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agf Abstract

w We propose a new method 10 quickly and accurately pre-
dict 3D positions of body joints from  single depth image,
using no temporal information. We take an object recog.
nition approach, designing an intermediate body parts rep
Layouts resentation that maps the difficult pose estimaion problem
into a simpler per-pixel classficaion problem. Our large
1="“‘ e and highly varied training dasaser allows the classifier 10
o CHA™ ‘estimate body parts invariant to pose, body shape, clothing,
etc. Finally we generate confidence-scored 3D proposals of
several body joints by reprojecting the classification result

and finding local modes.
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“GrabCut” — Interactive Foreground Extraction using lterated Graph Cuts

Carsten Rother* Vladimir Kolmo .gorov;r Andrew Blake?
Microsoft Research Cambridge. UK

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

Abstract free of colour blee
degrees of interacti]
The problem of efficient. interactive foreground/background seg- the labour-intensivg e
mentation in still images is of great practical importance in im- background in a fey SIGG R APH Z Ul )4
age editing. Classical image segmentation tools use either texture
(colour) information. e.g. Magic Wand. or edge (contrast) infor- 1.1 Previous §
mation. e.g. Intelligent Scissors. Recently. an approach based on
optimization by graph-cut has been developed which successfully In the following w

combines both types of information. In this paper we extend the the art interactive tools for seonlentatlon Ma01c Wand Intelhoent

1 bW ¢
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Ground truth Entangled Conventional

A. Montillo, J. Shotton, J. Winn, J. E. Iglesias, D. Metaxas, and A. Criminisi,
Entangled Decision Forests and their Application for Semantic Segmentation of CT Images,
in Information Processing in Medical Imaging (IPMI), July 2011
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Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio
Richard Moore Alex Kipman Andrew Blake
Microsoft Research Cambridge & Xbox Incubation

Abstract

We propose a new method to quickly and accurately pre-
dict 3D positions of body joints from a single depth image,
using no temporal information. We take an object recog-
nition approach, designing an intermediate body parts rep-
resentation that maps the difficult pose estimation problem
into a simpler per-pixel classification problem. Our large
— . dataset allows the classifier to
nt to pose, body shape, clothing,
1fidence-scored 3D proposals of

E v P R ] ] sjecting the classification result

frames per second on consumer

m COLO RADO m shows high accuracy on both Figure 1. Overview. From an single input depth image, a per-pixel
oyrincie unw e 1o ocso, dnd inve stigates the effect of sev- body part distribution is inferred. (Colors indicate the most likely

eral trainine narameters. We achieve state of the art accu- part labels at each pixel, and correspond in the joint proposals).
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From: Mark Finocchio

To: Jamie Shotton

Date: 11 Sept 2008

Subject: Your computer vision expertise

Hi Jamie,

I work on Xbox Incubation and I noticed some work you’ve done on visual
recognition using contours (http://jamie.shotton.org/work/research.html). I
was hoping to be able to discuss an important scenario we are trying to
solve with you. Would you be able to chat?

Thanks,

- Mark
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Okada & Stenger 2008 Navaratnam et al. 2007
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3500 mm
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1500 mm




XBox prototype, Sept 2008
= Real time

= Accurate

= General poses

But...

= Needs initialization
= Limited body types
= Limited agility

STATE OF THE ART Microsoft




Generative/

Model-based Discriminative/
Regression

new

[Agarwal & Triggs 2004]
[Navaratnam & al 2007]

Detection

[Gavrila 2000]
[Fischler & Elschlager 1973]

STATEOFTHE ART Microsoft



1965. L. G. Roberts, Machine Perception of Three
Dimensional Solids, in Optical and electro-optical information

processing, J. T. Tippett (ed.), MIT Press.

MODEL-BASED VISION
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1980. J. O'Rourke and N. Badler. Model-based image analysis of human

motion using constraint propagation. IEEE Trans. on Pattern Analysis and
Machine Intelligence.
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Model-based vision:
a program to see
a walking person

David Hogg

For a machine to be able to ‘see', it must kot something
about the object it is ‘looking” ar. A common method in
machine vision is to provide the machine with general rather
than specific knowledge about the object. An alternative
technigue, and the one used in this paper, is a@ model-based
approach in which particulars about the object are given
and this drives the analysis. The computer program
described here, the WALKER model, maps images into a
description in which a person is represented by the series of
hierarchical levels, ie. a person has an arm which has a
lower-arm which has a hand. The performance of the
program is illustrated by superimposing the machine-
igenerated picture over the original photographic images.

