
Canonical Regular Types
Ethan K. Jackson1, Nikolaj Bjørner1, and Wolfram Schulte1

1 Microsoft Research, Redmond, WA
ejackson, nbjorner, schulte@microsoft.com

Abstract
Regular types represent sets of structured data, and have been used in logic programming (LP)
for verification. However, first-class regular type systems are uncommon in LP languages. In
this paper we present a new approach to regular types, based on type canonization, aimed at
providing a practical first-class regular type system.

1998 ACM Subject Classification D.3.3 Language Constructs and Features

Keywords and phrases Regular types, Canonical forms, Type canonizer

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Regular types describe (infinite) sets of structured data, and have a long history in the
verification of logic programs. Briefly, a data term is a term t built up from a universe of
constants using data constructors:

t
·= employee(name(“John”, “Smith”), id(100))

The functions name, employee, and id are constructors for building data; the remaining
symbols are constants. A type term is a term τ denoting a set of data terms:

τ
·= employee(name(“John”,String), id(Natural))

The special constants String and Natural denote the sets of all strings and natural numbers.
In this example, τ denotes the set of all employee data terms where the employee’s first name
is “John” and the employee’s ID is a natural number. We write JτK for the set of data terms
denoted by τ :

JτK ·= {employee(name(“John”, x), id(y)) | x ∈ JStringK ∧ y ∈ Z+ ∪ {0}}

In this paper we develop a language of type terms to represent, manipulate and canonize
regular types. We use the phrase type term and regular type interchangeably.

Regular types have been primarily used to verify properties of untyped logic programs
using the following technique [7]: For each n-ary program relation r define an n-ary data
constructor fr. Compute a type term τr such that if r(x1, . . . , xn) holds in the program, then
the data term fr(x1, . . . , xn) is a member of JτrK. Now, τr can be used to check properties of
r using type-theoretic operations of type equality (≈) and subtype testing (<:). For example,
if JτrK is empty then r never holds in the program, which is likely a mistake.

However, unlike other typing paradigms, regular types have not been embraced as a
first-class type system in logic programming. Their application remains narrowly scoped
to verification of untyped logic programs. There are several reasons why regular types are
difficult to use at the language level:

© Ethan K. Jackson, Nikolaj Bjørner, and Wolfram Schulte;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Canonical Regular Types

No Language-Level Representation Regular types are equivalent to powerful recognizers on
data terms, called non-deterministic tree automata (NDTAs). Most verification tools use
NDTAs to represent types, but this low-level representation is unsuitable for programmer
manipulation. Meanwhile, the shallow embedding of regular types via type programs [7]
does not provide a first-class type system.

No Unique Representation Regardless of representation, regular types are non-unique. Two
types may have the same meaning, but look drastically different. Programmers cannot be
expected to know if this is the case, because type equality is EXPTIME-complete. This
limits the effectiveness of type inference to report useful information.

No Infinite Base Types Existing approaches do not support an infinite universe of constants.
This restriction is fundamental to all approaches based on finite tree automata, where
it provides key closure properties. Thus, languages with infinite base types, such as the
mathematical set of integers, are not supported.

In this paper we present a new approach to regular types aimed at typed logic programs
over a first-class regular type system. This approach has been implemented in our LP
language formula 1[11]. Our contributions are:
First-class Types and Declarations We define a language for regular types using type terms.

Programmers explicitly declare the types of data constructor arguments using type terms.
We develop a special class of type declarations, which we call uniform, where type equality
and subtype testing are in coNP.

Unique Representations Under the uniformity restriction, we develop a type canonizer that
converts any two semantically equivalent type terms into syntactically identical type terms.
In this way, programmers observe the results of type inference as uniquely represented
type terms, regardless of the steps taken by type inference. We experimentally show that
inferred type terms are small.

New Algorithms/Infinite Base Types We present alternative algorithms based on algebraic
manipulation of type terms instead of tree automata. This formalization eliminates the
finite signature restriction and supports infinite base types directly.

This paper is organized as follows. Section 2 contains related work. Section 3 formalizes
regular types over infinite base types. Section 4 introduces uniform declarations. Section 5
describes the canonization algorithm. We conclude in Section 6.

