Proving that programs eventually do
something good

Byron Cook

Collaborators

= Domagoj Babic,

= Josh Berdine,

= Aziem Chawdhary,
= Dino Distefano,

= Alexey Gotsman,
= Sumit Gulwani,

= Alan Hu,

= Samin Ishtiaq,

= Eric Koskinen,

= Tal Lev-Ami,

Peter O’Hearn,

Matthew Parkinson,
Andreas Podelski,

Zvonimir Rakameric,
Andrey Rybalchenko,
Mooly Sagiy,

Moshe Vardi,

Viktor Vafeiadis,

Hongseok Yang,

& the East London Massive.

Collaborators

= Domagoj Babic,

= Josh Berdine,

= Aziem Chawdhary,
= Dino Distefano,

= Alexey Gotsman,
= Sumit Gulwani,

= Alan Hu,

= Samin Ishtiaq,

= Eric Koskinen,

= Tal Lev-Ami,

Peter O’Hearn,

Matthew Parkinson,
Andreas Podelski,

Zvonimir Rakameric,
Andrey Rybalchenko,
Mooly Sagiy,

Moshe Vardi,

Viktor Vafeiadis,

Hongseok Yang,

& the East London Massive.

Formal verification

review articles

DOI:10.1145/1841487.1041508

In contrast to popular belief, proving
termination is not always impossible.

‘ BY BYRON COOK, ANDREAS PODELSKI,
AND ANDREY RYBALCHENKO

roving
rogram
ermination

THE PROGRAM TERMINATION problem, also known
as the uniform halting problem, can be defined as
follow
Using only a finite amount of time, determine
whether a given program will always finish running
or could execute forever.

This problem rose to prominence before the
invention of the modern computer, in the era of
Hilbert's Entscheidungsproblem:* the challenge to
formalize all of mathematics and use algorithmie
means to determine the validity of all statements.

In hopes of either solving Hilbert's challenge, or
showing it impossible, logicians began to search
for possible instances of undecidable problems.
Turing’s proof** of termination’s undecidability is
the most famous of those findings."

The termination problem is structured as an infinite

set of queries: to solve the problem
we would need to invent a method ca
pable of accurately answering either
“terminates” or “doesn’t terminate”
when given any program drawn from
this set. Turing's result tells us that
any tool that attempts to solve this
problem will fail to return a correct
answer on at least one of the inputs.
No number of extra processors nor
terabytes of storege nor new sophisti-
cated algorithms will lead to the devel
opment of a true oracle for program
termination.

Unfortunately, many have drawn
too strong of a conclusion about the
prospects of automatic program ter
mination proving and falsely believe
we are always unable to prove termi
nation, rather than more benign con
sequence that we are unable to always
prove termination. Phrases like “but
that's like the termination problem”
are often used to end discussions that
mightotherwise have led to viable par
tial solutions for real but undecidable
problems. While we cannot ignore
termination’s undecidability, if we
develop a slightly modified problem
statement we can build useful tools.
In our new problem statement we will
still require that a termination prow
ing tool always return answers that
are correct, but we will not necessarily
require an answer. If the termination
prover cannot prowe ordisprove termi
nation, it should return "unknown.”

Using only a finite smount of time,
determine whether a given program
will always finish running or could
execute forever, of return the answer
“unknown.”

key insights

m For decades, the same method was used
for proving termination. It has never been
applied successfully to large programs.

W A deep theorem in mathematical logic,
based on Ramsey’s theorem. holds the
key to a new method.

W The new method can scale to large
because it allows for the

o
is proved. &

i
nsequence of fhe resul th

simple pmof can befound in Strachey

B8 COMMUNICATIONS OF THEACM | Ma¥ 2011

modular construction of termination
arguments.

Formal verification

review articles

DOI:10.1145/1841487.1041508

In contrast to popular belief, proving
termination is not always impossible.

‘ BY BYRON COOK, ANDREAS PODELSKI,
AND ANDREY RYBALCHENKO

Proving
Program
Termination

THE PROGRAM TERMINATION problem, also known
as the uniform halting problem, can be defined as
follow:
Using only a finite amount of time, determine
whether a given program will always finish running
or could execute forever.

This problem rose to prominence before the
invention of the modern computer, in the era of
Hilbert's Entscheidungsproblem:* the challenge to
formalize all of mathematics and use algorithmic
means to determine the validity of all statements.

In hopes of either solving Hilbert's challenge, or
showing it impossible, logicians began to search
for possible instances of undecidable problems.
Turing’s proof** of termination’s undecidability is
the most famous of those findings."

The termination problem is structured as an infinite

set of queries: to solve the problem
we would need to invent a method ca-
pable of accurately answering cither
“terminates” or “doesn’t terminate”
when given any program drawn from
this set. Turing's result tells us that
any tool that attempts to solve this
problem will fail to return a correct
answer on at least one of the inputs.
No number of extra processors nor
terabytes of storege nor new sophisti-
cated algorithms will lead to the devel-
opment of a true oracle for program
termination.

Unfortunately, many have drawn
too strong of a conclusion about the

prospects of automatic program ter
mination proving and falsely believe
we are always unable to prove termi-
nation, rather than more benign con
sequence that we are unable to always
prove termination. Phrases like “but
that's like the termination problem”
are often used to end discussions that
mightotherwise have led to viable par-
tial solutions for real but undecidable
problems. While we cannot ignore
termination’s undecidability, if we
develop a slightly modified problem
statement we can build useful tools.
In our new problem statement we will
still require that a termination prow
ing tool always return answers that
are correct, but we will not necessarily
require an answer. If the termination
prower cannot prove or disprove termi-
nation, it should return "unknown.”

Using only a finite smount of time,
determine whether a given program
will always finish running or could
execute forever, or return the answer
“unknown.”

key insights

m For decades, the same method was used
for proving termination. It has never been
applied successfully to large programs.

W A deep theorem in mathematical logic,
based on Ramsey’s theorem. holds the
key to a new method.

W The new method can scale to large
because it allows for the

simple pmof can befound in Strachey ™

MAY 2011

BB COMMUKICATIONS OF THE ACM

modular construction of termination
arguments.

Automatic formal verification

- View artifact of interest as a mathematical system:
= Software

= Hardware
= Biological system

= Build tools that find proofs of correctness using
mathematics and logic

- 100% testing coverage

= Faster and more scalable than brute force
= Allows for 100% coverage even for infinite-state systems

Example property

“The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

Example property

“The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

“The parallel port devic. oriver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

“The parallel port g
routine only cg

IRQL=PAS E”e

10

Example property

“The mouse device driver’s event-handling routine
always eventually terminates”

11

Example property

“The mouse device driver’s event-handling routine
always eventually terminates”

12

Example property

“The mouse device driver’s event-handling routine
always eventually terminates”

13

W
- p

e
“The mouse device driver’s event-handling routine
always eventually terminates”

14

/

r

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c q X
for (entry = DeviceExtension->Read(ueue.Flink; N
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRFP, Tail.Owverlay.ListEntry):
stack = IoGetCurrentlIrpStackLocation (irp):

= if (=stack-»FileCbject == File0Object) {

RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;

= £

S/ IoCancellrp() could have just been called on this IRF.

S/ What we're interested in is2 not whether IoCancellrp() was called

S/ (ie, nextIrp->Cancel iz set), but whether IoCancellrp() called (or

S/ i= about to call) our cancel routine. To check that, check the result
J/ of the test-and-set macro IoSetCancelBoutine.

- £

= if (oldCancelRoutine) {

E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.

- £
return irp:

o }

-] else {

E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.

- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):

o }

o H

} -

| v
I ln2292 col41 Ch 41 | |ms| .

r

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c q X
for (entry = DeviceExtension->Read(ueue.Flink; N
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRFP, Tail.Owverlay.ListEntry):
stack = IoGetCurrentlIrpStackLocation (irp):

= if (=stack-»FileCbject == File0Object) {

RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;

= £

S/ IoCancellrp() could have just been called on this IRF.

S/ What we're interested in is2 not whether IoCancellrp() was called

S/ (ie, nextIrp->Cancel iz set), but whether IoCancellrp() called (or

S/ i= about to call) our cancel routine. To check that, check the result
J/ of the test-and-set macro IoSetCancelBoutine.

- £

= if (oldCancelRoutine) {

E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.

- £
return irp:

o }

-] else {

E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.

- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):

o }

o H

} -

| v
I ln2292 col41 Ch 41 | |ms| .

r

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c q X
for (entry = DeviceExtension->Read(ueue.Flink; N
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRFP, Tail.Owverlay.ListEntry):
stack = IoGetCurrentlIrpStackLocation (irp):

= if (=stack-»FileCbject == File0Object) {

RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;

= £

S/ IoCancellrp() could have just been called on this IRF.

S/ What we're interested in is2 not whether IoCancellrp() was called

S/ (ie, nextIrp->Cancel iz set), but whether IoCancellrp() called (or

S/ i= about to call) our cancel routine. To check that, check the result
J/ of the test-and-set macro IoSetCancelBoutine.

- £

= if (oldCancelRoutine) {

E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.

- £
return irp:

o }

-] else {

E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.

- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):

o }

o H

} -

| v
I ln2292 col41 Ch 41 | |ms| .

-» Introduction

- Termination basics

> New advances for program termination proving
= Proving termination argument validity
" Finding termination arguments

-» Conclusion

19

-» Introduction

- Termination basics

> New advances for program termination proving
= Proving termination argument validity
" Finding termination arguments

-» Conclusion

20

Proving termination

= Traditional termination proving method originally
proposed by the forefathers of computing

= E.g. Turing, “Checking a large routine”, 1949

Finally the checker has to verify that the process comes
to an end. Here again he should be assisted by the program-
mer giving a further definite assertion to be verified. This
may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops. To the pure
mathematician it is natural to_give an ordinal number. In

\ 2.5 == -\ 1 L

21

Proving termination

JTOCESS COmes
~0y the program-
mer giving a fulve.. € 2 be verified. This
may take the form of a quantity whic rted to decrease
continually and vanish when the machine-«ys. To the pure
mathematician it is natural to_give an ordinal number. In

\ A S 26 -\ 1 L

22

Proving termination

23

Proving termination

24

Provina termination

-) |

Zeau

Provina termination

—— —— ———

/,0’ Finally the checker has to verify that the process comes
to an end. Here again he should be assisted by the program-
mer giving a further definite assertion to be verified. This
may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops. To the pure
mathematician it is natural to_give an ordinal number. In

A A S 26 =\ 1 L
J %

t)
S
Siysseeie
.\)9

Y

X

e

5

D X

.\' .‘
>

O
o e loa 008

Provina termination

Provina termination

ATXTIse
) KB 0
LA ORYD
DS s e
TS0
OSSO0
e 0 e

Provina termination

Provina termination

’\— = W ——
A‘_’ Ot S dmee O
' - — “vm.;’/.“_
- — a— a—— —
e ' <-\v/-‘:‘:—-.._‘:::“" —-Imu(

U ==

= S

‘.(v). {

SreSuie)
.S Soese
.sooos OO

08

e _5< 4-" “'.’

\—_A»
> _ 4‘-'i.‘. - :

’ -
v aUhON,

\‘/’

31

Proving termination

—

32

Proving termination

> ={(s,t) | f(s) > f(B)}

e — o NPIEV AR AW e

() "”‘ . Q70 @
GBS T O T O A

=" P~ T X =K AJ‘.&’-

‘
\ —_ g f_-f-v’ _\-AVAV.V."_-'< - -
e e el) (()) ®,
JRN =" it e
- ! U

e

_’ _— (= -~ A, -
, O8> I " oz

_— - — -
— ‘ ‘;, T T W
/, > 'A -7 _adW, ‘." —

cl
A

37

-» Introduction

- Termination basics

> New advances for program termination proving
= Proving termination argument validity
" Finding termination arguments

-» Conclusion

38

-» Introduction

- Termination basics & history

> New advances for program termination proving
= Proving termination argument validity
" Finding termination arguments

-» Conclusion

39

Automating the search for proofs

-» Difficulties:

" Proving the inclusion R C > ; is hard in practice (and
undecidable in theory)

* Finding an f such that R C > f is even harder in practice (and
undecidable in theory)

40

Automating the search for proofs

-» Difficulties:

" Proving the inclusion R C > ; is hard in practice (and
undecidable in theory)

* Finding an f such that R C > f is even harder in practice (and
undecidable in theory)

41

Automating the search for proofs

= Transition relations must be computed

R=Un[U"I)xU(1))

- Technically, computing U*(I) is undeciable, so we must
find a sound over-approximation using available
techniques:

U*(I) CQ

- () represents an infinite set of states, but has a
compact expression

42

Automating the search for proofs

#% Microsoft Development Environment [design] - mouclass.

= Transition relations must be computqe: e wer oo 1o o e

mouclass.c

for (entry = DeviceExtension->Read(ueun
entry != &DeviceExtension->Read(n

R — U m [(U* (I) % ll o entry = entry->Flink) {

irp = CONTATINING RECORD (entry, IR
stack = IoGetCurrentlIrpStackLocati
= if (=stack-»Filelbject == File(Objec
RemoveEntryList (entry):

aoldCancelRoutine = IoSetCancel

- Technically, computing U*(I) is undq ‘v
f/ Wnhat we're interested in is

find a sound over-approximation usin R ———

S/ i= about to call) our cance

teCh n iq u eS: i ;‘i of the test-and-set macro I

g if (oldCancelRoutine) {
= i

U* (I) C Q /{ Cancel routine not cal
- r

return irp:
o }

= else {
E £

. . . /f This IRFP was just cance
- Q represents an infinite set of states L e,
s

compact expression /7 Atso, the cancel soutin

S/ IRP's li=stEntry point t©
- £

ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->»

IoCancelIrp() could have ju

43

Automating the search for proofs /‘ l

-» Transition relations must be comp
O

©)

R=UN[U"I)xU*())]

- Technically, computing U*(I) is undeciable, so we must
find a sound over-approximation using available
techniques:

U*(I) CQ

- () represents an infinite set of states, but has a
compact expression

44

re COMpPced
O

©) O

R=UN[U*(I) x U*(I))]

(D
0O

- Technically, computing U*(I) is undeciable, so we must
find a sound over-approximation using available
techniques:

U*(I) CQ

- () represents an infinite set of states, but has a
compact expression

45

Automating the search for proofs

= We use an over-approximation of the transition relation

R =UN[Q x Q]

= Since R C R’, we can prove termination by showing

R’QQf

= Meaning: there might be unrealistic transitions that we

have to worry about ‘ ‘
RI

46

Automating the search for proofs

= In practice, its extremely hard to find the right
overapproximation ()

= Luckily: recent breakthroughs in safety proving now
make this possible.