Keywords: vision, machine perception, WALKER model

INTRODUCTION

Vision systems, both natural and artificial, require
knowledge about the pereeived objects, although the role
played by this knowledge in the analytical process is
unclear. Many techniques of machine vision seck to
generate 3D structural descriptions without invoking
nbloct specific knowledge. An allemm e is 1o adopt the
cular knowledge
about the objects being sought drives the analysis.

This paper is concerned with a computer program that
understands TV image sequences depicting a person
wilking through an arbitrary environment (Figure 1). The
program maps given image sequences into a description i
which the human body is represented by a collection of
connected cylinders corresponding to its parts. It is
supposed that such a 3D structural description would be
both necessary and sufficient for many everyday tasks to
be performed ecffectively. For ecxample, touching
someone’s arm or deciding whether several people are
marching in step all appear to require a grasp of 3D
Wmm

this paper was carricd out while the author was

an SERC funded research student in the Cognitive Studies Programme
at the University of Sussex

structure whether perceived visually or otherwise. Each
output description is an instance of an abstract 3D model
for a class of human walkers, henceforth called the
'WALKER model, itselfan input to the program (Figure 2).

Descriptions g:neulnd by the program are sufficiently
detailed 10 determine a pictorial reconstruction of the
pemnfmm lhepe:spcc‘uve of the original imaging device.
By superimposing these reconstructions over the original
images a clear indication of the program's performance is
visible to the human observer. When presented with the
sequence depicted in Figure 1, the program generates as
part of its output the sequence shown in Figure 3. The
program copes ith the enormous local mblguny inan
image by weagilmg evidence from across the image in
support of a large number of possible interpretations. Asa
consequence, the program’s performance should degrade
gracefully for increasingly difficult image sequences in
which the walker may be obscured or occuluded to the
camera.

Visual problem

‘The visual problem can be divided broadly into two parts;
namely, what should be described and how can such
descriptions be derived from a time-varying 2D image. Itis
impossible to divorce these two issues from one another
since the difficulty of deriving a description from an image
is bound to depend on the things being described.
Moreover, certain representations may be required solely
as intermediate descriptions for the interpretative process
itself.

The question of what should be represented must
depend on the visual system’s function within a cognitive
machine whose ultimate goal may be far removed from the
visual world'. This paper takes a noncontroversial stand in
accpeting the usefulness of 3D structural descriptions as
an interface 1o a larger system and instead concentrates on
the second issue of how to generate such a description from
an image.

General-knowledge inference

Much of the current work in computer vision is concerned
with the generation of 3D descriptions using only gencral-

wol 1 no 1 february 1983 0262-8856/83/010005-20803.00 @ 1983 Butterworth & Co (Publishers) Lid.

—-

D Hogg, Image and Vision
Computing, Vol 1 (1983)
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INTRODUCTION

Vision systems, both natural and artificial, require
knowledge about the pereeived objects, although the role
played by this knowledge in the analytical process is
unclear. Many techniques of machine vision seck to
generate 3D structural descriptions without invoking
object specific knowledge. An alternative is to adopt the
‘model-based’ approach wherein particular knowledge
about the objects being sought drives the analysis.
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wilking through an arbitrary environment (Figure 1). The
program maps given image sequences into a description in
which the human body is represented by a collection of
connected cylinders corresponding to its parts. It is
supposed that such a 3D structural description would be
both necessary and sufficient for many everyday tasks to
be performed ecffectively. For ecxample, touching
someone’s arm or deciding whether several people are
marching in step all appear to require a grasp of 3D

School of Engineering and Applicd Sciences, Univerity of Susser,
Brighton, Su.url.
while the suthor was

an SERC funded rescarch siudent i the Cogaitive Siudies Programme
at the University of Sussex

structure whether perceived visually or otherwise. Each
output description is an instance of an abstract 3D model
for a class of human walkers, henceforth called the
'WALKER model, itselfan input to the program (Figure 2).
Descriptions generated by the program are sufficiently
detailed 10 determine a pictorial reconstruction of the
pemnfrom lheperspecuwofr.hc original imaging device.
By these ions over the ongu'wl
images a clear indication of the program's performance is
visible to the human observer. When presented with the
sequence depicted in Figure 1, the Pprogram gencrates as
part of its output the sequence shown in Figure 3. The
program copes with the enormous local ambiguity in an
image by weighing evidence from across the image in
support ofnlurge number of possible mlcrpretamns. As a
the program’s degrade
ly difficult umg:
which th: wllk:r may be obscured or occuluded 1o [hz
camera.