2 Related Work

Regular types have been primarily been used for verification of untyped logic programs [8, 13].
Ciao-Prolog uses a shallow embedding into logic programming [9]. NU-Prolog was reported to
have first-class regular types [5], while Mercury employs a Hindley-Milner style type system
[12]. However, other programming paradigms provide support for first-class regular types
[10, 3]. Though none of them employ canonical forms to present the results of type inference.
Instead, regular types are commonly stored as optimized NDTAs [1]. Further optimizations
can be obtained by restricting the class of type declarations [4], which is conceptually similar
to our approach. Extensions to regular types include feature algebras [2] and may add arrow
types [6].

1 See http://research.microsoft.com/formula

http://research.microsoft.com/formula

E. Jackson, N. Bjørner, and W. Schulte 3

3 Regular Types and their Semantics

In this section we develop a theory of regular types through a language of type terms. We
start from an algebraic signature Σ∆, called the data signature, identifying the name/arity
of data constructors and the universe U of constants. A data signature contains a finite
number of non-nullary function symbols and may contain an infinite universe of constants U .
Here is an example of a data signature: (Z ∪ S, employee(,), name(,), age()), where S is the
set of all strings. Typically, the language predefines many constants in the universe and the
programmer defines the non-nullary function symbols.

A data term is either a constant, or an application of a Σ∆-function to data terms.
Importantly, data terms are untyped, meaning any arity-respecting sequence of applications
is a legal data term, even if it appears to be nonsensical: name(id(100), employee(40, “Foo”))
Semantically, data terms are interpreted in a very simple way: Two data terms denote the
same object if and only if they are identical sequences of function applications and constants.
This interpretation yields the Herbrand Universe of Σ∆, written H(Σ∆), which is the set of
all objects labeled by data terms under this rule of equality. From henceforth, the phrases
data constructor and Σ∆-function are equivalent.

Regular types allow the programmer to identify the meaningful data terms by describing
subsets of data terms. For example, the regular type name(String,String) identifies all the
data terms with string arguments; the unwanted term name(id(100), id(100)) does not belong
to this set. In our setting a regular type is type term that can be formed using: (1) data
constructors, (2) constants, (3) base types such as Integer or String, (4) type variables such as
αcons or αlist, and (5) the operations ∩ and ∪.

3.1 Type Signatures and Terms
Formally, a type term is a term formed over a type signature Στ :

I Definition 1 (Type Signature). A type signature Στ is extends a data signature Σ∆:

Στ
·= (Σ∆, V, B,⊥,∩,∪). (1)

1. V is a (possibly infinite) set of nullary functions called the set of type variables. The
symbols in V are disjoint from other symbols.

2. B is a finite set of constants called the set of base types. The symbols in B are disjoint
from other symbols, except for the distinguished base type ⊥ ∈ B, called void.

3. The type intersection (∩) operation and type union (∪) operation are binary operations.
These operations are not in Σ∆, V , or B.

Conventions A type term τ is a term over Στ , and H(Στ) is the Herbrand Universe of
type terms. Let σ, σ1, σ2, . . . range over the nullary symbols of Σ∆ and f, g, . . . range over
the non-nullary symbols of Σ∆. Also, α, α1, . . . range over type variables and β, β1, . . . range
over base types. We write f(τ) as shorthand for f(τ1, . . . , τn). For the remainder of this
paper we assume all data constructors are binary functions. However, all definitions and
theorems generalize for functions of arbitrary arity.

3.2 Type Environments and Denotations
The meaning of a type term τ is a set of data terms, which is fixed except for the meaning of
type variables. For example, Jid(α)K depends on the denotation of the type variable α. A
type environment η provides the missing information in the form of a function from type
variables to sets of data terms.

4 Canonical Regular Types

I Definition 2 (Type Environments). A type environment η : V → 2H(Σ∆) is a function from
type variables to sets of data terms. Set-theoretical operations on 2H(Σ∆) can be lifted to
type environments by defining:

η u η′ ·= λα . η(α) ∩ η′(α) ⊥env
·= λα . ∅

η t η′ ·= λα . η(α) ∪ η′(α) >env
·= λα . H(Σ∆).

I Definition 3 (Type Denotation). A type denotation function J Kη is a function from type
terms and environments to sets of data terms. It gives a denotation to every type term with
respect to a fixed environment.

