances from either sentence level
or semantic point of view, and the scores were normalized to
approximate class posteriors.

For various feature levels, Table 1 compares“missed er-
rors” , fractions of those falsely recognized (FA) utterances
that have not been identified as such by the classifier, while
keeping the fraction of correctly recognized (CA) utterances
that have been accepted by the classifier constant at about
80%. As a baseline, we use simple thresholding on recognizer
confidence. This baseline also determined the selection of the
constant above (to keep recall for both classes approximately
equal in this setup). Table 2 shows a similar comparison for
locality recognition using sentence error rate instead of se-
mantic error rate. This time, the recall of correct recognition
was fixed at about 82%.



feature level reco 1 1,2 1,2,3 1,2,3,4
missed errors (%) 18.6 22.7 17.2 16.1 13.8

Table 1. Missed semantic errors in the locality input state.

feature level reco 1 1,2 1,2,3 1,2,3,4
missed errors (%) 17.8 16.0 13.3 16.5 16.6

Table 2. Missed sentence errors in the locality input state.

The tables indicates that for the locality state, only fea-
tures extracted from the dialog future can help spotting ut-
terances with poorly recognized semantics (those include
features like caller’s disconfirmations or repeated requests).
However, as far as the sentence error rate is concerned, even
extracting the features that pertain only to past and present
of an utterance in question, helps reduce the fraction of not
discovered false recognitions relative to the recognition-only
baseline by 7-22% relative.

Note that the the tables represent only a snapshot of the
classification results for a particular confidence threshold,
a single point on a dependency curve between CA and FA.
These curves, however, are not always smooth and therefore
an overall “worse” curve can produce a “better” result for a
particular operating point. This explains why level 1 and 2
features seem to produce better results than all features in
Table 2 and, to a certain extent, the very bad performance of
level 1 features in Table 12. Figure 2 offers a more complete
view of the achieved improvements from the perspective of
the tradeoff between correctly and falsely recognized utter-
ances (CA/FA), subject to changing confidence threshold,
where the confidence can either come from the recognizer,
or as a multiplicative product of recognition confidences and
normalized classifier scores. In our experiments we deter-
mined that multiplying the normalized classification score
with the original recognition confidence produces the best
results with respect to sentence error rate in both localityand
listing states, while semantic error rate is best served by the
normalized classifier score alone.

The plot (only shown for sentence error rates) demon-
strates that the classifier-adjusted versions outperform the
recognition-only setup in the range of FA below 10%. The
significance of this result from the feedback loop perspective
can be exemplified by a scenario in which we wish to use
the captured utterances along with their automated transcrip-
tions for model re-training and restrict the set to only 70% of
the highest confidence recognitions. Computing proportions
of utterances with transcription errors FA/(FA+CA) in this
new training set, we would get0.05/(0.65+0.05) ≈ 7.1%
for the unaltered confidences and almost half this amount,
0.03/(0.67+0.03)≈4.3%, for the re-calibrated confidences.

2The other reason being that with the parameters fixed for the entire series
of the experiments, the classifier indeed failed to produce agood solution in
this case; other parameter constellations resulted in muchbetter results.
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Fig. 2. CA/FA curves for the locality input state (sentence er-
ror rate) based on recognizer confidence measure (solid); rec-
ognizer confidences combined with classifier scores trained
on features from levels 1 and 2 (dashed) and on all features
(dotted).

feature level reco 1 1,2 1,2,3 1,2,3,4
missed errors (%) 34.0 23.2 18.7 16.7 15.6

Table 3. Missed semantic errors in the listing input state.

4.3. Confidence Recalibration for Listing Recognition

For the listing state of the application, we carried out the
cross-validation experiments as we did for the locality state,
using semantic and sentence error rates to determine utterance
dispositions.

We have mentioned in the beginning of this section that
these two metrics are decoupled. In addition, it should be
noted that the search back-end leads to a large number of
rejections. Thus, even if the recognizer produced an output
word string for some audio, we are still not guaranteed to have
any semantics associated with this utterance, as the searchen-
gine can still dismiss the string. As a result, the number of
utterances with valid semantics (and those are the ones we
are interested in for the purpose of confidence re-calibration)
is about 50% of the total number of utterances. However,
missing semantics is not necessarily a problem, since callers
often do not provide useful information in this input state.On
the other hand, the search itself results in additional logtags
that we can use as classification features to aid confidence re-
calibration. Table 3 shows how missed semantic errors can be
reduced for the listing state using a classifier (correct recog-
nition recall fixed at about 67%).