= In fact: the checking the validity of a termination
argument can be directly encoded as a safety property

- Tools like SLLAM can be used to prove validity

47

Automating the search for proofs

-» Difficulties:

" Proving the inclusion R C > ; is hard in practice (and
undecidable in theory)

* Finding an f such that R C > f is even harder in practice (and
undecidable in theory)

48

Automating the search for proofs

-» Difficulties:

" Proving the inclusion R C > ; is hard in practice (and
undecidable in theory)

* Finding an f such that R C > f is even harder in practice (and
undecidable in theory)

49

Automating the search for proofs

-» Difficulties:

" Proving the inclusion R C > ; is hard in practice (and
undecidable in theory)

* Finding an f such that R C > f is even harder in practice (and
undecidable in theory)

50

Automating tig /
" Prov R_l_g&fuggugh
undec

(>
m Fj ‘\0 an f such that R C > f is even arder in practice (and

undecidable in theory)

= |

51

Automating tig /

~ /

= |

" Prov
undec

(>
m Fj ‘\0 an f such that R C > f is even arder in practice (and

undecidable in theory)

52

Automating tig /

~ /

= |

" Prov
undec

(>
m Fj ‘\0 an f such that R C > f is even arder in practice (and

undecidable in theory)

53

Automating tig /

~ /

= |

" Prov
undec

(>
m Fj ‘\0 an f such that R C > f is even arder in practice (and

undecidable in theory)

54

Modular termination arguments

55

Modular termination arguments

56

Modular termination arguments

57

Modular termination arguments

58

Modular termination arguments

59

Modular termination arguments

Modular termination arguments

Modular termination arguments

-> Modularity gives us freedom when looking for valid
arguments

= Strategy: refinement based on failed attempts
= Start with empty termination argument
= Checkinclusion
= |f inclusion check succeeds, termination has been proved

= |f it fails, synthesize a new ranking function from a
counterexample and add it in

= Go to start

62

Modular termination arguments

RT C0

63

Modular termination arguments

R+ 9

64

Modular termination arguments

R+ N

65

Modular termination arguments

R+ 9y -&

66

Modular termination arguments

67

Modular termination arguments

R+ 9y -&

68

Modular termination arguments

R+ 9y -&

}
Rt C[>;

69

Modular termination arguments

R+ 9

Rt C[>;

70

Modular termination arguments

R 90
R+g2f

Modular termination arguments

R+ 9

R+g2f e

Modular termination arguments

73

Modular termination arguments

R+g2f

| g
R+g&fugg

Modular termination arguments

R+ g&fugg

76

Modular termination arguments

RY g&J"UQQ .\'\

Modular termination arguments

R+ g&fugg

78

Modular termination arguments

h
RY O U, '¢

!

Modular termination arguments

Modular termination arguments

RY€> U, U,

Automating the search for proofs

-» Difficulties:

" Proving the inclusion R C > ; is hard in practice (and
undecidable in theory)

* Finding an f such that R C > f is even harder in practice (and
undecidable in theory)

82

Automating the search for proofs

-» Difficulties:

" Proving the inclusion R C > ; is hard in practice (and
undecidable in theory)

* Finding an f such that R C > f is even harder in practice (and
undecidable in theory)

83

TERMINATOR

copied = 0;

RT CThUT, UTs

while (x<y) { ."
x£= (£&XpYdd)
g(&yix) {*) {
} H[x]

X,

H[y] y/
copied = 1;
}
} else {
assert(T: || T2 || T3);

}

copied = 0;
84

TERMINATOR

copied = 0; J TN
: N RT C 17 UT5 U;Fi
\.\ while (x<y) { >>>M/\/\/\‘\

e
.\.\ if ('copied) {
if (*) {
.\. H[x] = x;

Hlyl = vy’
copied = 1;
‘.\ } else {
) assert(7: || Tz || T3);

}

x = £(x,vy)>;
g(&Y!X);

85

TERMINATOR

copied = 0; J TN
: N RT C 17 UT5 U;Fi
\.\ while (x<y) { >>>M/\/\/\‘\

e
.\.\ if ('copied) {
if (*) {
.\. H[x] = x;

Hlyl = vy’
copied = 1;
‘.\ } else {
) assert(7: || Tz || T3);

}

x = £(x,vy)>;
g(&Y!X);

85

TERMINATOR

copied = 0; J TN
: N RT C 17 UT5 U;Fi
\.\ while (x<y) { >>>M/\/\/\‘\

e
.\.\ if ('copied) {
if (*) {
.\. H[x] = x;

Hlyl = vy’
copied = 1;
‘.\ } else {
) assert(7: || Tz || T3);

}

x = £(x,vy)>;
g(&Y!X);

85

TERMINATOR

copied = 0; J TN
: N RT C 17 UT5 U;Fi
\.\ while (x<y) { >>>M/\/\/\‘\

e
.\.\ if ('copied) {
if (*) {
.\. H[x] = x;

Hlyl = vy’
copied = 1;
‘.\ } else {
) assert(7: || Tz || T3);

}

x = £(x,vy)>;
g(&Y!X);

85

TERMINATOR

copied = 0; J TN
: N RT C 17 UT5 U;Fi
\.\ while (x<y) { >>>M/\/\/\‘\

e
.\.\ if ('copied) {
if (*) {
.\. H[x] = x;

Hlyl = vy’
copied = 1;
‘.\ } else {
) assert(7: || Tz || T3);

}

x = £(x,vy)>;
g(&Y!X);

85

Examples

~ Terminator Lemma Viewer

File Wiew Help
Proof Information

= Liemma s
—-main

6: while (x<100)

< |

Expression

r
L

(—=x)>=(-98)
(-x)<=((-H[=x])-1)

90

void maini)

{

int ® = nondet();

int * p = &x;

while (x<100) {
(*p)++;

=1 an nods Ly B3

LE

<] |

File: c*tmp*e*main.c, Line: &, Function main’

Examples

~ Terminator Lemma Viewer

File Wiew Help
Proof Information

= Liemma s
—-main

6: while (x<100)

< |

Expression

r
L

(—=x)>=(-98)
(-x)<=((-H[=x])-1)

91

void maini)

{

int ® = nondet();

int * p = &x;

while (x<100) {
(*p)++;

=1 an nods Ly B3

LE

<] |

File: c*tmp*e*main.c, Line: &, Function main’

“¢* Terminator Lemma Viewer

File View Help
Proof Information

|- Lemmas
- Ack

n = Ack(x,vy);

11l: return Ack(x,n);

Expression

y»=0
y<=(H[y]-1)

92

| >

Source Code

test.c
1: unsigned int Ack({unsigned int x, unsigned int y){ ~
2: if i==0) |
3: int mn;
4. if (y=0) {
S ¥v——;
H n = Acki{x, vy}’
T: } elze |
8: n=1;
9. }
10: x——;
11 return Ack(x,n);
12: } else |
13: return y+l1;
14: 1
15: }
1g:
17: woid main()
18: {
19: int x = nondet();
20+ int y = mondet(); B
21: Eckx,v); a

File: c'slam*src®teminatoridemosidtest c,

Line: & Function “Ack”

“¢* Terminator Lemma Viewer

File View Help
Proof Information

- Lemma s
- Ack
6: n = Reokix,y);

11: return Ack(x,n);

Expression

==
<= (H[=x]-1)

93

Source Code

test.c
1: unsigned int Ack({unsigned int x, unsigned int y){ ~
2: if i==0) |
3: int mn;
4. if (y=0) {
H ¥v——;
o n = Rckix,v);
T: } elze |
8: n=1;
9. }
10: x——;
11: return Ack{x,n)};
12: } else |
13: return y+l1;
14: 1
15: }
1g:
17: woid main()
18: {
19: int x = nondet();
20+ int y = mondet(); B
21: Eckx,v); a

File: c'slam*src®teminatoridemosid2test.c, Line: 11, Function "Ack’

File Wiew Trace Tree Help

Trace Tree
—-main
19: int x = nondet();
20: int y = nondet();
--21: RAck

2: if (x»0) |
4: if (y>0) {

B: n=1;
-1-11: Rck
2: if (x>0} {
4: 1if (y=0) {
21 ¥Ooi
—-I-b: Ack

Step: 76
State

Lazso: Linop

Drver: Rule: Defect: Possibly nonteminating path found

Source Code

test.c
1: unsigned int Rck({unsigned int =, unsigned int y){
2 if (==0)
3: int mn;
4 if (y=0)
g n = Rekix,v);
T } else {
g n = 1;
8. }
10: fix——;
11: return Ack(x,n);
1Z2: } else {
13: return y+1;
14: 1
15: 1}
1s
17: woid main(})
18: {
18 int % = nondet{);
201 int y = nondet();
21 Eckix,v);
22: }

File: c:\slam*srceminatordemos dItest.c, Line: 8 Function "Ack’

Examples

-
“* Terminator Lemma Viewer

File View Help
Proof Information

= Lemma s
—-main

T: while (x<100 && 100<=)

Expression

z>=101
z<=(H[z]-1)
(—x)>=(-89)
(—x)<=((-H[x])-1)

95

=1 on LN e L B3

(=]

<] |

10:
11:
12:
13:
14:
15:
16:

void main()

{
int ® = nondet{)};
int y = nondet();

int £ = nondet{);

while(x<100 g& 100<z)

{
if (nondet ()]}
xt++:

r

} elze |

}

{

File: c:Mmp*e*main.c, Lne: ¥, Function main’

Examples

-
“* Terminator Lemma Viewer

File View Help
Proof Information

= Lemma s
—-main

T: while (x<100 && 100<=)

Expression

z>=101
z<=(H[z]-1)
(—x)>=(-89)
(—x)<=((-H[x])-1)

96

=1 on LN e L B3

(=]

<] |

10:
11:
12:
13:
14:
15:
16:

void main()

{
int ® = nondet{)};
int y = nondet();

int £ = nondet{);

while(x<100 g& 100<z)

{
if (nondet ()]}
xt++:

r

} elze |

}

{

File: c:Mmp*e*main.c, Lne: ¥, Function main’

Examples

r
~ Terminator Lemma Viewer

File Wiew Help
Proof Information

= Liemma s

—|-main void main{)

6: while {xz<100) [
int ® = nondet();
int y = nondet();
if (y>0) {
while (x<100)

{

x=H®Ht y;

=1 an nods Ly B3

T
[s

< |

Expression

(—=x)>=(-98)

(-x)<=((-H#[x])-1) <] |
ot

File: c*tmp*e*main.c, Line: &, Function main’

97

Examples

r
~ Terminator Lemma Viewer

File Wiew Help
Proof Information

= Liemma s

—|-main void main{)

6: while {xz<100) [
int ® = nondet();
int y = nondet();
if (y>0) {
while (x<100)

{

x=H®Ht y;

=1 an nods Ly B3

T
[s

< |

Expression

(—=x)>=(-98)

(-x)<=((-H#[x])-1) <] |
ot

File: c*tmp*e*main.c, Line: &, Function main’

98

Byron Cook

bycooki@microsoft.com

Abstract

Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
mmﬂrd:xtpm:ﬁxms a path-sensitive and contexi-sensitdve pro-
zram smalysis and provides capacity for large program fragments
{12. more than 20,000 linss of:ode]'bog\sdnw:mimpmfw;zu-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
tal results om device dover dispatch routines from the Windows op-
emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenze of checking with dinary renchability aalysiz.

Categories and Subject Deseriptors D2 4 [Sqfware]: Software

—Program Verificadon; D45 [Sofhware]: Operatdng
Systems—TF eliability

General Terms Felisbility, Venfication

Esywords Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usully constructed from a set of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, mmst evenmslly retarn to their caller. Consider the fonction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the

* The s=cond and third author were supported i pant by the Gemuan R
saarch Fomdation (DFG) a5 a pant of the Trensresional Collaboradve
Besearch Center “Automatic Verifi cation and Amalysiz of Complex. Svs-
tems” (SFB/TR. 14 ANACS), by the German Federal Ministry of Educa-
tion and Research (BMEF) in the fameoork of the Verisoft project under
grant (11 IS C38.

Pumaission to moke digital or hand copiss of all or part of this work for parsonal or
chisanoom we is gramed without Se provided thar copiss e not mado or distributed
for peofi t or commercil advantgs and Sat copiss bear & notice and the fall cafon
e the St pae. To copy ctherniae, w2 republih, 0 post oo servan or to medamibnzs

Copyright (&) 2008 ACM 1-59593-320-4+06/D00¢. .. £5.00.

Termination Proofs for Systems Code *

Andreas Podelski
Microsoft Fiesearch Max-Planck-Instinat fitr Informank
podelski@mpi-sb.mpg.de

Andrey Rybalchenko
Max-Planck-Instint fir Informatik and
EFFL

rybali@mpi-sb.mpg.de and
andrey.rybalchenko@epflch

mequest packst and FdoData-»TopOdfStack is the pointer to
another serisl-based device driver). In the case where the other de-
vice drver retums a3 refurn-value that indicates success, but places
0 in PIoStatusBlock-=Information, the serial emmmera-
tiom driver will fil w increment the vabe pointed to by nActual
(line 68), possibly cansing the driver to mfinitely execure this loop
and not renen to its calling context. The consequence of this ermor
is that the computer’s seral devices could become non-responsive.
Worse yet, depending on what actions the other device driver takes,
this loop may cause repeated scquiring end relessing of kemel
mesources (memory, locks, atc) at high priority and excessive phys-
ical tus activity. This exms work stresses the operating system,
the other drivers, and the nser spplications nmning on the system,
which may canse them to crash or become non-responsive oo,
This exsmple demonsirates how a notion of termination is cen-
tral to the process of ensuring that reactive systems can always re-
act. Uniil now no swomstic femunston tool has ever been sble

o provide a capadity for large program ﬂspnenls {20,000 Lines)

effects, abc. Inﬂnspaperwe desmhesmhalm],ca]ledl"fmt—
TOR.

TERMINATOR s mast distinsmizhing aspect, with respact to pre-
vions methods and tools for proving program temminstion, is how it
shifts the balance between the two tasks of consirucsing and respac-
tvely checking the termination argument. The classical method is
to construct an expression defining the ramk of a state and then to
check that its value decreases i every wansition from a reachable
smate 10 & next one. The constuction of the ranking fimction is the
hard part and forms & task that needs to be applied to the whole
program. The checking part is relatively easy. In o method, the
tazk of consmucting mnking functons is the relatvely easy part;
they are constmcted on demand besed on the examinaton of only
a few salacted paths through the prosram.

Furthermore, TERMINATOR is Dot required fo constmact only
mcmmmnmmargummhnmﬂmasetofgmssso\f
possible armments, some of which may be bad zuesses. That is,
this set need not be the exact sef of the ‘right’ ranking fimctons ut
oaly a suparser. We find the same monotoniciny of the refinement
of the tenmination argument 35 with iterative absTaction refinement
for safety (the set of predicates need not be the exact set of ‘Tight’
pradicanes but only a superser).

Checkinz the temminafion argmment is the hard part of owr
method. This is because the terminston srmment is now 2 sat
of rankins fimctions, not 8 singls ranking fimction. With a single
ranking fimction one mmest show that the rank decreases from the
pre- to posi-state after exeouting each single Tansiton step. In owr
semng it is not suficient o look ar 3 single ransidon step. Instead,
we st consider all fiuite sequences of tramsitions. We must show
that, for every seguencs, one of the ranking fimction: decresses

nondet {} ;
nondet () ;

{
le {x<100)

Function ‘'main’

99

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Abstract

Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
mmﬂrd:xtpm:ﬁxms a path-sensitive and contexi-sensitdve pro-
zram smalysis and provides capacity for large program fragments
{1-2. more than 20,000 linss of code) together with support for pro-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
tal results om device dover dispatch routines from the Windows op-
emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenze of checking with dinary renchability aalysiz.

Categories and Subject Deseriptors D2 4 [Sqfware]: Software

—Program Verificadon; D45 [Sofhware]: Operatdng
Systems—TF eliability

General Terms Felisbility, Venfication

Esywords Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usully constructed from a set of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, mmst evenmslly retarn to their caller. Consider the fonction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the

* The s=cond and third author were supported i pant by the Gemuan R
saarch Fomdation (DFG) u.-.apmuf‘lteTmnsreqmalCuanhmmwe

ton and Reseanch (Ehmﬂmﬂnimkeflte\hmﬂmmm
grant (11 IS C38.