J K : H(Στ)→
(
V → 2H(Σ∆)

)
→ 2H(Σ∆). (2)

satisfying:

J⊥Kη
·= ∅.

JαKη
·= η(α), α ∈ V.

JσKη
·= {σ}, σ ∈ Σ∆.

JβKη
·= {σ1, σ2, . . .}, β ∈ B − {⊥}.

Jτ1 ∪ τ2Kη
·= Jτ1Kη ∪ Jτ2Kη.

Jτ1 ∩ τ2Kη
·= Jτ1Kη ∩ Jτ2Kη.

Jf(τ1, τ2)Kη
·=

{
f(t1, t2)

∣∣∣∣ t1 ∈ Jτ1Kη ∧
t2 ∈ Jτ2Kη

}
, f ∈ Σ∆.

The denotations of base types are fixed by the language. In other words, they are independent
of the environment, denote unique sets, and are closed under intersection. For all β, β′, η, η′:

JβKη = Jβ′Kη′ ⇔ β = β′, ∃β′′ JβKη ∩ Jβ′Kη = Jβ′′Kη.

3.3 Type Variables and Declarations
Type variables have a very different use in regular types compared to other type systems.
They are used to define recursive data types via a system of type equations. Solutions to
these equations are type environments where the equations hold. A type equation is a pair of
type terms, written τ ≈ τ ′. A type equation holds for a type environment η if JτKη = Jτ ′Kη.
Programmers introduce type variables through type declarations, which are equations of the
form α ≈ τ . The smallest solution to these equations gives a unique type environment fixing
the denotation of all variables.

I Definition 4 (Type Declarations). A set of type declarations D is a finite set of type
equations of the form α ≈ τ , where α ∈ V . For each α ∈ V there is at most one equation in
D with α on the left hand side.

I Example 5 (Declaration of Integer Lists). The following declarations characterize finite lists
of integers:

D ·= {αcons ≈ cons(Integer, αlist), αlist ≈ nil ∪ αcons}, Σ∆
·= (Z, nil, cons(,)).

The solution to this system of equations produces the expected result, because any so-
lution η must have nil ∈ JαlistKη, implying Jcons(Integer, nil)Kη ⊆ αcons, implying Jnil ∪
cons(Integer, nil)Kη ⊆ αlist. By induction αlist and αcons obtain their usual denotations. We
now formalize this result.

E. Jackson, N. Bjørner, and W. Schulte 5

I Definition 6 (Least Environment). A set of type declarations distinguishes a unique type
environment η(D) and denotation J Kη(D), which is the least environment satisfying all type
declarations:

η(D) ·= min

{
η ∈ Env(Στ)

∣∣∣∣ ∀α ≈ τ ∈ D, JαKη = JτKη
}
. (3)

I Lemma 7. The environment η(D) exists and is unique. It is the least fixpoint of a
monotone operator Γ : Env(Στ)→ Env(Στ).

IDefinition 8 (Models Relation). A set of declarations D may imply additional type equations.
Define:

D |= τ ≈ τ ′ ·= JτKη(D) = Jτ ′Kη(D). (4)

Conventions The |= relation is read: “D models the equation τ ≈ τ ′”. Two sets of
declarations are equivalent, written D ≈ D′, if they model the same equations:

D ≈ D′ ·= (∀τ ≈ τ ′ D |= τ ≈ τ ′ ⇔ D′ |= τ ≈ τ ′). (5)

For the remainder of this paper we drop the subscript η(D) from J K when the corresponding
D is clear from context. Similarly, we write τ ≈ τ ′ instead of D |= τ ≈ τ ′. The type term τ ′

is a subtype of τ , written τ ′ <: τ , if Jτ ′K ⊆ JτK. Equivalently, τ ′ <: τ if and only if D models
the equation τ ∩ τ ′ ≈ τ ′.