Visual problem

‘The visual problem can be divided broadly into two parts;
namely, what should be described and how can such
descriptions be derived from a time-varying 2D image. Itis
impossible to divorce these two issues from one another
since the difficulty of deriving a description from an image
is bound to depend on the things being described.
Mn:rmv:r. cmnm r:pmm(almnx may be rtquned solely

for the interp process

itself.

The question of what should be represented must
depend on the visual system’s function within a cognitive
machine whose ultimate goal may be far removed from the
visual world'. This paper takesa mn:ontmvemnl nam'l in
accpeting the of 3D as
an interface 1o a larger system and instead concentrates on
the second issue of how to generate such a description from
an image.

General-knowledge inference

Much of the current work in computer vision is concerned
with the generation of 3D descriptions using only gencral-

wol 1 no 1 february 1983 0262-8856/83/010005-20$03.00 @ 1983 Butterworth & Co (Publishers) Lid. s

D Hogg, Image and Vision
Computing, Vol 1 (1983)




in Proc. IEEE Computer Vision and Pattern Recognition, San Francisco, 1996

3-D model-based tracking of humans in action:
a multi-view approach

.M. Gavrila and L.S. Davis
Clomputer Vision Laboratory. CfAR.
University of Maryland
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* The “model” is Forward/Generative/Graphical

= Requiring search in many dimensions
say 1013 for the body

Resolved using
= (a) clever search: gradient descent and better

= (b) temporal coherence
Assume we were right in the previous frame
And search only “"nearby” configurations in this

THE PROBLEM WITH MODEL-BASED VISION Microsoft



Exponential likelihood of failure

Assume 0.1% failure rate per frame
« After n frames, chance of success = 0.999"

At 30 frames per second, that's:
3.0%  chance of failure after 1 second
83.5%  chance of failure after 1 minute
99.99% chance of failure after 5 minutes

THE PROBLEM WITH TEMPORAL COHERENCE Microsoft



Exponential likelihood of failure

Assume 0.01% failure rate per frame
« After n frames, chance of success = 0.9999"
At 30 frames per second, that's:

0.3% chance of failure after 1 second
16.5% chance of failure after 1 minute
59.3% chance of failure after 5 minutes

THE PROBLEM WITH TEMPORAL COHERENCE Microsoft



= Need a method which works on a single frame

Single-frame methods all based on machine learning
So we'll need training data
Lots of training data

And will need to represent multiple hypotheses

SO WE CAN'T USE TEMPORAL COHERENCE. Microsoft



Paul A. Viola, Michael J. Jones
Robust Real-Time Face Detection
IEEE International Conference on Computer Vision, 2001

LEARNING A FACE DETECTOR Microsoft



Step Zero: Training data

/

TR

Yt o

(Zl, 91) (ZN, HN)

LEARNING A POSE ESTIMATOR Microsoft



= Real home visits

= Pose: Motion capture
Standard “"CMU” database
Custom database

= Body size & shape: Retargeting

= Effects/Games industry tool: MotionBuilder

SOURCES OF VARIED DATA Microsoft
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Actor wearing spherical

3D joint positions Synthetic
markers
Depth Image
Observed by multiple
cameras

MOTION CAPTURE Microsoft 3



= Standard motion capture datasets on the web

= Feed to MotionBuilder to generate 3D images

= Limited range of body types

INITIAL EXPERIMENTS



Synthetic data: Artificially corrupted data

realistic, but too clean SRS
rough edges
missing pixels: hair/beards

cropping & occlusions

SIMULATING CAMERA ARTEFACTS Micresoft



Image

Features

I

Joint angles

e

TRACKING BY REGRESSION
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Andrew Blake, Kentaro Toyama,
Probablistic tracking in a metric space
IEEE International Conference on Computer Vision, 2001

DETECTION VS. TRACKING
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“LEARN"” FUNCTION FROM DATA



function

NEAREST NEIGHBOUR



function

NEAREST NEIGHBOUR



function
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ALWAYS TRY NEAREST NEIGHBOUR FIRST Micresoft
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= Whole body 1012 poses (say)

= Fourparts 4 X 103 €poses i
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= But ambiguity increases
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EXPANDING THE REPERTOIRE Micresoft



Random Camera Other Random
300 000 Body Poses 15 Models Orientations Parameters

~\ /.