Pumaission to moke digital or hand copiss of all or part of this work for parsonal or
chisanoom we is gramed without Se provided thar copiss e not mado or distributed
for peofi t or commercil advantgs and Sat copiss bear & notice and the fall cafon
e the St pae. To copy ctherniae, w2 republih, 0 post oo servan or to medamibnzs

Copyright (&) 2008 ACM 1-59593-320-4+06/D00¢. .. £5.00.

Termination Proofs for Systems Cod

Andreas Podelski
Maw-Planck-Instimr fitr Informaril
podelski@mpi-sb.mpg.de

mequest packet and FdoData-»Topdfstack i
another serial-based device driver). In the case w

vice dover refurns a refurn-value that mdic
0 in PIoStatusBlock-»Informatiol
tiom driver will fil w increment the v to by nActual

(line 68), possibly cansing the driver to Mfinitely execare this loop
and not renen to its calling context. The consequence of this ermor
is that the computer’s seral devices could become non-responsive.
Worse yet, depending on what actions the other device driver takes,
this loop may cause repeated scquiring end relessing of kemel
mesources (memory, locks, atc) at high priority and excessive phys-
ical tus activity. This exms work stresses the operating system,
the other drivers, and the nser spplications nmning on the system,
which may canse them to crash or become non-responsive oo,
This exsmple demonsirates how a notion of termination is cen-
tral to the process of ensuring that reactive systems can always re-
act. Uniil now no swomstic femunston tool has ever been sble

o provide a capadity for large program ﬂspnenls {20,000 Lines)

effects, abc. Inﬂnspaperwe desmbesmhalm],ca]ledl"fmt—
TOR.

TERMINATOR s mast distinsmizhing aspect, with respact to pre-
vions methods and tools for proving program temminstion, is how it
shifts the balance between the two tasks of consirucsing and respac-
tvely checking the termination argument. The classical method is
to construct an expression defining the ramk of a state and then to
check that its value decreases i every wansition from a reachable
smate 10 & next one. The constuction of the ranking fimction is the
hard part and forms & task that needs to be applied to the whole
program. The checking part is relatively easy. In o method, the
tazk of consmucting manking fimctons is the relatvely easy part;
they are constmcted on demand besed on the examinaton of only
a few salacted paths through the prosram.

Furthermore, TERMINATOR is Dot required fo constmact only
mcmmmnmmargummhnmﬂmasetofgmssso\f
possible armments, some of which may be bad zuesses. That is,
this set need not be the exact sef of the ‘right’ ranking fimctons ut
oaly a suparser. We find the same monotoniciny of the refinement
of the tenmination argument 35 with iterative absTaction refinement
for safety (the set of predicates need not be the exact set of ‘Tight’
pradicanes but only a superser).

Checkinz the temminafion argmment is the hard part of owr
method. This is because the terminston srmment is now 2 sat
of rankins fimctions, not 8 singls ranking fimction. With a single
ranking fimction one mmest show that the rank decreases from the
pre- to posi-state after exeouting each single Tansiton step. In owr
semng it is not suficient o look ar 3 single ransidon step. Instead,
we st consider all fiuite sequences of tramsitions. We must show
that, for every seguencs, one of the ranking fimction: decresses

TERMINATOR

2006

nondet {} ;

nondet () ;

{
le {x<100)

Function ‘'main’

100

Termination Proofs for Systems Cod

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Abstract

Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
mmﬂrd:xtpm:ﬁxms a path-sensitive and contexi-sensitdve pro-
zram smalysis and provides capacity for large program fragments
{1-2. more than 20,000 linss of code) together with support for pro-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
tal results om device dover dispatch routines from the Windows op-
emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenze of checking with dinary renchability aalysiz.
Gr.rswm and Subjecr Descriprors D2 4 [Sgfhware]: Software
—Program Verificadon; D45 [Sofhware]: Operatdng
Systems—TF eliability
General Terms Relisbility, Verfication

Esywords Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usully constructed from a set of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, mmst evenmslly retarn to their caller. Consider the fonction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the

* The s=cond and third author were supported i pant by the Gemuan R
saarch Fomdation (DFG) u:.apmuf‘lteTmnsremmnlCuanhmmwe

ton and Reseanch ('EMBI]mﬂ:eﬁ.mnckeﬂte\h‘m&pmenn.&r
grant (11 IS C38.

Pumaission to moke digital or hand copiss of all or part of this work for parsonal or
chasanoom we s without e provided tha copiss e not made or distributed
ﬁwlﬂmmmWEm“m notice and the fall cton
en the £t pam. To copy otarnisa, %o rmpublish, 1o post oo servar or to medsaibas
o lisks, reqeires pricr spects © peamission and'or a .

PLDT0S Fune 11-14, 2006, Crme, Omtaric, Camada,

Copyzight (&1 2006 ACM 1-59593-3120-4060006.. 55,00,

Andreas Podelski
Maw-Planck-Instimr fitr Informaril
podelski@mpi-sb.mpg.de

another serial-based device driver). In the case w
vice dover refurns a refurn-value that mdic
0l in PIoStatusBlock-»Informatio ey
tiom driver will fil w increment the v o by
(line 68), possibly cansing the driver to Mfinitely execy
and oot renem to its calling confext. The consequence
is that the compuater’s serial devices could become nom
Worse yet, depending oo what actions the other device
this loop may camse repeated scquiring snd relessin
mesources (memary, locks, atc) at high priority and excy
ical tas activity. This exos work stresses the operag
the other drivers, and the nser spplications nmning on
which may canse them to crash or become non-respons|
This exsmple demonsirates how a notion of terming
ral to the process of ensuring that reactive systems can
act. Uniil now no swomstic iemunston tool has evel
mplmjdeacapaun'fm'large PIOETAm ﬂspnenls(=32

mequest packet and FdoData- :-Top:l:stac:f.ti:(
d

-pof
effects, abc. Inthlspapern‘edesmbesmhalmLcaJled
TOR.

TERMINATOR s mast distinmuizhing azpect, with req
vions methods and tools for proving program ferminstiy
shifts the balance between the two tasks of consiruciing|
tvely checking the terminston argument. The classicy
to construct an expression defining the ramk of a state
check that its value decreases in every wansition from
sate 10 & next one. The constuction of the ranking fim
hard part and forms & task that needs to be applied i
progrem. The checking part is relatively easy. In o)
tazk of consmucting mnking Simctons is the relatvely
they are constmcted on demsnd besed on the examina
a few salacted paths through the prosram.

Furthermore, TERMINATOR is Dot required fo cog
ome comect termnation argument ot rather @ set of]
possible armments, some of which may be bad znesg
this sef need not be the exsct set of the ‘right’ ranking 5
only a suparser. We find the same monotoniciry of the
of the tenmination argument 25 with iterative absTaction
for safety (the set of predicates nesd not be the exact 5
pradicanes but only a superser).

Checkinz the terminafion argmment is the hau.'d.
method. This is because the terminstion srpument iy
of rankins fimctions, not 8 singls ranking fimction. W
ranking fimction one nmst show that the rank decreas
pre- o posi-state after expouting each singls Tansidon
seming it is not suficient o look at 2 single ransidon =
we mmest consider all finite sequeances of mamsitions. W
that, for every seguencs, one of the ranking function

101

_ . - F| oz
518 |8 |F |£ |8
1 12 0 1 1K 3
2 8 0 0 1K 8
3 410 0 1 8K 26
4 1475 0 1 T5K 24
5 123202 1 11 55K 50
i) 196 1 3 K 20
7 4174 0 0 3K 23
8 210 0 11 SK 27
9 1204 0 5 oK 38
10 158 0 0 8K 21
11 13 0 0 25K 6
12 204 0 0 25K 16
13 257 1 1 T5K 26
14 5 0 0 1K 2
15 141 0 1 65K 18
16 22 0 0 15K 2
17 800 1 i) 4K 35
18 1503 1 0 65K 31
19 200 0 3 K 28
20 4009 0 2 10K 63
21 1461 1 4 16K 56
22 114762 0 5 MK 65
23 158746 2 10 35K 75

Figure 12, Results of experiments using an integration of TERMI-
NATOR with the Windows Static Driver Verifier[21] product (SDV)
on the standard 23 Windows OS device drivers used to test SOV,
Each device driver exports from 5 to 10 dispatch routines, all of

which nmst be proved terninating.

Termination Proofs for Systems Cod

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Abstract

Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
mmﬂrd:xtpm:ﬁxms a path-sensitive and contexi-sensitdve pro-
zram smalysis and provides capacity for large program fragments
{1-2. more than 20,000 linss of code) together with support for pro-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
u]lesﬂﬁmdﬂi:edﬁvﬂ'dism‘b:hm:ﬁmsfuumﬂu‘iﬁnﬂumup—
emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenze of checking with dinary renchability aalysiz.

Categories and Subject Deseriptors D2 4 [Sqfware]: Software
—Program Verificadon; D45 [Sofhware]: Operatdng

Systems—TF eliability

General Terms Felisbility, Venfication

Esywords Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usully constructed from a set of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, mmst evenmslly retarn to their caller. Consider the fonction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the

* The s=cond and third author were supported i pant by the Gemuan R
saarch Fomdation (DFG) u:.apmuf‘lteTmnsremmnlCuanhmmwe

ton and Reseanch (Ehmﬂmﬂnimwkeflte\h'un&mmm
grant (11 IS C38.

Pumaission to moke digital or hand copiss of all or part of this work for parsonal or
chisanoom we is gramed without Se provided thar copiss e not mado or distributed
for peofi t or commercil advantgs and Sat copiss bear & notice and the fall cafon
e the St pae. To copy ctherniae, w2 republih, 0 post oo servan or to medamibnzs

Copyright (&) 2008 ACM 1-59593-320-4+06/D00¢. .. £5.00.

Andreas Podelski
Maw-Planck-Instimr fitr Informaril
podelski@mpi-sb.mpg.de

another serial-based device driver). In the case w
vice dover refurns a refurn-value that mdic
0l in PIoStatusBlock-»Informatio ey
tiom driver will fil w increment the v o by
(line 68), possibly cansing the driver to Mfinitely execy
and oot renem to its calling confext. The consequence
is that the compuater’s serial devices could become nom
Worse yet, depending oo what actions the other device
this loop may camse repeated scquiring snd relessin
mesources (memary, locks, atc) at high priority and excy
ical tas activity. This exos work stresses the operag
the other drivers, and the nser spplications nmning on
which may canse them to crash or become non-respons|
This exsmple demonsirates how a notion of terming
ral to the process of ensuring that reactive systems can
act. Uniil now no swomstic iemunston tool has evel
mplmjﬂeacapaun fm'largepmgmmﬁspnm(=32

mequest packet and FdoData- :-Top:l:stac:f.ti:(
d

-pof
effects, abc. T.nthlspaperwedesmbesmhalmLcaJled
TOR.

TERMINATOR s mast distinmuizhing azpect, with req
vions methods and tools for proving program ferminstiy
shifts the balance between the two tasks of consiruciing|
tvely checking the terminston argument. The classicy
to construct an expression defining the ramk of a state
check that its value decreases in every wansition from
sate 10 & next one. The constuction of the ranking fim
hard part and forms & task that needs to be applied i
progrem. The checking part is relatively easy. In o)
tazk of consmucting mnking Simctons is the relatvely
they are constmcted on demsnd besed on the examina
a few salacted paths through the prosram.

Furthermore, TERMINATOR is Dot required fo cog
ome comect termnation argument ot rather @ set of]
possible armments, some of which may be bad znesg
this sef need not be the exsct set of the ‘right’ ranking 5
only a suparser. We find the same monotoniciry of the
of the tenmination argument 25 with iterative absTaction
for safety (the set of predicates nesd not be the exact 5
pradicanes but only a superser).

Checkinz the terminafion argmment is the hau.'d.
method. This is because the terminstion srpument iy
of rankins fimctions, not 8 singls ranking fimction. W
ranking fimction one nmst show that the rank decreas
pre- o posi-state after expouting each singls Tansidon
seming it is not suficient o look at 2 single ransidon =
we mmest consider all finite sequeances of mamsitions. W
that, for every seguencs, one of the ranking function

102

Sl § AR
sl |& |F |5 |¢
1 12 0 1 1K 3
2 8 0 0 1K 8
3 410 0 1 8K 26
4 1475 0 1 75K 24
3 123202 1 1 55K 50
6 196 1 3 SK 20
7 4174 0 0 SK 23
g 210 0 11 SK 27
9 1294 0 5 0K 38
10 158 0 0 8K 21
11 13 0 0 25K G
12 204 0 0 25K 16
13 257 1 1 75K 26
14 5 0 0 1K 2
15 141 0 1 65K 18
16 22 0 0 15K 2
17 800 1 & 4K 35
18 1503 1 0 6.5K 31
19 200 0 3 3K 28
20 4000 0 2 10K 63
21 1461 1 4 16K 56
22 114762 0 5 MK 65
23 158746 2 10 35K 75

Figure 12, Results of experiments using an integration of TERMI-
NATOR with the Windows Static Driver Verifier[21] product (SDV)
on the standard 23 Windows OS device drivers used to test SOV,
Each device driver exports from 5 to 10 dispatch routines, all of

which nmst be proved terninating.

Termination Proofs for Systems Cod

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Abstract

Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
mmﬂrd:xtpm:ﬁxms a path-sensitive and contexi-sensitdve pro-
zram smalysis and provides capacity for large program fragments
{1-2. more than 20,000 linss of code) together with support for pro-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
u]lesﬂﬁmdﬂi:edﬁvﬂ'dism‘b:hm:ﬁmsfuumﬂu‘iﬁnﬂumup—
emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenze of checking with dinary renchability aalysiz.

Categories and Subject Deseriptors D2 4 [Sqfware]: Software
—Program Verificadon; D45 [Sofhware]: Operatdng

Systems—TF eliability

General Terms Felisbility, Venfication

Esywords Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usully constructed from a set of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, mmst evenmslly retarn to their caller. Consider the fonction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the

* The s=cond and third author were supported i pant by the Gemuan R
saarch Fomdation (DFG) u:.apmuf‘lteTmnsremmnlCuanhmmwe

ton and Reseanch (Ehmﬂmﬂnimwkeflte\h'un&mmm
grant (11 IS C38.

Pumaission to moke digital or hand copiss of all or part of this work for parsonal or
chisanoom we is gramed without Se provided thar copiss e not mado or distributed
for peofi t or commercil advantgs and Sat copiss bear & notice and the fall cafon
e the St pae. To copy ctherniae, w2 republih, 0 post oo servan or to medamibnzs

Copyright (&) 2008 ACM 1-59593-320-4+06/D00¢. .. £5.00.

Andreas Podelski
Maw-Planck-Instimr fitr Informaril
podelski@mpi-sb.mpg.de

another serial-based device driver). In the case w
vice dover refurns a refurn-value that mdic
0l in PIoStatusBlock-»Informatio ey
tiom driver will fil w increment the v o by
(line 68), possibly cansing the driver to Mfinitely execy
and oot renem to its calling confext. The consequence
is that the compuater’s serial devices could become nom
Worse yet, depending oo what actions the other device
this loop may camse repeated scquiring snd relessin
mesources (memary, locks, atc) at high priority and excy
ical tas activity. This exos work stresses the operag
the other drivers, and the nser spplications nmning on
which may canse them to crash or become non-respons|
This exsmple demonsirates how a notion of terming
ral to the process of ensuring that reactive systems can
act. Uniil now no swomstic iemunston tool has evel
mplmjﬂeacapaun fm'largepmgmmﬁspnm(=32

mequest packet and FdoData- :-Top:l:stac:f.ti:(
d

-pof
effects, abc. T.nthlspaperwedesmbesmhalmLcaJled
TOR.