I Lemma 9. The type intersection (∩) and union (∪) operations inherit the properties of
set-theoretical intersection and union: they are idempotent, commutative, associative, and
satisfy distributivity and absorbtion properties. Furthermore, the following identities hold for
every D:

(product-∩) f(τ1, τ2) ∩ f(τ ′1, τ ′2) ≈ f(τ1 ∩ τ ′1, τ2 ∩ τ ′2)
(disjoint-f, g) g(τ1, τ2) ∩ f(τ ′1, τ ′2) ≈ ⊥ when f and g are different.
(disjoint-σ, f) σ ∩ f(τ1, τ2) ≈ ⊥
(disjoint-β, f) β ∩ f(τ1, τ2) ≈ ⊥
(disjoint-σ, σ′) σ ∩ σ′ ≈ ⊥ when σ 6= σ′

(member) σ ∩ β ≈ σ when σ ∈ JβK

(non-member) σ ∩ β ≈ ⊥ when σ 6∈ JβK

(base-∩) β ∩ β′ ≈ β′′ when JβK ∩ Jβ′K = Jβ′′K

4 Uniform Declarations

For the remainder of this paper we study type environments generated by a restricted class
of type declarations, which we call uniform declarations. In order to avoid confusion, let
us emphasize that uniformity is a restriction only on type declarations D. Arbitrary type
terms can be constructed w.r.t. to uniform declarations; as before the denotations of terms
continues to be given by J Kη(D). To illustrate this restriction, we begin with an example of
declarations that are not uniform:

6 Canonical Regular Types

I Example 10 (Lists of Various Lengths).

αL2 ≈ cons(Integer, cons(Integer, nil ∪ αL2)).
αL3 ≈ cons(Integer, cons(Integer, cons(Integer, nil ∪ αL3))).
αL ≈ αL2 ∪ αL3.

The type variables αL2 and αL3 denote lists with lengths divisible by two and three; αL
denotes their union. These types are related in non-trivial ways: αL2 ∩ αL3 6≈ ⊥, αL2 <: αL,
and αL3 <: αL. In general, proving these relationships may require witnesses of exponential
size. Exponentially large witnesses can be eliminated (and the complexity class reduced) by
restricting the structure of type declarations:

I Definition 11 (Uniform Declarations). A set of declarations D is uniform if:
1. For every α ≈ τ ∈ D, either τ is free of constructor applications (application-free), or

τ = f(τ1, τ2) and every τi is application-free.
2. For every f ∈ Σ∆ there is exactly on equation of the form αf ≈ f(τ1, τ2).

Example 5 is uniform, while Example 10 is not. Importantly, the uniformity restriction
does not prevent arbitrarily precise approximations of general regular types. The types
denoted by αL2 and αL3 can be arbitrarily approximated by the following type terms over
the uniform declaration of integer lists:

I Example 12 (Uniform Approximations of Non-uniform Types).

τL2(1)
·= cons(Integer, cons(Integer, nil)).

τL3(1)
·= cons(Integer, cons(Integer, cons(Integer, nil))) . . .

τL2(i)
·= τL2(i−1) ∪ cons(Integer, cons(Integer, τL2(i−1))).

τL3(i)
·= τL3(i−1) ∪ cons(Integer, cons(Integer, cons(Integer, τL3(i−1)))) . . .

Observe, τL2(i) <: αL2 <: αlist, τL3(i) <: αL3 <: αlist, and τL2(i) ∩ τL3(i) 6≈ ⊥.
This example also illustrates that type terms can have arbitrary nesting of function

symbols; uniformity only constrains type declarations. Uniform declarations provide two key
results that aid in type canonization. First, type canonization is simpler because all variables
not of the form αf can be eliminated from type expressions over uniform declarations.
Second, type equations are easier to decide; they become coNP-complete as opposed to
EXPTIME-complete. We now elaborate on these results. Note that similar observations
have been made for restricted classes of XML schema [4].

4.1 Orientability and Complexity of Uniform Declarations
In this section we show that uniform declarations can be rewritten to eliminate dependencies
on type variables that are not of the form αf ≈ f(τ). As a result, we say a variable α
is an auxiliary variable if its declaration is α ≈ τ and τ is application-free. Orienting the
declarations allows many simplifying assumptions when canonizing type expressions. Two
lemmas are required to prove the orientability of uniform declarations.

I Lemma 13 (Substitution). If {α ≈ τ, α′ ≈ τ ′} ⊆ D, then any occurrence of α in τ ′ can be
replaced with τ . In symbols:

D ≈ D \ {α1 ≈ τ1} ∪ {α1 ≈ τ1[α2/τ2]}, (6)

where τ ′[α/τ] is the replacement of every occurrence of α with τ .

