
1

Proving that programs eventually do
something good

Byron Cook

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.: A

2

Collaborators

 Domagoj Babic,

 Josh Berdine,

 Aziem Chawdhary,

 Dino Distefano,

 Alexey Gotsman,

 Sumit Gulwani,

 Alan Hu,

 Samin Ishtiaq,

 Eric Koskinen,

 Tal Lev-Ami,

 Peter O’Hearn,

 Matthew Parkinson,

 Andreas Podelski,

 Zvonimir Rakameric,

 Andrey Rybalchenko,

 Mooly Sagiv,

 Moshe Vardi,

 Viktor Vafeiadis,

 Hongseok Yang,

 & the East London Massive.

3

Collaborators

 Domagoj Babic,

 Josh Berdine,

 Aziem Chawdhary,

 Dino Distefano,

 Alexey Gotsman,

 Sumit Gulwani,

 Alan Hu,

 Samin Ishtiaq,

 Eric Koskinen,

 Tal Lev-Ami,

 Peter O’Hearn,

 Matthew Parkinson,

 Andreas Podelski,

 Zvonimir Rakameric,

 Andrey Rybalchenko,

 Mooly Sagiv,

 Moshe Vardi,

 Viktor Vafeiadis,

 Hongseok Yang,

 & the East London Massive.

4

Formal verification

5

Formal verification

6

Automatic formal verification

 View artifact of interest as a mathematical system:
 Software

 Hardware

 Biological system

 etc ……

 Build tools that find proofs of correctness using
mathematics and logic

 100% testing coverage
 Faster and more scalable than brute force

 Allows for 100% coverage even for infinite-state systems

7

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

8

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

9

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

10

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

11

Example property

 “The mouse device driver’s event-handling routine
always eventually terminates”

12

Example property

 “The mouse device driver’s event-handling routine
always eventually terminates”

13

Example property

 “The mouse device driver’s event-handling routine
always eventually terminates”

14

Example property

 “The mouse device driver’s event-handling routine
always eventually terminates”

15

Example property

 “The mouse device driver’s event-handling routine
always eventually terminates”

16

Formal verification

17

Formal verification

18

Formal verification

19

Outline

 Introduction

 Termination basics

 New advances for program termination proving

 Proving termination argument validity

 Finding termination arguments

 Conclusion

20

Outline

 Introduction

 Termination basics

 New advances for program termination proving

 Proving termination argument validity

 Finding termination arguments

 Conclusion

21

Proving termination

 Traditional termination proving method originally
proposed by the forefathers of computing

 E.g. Turing, “Checking a large routine”, 1949

22

Proving termination

 Traditional termination proving method originally
proposed by the forefathers of computing

 E.g. Turing, “Checking a large routine”, 1949

23

Proving termination

R

24

Proving termination

R

25

Proving termination

26

Proving termination

27

Proving termination

28

Proving termination

29

Proving termination

f

30

Proving termination

f

f
f

f
f

f

31

Proving termination

32

Proving termination

33

Proving termination

>
f

f R

34

Proving termination

>
f

f R

35

Proving termination

36

Proving termination

>
f

f R

37

Proving termination

38

Outline

 Introduction

 Termination basics

 New advances for program termination proving

 Proving termination argument validity

 Finding termination arguments

 Conclusion

39

Outline

 Introduction

 Termination basics & history

 New advances for program termination proving

 Proving termination argument validity

 Finding termination arguments

 Conclusion

40

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is even harder in practice (and
undecidable in theory)

41

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is even harder in practice (and
undecidable in theory)

42

Automating the search for proofs

 Transition relations must be computed

 Technically, computing is undeciable, so we must
find a sound over-approximation using available
techniques:

 represents an infinite set of states, but has a
compact expression

43

Automating the search for proofs

 Transition relations must be computed

 Technically, computing is undeciable, so we must
find a sound over-approximation using available
techniques:

 represents an infinite set of states, but has a
compact expression

44

Automating the search for proofs

 Transition relations must be computed

 Technically, computing is undeciable, so we must
find a sound over-approximation using available
techniques:

 represents an infinite set of states, but has a
compact expression

45

Automating the search for proofs

 Transition relations must be computed

 Technically, computing is undeciable, so we must
find a sound over-approximation using available
techniques:

 represents an infinite set of states, but has a
compact expression

46

Automating the search for proofs

 We use an over-approximation of the transition relation

 Since , we can prove termination by showing

 Meaning: there might be unrealistic transitions that we
have to worry about

 R’

47

Automating the search for proofs

 In practice, its extremely hard to find the right
overapproximation

 Luckily: recent breakthroughs in safety proving now
make this possible.