TERMINATOR s mast distinmuizhing azpect, with req
vions methods and tools for proving program ferminstiy
shifts the balance between the two tasks of consiruciing|
tvely checking the terminston argument. The classicy
to construct an expression defining the ramk of a state
check that its value decreases in every wansition from
sate 10 & next one. The constuction of the ranking fim
hard part and forms & task that needs to be applied i
progrem. The checking part is relatively easy. In o)
tazk of consmucting mnking Simctons is the relatvely
they are constmcted on demsnd besed on the examina
a few salacted paths through the prosram.

Furthermore, TERMINATOR is Dot required fo cog
ome comect termnation argument ot rather @ set of]
possible armments, some of which may be bad znesg
this sef need not be the exsct set of the ‘right’ ranking 5
only a suparser. We find the same monotoniciry of the
of the tenmination argument 25 with iterative absTaction
for safety (the set of predicates nesd not be the exact 5
pradicanes but only a superser).

Checkinz the terminafion argmment is the hau.'d.
method. This is because the terminstion srpument iy
of rankins fimctions, not 8 singls ranking fimction. W
ranking fimction one nmst show that the rank decreas
pre- o posi-state after expouting each singls Tansidon
seming it is not suficient o look at 2 single ransidon =
we mmest consider all finite sequeances of mamsitions. W
that, for every seguencs, one of the ranking function

103

Sl § AR
sl |& |F |5 |¢
1 12 0 1 1K 3
2 8 0 0 1K 8
3 410 0 1 8K 26
4 1475 0 1 75K 24
3 123202 1 1 55K 50
6 196 1 3 SK 20
7 4174 0 0 SK 23
g 210 0 11 SK 27
9 1294 0 5 0K 38
10 158 0 0 8K 21
11 13 0 0 25K G
12 204 0 0 25K 16
13 257 1 1 75K 26
14 5 0 0 1K 2
15 141 0 1 65K 18
16 22 0 0 15K 2
17 800 1 & 4K 35
18 1503 1 0 6.5K 31
19 200 0 3 3K 28
20 4000 0 2 10K 63
21 1461 1 4 16K 56
22 114762 0 5 MK 65
23 158746 2 10 35K 75

Figure 12, Results of experiments using an integration of TERMI-
NATOR with the Windows Static Driver Verifier[21] product (SDV)
on the standard 23 Windows OS device drivers used to test SOV,
Each device driver exports from 5 to 10 dispatch routines, all of

which nmst be proved terninating.

—
[--}
Termination Proofs for Systems Cod ¥
&
E
- -
Byron Cook Andreas Podelski :_-? S0 =
Microsoft Research M- Planck-Instin fir Informatik F| 7 v P & £
bycook@microsoft.com podelskifimpi-sb.mpg.de ,.ﬁ:' k) = F & -
L o ~ = =t
1 12 0 1 1K 3
2 8 0 0 1K 8
Abstract request pecket and FdoData-»TopOLStack is
N . 5 7
Program fermuination is central to the process of ensurng that sys- “‘_‘"“'E'_SE"““‘“&" device driver). Iu_lhe_casev. 3 410 0 1 8K 26
tems code can always react. We describe a new program termina- vice driver remums 4 reum-value fat imdic R - n
tion prover that performs a path-sensitive and confexi-sensitive pro- 0in PIoStatusBlock--Informatic 25T 4 1475 0 1 735K 24
zram smalysis and provides capacity for large program fragments nom m‘““ﬂﬁ%mmﬂ‘w Emitel o by
(i.2. more than 20,000 linss of code) together with support for pro- E]:Em PoSELDLY CAIEINE ET.h.e ¥ EnEcy 5 123202 i 11 55K 50
Zramming language features such as arbitrarily nested loops, point- _ mmmmm:MM' ComsequEnce
ers, fimction-pointers, side-effects, etc. We also present expesimen- s that the compurer's serial devices could become nony 6 196 1 3 5K 20
tal results om device driver dispatch routines from the Windows op- Lm‘“mm“xdmmﬁgm =
emating system. The most disd ing aspect of our tool is bow loop may W?E[:&mmg 't\'am.dm
it shifts the balance berween the two tasks of consoucring and re- Eﬂ';:?mmms :EI:]“kghprlm&m - 7 4174 0 0 SK 23
spectively chocking the termination arzumens. Checking becomes activity. extra work stresses the operag
the hard step. In this paper we show how we solve the cormespond- the ather drivers, and the user spplicarions nmning on g 210 0 11 SK 27
ing challengze of checking with binary reachability anaiysis. which may canse them to crazh or become non-respons| <
This exsmple demonsirates how a notion of terming
Caregories and Subject Descriptors D2 4 [Sqfhware]: Software mral to the process of ensuring thar reactive systems cay 1] 1204 0 3 6K 38
—Program Verification; D45 [Sofhware]: Operating act. Until now no sulomstic femminstion tool has evel -
Sysiems—TFeliability 1o provide a capacity for large program fragments (=3 - "
General Terms Relisbility, Verification together with acourate support for programming lang 10 158] 0 8K 21
such as arbimanly nested loops, poinfers, Amchon-pod
Esywords Program rermination model checking, program verifi- effects, etc. In this paper we describe such a tool, callad) 11 13 0 0 25K 6
cation, formsl verification TOR. ~
TERMINATOR s mast distinmuizhing azpect, with req 5
L Introduction s methods s ool fr provang progr || 12| 204 0 0 1k |16
. . . znce between the two tasks of constructing
REMEs}m(e.gupﬂmngsgsm.nTbsmﬂs,mmem: thvely chmiin:gdmrem_ﬁmﬁ.un argument. The classicd 13 157 1 1 75K 26
database engines, etc) are usully constructed from a set of com- to comsmuCt A exprastion defining the rank of @ state
ponents that we expect will always temminate Cases where these chack that its value decreases in every fransition from
funcions mexpeciedly do not refum to their calling conbext lesds [—— U:ecmamcﬁméfﬂlermmgﬁl 14 5 0 0 1K 2
0 non-responsive systems. Device drver dispatch routines, for ex- hardpm'tan.dfudsalasklhainee&im'beam]iedu
ample, must evenmally retam to their caller. Consider the fimction - - . . <
program. The checking part is relatively easy. In ow | 15 141 0 1 65K 18
in Figure 1 which is called from several dispatch routines within task of consmucting ranking functions s the relativel
the Windows serial ermmeration device driver. This code calls ather fhey are constructed on demand based on the ecamins]

g t . ? e d ! y aaminay 5 0 0 1.5K ~
serizl-based device dnvers by passing I'O request packets via the 3 faw salaceed paths throuzh the program. 16 2 - =
kemel routine ToCallDriver (line 50, pIrp is a pointer to the Firthermors, TERMINATOR. 15 Dot required o cof -

P P —— S ——— 1 in part by the G Ba m&fmmm%hﬁfb:dﬂﬁ 17 800 1 & 4K 35
search Foumdation (DF(G) a5 a pant of the Tramsresional Cellaborative passie STEUMENts, Some a7y e bad guesy
Research Center “Amomatic Vertf caticn and of Comglley Sy~ LS setneed notbe he exvact setof fhe gt raxking & | 18 | 1503 1 0 65K | 31
tems” (SFE/TR. 14 AVACS), by the German Federa] Minismy of - caly a syperser. We find the same monotoniciry of thy
ton and Reseanch (BMEF) in the famework of the Verisoft project under of the tenmination argument 25 with iterative absTaction ”
Zamt 1 15 C38. for safery (the set of predicates nead not be the exact 5 19 200 0 3 K 28
pradicanes but only a superser).
Chchnghmmmmugmm:sﬂehnrd 20 4000 0 2 10K 63
method. This is because the terminstion srpument iy
Poersission o moke dig hoardd copiss. of all of this wmk fr parsanal of ranking fimctions, oot a single ranking fimction. W -
.:hsmn:hpmdmp:]i:mhmmmm:f;thsmmmﬁuwmw ranking fimction ons nmst show that the rank decreas| 21 1461 1 4 16K 56
for peofi t or commercil advantgs and Sat copiss bear & notice and the fall cafon pre- to post-state afer executing each single mansition
e e s o casnen crio &t seming it s not sufficient to look ot s single wamsivions{ | 22 | 114762 | 0 5 HE 65
s]Tumll-H-, 2006, Eu o Camada. we st consider all finite sequeances Q.r'mz."a.‘?m., ‘_U.'E
Copyright (& 2006 ACM 1-59993-320-406/0006.._£5.00. that, for every sequencs one of the ranking function 23 158746 2 10 35K 75
Figure 12. Results of experiments using an integration of TERMI-
NATOR with the Windows Static Driver Verifier[21] product (SDV)
on the standard 23 Windows OS device drivers used to test SOV,
Each device driver exports from 5 to 10 dispatch routines, all of
104 which nmst be proved terninating.

Termination Proofs for Systems Cod
Byron Cook Andreas Podelski
Microsoft Ressarch Niax-Planck-Instint fir Informank
bycooki@microsoft.com podelski@mpi-sb.mpg.de
0
2 8 0 0 1K 8
Abstract st packet and FdoData-»TopOLSkack i
Program termination is cenrsl to the process of ensuring that sys- mother cerial based dmuad;m}).ﬁmcmcmlf{ 3 410 0 1 SK 26
tems code can always react. We dascribe a new progrem terming- vace driver remims 3 renmn-vaiue that mdic R - n
tion prover that performs 8 path-sensitive and conbedt-sensitive pro- 0 m PIoStatusBlock-=Informat o =T 4 1475 0 1 15K 24
zram smalysis and provides capacity for large program fragments “Wm‘““ﬂﬁl}mm‘.““ - o by
{i2. more than 20,000 Linss of code) tozether with sipport for pro- (0 09, possibly causing the driver to MAnitely eecy) | o 123200 | 1 11 558 | 50
Zramming language features such as arbitrarily nested loops, point- and not st to it calling content. The consequence
ers, fimction-pointers, side-effects, etc. We also present expesimen- s that the compurer's serial devices could become nony "
tal results on device driver dispatch Toutines from the Windows op- Wworse yet, depending on what actions the other device 6 196 1 3 K 29
emating system. The most disdneuishing aspect of our tool is bow mslmpm\mmﬁﬁmdxﬁmmgmdﬁdmm
it shifts the balance barween the too tasks of construcring and re- Tesources (memary, locks, etc) at high priority - 7 4174 0 0 3K 23
spectively checking the termination arsment. Checking becomes &&ﬁ; EE m?:saer“::ﬁcﬁ the upe;:ll:
e e peper e b b e ol B OO e et s] | & | 910 0 11 sk |27
Cogories and Subjecs 3 04 |0 5 6K | 38
Systems—TF eliability
Eeywords Pr:n%r‘;‘u;:l;t 3 0 0 25K 6
1. Imtroduction 04 0 0 25K 16
R e 02 0 S ERE K| 26
ponents that we expect w
funcions mexpeciedly dd 0 0 1K 2
0 DON-TESPONSTVS Systams|
ample. st evennally red
in Figure 1 which is callg 41] 1 65K | 18
the Windows serial smume
serial-based device driver] 2 0 0 15K | 2
kemel roufine ToCallny
e seconi and i i foo ! 6 R s
saarch Famdation (DFG) o _
Research Cemter “Aistoruatic 503 1 0 65K | 31
=R
;;: 01 15 C33. 1 09 0 3 K 28
J000 0 2 10K 63
m&fmﬂ 461 1 4 16K 56
for peofi t or comsercil adantg
e e 14762 | 0 5 MK | 65
FLOT0S Jume 11-14, 200, O]
Copyight (@ 2006 ACM 1-59%9 38746 2 10 35K 75
Results of experiments using an mtegration of TERMI-
h the Windows Static Driver Verifier[21] product (SDV)
dard 23 Windows OS device drivers used to test SDV.
2 driver exports from 5 to 10 dispatch routines, all of
105 be proved terminating.

W
o
-
=
=
[
o
@

2 Send in the Terminator

AMICROSDFTTOOL LOOKS FORPROGRAMS THATFREEZEUP BY GARY STIX

lan Turing, the mathemartician whae
Awag among the founders of computer

science, showed in 1936 thatitis im-
possible to devse analgorithm to prove that
any given program will always run to com-
pleton. The essence of his argument was
thatsuch an algorithm can abwrays teip upif
itanalyzes iselfand finds thatitis unableto
stop. “Ttkads toa bgical paradea,” remarks
David Schmidt, professar of computer sci-
ence arKansas Stare University. Ona prag-
matic level, the inability to “erminate,” as
itis called in computerese, is familiartcany
user of the Windows operating system whe
hasclicked a monse buttonand then stared
indefinite by at the hourglass icon indic aring
that the program 1s looping endlessly
through the same ines of code.

The curment version of Micresoft’s oper-
ating systermn, known as XP, is momr stable
than previous ones. But mamifacturers of
printers, MP3 players and other device s srill
write fanlty “deiver™ software that lets the
peripheral interact with the operating system.
Sa X P users have not lost familiarity with
trozen howgbisses, The rescarch armof Mi-
crosoft has e drecenty to addiess the long-
simmering frugranon by focusing on tods
tocheck drivers for the absence of bugs.

Microsaft Besearch hasyet to contmadict
Turing, but it has started presenting papers
at conferences on a ol called Terminator
that tries to prove that a deiver will finish
what it 15 doing. Computer scientists had
never sieceeded until now in constructing a
practical automated verifier for termination
of large programs becanse of the ghost of
Turing, asserts Byron Codk, a theoretical
computer scientist at Microsoft Researchs
labaratary inCambridge, England, wha led
the projct. “Turing proved that the prab-
lem was undecidable, and in some senss,
thatscared people off” hesays,

Blending several previous techniques for
automated program analysis, Terminator
creates a finite re presentation of the infinite
number of states that a driver could accupy
while execuring a program. It then amemprs
1o derive a logical argument that shows that
the sofrarare will finish its task. It does this

WOWW. B CIE M. Com

by comhbining multiple “ranking functions,”
which mea sire how far a device driver has
progressed through the loopsin a program,
sequences of irstroe tions that rerun
until a specified condition is met.
Terminator begins with an itial,
rather weak a rgument that it e fine s
repeatedly based on informarion
learned from previous failed at-
tempts at creating a proof (a suffi-
ciently strong argument). The pro-
cedure may consume hours on a
powerful computer until, if evers-
thinggoes according to plan, a proof
emerges that shows that no execu-
tion pathway inthe dover will cavse
the drcaded howrglassing.
Terminater, which has been op-
erating for only nine months and
has yet to be distributed to outside
developersof Windowsdevice driv-
ers, has turned up a few ermina-
ticn bugs in drivers for the soon-to-

ALAH TURING created amathematical proof
that expla nsthe uncertainty of any computer
program ever completing a task.

be-rekased Vista version of Win-
dows whik trying to come up witha proof.
Cook predicts that Terminator may eventu-
ally find proofs for 99.9 percent of commer-
cial programs that finish exeaiting. {Of
course, some programs are designed to run
forever.) Turing, however, can still rest in
peace. “There will always be an input to
Terminator that you can't prove will termi-
nate,” Cook savs, “Butifvou canmake Ter-
minator work for any program in the real
woarld, then it doesn't really matter.”