E. Jackson, N. Bjørner, and W. Schulte 7

I Lemma 14 (Eliminating Self-Dependencies). If α ≈ τ ∈ D, τ is application-free, and α
appears in τ , then α can be eliminated from τ .

I Theorem 15 (Uniform Declarations are Orientable). A set of uniform declarations D is
equivalent to a set of uniform declarations D̂ where:

∀α ≈ τ ∈ D̂, vars(τ) ⊆ {αf | f ∈ Σ∆}. (7)

The problem of deciding a type equation τ ′ ≈ τ is to decide if D |= τ ′ ≈ τ . For instance,
we earlier showed that subtype testing τ ′ <: τ is equivalent to deciding a type equation
τ ′ ∩ τ ≈ τ ′. Our solution is by canonization; a type canonizer converts two type terms to
syntactically identical terms if and only if the terms have the same denotation. First, we
prove coNP-completeness of deciding type equalities over uniform declarations. We show this
by establishing NP-completeness of the complement problem: checking type disequalities.

I Theorem 16. Deciding type disequalities over uniform declarations is NP-complete.

Proof. The sketch is as follows: Satisfiabiliy of a 3-CNF formula ϕ can be encoded as the
type disequality τ(ϕ) 6≈ ⊥. This establishes NP-hardness, but it remains to be shown that
if τ 6≈ τ ′ then there is a polynomial size witness. This witness is shown to exist due to the
structure of uniform declarations. J

5 Canonical Forms

In this section we develop a process for canonizing type expressions over uniform declarations.
The type canonizer reduces the problem of deciding type equations to checking syntactic
equality of canonical forms. To simplify theorems, we assume non-auxiliary variables never
denote the empty set: Jαf K 6= ∅. It should be possible to construct at least one well-typed
term for a given data constructor.

I Definition 17 (Type Canonizer). For uniform declarations D, a type canonizer can() is a
function from type expressions to type expressions satisfying:

can(⊥) = ⊥ ∧ τ ≈ can(τ) ∧ τ ≈ τ ′ ⇔ can(τ) = can(τ ′). (8)

5.1 Eliminating intersection and auxiliary variables
Our canonizer takes advantage of the fact that intersection and auxiliary variables can be
eliminated from type expressions. Given an input to the canonizer τ , then all auxilliary
variables can be eliminated from τ by Theorem 15 using the rewrites:

αaux → ⊥, if αaux ≈ τaux /∈ D.

αaux → τaux, if αaux ≈ τaux ∈ D̂.
(9)

Similarly, the equations from Lemma 9 eliminate intersections between non-variable atoms.
In the context of uniform type declarations, we can also eliminate intersections involving
non-auxiliary variables by using the equations:

(product-∩) αf ∩ f(τ ′1, τ ′2) ≈ f(τ1 ∩ τ ′1, τ2 ∩ τ ′2), αf ≈ f(τ1, τ2) ∈ D.
(disjoint-f, g) αf ∩ αg ≈ ⊥, when f and g are different.
(disjoint-f, g) αf ∩ g(τ1, τ2) ≈ ⊥, when f and g are different.
(disjoint-f, σ) αf ∩ σ ≈ ⊥
(disjoint-f, β) αf ∩ β ≈ ⊥

8 Canonical Regular Types

To completely eliminate intersections it remains to apply the set-theoretical properties
of union and intersection from Lemma 9: Distribute intersections over unions and apply
idempotency to eliminate redundant intersections. Let us call the procedure simplify(τ) that
applies the elimination steps for intersection. We now have:

I Lemma 18. For uniform D and any τ , then τ ≈ simplify(τ) and simplify(τ) contains
neither intersections nor auxiliary variables.

The remaining two subproblems are canonizing repeated unions and recognizing unfoldings
of recursive data types. For example,

τ = f(0, 1) ∪ f(1, 0) ∪ f(1, 1), τ ′ = f(1, 0 ∪ 1) ∪ f(0 ∪ 1, 1).

Casual inspection reveals that τ ≈ τ ′, even though the two terms have quite different forms.
One approach to canonization is to expand constructor applications, so τ ′ is rewritten τ .
However, this approach guarantees a combinatorial blow-up in the size of the canonical form;
it is also problematic when infinite base types appear as subterms. On the other hand, if τ ′
should be the canonical form, then the canonizer must compress τ into τ ′; it is less obvious
how this can be done. The approach we present uses τ ′ as the canonical form, and does not
eagerly expand unions into singleton constructor applications.