This time a very significant improvement could be achieved
even with the level 1 features. We propose two possible ex-
planations for this. First, level 1 features for the listingstate
include information about what has previously happened in
the locality state. If the confidence of the locality recognition
was low, this increases the chance of a mistake in the listing
state because a wrong grammar could be used there. A related



feature level reco 1 1,2 1,2,3 1,2,3,4
missed errors (%) 28.3 31.4 22.1 22.3 22.7

Table 4. Missed sentence errors in the listing input state.

reason is that having problems recognizing locality can also
mean a “difficult” caller for whom listing recognition is more
likely to encounter problems as well. Second, search-related
features are now part of level 1 set (because the logtags have
been thrown before we got any new input from the caller);
in other words, listing utterances have more prior context.
Having not found any business could (though does not have
to) mean a recognition problem.

Finally, Table 4 offers a comparison of missed errors for
sentence error rate driven confidence re-calibration in thelist-
ing state. Overall, a relative reduction of about 20% relative
was achieved.

Note that in general the task to detect utterances with
recognition (sentence) errors is much more difficult than us-
ing semantic errors to guide the search. In fact, for cases
where semantics has been guessed correctly in the presence
of word recognition errors, the features from the call context
can be detrimental. Indeed, whenever there is an explicit
confirmation from the caller, call context features would sug-
gest error free recognition. This is possibly the reason why
features of up to the second level ended up predicting errors
as well as all features together.

The plot in Figure 3 shows how combining normal-
ized classifier scores with recognition confidences improves
CA/FA tradeoff.
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Fig. 3. CA/FA curves for the listing state (sentence error rate)
based on recognizer confidence measure (solid); recognizer
confidences combined with classifier scores trained on fea-
tures from levels 1 and 2 (dashed) and on all features (dotted).

4.3.1. Selecting Classification Features

Different features contribute different amounts to classifica-
tion success. One way to assess this contribution is to look
at how much a feature’s presence affects the prior distribution

of the classes. Mutual information is a common criterion to
measure this change. For instance, for the listing confidence
re-calibration task, consider the feature representing the log-
tag that registers recognition confidence of a preceding local-
ity recognition. Figure 4 shows how different value ranges
of this feature change priors of classes CA and FA. For ex-
ample, for the confidence value range between 0.33 and 0.44,
the point-wise mutual information with misrecognitions (FA)
is strongly positive, and correspondingly, for the class ofcor-
rect recognitions (CA) it is strongly negative. This means
that this range of confidences induces a conditional posterior
class distribution that differs from the priors in that a recogni-
tion error becomes much more likely. In general, we see that
there is a correlation between correct recognitions in the list-
ing state and recognition confidences in the preceding locality
input state.
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Fig. 4. Point-wise mutual information for listing recognition
success/error on one side and confidence ranges of previous
locality recognition on the other.

To make the re-calibration algorithm practical and robust,
we want to extract a small, informative subset of the large
original set of classification features. One way of doing this is
to employ a greedy algorithm that sorts all features according
to their mutual information with respect to binary dichotomy
CA versus FA, and then keeps onlyn highest ranked candi-
dates. Assuming thatc is class andv represents the feature
value/interval, mutual information is then computed as:

I =
∑

c,v

P (c, v) log
2

P (c, v)

P (c)P (v)
.

In Figure 5 we plotted a dependency of the false recogni-
tion rate (“FA” in the CA/FA curve with CA fixed at 50%)
on the number of classification features for confidence re-
calibration. The analysis has been conducted for the listing
input state and sentence error rate as the guiding metric for
re-calibration.

While we do not claim our feature ranking and selection
to be optimal, we did observe that with about 100 of the most
salient features, the false recognition rate was reduced by6%
relative to the setup that uses all classification features (which



amounts to over 36% in total relative to the recognition-only
baseline). Since we did not use a separate validation set to
select features, our only conclusion from this experiment is
that the number of features can be dramatically reduced with-
out negatively affecting performance. A similar effect has
also been observed for the locality state, where the saturation
could be achieved with 75 most salient features.
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Fig. 5. Effect of feature selection on proportion of falsely
recognized listing requests.

5. CONCLUSIONS AND FUTURE WORK

We have shown how information in the call context can be
used to adjust recognition confidences of individual utter-
ances. Using classification features ranging from application-
agnostic to describing parts of the calls served by human
operators, we were able to improve recognition confidences
with respect to semantic and sentence error rates for local-
ity and listing input states of a typical Directory Assistance
speech application. The semantic error rate of listing utter-
ances saw the largest reduction at 54% relative, but significant
gains have also been observed for other combinations of error
rate metrics and locality/listing utterances. A greedy feature
selection based on mutual information of individual feature
candidates yielded additional improvements. Throughout the
experiments presented in this paper, we have assumed a fixed
set of logtags to extract classification features from. In the fu-
ture, we plan to address the complementary task of designing
a set of logtags to optimize confidence re-calibration per-
formance for this and similar applications, with and without
involvement of human operators. Finally, while confidences
re-calibrated using classification features from dialog’spast
will be used in the production version of the application to
improve immediate user experience, we also plan to capi-
talize on the improved CA/FA tradeoffs while assembling a
semi-supervised set of utterances for model re-training.
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