Patrick Consatof the Ecale Marmale Su-
perieure in Paris, a pioneer inmathemarcal
program analysis, notes that Terminater
should work fora limitedsetof welldefined
applicatiors. *I doubt, for example, that
Terminator is able to handle mathematical-
by hard termination problems™—thoss for
floating-point numbers o programs that
run at the same time. Cook does not dis-
agree, saying that he plans to develop termi-
nation proof methods for such programs.
Finding a way to ensure that more complex
programs donot freezeis such a difficult
challenge, however, that Cook thinks it
could consume the restaf his career.

COPYRGHT 2006 SCIENTIFIC AMERICAN, INC.

\Worldwide, s oftware bugs cost
billlons of dollars In 1088 &8 every
year, which explaing a trend
ARG companiss for sutomat ed
programv erlfication. (n 2005

Mie ros oft released an automared
bug-cane ing progr am, Sl e
Driver Yerlfier,that checks the
Bource code frdevice drivers
ags rtamahemalca modal o
devermine whetheritdeviates
from Ius ex pected behavior.

STAtic ver IFiars In ok for
programminge rmor s that caus e a
ProgramTostap ITs execution. &
device driver, forinstance s hould
nevarinte ractwith program B
before lthas donesowith
program A, or lowillsImply ce 458
oparailon. Terminator, Mier moft's
late st Tool, |00k For mistakes
that may lead a program to
EOMTINUE TURRInGForayar|nan
#ndles 8 loop, the reby preventing
ITfrom FInIs hing the)ob &t hand.

SCIEMTIFIC AMERICAH 37

g g g
g 3 & g £
§ | |& |5 ¢
12] 1 1K 3
8 0 0 1K 8
410 0 1 8K 26
1475 0 1 TSK | 24
123202 |1 11 55K | 50
196 1 3 K 20
4174] 0 SK 23
H 210] 11 SK 27
204] 5 6K 38
58 0 0 8K 21
3] 0 Q5K | 6
04 0 0 25K | 16
57 1 1 TSK | 26
] 0 1K 2
41 0 1 65K | 18
2] 0 15K |2
poo 1 6 4K 35
503 1 0 65K | 31
09] 3 K 28
f000 0 2 10K 63
461 1 4 16K 56
14762 |0 5 MK 635
58746 | 2 10 3K 75
Results of experiments using an mtegration of TERMI-
h the Windows Static Driver Verifier[21] product (SDV)
dard 23 Windows OS device drivers used to test SDV.
2 driver exports from 5 to 10 dispatch routines, all of
LI be proved terminating.

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|

Microsoft Ressarch Maw-Planck-Instimr fitr Informaril Miax-Planck-Ty
bycooki@microsoft.com podelski@mpi-sb.mpg.de

rybaliEn

andrey.ryl

Abstract
Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
tion prover that perfiorms a path-sensitive and contest-sensifive pro-
zram smalysis and provides capacity for large program fragments
{12. more than 20,000 linss of:ode]'bog\ahummimpmfw;tu-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
tal results om device dover dispatch routines from the Windows op-
emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenge of checking with Sinary reachability anafysis.
Categories and Subject Deseriptors D2 4 [Sqfware]: Software
—Program Verificadon; D45 [Sofhware]: Operatdng
Systems—TF eliability

General Terms Felisbility, Venfication

Esywords Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usually constucted fom a sat of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, must evenmally retam to their caller. Consider the fimction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the

* The s=cond and third author were supported i pant by the Gemuan R
saarch Fomdation (DFG) a5 a pant of the Trensresional Collaboradve
Besearch Center “Automatic Verifi cation and Amalysiz of Complex. Svs-
tems” (SFB/TR. 14 ANACS), by the German Federal Ministry of Educa-
tion and Research (BMEF) in the fameoork of the Verisoft project under
grant (11 IS C38.

Pumaission to moke digital or hand copiss of all or part of this work for parsonal or
chasanoom we s witout Se thae o mot o or distributed
ﬁpﬁlumﬂmmmpmmm novticn and the £l caon
en the £t pam. To copy otarnisa, %o rmpublish, 1o post oo servar or to medsaibas
o lisks, reqeires pricr spects © peamission and'or a .

PLDT0S Fune 11-14, 2006, Crme, Omtaric, Camada,

Copyzight (&1 2006 ACM 1-59593-3120-4060006.. 55,00,

mequest packst and FdoData- »Top
another serial-based device driver). In o
vice dover refurms a refun-value that i
0 in PIoStatusBlock-=Informa
tiom driver will fil w increment the valy
(line 68), possibly cansing the drver to
and not reneEn o its calling congext. Th
is that the computer’s serial devices con
Worse yet, depending on what actions
this loop may cause repeated scquirg
resoumces (memary, locks, atc) at high
ical tas activity. This exms work stre]
the other drivers, and the nser spplicat
which may canse them to crash or becod
This example demonsirates how a oy
tral to the process of ensuring thar reacy
act. Uniil now no suomstic femunstg
1o provide a capadty for large program
together with acourate support for prog
such as arbimanly nested loops, point
effects, etc. In this paper we describe s
TOR.
TERMINATOR s most distinnizhing|
vions methods and tools for proving prof
shifts the balance between the two tasks
thvely checking the terminaton argmme]
to construct an expression defining the
check that its value decreases i every
=tate 1o 3 nent one. The consmaction of]
hard part and forms a task that needs
progrem. The checking part is relativel
tazk of consmucting manking fnctons
they are constmcted on demsnd based
a few salacted paths through the progra)
Furthermore, TERMINATOR is not
of¢ COMTect termnation argument bt
possible arpments, some of which m
this sat nead not be the exact sefof the
only a suparser. We find the same mon)
of the tenmination argument 25 with iter]
for safety (the set of predicates nesd nd
lxedlcmeshmmhrsmpuselj

of rankins fimctions, not 8 singls ranky
ranking fimction one mmst show that
pre- o posi-state after exsouting each
semng it is not suficient to look ar 3 sin
we st consider all fiuite sequances gff
that, for every seguencs, one of the r

107

Automatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook®, Dino Distefano®, and Peter W. O'Hearn -2

! Microsoft Research
? Queen Mary, University of London

Abstract. We describe a new program termination analysis designed to
handle imperative programs whose termination depends on the mutation
of the program’s heap. We first describe how an abstract interpretation
can be used to construct a finite number of relations which, if each is
well-founded, implies termination. We then give an abstract interpreta-
tion based on separation logic formuls which tracks the depths of pieces
of heaps. Finally, we combine these two techniques to produce an ag-
tomatic termination prover. We show that the analysis is able to prove
the termination of loops extracted from Windows deviee drivers that
eould not be proved terminating before by other means; we also discuss
a previously unknown bug found with the analysis.

1 Introduction

Consider the code fragment in Fig. 1, which comes from the source code of a
Windows device drver. Does this loop guarantee termination? It's supposed to:
failure of this loop to terminate would have catastrophic effects on the stahility
and responsiveness of the computer. Why wonld it be a problem if this loop didn't
terminate? First of all, the deviee that this code is managing would cesse to
function. Secondly, due to the fact that this code exeentes at kernel-level priority,
non-termination would cause it to starve other threads running on the system.
Note that we cannot simply kill the thread, as it can be holding kernel locks and
modifying kemel-level dats-structures—foreibly killing the thread would leave
the operating system in an inconsistent state. Furthermore, if the loop hangs,
the machine might not actually crash * Instead, the thread will likely just hang
until the user resets the machine. This means that the bug cannot be diagnosed
using post-crash analysis tools.

This example highlights the importance of termination in systems level code:
in order to improve the responsiveness and stability of the operating system it
is vital that we can sutomatically check the termination of loops like this one.
In this case, in order to prove the termination of the loop, we need to show the
following conditions:

1. DeviceExrtension->Readfuens.Flink is & pointer to & cirenlar list of ele-
ments (via the Flink field).

3 Although hanging kernel-threads can trigger other bugs within the operating system.

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|

Microsoft Ressarch Maw-Planck-Instimr fitr Informaril Miax-Planck-Ty
bycooki@microsoft.com podelski@mpi-sb.mpg.de

rybaliEn

andrey.ryl

Variance Analyses From Invariance Analyses

Joch Berdine Aziem Chawdhary Byron Cook
Microsoft Research Cueen Mary, Universzity of London Mirrosoft Ressarch
Jib@microsoft.com arlemidics gmul_ac.uk bycook@microsoft.com

Dimo Distefano Peter O"Heamn

Crueen Mary, University of London
ddino@des.qmul.ac.uk

Abstract

An Ivanance asserion for a program lecation £ is 2 statement that
always bolds at f during execurtion of the program. Program mmwari-
ance analyses infer imariance assertions that can be usefiil when
trying te prove safery properdes. We nse the term varimce arser-
fion to mean a satement that holds between any smte at £ and any
previows sate that was alse at ¢. This paper is concemed with the
development of analyses for variance assertions and ther applica-
tion fo proving emunaton and lvensss properties. We describe
a method of consmucting program vanance analyses fom mwar-
ance analyses. If we change the underlying invariance analysis, we
et a different variance analysis. We describe several applicadons
of the method mchiding variance amalyses using linear arithmetic
and shape amalysts. Using experimental results we demonstrate that
thess varance apalyses give mse to a new breed of termunafion
provers which are competitive with and sometimes better than to-
day’s stafte-of-the-arm tenmination provers.

Cotegories and Subject Descripiors D24 [Sothware Ensineer-
ing]: Sofrware Program Verification; F.3.1 [Logicr and Meanings
af Programs]: Specifying and Verifying and Feasoning about Pro-
ERms

General Terms \erification, Beliability, Lansoages
Eeywords Formal Venification, Sofware Model Chedldng, Pro-
eram Analysis, Livenass, Termination

1. Imtroduction

An imvarignoe analysis takes in a program as ingut and infers a set
of possibly disjunciive Svanance assertions (oo, imariants) that
is mdexed by program locations. Each location ¢ in the program
has an imvaniant that always belds during any execution at £. These
iovariants can serve many purposes. They might be used directly
to prove safety properties of programs. Or they might be used in-
directly, for exampls, to 2id the construction of abstract TAnsition
relations during symbolic seftware model checking [29]. Ifa de-
sired safety property is not directly provable from a given imvariant,

Crueen Mary, University of London
oheami@dcs gmul_ac uk

the user {or algorithm calling the invariance analysis) might try to
refine the abstraction. For example, if the el is based on abstract
interpretation they may choose to improve the absraction by delay-
ing the widening operation [1£], using dymamic partitioning [33],
emploving a different abstract domain, etc

The amm of this paper is to develop an analnguus sat of tols
for program termination and livensss: we inroduce a class of ols
called variance gnaiyzer which infer asserdons, called vaviance
azzertions, that hold bemwesn amy state at a locarion ¢ and amy
previous state that was also at location £. Mot that a single variance
aszention may itself be a disjunction. We presant a gensric method
of consmucing varance analyses fom owarance analyses. For

each mvaniance analysis, we can construct what we call its mduced

variance iy

This paper also ntraduces a condition on vanance asseTtons
called the iocal rermmamon predicars. In this work, we show bow
the variance assertons inferred durins our analysis can be wsed to
establish local ermination predicates. If this predicate can be es-
tablished for each vanance assemion inferred for a program. whale
Droeram termmarion bas been proved: the comecmess of this step
relies on a result from [37] on digunctively weil unded over-
approximarions. Analozously to iovariance anatysis, even if the in-
duced vanance analysis fails to prove whole program remminaden
it cam still produce usefol mformation. If the predicate can be estab-
lished onty for some subset of the vanance assertions, this indaces
a different liveness property that holds of the program. Morsgver,
the mformation inferred can be used by other termination provers
basad on disfunctive well-foundedness. such as TermimaToR [14].
If the underlying invariance amalysis is based on absiract mierpre-
tation, the user or alzorthm could use the same abstraction refine-
ment techniques that are available for imarance anabyses.

In fhis paper we ihstate the utility of our approach with three
induced vanance analyses. We comnstmact a vanance amalysis for
arithmetic prozrams based on the Octazon abstmact domain [34].
The memem]fsls used as imput to wralgumtmnmmpnsed
afa standard analysis based on Octazon. and a post-analysis phase
that recovers soms disjumctive i gives ris= to a fast
and yet surprisingly acourate termination prover. We similariy con-
strct an induced variance anakysis bassd on the domain of Polyhe-
dra [23]. Finally, we show that an indnced variance analysis based
on the separation domain [24] is an Improvemsnt on a fermination
prover that was recently described in tha literatore [3]. These thres

Mutomatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook®, Dino Distefano®, and Peter W. O'Hearn -2

! Microsoft Research
? Queen Mary, University of London

Abstract. We describe a new program termination analysis designed to
handle imperative programs whose termination depends on the mutation
of the program’s heap. We first describe how an abstract interpretation
can be used to construct a finite number of relations which, if each is
well-founded, implies termination. We then give an abstract interpreta-
tion based on separation logic formuls which tracks the depths of pieces
of heaps. Finally, we combine these two techniques to produce an ag-
tomatic termination prover. We show that the analysis is able to prove
the termination of loops extracted from Windows deviee drivers that
eould not be proved terminating before by other means; we also discuss
a previously unknown bug found with the analysis.

I Introduction

[Consider the code fragment in Fig. 1, which comes from the source code of a
Vindows deviee driver. Does this loop guarantee termination? It's supposed to:
ailure of this loop to terminate would have catastrophie effects on the stability
hnd responsiveness of the computer. Why would it be a problerm if this loop didn't
erminate? First of all, the deviee that this code s managing would cesse to
unction. Secondly, due to the fact that this code exeentes at kernel-level priority,
won-termination would cause it to starve other thresds running on the system.
Vote that we cannot simply kill the thread, as it ean be holding kernel locks and
modifving kemel-level dats-structures—foreibly killing the thread would leave
he operating system in an inconsistent state. Furthemmore, if the loop hangs,
he machine might not actually crash.? Instesd, the thread will likely just hang
mtil the user resets the machine. This means that the bug cannot be diagnosed
wsing post-crash analysis tools.

This example highlights the importance of termination in systems level code:
n order to improve the responsiveness and stability of the operating system it
s vital that we can automatically check the termination of loops like this one.
n this case, in order to prove the termination of the loop, we need to show the
ollowing conditions:

1. DeviceExrtension->Readfuens.Flink is & pointer to & cirenlar list of ele-
ments (via the Flink field).

4 Although hanging kernel-threads can trigger other bugs within the operating system.

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|

Microsoft Ressarch Maw-Planck-Instimr fitr Informaril Miax-Planck-Ty
bycooki@microsoft.com podelski@mpi-sb.mpg.de

rybaliEn

andrey.ryl

Variance Analyses From Invariance Analyses

! Microsoft. Research

Mutomatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook!, Dino Distefanc?, and Peter W. O'Hearn

? Queen Mary, University of London

1,2

Joch Berdine Aziem Chawdhary Byron Cook
Microsoft Research Cueen Mary, Universzity of London Mirrosoft Ressarch
Jib@microsoft.com arlemidics gmul_ac.uk bycook@microsoft.com

Dimo Distefano Peter O"Heamn

Crueen Mary, University of London
ddino@des.qmul.ac.uk

Abstract

An Ivanance asserion for a program lecation £ is 2 statement that
always holds at £ during execation of the program. Program mwari-
ance analyses infer imariance assertions that can be usefiil when
trying te prove safery properdes. We nse the term varimce arser-
rign 10 mean a satement that bolds berween any sate at £ and any
previows sate that was alse at ¢. This paper is concemed with the
development of analyses for vanance asserfion: and ther applica-
tion fo proving emunaton and lvensss properties. We describe
a method of consmucting program vanance analyses fom mwar-
ance analyses. If we change the underlying invariance analysis, we
et a different variance analysis. We describe several applicadons
of the method mchiding variance amalyses using linear arithmetic
and shape amalysts. Using experimental results we demonstrate that
thess varance apalyses give mse to a new breed of termunafion
provers which are competitive with and sometimes better than to-
day’s stafte-of-the-arm tenmination provers.