5.2 Base Case: Canonizing Depth-0 Terms
We build the canonizer inductively; the induction is over the depth of terms.

I Definition 19 (Depth). The depth of an term τ is the length of the longest sequence of
constructor applications.

depth(τ) ·=

1 +max(depth(τ1), depth(τ2)) if τ = f(τ1, τ2)
max(depth(τ1), depth(τ2)) if τ = τ1 ∪ τ2, or τ = τ1 ∩ τ2
0 otherwise.

(10)

A depth-0 term is another name for an application-free term.

I Lemma 20. For uniform D and any term τ , then depth(simplify(τ)) ≤ depth(τ).

I Definition 21 (Base Rewrite System). Let Rexpand be the term rewrite system given by
the rule: τ → β ∪ τ, if JβK ⊆ JτK. Let Rcontract be the term rewrite system: τ ∪ β →
β, if JτK ⊆ JβK. The term base(τ) is constructed by first applying Rexpand exhaustively
(modulo associativity and commutativity (AC) of ∪) until no new types can be added to τ .
Second, Rcontract is applied to eliminate subsumed types.

I Lemma 22. For uniform D and simplified, depth-0 terms τ and τ ′. If τ ≈ τ ′, then
base(τ) = base(τ ′) modulo AC of ∪.

Lemma 22 guarantees syntactic equivalence up to ordering of unions. However, we would
like to handle this order precisely. Fix an arbitrary ordering ≺ on type terms, then a type
term τ is sorted if τ is of the form τ1 ∪ (τ2 ∪ (τ3 ∪ (. . . ∪ τn))), and τ1 ≺ τ2 ≺ τ3 ≺ . . . ≺ τn,
and the type terms τ1, . . . , τn are not union expressions. Let sort be a function that takes
any type term τ and rewrites it into an equivalent but sorted expression sort(τ).

I Corollary 23 (Depth-0 Canonizer). Define can0 as a function from depth-0 terms to depth-0
terms such that: can0(τ) ·= sort(base(simplify(τ))). Then can0 is a type canonizer for
depth-0 expressions.

E. Jackson, N. Bjørner, and W. Schulte 9

5.3 Induction: Terms of Depth k > 0.
The induction step builds a canonizer cank+1 for terms with at most depth k + 1 from a
canonizer cank for terms with at most depth k. When canonizing union expressions, we
utilize the lattice-theoretic properties induced by a cank canonizer:

I Definition 24. Let S = {σ1, . . . , σn} be a finite set of constants and k ≥ 0 then Στ (S, k)
is the set of all terms τ such that depth(τ) ≤ k and cnsts(τ) ⊆ S. Note, cnsts(τ) is the set of
constants appearing as subterms of τ .

I Lemma 25 (S, k-Canonical Lattice). Let S be a finite set of constants, and cank be a
canonizer for expressions with depth at most k. Define

L(S, k) ·= 〈cank(Στ (S, k)),⊥,>,u,t〉, where

⊥ ·= ⊥Στ , > ·= cank((
⋃
α∈V

α) ∪ (
⋃
β∈B

β) ∪ (
⋃
σ∈S

σ)),

τ u τ ′ ·= cank(τ ∩ τ ′), τ t τ ′ ·= cank(τ ∪ τ ′).

Then, L(S, k) is a finite lattice such that τ u τ ′ ≈ τ ∩ τ ′ and τ t τ ′ ≈ τ ∪ τ ′.

The effect of constructor applications on canonized terms of depth k can be understood
as an f -labeled product lattice:

I Lemma 26 (f, S, k-Canonical Lattice). Let f be a binary constructor, S a finite set of
constants, and cank a canonizer, define

L(f, S, k) ·= 〈U,⊥,>,u,t〉, where

U
·= ⊥Στ ∪

{
f(τ, τ ′)

∣∣∣∣ τ ∈ L(S, k) \ {⊥Στ },
τ ′ ∈ L(S, k) \ {⊥Στ }

}
.