Syntheticimage Camera noise
generation simulation

1 Million
Image Pairs

Micresoft






synthetic (held-out mocap poses) real (from home visits)
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TEST DATA




EXAMPLE INPUTS & OUTPUTS
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Input Output
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SLIDING WINDOW CLASSIFIER

Microsoft



Input Output

SLIDING WINDOW CLASSIFIER



probability

head

| hand

r hand

| shoulder
r shoulder
chest

| elbow

r elbow

* Learn Prob(body part|window) from training data

FOCUS ON A SINGLE PIXEL: WHAT PART AM |? Microsoft



probability

o D,>60mm

EXAMPLE PIXEL 1: WHAT PART AM |7 Micresoft
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probability

o D,>60mm

EXAMPLE PIXEL 2: WHAT PART AM |? Micresoft



D,>25mm
Microsoft

Moq|3 4
moq|a |
3s9Yd
Japnoys J
Japnoys |
puey J
puey |
peay

Avjiqeqoud

P
=
<
_I
oY
A
<
=
~N
]
L]
<
o
L
_
o
S
LL]




oqa 4

Moq|9 |

5 3
N 1S9Yd
N\
. Jap|noys J
O J3p|noys |
n

puey J
puey |
peay

Aigeqoud

Avjiqeqoud

P
=
<
_I
oY
A
<
=
~N
]
L]
<
o
L
_
o
S
LL]




probability

probability
ll

ea
ches
| elbo
r elbo

h
I ha
r han
| shoulde
r shoulde

EXAMPLE PIXEL 2: WHAT PART AM |? Micresoft



* Same tree applied at every pixel 4
 Different pixels take different paths

* In practice, trees are much deeper D >60mm
1
no

yes
D,>20mm
yes no yes
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= A forestis an ensemble of trees:

tree 1
[

= Helps avoid over-fift}ng during training [Amit & Geman 97]

= Testing takes average of leaf nodes distributions [Breiman o]
[Geurts et al. 06]

DECISION FORESTS Microsoft
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NUMBER OF TREES Microsoft



depth 18
i‘-\ ﬁql

DEPTH OF TREES Microsoft
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u? N/
= Given v
depth image 3 Q -
inferred body part probabilities 0w \
= Cluster high probability parts in 3D "
hypothesized
body joints

BODY PARTS TO JOINT POSITIONS Micresoft
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1

input depth

frpnt view sidefg?iew top view

inferred joint positions: no tracking or smoothing



i

* front view side'view top view

inferred joint positions: no tracking or smoothing



| ™ Whole pose matching Time taken:

0.7 . OUr new body /rﬁ,‘\ e :

6 - 5 milliseconds

0. parts approach = ber frame

> 0.5
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g 0.4 / Time taken:
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MATCHING BODY PARTS IS BETTER Microsoft




Microsoft

Research

Joint position hypotheses are not the whole story
Follow up with skeleton fitting incorporating
« Kinematic constraints (limb lengths etc)

« Temporal coherence (it's back!)

And of course the incredible imagination of games designers...

WRAPPING UP

Microsoft




Microsoft

Research

Joint position hypotheses are not the whole story
Follow up with skeleton fitting incorporating
« Kinematic constraints (limb lengths etc)

« Temporal coherence (it's back!)

And of course the incredible imagination of games designers... and

YOU!

WRAPPING UP

Microsoft
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MULTIPLE HYPOTHESES -
AND REWRITING HISTORY
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R Navaratnam, A Fitzgibbon, R Cipolla '(
The Joint Manifold Model for Semi-supervised Multi-valued Regression kL <
IEEE International Conference on Computer Vision, 2007