Cotegories and Subject Descripiors D24 [Sothware Ensineer-
ing]: Sofrware Program Verification; F.3.1 [Logicr and Meanings
af Programs]: Specifying and Verifying and Feasoning about Pro-
ERms

General Terms \erification, Beliability, Lansoages

Eeywords Formal Venification, Sofware Model Chedldng, Pro-
eram Analysis, Livenass, Termination

1. Imtroduction

An imvarignoe analysis takes in a program as ingut and infers a set
of possibly disjunciive Svanance assertions (oo, imariants) that
is mdexed by program locations. Each location ¢ in the program
has an imvaniant that always belds during any execution at £. These
iovariants can serve many purposes. They might be used directly
to prove safety properties of programs. Or they might be used in-

directly, for exampls, to 2id the construction of abstract TAnsition
relations during symbolic seftware model checking [29]. Ifa de-
sired safety property is not directly provable from a given imvariant,

Crueen Mary, University of London
oheami@dcs gmul_ac uk

the user {or algorithm calling the inarnance analysis) mif
refine the abstraction. For example, if the 10l is based af
interpretation they may choose to improve the absraction
ing the widening eperation [1£], using dymamic partitiod
emploving a different abstract domain, etc.

The aimm of this paper iz to develop an analogous sel
for program termination and liveness: we inrodoce a clas
called varignce analyer which infer asserdons, called
azsertions, that hold bemwesn amy state at a locartion ¢
previous state that was also at location £. Mot that a singld
aszention may itself be a disjunction. We presant a generif
of constmucng variance apalysss fom owarance anal
each mvaniance analysis, we can construct what we call it
variance iy

This paper also nreduces a conditon on vanance 3
called the iocal rermmamon predicars. In this work, we 5]
the variance assertons inferred durins our analysis can b
establish local ermination predicates. If this predicate o
tablished for each vanance assemion inferred for a progry
DroEram termmarion bas been proved: the comecmess o
relies on a result from [37] on digiunctively well fbung
aeproximarions. Analezously to invariance anabysis, even)
duced vanance analysis fails to prove whole prozram e
it cam still produce usefol mformation. If the predicate can
lished onty for some subset of the vanance assertons, thi
a different liveness property that holds of the program. N
ihe information inferred can be used by other terminatiof
based on disiunctive well-foundedness, such as TERMINA
If the underlying invariance analysis is based on absmact
tation, the user or alzorthm conld use the same abstractig
ment techniques that are available for imarance anabyses

In this paper we hismate the uiility of our appreach o
induced vanance analyses. We comstnact a vanance ang
arithmetic programs based on the Octazon abstmact dom
The Ln\mmem]fsls used as impat to our alzormthm is o
of a standard analyzis based on Octagon. and a post-analy
that recovers soms disjumctive information. This gives ris
and yet surprisingly accurate termination prover. We simil
stract an induced vanance analysis bazed on the domam o
dra [23]. Fimally, we show that an indoced variance analy]
on the separation domain [24] is an @ e on A {8

! HpTe:
orover that was recenthy described in the literatore [3]. TH

Proving That Programs Eventually Do Something Good

Byron Cook
Microsoft Research
by cook@microsoft com

Andrey Rybalchenko

EPFL and MPI-Saarbricken
rybal@mpi-sb.mpg.de

Abstract

In recent years we have seen great progress made in the area of au-
tomatic source-level static analysis tools. However, most of today’s
program verification teols are limited to properties that guarantee
the absence of bad events (safety properfies). Until now no for-
mal software analysis tool has provided fully automatic support for
proving properties that ensure that good events eventually happen
(liveness properties). In this paper we present such a tool, which
handles liveness properties of large systems written in C. Liveness
properties are described in an extension of the specification lan-
guage used in the SDV system. We have used the tool to automat-
ically prove cnitical liveness properties of Windows device drivers
and found several previously unknown liveness bugs

Alexey Gotsman
University of Cambridge
Alexey Gotsman@cl cam ac uk

Andreas Podelskn
University of Freiburg
podelski@informatik uni-freiburg de

Moshe Y. Vardi
Rice University
vardi@cs.rice.edu

Windows kemel APIs that acquire resources and APTs that release
Tesources. For example:

A device driver should never call KeReleaseSpinlock
unless it has already called KeAcquireSpinlock.

This is a safety property for the reason that any counterexample
to the property will be a finite execution through the device dover
code. We can think of safety properties as guaranteeing that speci-
fied bad events will not happen (i.e. calling KeReleaseSpinlock
before calling KeAcquireSpinlock). Note that SDV cannot check
the equally important related liveness property:

If a driver calls KeAcquireSpinlock then it must eventu-
ally make a call to KeReleaseSpinlock.

Caregories and Subject Descriptors D24 [Software Eng
ing]: Software/Program Verification; F.3.1 [Logics and Meﬂmngs
of Programs]: Specifymng and Venfying and Reasoning about Pro-
grams

General Terms Verification, Reliability, Languages

Keywords Formal Venfication, Software Model Checking, Live-
ness, Termination

1. Infroduction

As computer systems become ubiquitous, expectations of system
dependability are rising. To address the need for improved software
quality, practitioners are now beginning to use static analysis and
automatic formal verification tools However, most of software
wverification tools are cumrently limited to safeqy properties [2, 3]
(see Section 5 for discussion). No software analysis tool offers
fully automatic scalable support for the remaining set of properties:
liveness properties.

Ac ple to this property may not be finite—thus making
it a liveness property. More precisely, a counterexample to the prop-
erty is a program trace in which KefcquireSpinlockis called but
it is mot followed by a call to KeReleaseSpinlock This trace may
be finite (reaching term.].natmn) or infinite. We can think of liveness
properties as ensuring that certain good things will eventually hap-
pen (e that KeReleaseSpinlock will eventually be called in the
case that a call to KeAcquireSpinlock occurs).

Liveness properties are much harder to prove than safety prop-
erties. Consider, for example, a sequence of calls to functions:
“£(3; g(); h0;7. Itis easy to prove that the function f is al-
ways called before h: in this case we need only to look at the struc-
ture of the control-flow graph. It is much harder to prove that b is
eventually called after £: we first have to prove the termination of
g In fact, in many cases, we must prove several safety properties in
order to prove a single liveness property. Unfortunately, to practi-
tioners liveness is as important as safety. As one co-author leamed
while spending two years with the Windows kernel team:

Termination Proofs for Systems Code *

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Andreas Podelski Andre|

Maw-Planck-Instimr fitr Informaril Miax-Planck-Ty
podelski@mpi-sb.mpg.de

rybaliEn

andrey.ryl

Variance Analyses From Invariance Analyses

! Microsoft. Research

Mutomatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook®, Dino Distefanc®, and Peter W. Q'Hearn '

? Queen Mary, University of London

2

Joch Berdine Aziem Chawdhary Byron Cook
Microsoft Research Cueen Mary, Universzity of London Mirrosoft Ressarch
Jb@microsoft.com arlemidios.gmul_ac.uk bycook@miorosoft.com
Proving Termination by Divergence®
Domagoj Babi¢, Alan J. Hu, Zvonimir Rakamaric Byron Cook
Department of Computer Science, University of British Columbia Microsoft Research

{babic,ajh,zrakamar}@cs.ubc.ca

Abstract

We describe a simple and efficient algorithm for proving
the termination of a class of loops with nonlinear assign-
ments to variables. The method is based on divergence test-
ing for each variable in the cone-of-influence of the loop’s
termination condition. The analysis allows us to automati-
cally prove the termination of loops that cannot be handled
using previous techniques. The paper closes with experi-
mental results using short examples drawn from imdustrial
code.

1 Introduction

From the very beginnings of the formal analysis of soft-
ware [12, 14], the task of formally verifying the correctness
of a program has been decomposed into the tasks of prov-
ing correctness jf the program terminates, and separately
proving termination. Deciding termination. in general. is
obviously undecidable, but thanks to considerable research
progress over the vears (e.g.. [9. 20, 5. 23, 3, 6. 13, 4. 16.
18,21, 8, 7]). a variety of techniques and heuristics can now
automatically prove termination of many loops that occur in
practice.

bycook@microsoft.com

while (x < vy} {
X = pow(x,3) - 2spow(x,2) - X + 2;
}
}

This paper outlines a new proof procedure for cases of this
sort. Using combination techniques described in [1] and [2].
our intention for this proposed procedure is to be combined
with the existing termination analysis techniques—making
future termination provers a little less temperamental.

The proposed technique is based on divergence testing:
the transition system of each program variable is indepen-
dently examined for divergence to plus- or minus-infinity.
The approach is limited to loops containing only polyno-
muial update expressions with finite degree, allowmg ighly
efficient computation of certain regions that guarantee di-
vergence. Like all automated termination provers, the tech-
nique can't handle all loops. However. it is very fast, it
is sound, and it can prove termination in cases that previ-
ously could not be handled or could be handled only by a
much more expensive analysis. Our hope is that. in prac-
tice, this restricted analysis (and some extensions) will han-
dle the termination of the majority of loops in which a non-
linear analysis is required. In our investigations, we have
found that this simple type of nonlinear loop appears in in-
dustrial numerical computations and nonlinear digital fil-

Proving That Programs Eventually Do Something Good

Byron Cook

Microsoft Research
by cook@microsoft com

Andrey Rybalchenko

EPFL and MPI-Saarbricken
rybal@mpi-sb.mpg.de

Abstract

In recent years we have seen great progress made in the area of au-
tomatic source-level static analysis tools. However, most of today’s
program verification teols are limited to properties that guarantee
the absence of bad events (safety properfies). Until now no for-
mal software analysis tool has provided fully automatic support for
proving properties that ensure that good events eventually happen
(liveness properties). In this paper we present such a tool, which
handles liveness properties of large systems written in C. Liveness
properties are described in an extension of the specification lan-
guage used in the SDV system. We have used the tool to automat-
ically prove cnitical liveness properties of Windows device drivers
and found several previously unknown liveness bugs

Categories and Subject Descriptors D.2.4 [Software Engi

Alexey Gotsman
University of Cambridge
Alexey Gotsman@cl cam ac uk

Andreas Podelskn
University of Freiburg
podelski@informatik uni-freiburg de

Moshe Y. Vardi
Rice University
vardi@cs.rice.edu

Windows kemel APIs that acquire resources and APTs that release
Tesources. For example:

A device driver should never call KeReleaseSpinlock
unless it has already called KeAcquireSpinlock.

This is a safety property for the reason that any counterexample
to the property will be a finite execution through the device dover
code. We can think of safety properties as guaranteeing that speci-
fied bad events will not happen (i.e. calling KeReleaseSpinlock
before calling KeAcquireSpinlock). Note that SDV cannot check
the equally important related liveness property:

If a driver calls KeAcquireSpinlock then it must eventu-
ally make a call to KeReleaseSpinlock.

ing]: Software/Program Verification; F.3.1 [Logics and Mgﬂrjings
of Programs]: Specifymng and Venfying and Reasoning about Pro-
grams

General Terms Verification, Reliability, Languages

Keywords Formal Venfication, Software Model Checking, Live-
ness, Termination

1. Infroduction

As computer systems become ubiquitous, expectations of system
dependability are rising. To address the need for improved software
quality, practitioners are now beginning to use static analysis and
automatic formal verification tools However, most of software
wverification tools are cumrently limited to safeqy properties [2, 3]
(see Section 5 for discussion). No software analysis tool offers
fully automatic scalable support for the remaining set of properties:
liveness properties.

Ac ample to this property may not be finite—thus making
it a liveness property. More precisely, a counterexample to the prop-
erty is a program trace in which KefcquireSpinlockis called but
it is not followed by a call to KeReleaseSpinlock This trace may
be finite (reaching termination) or infinite. We can think of liveness
properties as ensuring that certain good things will eventually hap-
pen (e that KeReleaseSpinlock will eventually be called in the
case that a call to KeAcquireSpinlock occurs).

Liveness properties are much harder to prove than safety prop-
erties. Consider, for example, a sequence of calls to functions:
“£(3; g(); h0;7. Itis easy to prove that the function f is al-
ways called before h: in this case we need only to look at the struc-
ture of the control-flow graph. It is much harder to prove that b is
eventually called after £: we first have to prove the termination of
g In fact, in many cases, we must prove several safety properties in
order to prove a single liveness property. Unfortunately, to practi-
tioners liveness is as important as safety. As one co-author leamed
while spending two years with the Windows kernel team:

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|

Microsoft Ressarch Niax-Planck-Instint fir Informank Niam-Planck-Ty
bycooki@microsoft. com podelski@@mpi-sb.mpg.de

rybaliEn

andrey.ryl

Mutomatic termination proofs for programs with
shape-shifting heaps

- % v Josh Berdine!, By Cook!, Dino Distefano?®, i Peter W_ O'Hearn!-2
Variance Analyses From Invariance Analyses oy Bepdmer, Byron ook, Hino Hhstelenor, and Heter wart

! Microsoft Research
? Queen Mary, University of London

Joch Berdine Aziem Chawdhary Byron Cook
Microsoft Research Cueen Mary, Universzity of London Mirrosoft Ressarch
Jb@microsoft.com arlemidios.gmul_ac.uk bycook@miorosoft.com

Proving That Programs Eventually Do Something Good

Andreas Podelskn
University of Freiburg
podelski@informatik uni-freiburg de

Alexey Gotsman
University of Cambridge
Alexey Gotsman@cl cam ac uk

Byron Cook
Microsoft Research
by cook@microsoft com
Proving Termination by Divergence®
Andrey Rybalchenko
EPFL and MPI-Saarbricken