⊥ ·= ⊥Στ . >
·= f(>L(S,k),>L(S,k)).

f(τ1, τ2) u f(τ ′1, τ ′2) ·= f(τ1 uL(S,k) τ
′
1, τ2 uL(S,k) τ

′
2).

f(τ1, τ2) t f(τ ′1, τ ′2) ·= f(τ1 tL(S,k) τ
′
1, τ2 tL(S,k) τ

′
2).

Then, L(f, S, k) is a finite lattice where τ u τ ′ ≈ τ ∩ τ ′ and τ ∪ τ ′ <: τ t τ ′.

The elements of L(f, S, k) already denote unique type expressions (otherwise L(f, S, k) would
not be a lattice), and have maximum depth k + 1. However, the join operation may over-
approximate the union of two elements: f(0, 0) t f(1, 1) = f(0 ∪ 1, 0 ∪ 1). Thus, L(f, S, k)
cannot be immediately used to canonize unions of terms with depth k + 1. The following
lemmas overcome this limitation:

I Theorem 27 (Maximal Decomposition). Given τ = τ1 ∪ . . . ∪ τn such that τ1, . . . , τn ∈
L(f, S, k), then a maximal decomposition of τ is an element τ ′ ∈ L(f, S, k) such that:

Jτ ′K ⊆ JτK ∧ ∀τ ′′ ∈ L(f, S, k) τ ′ @ τ ′′ ⇒ Jτ ′′K * JτK. (11)

Let decs(τ) be a type term that is the union of all maximal decompositions. It is computed by
saturating τ w.r.t. the following implications and keeping the L(f, S, k)-maximal subterms:

f(τ1, τ2), f(τ ′1, τ ′2) ∈ τ ⇒ f(τ1 u τ ′1, τ2) ∈ τ. f(τ1, τ2), f(τ ′1, τ ′2) ∈ τ ⇒ f(τ1, τ2 u τ ′2) ∈ τ.
f(τ1, τ2), f(τ1, τ3) ∈ τ ⇒ f(τ1, τ2 t τ3) ∈ τ. f(τ2, τ1), f(τ3, τ1) ∈ τ ⇒ f(τ2 t τ3, τ1) ∈ τ.

10 Canonical Regular Types

I Lemma 28 (Correctness\Uniqueness of Decompositions). Modulo AC of ∪:

τ ≈ decs(τ) ∧ τ ≈ τ ′ ⇔ decs(τ) = decs(τ ′)

The union of all maximal decompositions has the same denotation as the original type
expression, but is unique for a lattice L(f, S, k). We now have almost all the ingredients to
define a complete canonizer. The final task is to ensure that recursive data types are folded
and unfolded consistently. Suppose τ is an expression of depth at most k + 1 and has the
form f(τ ′1, τ ′′1) ∪ . . . ∪ f(τ ′n, τ ′′n), where every τ ′i , τ ′′i is canonical with respect to cank. We
can use a maximal decomposition to canonize this union by creating the type expression
sort(fold(decs(τ))) where fold replaces constructor applications with non-auxiliary type
variables. The unfold() operation expands type variables with their declarations:

fold(f(τ1, τ2)) ·= αf , αf ≈ f(τf1 , τ
f
2) ∈ D̂, τi = cank(τfi), i = 1, 2.

fold(τ1 ∪ τ2) ·= fold(τ1) ∪ fold(τ2).
fold(τ) ·= τ, otherwise.
unfold(αf) ·= f(cank(τf1), cank(τf2)), αf ≈ f(τf1 , τ

f
2) ∈ D̂.

unfold(f(τ1, τ2)) ·= f(cank(τ1), cank(τ2)), cank(τ1) 6= ⊥ ∧ cank(τ2) 6= ⊥.
unfold(f(τ1, τ2)) ·= ⊥, cank(τ1) = ⊥ ∨ cank(τ2) = ⊥.
unfold(τ1 ∪ τ2) ·= unfold(τ1) ∪ unfold(τ2).

Then define the canonizer for such terms to be canf,k+1(τ) ·= sort(fold(decs(unfold(τ)))).

I Lemma 29 (Canonizer for Unions of f -terms). Let τ be a sequence of unions of either the
type variable αf or an f-term with depth ≤ k + 1. Also, suppose αf ≈ f(τf1 , τ

f
2) ∈ D̂ and

S = cnsts(τ)∪ cnsts(τf1)∪ cnsts(τf2). Then, canf,k+1 is a canonizer for terms in Στ (S, k+ 1).