 In fact: the checking the validity of a termination
argument can be directly encoded as a safety property

 Tools like SLAM can be used to prove validity

48

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is even harder in practice (and
undecidable in theory)

49

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is even harder in practice (and
undecidable in theory)

50

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is even harder in practice (and
undecidable in theory)

51

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is even harder in practice (and
undecidable in theory)

52

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is even harder in practice (and
undecidable in theory)

53

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is even harder in practice (and
undecidable in theory)

54

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is even harder in practice (and
undecidable in theory)

55

Modular termination arguments

56

Modular termination arguments

57

Modular termination arguments

58

Modular termination arguments

59

Modular termination arguments

f

f

60

Modular termination arguments

h

h g

g

f

f

or

or

61

Modular termination arguments

h

h g

g

f

f

or

or

62

Modular termination arguments

 Modularity gives us freedom when looking for valid
arguments

 Strategy: refinement based on failed attempts

 Start with empty termination argument

 Check inclusion

 If inclusion check succeeds, termination has been proved

 If it fails, synthesize a new ranking function from a
counterexample and add it in

 Go to start

63

Modular termination arguments

64

Modular termination arguments

X

65

Modular termination arguments

X

66

Modular termination arguments

f

f
X

67

Modular termination arguments

f

f
X

68

Modular termination arguments

f

f
X

69

Modular termination arguments

X
f

f

70

Modular termination arguments

X

71

Modular termination arguments

X

X

72

Modular termination arguments

X

X

73

Modular termination arguments

X
g

g

74

Modular termination arguments

X
g

g

X

75

Modular termination arguments

X
g

g

76

Modular termination arguments

X

77

Modular termination arguments

X

78

Modular termination arguments

X

h

h

79

Modular termination arguments

X

h

h

80

Modular termination arguments

81

Modular termination arguments



82

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is even harder in practice (and
undecidable in theory)

83

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is even harder in practice (and
undecidable in theory)

84

copied = 0;

 .

 .

 .

 if (!copied) {

 if (*) {

 H[x] = x;

 H[y] = y;

 copied = 1;

 }

 } else {

 assert(T1 || T2 || T3);

 }

 x = f(x,y);

 g(&y,x);

}

while(x<y) {

Terminator

copied = 0;

85

86

87

88

89

90

Examples

91

Examples

92

Examples

93

Examples

94

Examples

95

Examples

96

Examples

97

Examples

98

Examples

99

Misunderstanding the halting problem

100

Misunderstanding the halting problem
Terminator

 2006

101

Misunderstanding the halting problem
Terminator

 2006

102

Misunderstanding the halting problem
Terminator

 2006

X

X

X
X

X

X

X

103

Misunderstanding the halting problem
Terminator

 2006

X

X

X
X

X

X

X

104

Misunderstanding the halting problem
Terminator

 2006







X

X

X
X

X

X

X







105

Misunderstanding the halting problem
Terminator

 2006







X

X

X
X

X

X

X







106

Misunderstanding the halting problem
Terminator

 2006







X

X

X
X

X

X

X







107

Misunderstanding the halting problem

108

Misunderstanding the halting problem

109

Misunderstanding the halting problem

110

Misunderstanding the halting problem

111

Misunderstanding the halting problem

112

Misunderstanding the halting problem

113

Misunderstanding the halting problem

114

Misunderstanding the halting problem

115

Misunderstanding the halting problem

116

Misunderstanding the halting problem

117

Misunderstanding the halting problem

118

Misunderstanding the halting problem

?

119

Misunderstanding the halting problem

?

120

Misunderstanding the halting problem

 Automatic searches for proofs of program termination
don’t make for exciting demos

 Termination bugs found from failed proof attempts are
usually more entertaining

121

Misunderstanding the halting problem

122

Misunderstanding the halting problem

123

Misunderstanding the halting problem

124

Misunderstanding the halting problem

125

Misunderstanding the halting problem

126

Misunderstanding the halting problem

127

Misunderstanding the halting problem

128

Misunderstanding the halting problem

129

Misunderstanding the halting problem

130

Misunderstanding the halting problem

131

Misunderstanding the halting problem

132

Misunderstanding the halting problem

133

Misunderstanding the halting problem

134

Misunderstanding the halting problem

135

Misunderstanding the halting problem

136

Misunderstanding the halting problem

137

Outline

 Introduction

 Termination basics & history

 New advances for program termination proving

 Proving termination argument validity

 Finding termination arguments

 Conclusion

138

Outline

 Introduction

 Termination basics & history

 New advances for program termination proving

 Proving termination argument validity

 Finding termination arguments

 Conclusion

139

Future work

 Previous wisdom: proving termination for industrial systems
code is impossible

 Now people are beginning to think that it’s effectively “solved”.

Much left to do, including
 Complex data structures (safety)

 Infinite-state systems w/ bit vectors (safety)

 Binaries (safety)

 Non-linear systems (liveness and safety)

 Better support for concurrent programs

 Modern programming features (e.g. closures)

 Finding preconditions to termination

 Scalability, performance, precision

140

Future work

Termination proving is at the heart of many undecidable
problems (e.g. Wang’s tiling problem)

 Modern termination proving techniques could
potentially be used to building working tools

 Challenge: “black-box” solutions to undecidable
problems die in the most unpredictable ways

141

Conclusion

 Conventional wisdom about termination overturned
 Undecidable does not mean we cannot soundly approximate a solution

Terminator shows that automatic termination proving is not
hopeless for industrial systems code

 Current state-of-the-art solutions based on
 Abstraction search for safety property verification (e.g. SLAM)

 Farkas-based linear rank function synthesis

 Ramsey-based modular termination arguments

 Separation Logic based data structure analysis

142

For more information

 http://research.microsoft.com/Terminator

 Research papers

 Recorded technical lectures

 Contact details

 CACM review article