Moshe Y. Vardi

Rice University

Domagoj Babi¢, Alan J. Hu, vardi@cs.rice.edu
Department of Computer Science, Un
{babic,ajh,zrakamar}
. N R Windows kemel APIs that acquire resources and APTs that release
Abstract Proving Thread Termination leaofau. resources. For example:
fioday’s A device driver should never call KeReleaseSpinlock
TWe describe a simple and efficient algorithm fo mnrjnffﬁ unless it has already called KeAcquireSpinlock.
the termination of a class of loops with nonlined| Byron Cook Andreas Podelski Andrey Rybalchenko oport for This is a safety property for the reason that any counterexarple
ments to variables. The method is based on divergd Microsoft Research University of Freiburg EPFL and MPI ; happen to dLhe \I{mpemnh‘l‘njf bfe a ii‘imte exe:;;ncm through tthe_ de\glct: drver
3 . i o . . N . 1. which code. We can of safety properties as guarantesing that speci-
;‘ng ﬁ_}r e_afh var:_rﬁ_r(e m}_;:ae cor:el-qf n}fyeince af fi bycook@microsoft.com podelski@mpi-sb.mpg.de rybal@mpi-sh.mpg.de e fied bad events will not happen (i.¢.calling KeReleaseSpinlock
ermination condition. The analysis allows us to tion lan- before calling KeAcquireSpinlock). Note that SDV cannot check
cally prove the termination of loops that cannot b utomat- the equally important related liveness property:
using previous techniques. The paper closes wii e drivers If a driver calls KeAcquireSpinlock then it must eventu-
mental results using short examples drawn from il Abstract ally make a call to KeRaleasaSpinlock
code. Abstrac KehequireSpinLock (Ext -»SpinLock, &irgl); A 1 ; i
. i = . Vi J: c ample to this property may not be finite—thus making
Concurrent ng"‘f“&f e oﬁainhies?"d such that certEam ﬁml:- [feanings it a liveness property. More precisely, a counterexample to the prop-
E?iic‘fiiﬁl'fﬁa}?he I;o:;:imm ;p;:nirsfztmaéz i Cloi[rp = DegueusReadByFileObject (Ext, FileObject); outPro- ertyis aprogram trace in which KeAcquiraSpinlock is called but
g systemms, R = . seRt it is not followed by a call to KeReleaseSpinlock This tra y
I Tntroduction e chts e Untratey o oo s o . LEL AL T ol by acll el ssespalock Ths e my
i v i i i irp-=IoStatus.Status = X : b : 5 1
E:fl-:goonfmﬁ:mﬁs;ﬁc‘g:ﬂ;fﬂzdﬁf Zo;‘ﬁfmem_[#e irp-=IoStatus.Information = 0; pfmp(e_rhesh a: ;n;m;ng thsg c_er;am lzeooi?lth.mgs wﬁu ;‘-mhﬁ:g}j hag
erv besinmi . . i : : - Live- pen (e that KeReleaseSpinlock will eventually be called in t
From the very beginnings of the fo_m_]_al analysil procedure’s scalability is achieved r]m:_mgh the use of environment InsertTaillist (&listHead,LinkPtr(irp)); Pe case that a call to KeAcquireSpinlock oceurs).
ware [12, 14], the task of formally verifying the col models that abstract away the surrounding threads. The procedure’s } Liveness properties are much harder to prove than safety prop-
of a program has been decomposed into the tasks accuracy is due to a novel method of incrementally constructing } while {irp != NULL); erties. Consider, for example, a sequence of calls to functions:
-) 3 environment abstractions. Our method finds the conditions that a “£(); g(); h);" It is easy to prove that the function £ is al-
Ing correctness '!1)4‘ the program terminates, and s thread ires of its env t in order to blish terminati KeReleaseSpinLock (&Ext -=SpinLock, irgl); - ot g e s P’“’ -

- P 1 A : q] = o 1T f system ways called before h: in this case we need only to look at the struc-
proving termination. Deciding termination, in g{ by looking at the conditions necessary to prove that certain paths : fure of the control-flow graph. It is much harder to prove that h is
obviously undecidable. but thanks fo considerable] through the thread represent well-founded relations if executed in Figure 1. Code fragment from a keyboard device driver whose ter- ysis and eventually called after £: we first have to prove the termination of
progress over the years (e.g.. [0, 20, 5. 23, 3, 6. | f-""_‘m""tﬁffh@ui’mﬂ threads. Thlﬂ paper 51"95; dfscnl’tmiu‘;f ex- mination partially depends on the correct behavior of other threads software g In fact, in many cases, we must prove several safety properties in

- i . perimental results using an implementation of our procedure on from the driver. i arder to ve 2 sinele Liv erty. Unfortuately. to fi-
18,21, 3 7). a variety Of.IEC : ues and heuristicd Windows device drivers, and a description of a previously unknown zi [oﬁ‘erg tioners IiE:?e:sai:];g " ;:;Esagr:;fet\; As one cu-ailz.‘l::or lcl:;i'litd
automatically prove termination of many loops thaf bug found with the tool. o ! 45 Lmporta ey S ¢

. g operties: while spending two years with the Windows kernel team:
pra(‘llce. Catammirar amwd Cruhsast Thacmesnitaeces T3 3 A [Tafuaamel © afarara I.’le- 15 ? d?mon.su:au.on o.f.thls pro})_le}:!.l. T]llS _100_p. “-_thh.co.mes . N

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|

Microsoft Ressarch Niax-Planck-Instint fir Informank Niam-Planck-Ty
bycooki@microsoft. com podelski@@mpi-sb.mpg.de

rybaliEn

andrey.ryl

Mutomatic termination proofs for programs with
shape-shifting heaps

- % v Josh Berdine!, By Cook!, Dino Distefano?®, i Peter W_ O'Hearn!-2
Variance Analyses From Invariance Analyses oy Bepdmer, Byron ook, Hino Hhstelenor, and Heter wart

! Microsoft Research
? Queen Mary, University of London

Joch Berdine Aziem Chawdhary Byron Cook
Microsoft Research Cueen Mary, Universzity of London Mirrosoft Ressarch
Jb@microsoft.com arlemidios.gmul_ac.uk bycook@miorosoft.com

Proving That Programs Eventually Do Something Good

Byron Cook Alexey Gotsman Andreas Podelsk:
Microsoft Research University of Cambridge University of Freiburg
by cook@microsoft com Alexey Gotsman@cl cam ac uk podelski@informatik uni-freiburg de

Proving Termination by Divergence®

Andrey Rybalchenko Moshe Y. Vardi
A i)) EPFL and MPI-Saarbricken Rice University
Domagoj Babi¢, Alan J. Hu, vardi@cs.rice edu

Department of Computer Science, Un
{babic,ajh,zrakamar}

Windows kemel APIs that acquire resources and APTs that release

Abstract Proving Thread Termination leaofau. resources. For example:
ftoday’s A device driver should never call KeReleaseSpinlock
We describe a simple and efficient algorithm for fuarantee unless it has already called KeAcquireSpinlock.
the termination of a class of loops with nonlinea Byron Cook Andreas
ments to variables. The method is based on divergd Microsoft Research University
ing for each variable in the cone-of-influence of t bycook@microsoft.com podelski@mg

termination condition. The analysis allows us fo
cally prove the termination of loops that cannot b
using previous techniques. The paper closes witl
mental results using short examples drawn from il
code.

1 Introduction

From the very beginnings of the formal analysi|
ware [12, 14], the task of formally verifying the col
of a program has been decomposed into the tasks
ing correctness if the program terminates, and s
proving termination. Deciding termination. in g
obviously undecidable, but thanks to considerablel
progress over the years (e.g.. [9, 20, 5. 23, 3, 6. |
18, 21. 8, 7]). a variety of techniques and heuristic
automatically prove termination of many loops tha
practice.

Abstract

Concurrent programs are often designed such that certain fune-
tions executing within crtical threads must terminate. Examples
of such cases can be found in operating systems, web servers, e-
mail clients, etc. Unforimately, no known automatic program ter-
mination prover supports a practical method of proving the termi-
nation of threads. In this paper we describe such a procedure. The
procedure’s scalability is achieved through the use of environment
models that abstract away the surrounding threads. The procedure’s
accuracy is due to a novel method of incrementally constructing
environment abstractions. Our method finds the conditions that a
thread requires of its env t in order to establish terminati
by looking at the conditions necessary to prove that certain paths
through the thread represent well-founded relations if executed in
isolation of the other threads. The paper gives a description of ex-
perimental results using an implementation of our procedure on
Windows device drivers, and a description of a previously unknown
bug found with the tool.

Crntarmnitar mwd Cruhiant Thoememntaee T3 3 A4 [Cafummal ©nfierara

Ranking Abstractions

Aziem Chawdhary', Byron Cook?, Sumit Gulwani®, Mooly Sagiv®, and
Hongseok Yang!

! Queen Mary, University of London
* Microsoft Research
Tel Aviv University

Abstract. We propose an abstract interpretation algorithm for proving that a pro-
gram terminates on all inputs. The algorithm uses a novel abstract domain which
uses ranking relations to conservatively represent relations between intermediate
program states. One of the attractive aspects of the algorithm is that it abstracts

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|

Microsoft Ressarch Niax-Planck-Instint fir Informank Niam-Planck-Ty
bycooki@microsoft. com podelski@@mpi-sb.mpg.de

rybaliEn

andrey.ryl

Mutomatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook®, Dino Distefano®, and Peter W. O'Hearn -2

Variance Analyses From Invariance Analyses
! Microsoft Research
? Queen Mary, University of London

Joch Berdine Aziem Chawdhary Byron Cook
Microsoft Research Cueen Mary, Universzity of London Mirrosoft Ressarch
Jb@microsoft.com arlemidios.gmul_ac.uk bycook@miorosoft.com

Proving That Programs Eventually Do Something Good

Byron Cook Alexey Gotsman Andreas Podelsk:
Microsoft Research University of Cambridge University of Freiburg
by cook@microsoft com Alexey Gotsman@cl cam ac uk podelski@informatik uni-freiburg de
Proving Termination by Divergence®
Andrey Rybalchenko Moshe Y. Vardi
A)) EPFL and MPI-Saarbricken Rice University
Domagoj Babi¢, Alan J. Hu, vardi@cs.rice edu
Department of Computer Science, Un
{babic,ajh,zrakamar}
Windows kemel APIs that acquire resources and APTs that release
X i Th " d T ‘mi t. rtesources. For example:
Abstract Pr oving rea crmination lea of au- - ple:
fioday’s A device driver should never call KeReleaseSpinlock
TWe describe a simple and efficient algorithm fo fuarantes unless it has already called KeAcquireSpinlock.
the termination of a class of loops with nonlinea Byron Cook Andreas
ments to variables. The method is based on divergd Microsoft Research University
inefor each variahle in the rone-0f-infl 2 0f 1 bycook@microsoft com podelski@m
e
cql
{151
my
o)
Ranking Abstractions

! Proving Conditional Termination - 1 2 Sumi 2 w3

g U ‘ Aziem Chawdhary', Byron Cook®, Sumit Gulwani, Mooly Sagiv®, and

Hongseok Yang!
W Byron Cook!, Sumit G:I.ll“’:].l]il. Tal Lev-Ami?*, 1 Queen Mary, University of London
'_Jf Andrey Rybalchenko®**, and Mooly Sagiv? 2 Microsoft Research
1n] . # Tel Aviv University
pr ' Microsoft Research
2 P .
ot Tel Aviv University
" * MPL-SWS

p Abstract. We propose an abstract interpretation algorithm for proving that a pro-
1§ gram terminates on all inputs. The algorithm uses a novel abstract domain which
au . . . uses ranking relations to conservatively represent relations between intermediate
prd Abstract. We describe a method for synthesizing reasonable underap- program states. One of the attractive aspects of the algorithm is that it abstracts

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|
Microsoft Resaarch May-Planck-Instint fitr Informarik Max-Planck-Ty
bycooki@microsoft. com podelski@@mpi-sb.mpg.de
rybaliEn
andrey.ryl
Mutomatic termination proofs for programs with
shape-shifting heaps
s . Josh Berdine!, By Cook', Dino Distefanc?®, and Peter W. 0°'Hearn -2
Variance Analyses From Invariance Analyses e, Ty e, e e, e e o
! Microsoft Research
? Queen Mary, University of London
Joch Berdine Aziem Chawdhary Byron Cook
Microsoft Research Cueen Mary, Universzity of London Mirrosoft Ressarch
Jb@microsoft.com arlemidios.gmul_ac.uk bycook@miorosoft.com

Proving That Programs Eventually Do Something Good

Byron Cook Alexey Gotsman Andreas Podelsk:
Microsoft Research University of Cambridge University of Freiburg
by cook@microsoft com Alexey Gotsman@cl cam ac uk podelski@informatik uni-freiburg de
Proving Termination by Divergence®
Andrey Rybalchenko Moshe Y. Vardi
A EPFL and MPI-Saarbricken Rice University
Domagoj Babi¢, Alan J. Hu,

vardi@cs.rice.edu

Department of Computer Science, Un
{babic,ajh,zrakamar}

. N R Windows kemel APIs that acquire resources and APTs that release
Abstract Proving Thread Termination leaofau. resources. For example:
fioday’s A device driver should never call KeReleaseSpinlock
TWe describe a simple and efficient algorithm fo fuarantes unless it has already called KeAcquireSpinlock.
the termination of a class of loops with nonlinea Byron Cook Andreas
ments to variables. The method is based on divergd Microsoft Research University
inefor each variahle in the rone-0f-infl 2 0f 1 bycook@microsoft com podelski@m
e
cal
us
it
cof
Ranking Abstractions
1 . ‘ " . .
Proving Conditional Termination Aziem Chawdhary', Byron Cook2, Sumit Guiwani?, Mooly Sagiv?, and
Hongseok Yang!
W Byron Cook!, Sumit G:I.]l“’:ll]il. Tal Lev-Ami®*,

! Queen Mary, University of London
* Microsoft Research
Tel Aviv University

Abstract. We propose an abstract interpretation algorithm for proving that a pro-
. . . . gram terminates on all inputs. The algorithm uses a novel abstract domain which
Pl‘O\fll‘lg That NOI‘I-B]OCk]l‘Ig Algor]thms DOl‘l t BlOCk uses ranking relations to conservatively represent relations between intermediate
program states. One of the attractive aspects of the algorithm is that it abstracts

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|
Microsoft Resaarch May-Planck-Instint fitr Informarik Max-Planck-Ty
bycooki@microsoft. com podelski@@mpi-sb.mpg.de
rybaliEn
andrey.ryl
Mutomatic termination proofs for programs with
shape-shifting heaps
s . Josh Berdine!, By Cook', Dino Distefanc?®, and Peter W. 0°'Hearn -2
Variance Analyses From Invariance Analyses e, Ty e, e e, e e o
! Microsoft Research
? Queen Mary, University of London
Joch Berdine Aziem Chawdhary Byron Cook
Microsoft Research Cueen Mary, Universzity of London Mirrosoft Ressarch
Jb@microsoft.com arlemidios.gmul_ac.uk bycook@miorosoft.com

Proving That Programs Eventually Do Something Good

Byron Cook Alexey Gotsman Andreas Podelsk:
Microsoft Research University of Cambridge University of Freiburg
by cook@microsoft com Alexey Gotsman@cl cam ac uk podelski@informatik uni-freiburg de
Proving Termination by Divergence®
Andrey Rybalchenko Moshe Y. Vardi
A)) EPFL and MPI-Saarbricken Rice University
Domagoj Babi¢, Alan J. Hu, vardi@cs.rice edu
Department of Computer Science, Un
{babic,ajh,zrakamar}
. N R Windows kemel APIs that acquire resources and APTs that release
Abstract Proving Thread Termination leaofau. resources. For example:
fioday’s A device driver should never call KeReleaseSpinlock
TWe describe a simple and efficient algorithm fo fuarantes unless it has already called KeAcquireSpinlock.
the termination of a class of loops with nonlinea Byron Cook Andreas
ments to variables. The method is based on divergd Microsoft Research University
inefor each variahle in the rone-0f-infl 2 0f 1 bycook@microsoft com podelski@m
e
cal
us
it
cof
Ranking Abstractions
! Proving Conditional Terminati - it Gulwani? -
roving Conditional lermination Aziem Chawdhary', Byron Cook2, Sumit Guiwani?, Mooly Sagiv?, and
I L.l
W Byron Cook!, Sumit Gulwani', Tal Lev-Ami®+*, ! Queen |
: Summarization For Termination: No F
Byron Cook - Andreas Podelski - Andrey
Abstract. We propose an abstr: Ryhalchenko
. . . . gram terminates on all inputs. T|
Proving That Non-Blocking Algorithms Don’t Block uses ranking relations to conser|
program states. One of the attr.

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|
Microsoft Ressarch Maw-Planck-Instimr fitr Informaril Miax-Planck-Ty
bycooki@microsoft.com podelski@mpi-sb.mpg.de
Mutomatic termination proofs for programs with
shape-shifting heaps
Temporal property veritication Josh Berdine?, Byron Cook!, Dino Distefano®, and Peter W. O'Hearn !
as a program analysis task ! Micrasoft Research
? Queen Mary, University of London
Byron Cook!, Eric Koskinen?, and Moshe Vardi®
! Microsoft Research and Queen Mary University of London
2 University of Cambridge

* Rice University

. .