The full canonizer is a obtained by canonizing base types together with constants, and
then canonizing for each constructor in the signature: If simplify(τ) has the form:

αf ∪ f(τ1, τ2)..︸ ︷︷ ︸
τf

∪ g(τ3, τ4) ∪ g(τ5, τ6)︸ ︷︷ ︸
τg

∪σ1 ∪ σ2 . . . ∪ β1 ∪ β2..︸ ︷︷ ︸
τc

I Theorem 30 (Canonizer cank+1). Assume cank is a canonizer for terms of depth at most
k, then cank+1 is a canonizer for terms with depth at most k + 1, where:

cank+1(τ) ·= sort(base(canf,k+1(τf) ∪ cang,k+1(τg) ∪ τc)) (12)

6 Conclusion

We developed a type canonizer for regular types expressed as type terms over uniform
declarations. The canonizer solves type checking problems and returns type judgments
as canonical type terms. We implemented a type system using this approach in the LP
language formula [11], and experimentally showed that canonization times behave linearly
while canonical forms are of high quality. Please see the full technical report at http://
research.microsoft.com/~ejackson for experimental data. Future work includes studying
the interaction of regular types and constraints: It is well-known that Presburger constraints
describe regular sets, so constraints, such as x = 2y, can be used to infer that x is even.

http://research.microsoft.com/~ejackson
http://research.microsoft.com/~ejackson

E. Jackson, N. Bjørner, and W. Schulte 11

References
1 Alexander Aiken and Brian R. Murphy. Implementing Regular Tree Expressions. In FPCA

1991, pages 427–447. Springer-Verlag, 1991.
2 Hassan Aït-Kaci and Andreas Podelski. Towards a Meaning of LIFE. J. Log. Program.,

16(3):195–234, 1993.
3 Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: an XML-centric

general-purpose language. In Colin Runciman and Olin Shivers, editors, ICFP 2003, pages
51–63. ACM, 2003.

4 Lei Chen and Haiming Chen. Subtyping Algorithm of Regular Tree Grammars with Disjoint
Production Rules. In ICTAC 2010, pages 45–59, 2010.

5 Philip W. Dart and Justin Zobel. A Regular Type Language for Logic Programs. In Types
in Logic Programming, pages 157–187. MIT Press, 1992.

6 Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping: Dealing
set-theoretically with function, union, intersection, and negation types. J. ACM, 55(4),
2008.

7 T. Fruhwirth, E. Shapiro, M.Y. Vardi, and E. Yardeni. Logic programs as types for logic
programs. In LICS 1991, pages 300 –309, July 1991.

8 John P. Gallagher and Germán Puebla. Abstract Interpretation over Non-deterministic
Finite Tree Automata for Set-Based Analysis of Logic Programs. In PADL 2002, pages
243–261, 2002.

9 Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro López-García. In-
tegrated program debugging, verification, and optimization using abstract interpretation
(and the Ciao system preprocessor). Sci. Comput. Program., 58(1-2):115–140, 2005.

10 Haruo Hosoya, Jerome Vouillon, and Benjamin C. Pierce. Regular expression types for
XML. ACM Trans. Program. Lang. Syst., 27(1):46–90, 2005.

11 Ethan K. Jackson, Eunsuk Kang, Markus Dahlweid, Dirk Seifert, and Thomas Santen.
Components, platforms and possibilities: towards generic automation for MDA. In EM-
SOFT 2010, pages 39–48, 2010.

12 David Jeffery, Fergus Henderson, and Zoltan Somogyi. Type Classes in Mercury. In ACSC
2000, pages 128–135, 2000.

13 Claudio Vaucheret and Francisco Bueno. More Precise Yet Efficient Type Inference for
Logic Programs. In SAS 2002, pages 102–116, 2002.

	Introduction
	Related Work
	Regular Types and their Semantics
	Type Signatures and Terms
	Type Environments and Denotations
	Type Variables and Declarations

	Uniform Declarations
	Orientability and Complexity of Uniform Declarations

	Canonical Forms
	Eliminating intersection and auxiliary variables
	Base Case: Canonizing Depth-0 Terms
	Induction: Terms of Depth k > 0.

	Conclusion