" o "
Abstract, W dessibc radicticnfon ttaparal peopecty vacfction Proving That Programs Eventually Do Something Good
to a program analysis problem. We produce an encoding which, with
the use of recursion and nondeterminism, enables off-the-shelf program
analysis tooks to naturally perform the reasoning necessary for proving

- :) = ; Byron Cook Alexey Gotsman Andreas Podelsk:
temporal properties (e.g. backtracking, eventuality checking, tree coun-
terexamples for branching-time properties, abstraction refinement, atc.). Microsoft Research University of Cambridge University of Freiburg
Using examples drawn from the PostgreSQL database server, Apache by cook@microsoft com Alexey Gotsman@cl cam ac uk podelski@informatik uni-freiburg de
web server, and Windows OS kernel, we demonstrate the practical via-
bility of our work.
Andrey Rybalchenko Moshe Y. Vardi
1 Imtroduction EPFL and MPI-Saarbricken Rice University
vardi@cs.rice.edu
Dep ‘We describe a method of proving temporal properties of (possibly infinite-state)
transition systems. We ohserve that, with subtle use of recursion and nondeter-

minism, temporal reasoning can be encoded as a program analysis problem. All
of the tasks necessary for ressoning about temporal properties |e.g. abstraction

search, backtracking, eventuality checking, tree counterexamples for branching- Windows kemel APIs that acquire resources and APTs that release

time, ete.) are then naturally performed by off-the-shelf program analysis tools. ltion lea of au- Tesources. For example:
j[_'lslmﬁ known safety analysis tools (e.g. [2, 5, .61 j] together .“'iLT techniques £ today’s A device driver should never call KeReleaseSpinlock
. or discovering termination arguments (e g. , 17|}, we can implement tem- + - : .
e des poral logic provers whase power is effectively limited only by the power of the farantee tnless it has abeady called KehcquireSpinlock

the termi; underlying tools,
ments to Based on our method, we have developed a prototype tool for proving tem-
ine for e poral properties of C programs and applied it to problems from the PostgreSQL L
fe database server, the Apache web server, and the Windows 08 kernel. Our tech-
cal nique leads to speedups by orders of magnitude for the universal fragment of

CTL (VCTL). Similar performance improvements result when proving LTL with
s our technique in combination with a recently described iterative symbaolic deter-
me minization procedure [13].
cof

f._-i'mitdiiam. While in print_:i[:lc' our technique works for all classes 0[_ transi- Rﬂnkillg Abstractions

tion swstems, our approach is currently geared to support only sequential non-

recursive infinite-state programs as its input. Furthermore, we currently only
1 support the universal fragments of temporal logics (i.e. YOTL rather than CTL). Aziem Chawdhary’ Byron Cook?. Sumit Gulwani2 Mooly Sagi\-‘3 and

L 1 %7 1
h
W 1 Queen)
: Summarization For Termination: No F

Byron Cook - Andreas Podelski - Andrey
Abstract. We propose an abstr: Ryhalchenko

Proving That Non-Blocking Algorithms Don’t Block e e

uses ranking relations to conser)
program states. One of the attr.

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|
Microsoft Ressarch Maw-Planck-Instimr fitr Informaril Miax-Planck-Ty
bycooki@microsoft.com podelski@mpi-sb.mpg.de

Temporal property veritication
as a program analysis task

Byron Cook!, Eric Koskinen?, and Moshe Vardi®

! Microsoft Research and Queen Mary University of London
2 University of Cambridge
* Rice University

Abstract. We describe a reduction from temporal property verification
to a program analysis problem. We produce an encoding which, with
the use of recursion and nondeterminism, enables off-the-shelf program
analysis tooks to naturally perform the reasoning necessary for proving

Making Prophecies with Decision Predicates

Byron Cook

Microsoft Research &
Queen Mary, University of London
bycook@microsoft.com

Abstract

We describe a new algorithm for proving temporsl properties ex-
pressed in LTL of infinite-state programs. Our approach takes ad-
vantage of the fact that ITL properties can often be proved more
efficiently using technigues wsually associated with the branching-
time logic CTL than they can with native LTL algorithms. The
caveat is that, in certzsin instances, nondeterminism in the sys-
tem’s fransition relation can cause CTL methods to report coun-
terexamples that are spurious with respect to the coriginal LTL
formmla. To address this problem we describe an algorithm that,
as it attempts to apply CTL proof methods, finds and then re-
moves problematic nondeterminism 'ma am mh’ms on Lhe po—

Eric Koskinen
University of Cambridge
ejk39@cam.ac.uk

cousins [3, 32, 4—1]'. Properties expressed in CTL without fair-
mess cam be proved in a purely syntax-directed manner nsing state-
based reasoning techniques, whereas LTL requires desper resson-
ing about whole sets of races and the subtle relationships between
families of them

In this paper we aim 0 make sn ITL prover for infinite-state
programs with performance closer to what one would expect from
a CTL prover. We use the observation that ¥CTL without faimess
can be a useful abstraction of LTL. The problem with this strategy
is that the pieces don't always fit together: there are cazes when,
due to some instances of nondeterminizm in the ransition system,
WCTL slone is not powerful encugh to prove an LTL property.

In these cases our LTL prover works around the problem using

tentially spurious 1
temporal properties (e.g. backtracking, eventuality checking, tree coun- is msgm u;lng decision predicares, and removed nsmg a something we call decision predicares, which are used to character- ket
terexamples for branching-time properties, abstraction refinement, atc.). perial, symbolic determinization procedurs which inmoduces new ize and treat such instances of nondeterminism. A decision predi- rs
Using examples drawn from the PostgreSQL database server, Apache prophecy variables to predict the fumre outcome of these choices. cate is reprasented as a pair of first-order logic formmla (a,b). eiburg de

web server, and Windows OS kernel, we demonstrate the practical via-
bility of our work.

1 Introduction

We demonstrate—using examples tsken from the PostgreSQL
database server, Apache web server, and Windows OS5 kemel—
that our method can yield enonmous performance improvements
in comparison to Enown tools, allowing us to sutomatically prove
properties of programs where we could not prove them before.

Categories and Subjecy Descriprors D24 [Software Engineer-

where the formmla o defines the decision predicate’s presupposi-
tion (ie when the decision is made), and b characterizes the binary
choice made when this presuppesition holds. Any transition from
stata 5 to state 5° in the system that meets the constraint a{ =) ab{s")
is distingmished by the decision predicats (o, b) from af s) a-b{s).

We use decision predicates as the basis of a partial symbolic
determinization procedure: for each predicate we inmoduce a new

DE‘P ‘We describe a method of proving temporal properties of (possibly infinite-state) ing]: Soﬁn:m?m.;r_am \7mﬁcmon—wﬂ d:ledsu:lg C?I_'m' pcmp” M‘E‘ﬁ: 5 o M;ﬁf;nﬁ?ﬂznrm] de?‘?::_
transition systems. We ohserve that, with subtle use of recursion and nondeter- :.e;:ﬁimofs n;];s?ﬂf gwrz'::d[%z::’;;gff:nmlk?a:m i5 ables. we find that CTL pmofmeﬂmdll succesd, thus a]l:?ing s
minism, temporal reasoning can .hc encoded as a program eu.ml}'sis problem. .J\II ing and Verifying and Reasoning sbout Prozrams; F.3.2 [Logics to prove LTL properties with CTL proof techniques in cases whese
of the tasks necessary for reasoning about temporal properties (e.g. abstraction and Meaningz of Programs]: Semantics of Programming Languages— this siwategy would have previowsly failed. To synthesize the deci-
search, hacktracking, eventuality checking, tree counterexamples for branching- Program analysis “““_Pgld{*:ms we ml"-"l.'f a ﬁmﬁ:f 5‘_:"’0]“: Tm ?“;;lz‘m' < that release
i) . - - aff-the-s . ous counterexamples toga with an application o as”
tll‘l?t‘: ete) are then naLura.lly performed by 0.“ the bh.t‘“ program fa.na]_\'als ifm)]a. Gemeral Terms Verification, Theory, Relisbility 1 R
Using known safety analysis tools (e.g. [2,5,8, 24, 32|) together with techniques ‘With our new approach we can sutomatically prove properties inlock
. for discovering termination arguments (e.g. [3,6, 17]), we can implement tem- Keywords Linear temporal logic, formal verification, termination, of infinita-state programs in minutes or seconds which were in- i3
e deg poral logic provers whase power is effectively limited only by the power of the Program analysis, model checking tractable using existing tools. Examples include cods frapments -
the termi underlying tools.) drawn from (h.e__Posl;lne'SQI_ database server, the Apache web
ments to Based on our method, we have developed a prototype tool for proving tem- 1. Introduction server, and the Windows O kernel.
ine for e poral properties of C programs and applied it to problems from the PostgreSQL The common wisdom amongst users and developers of tools that Limitations. Inpractice, the applicability and performance of our
te database server, the Apache web server, and the Windows 08 kernel. Our tech- prove tempaoral properties of systems is that the linear specifica- . ls_depm_dentundlehemsnc used to choose new decision
nigue leads to speedups by orders of magnitude for the universal fragment of ton logic LTL [33] is more muuitive than CTL [10]. bar thar prop- predicates when given an abstract representation of a specific point
[=y COTL (VCTL). Simil P - -ements resalt wh ring L'TL with erties expressed in the universal fragment of CTL (¥CTL) with- in a spurious counterexample. The predicate synthesis machanism
us °TL (h ']'_ 1 a.r.pcr _Dma'_’c" Improvements r.cbu _“’ U‘_ proving S w out faimess constraints are often easier to prove than their LTL implemented in our tool is applicable primarily to infinite-state pro-
our technique in combination with a recently described iterative symbaolic deter- grams over arithmetic variables with commands that cnly contain
me minization procedure [13]. linear arithmetic. However, no matter which pradicate selection
oo mechanism is used, our predicate-based determinization stratagy is
L - — - - sound. Thus, unsound spproximations to predicate synthesis conld
Limitations. While in principle our technique works for all classes of transi- Parmission to maks diginal or hard copias of l or part of this work for perscnal o fally be used in instances where the sys considered do
tion svstems, our approach is currently geared to support only sequential non- ;:ﬁHMLmam&mﬂ?&&mw:‘?;&M 10t meet the constraints given shove. Our technique is also based
1 recursive infinite-state programs as its input. Furthermore, we currently only ca the vt pagn. To capy othaswise, t rapeblish, to post oa servers or to . — .
support the universal fragments of temporal logics (i.e. YOTL rather than CTL). e ists, requizes prior spocific parmission and/or ""‘ ! Abadi and Lampert [3] make this point using the terminclogy of “refine
POPL'II, Jamuary 26-15, 2011, Austin, Tem: ‘ment mappings” and “mace equivalence” instead of phrasing it in the con-
Copyright & 2011 ACM 978-1-4303-D450-01 1 o1 $1000 e of temwporal logics i
wg

on: No B

Byron Cook - Andreas Podelski - Andrey
Ryhalchenko

Abstract. We propose an abstr:
gram terminates on all inputs.

uses ranking relations to conse:
program states. One of the attr.

Proving That Non-Blocking Algorithms Don’t Block

Deql

e ded
the termi
ments fo |
ine_for o
e
cal
15|
md
col
1
w

Abstract. We
to & program analysis
the use of recursion and nondare
analysis tooks to naturally perform the reasoning necessary
temporal properties (e.g. backtracking, eventuality checking, tree
terexamples for branching-time properties, abstraction refinement, ate.).
Using examples drawn from the PostgreSQL database server, Apache
web server, and Windows OS kernel, we demonstrate the practical via-
bility of our work.

1 Introduction

‘We describe a method of proving temporal properties of (possibly infinite-state)
transition systems. We ohserve that, with subtle use of recursion and nondeter-
minism, temporal reasoning can be encoded as a program analysis problem. All
of the tasks necessary for ressoning about temporal properties |e.g. abstraction
search, backtracking, eventuality checking, tree counterexamples for branching-
time, ete) are then naturally performed by off-the-shelf program analysis tools.
Using known safety analysis tools (e.g. [2,5,8, 24, 32|) together with techniques
for discovering termination arguments (e.g. [3,6, 17]), we can implement tem-
poral logic provers whase power is effectively limited only by the power of the
underlying tools.

Based on our method, we have developed a prototype tool for proving tem-
poral properties of C programs and applied it to problems from the PostgreSQL
database server, the Apache web server, and the Windows 08 kernel. Our tech-
nique leads to speedups by orders of magnitude for the universal fragment of
CTL (VCTL). Similar performance improvements result when proving LTL with
our technique in combination with a recently described iterative symbaolic deter-
minization procedure [15].

Limitations. While in prineiple our technique works for all classes of transi-
tion systems, our approach is currently geared to support only sequential non-
recursive infinite-state programs as its input. Furthermore, we currently only
support the universal fragments of temporal logics (i.e. YOTL rather than CTL).

Proving That Non-Blocking Algorithms Don’t Block

e quicome of these choices.
pken from the PostgreSQL
Windows OF kernel—
ce improvemants
to sutomatically prove
prove them before.

Categories and Subjecy Descriprors D24 [Software Engineer-
ing]: SoftwareProgram Verification—DModel checking; Correct-
ness proofs; Relishility; D.4.5 [Operanng Sysems]: Reliabiling—
Verification; F3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning sbout Programs; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages—
Program analysis

General Terms Verification, Theory, Raliability

Eeywords Linear temporal logic, formal verification, termination,
program analysis, model checking

1. Imtroduction

The common wisdom amongst users and developers of tocls that
prove temporal properties of systems is that the linear specifica-
tion logic LTL [33] is more intuitive than CTL [10], bat that prop-
erties expressed in the universal fragment of CTL (¥CTL) with-
out faimess constraints are often easier to prove than their LTL

Pacmissicn to maks diginl or hard copiss of 21l or part of thiz work for persenal o
clavicen 230 is granmd witheus fos provided taar copiss are 20t made or divmbured
for profit or comsmarcial ahantage and dat copies bear this notice and the full citation
on the it page. To copy othenwisa, to repoblith, to post on sarvers or o

C V-MIES LTL requires desper resson-
pces and the subtle relationships between

A to make an ITL prover for infinita-state
fiance closer to what one would expect from
dse the observation that ¥CTL without faimess
ffsraction of LTL. The problem with this stratezy
freces don't abways fit together: there are cases when,
0 some instances of nondeterminizm in the ransition system,
slone is not powerful encugh to prove an LTL property.

In these cases our LTL prover works around the problem using
something we call decizion predicares, which are usad to character-
ize and wreat such instances of nondeterminizm. A decizion predi-
cate is Tepresented as a pair of first-order logic formulae (a, b),
where the formmla o defines the decision predicate’s presupposi-
tion (ie when the decision is made), and b characterizes the binary
choice made when this presuppesition holds. Any transition from
stata 5 to state 5° in the system that meets the constraint a{ =) ab{s")
is distingmished by the decision predicats (o, b) from af s) a-b{s).

We use decision predicates as the basis of a partial symbolic
determinization procedure: for each predicate we inmoduce a new
prophecy variable [3] to predict the future ontcome of the decision.
After partially determinizing with respect to these prophecy var-
ahbles, we find that CTL proof methods succeed, thus allowing us
to prove LTL properties with CTL proof techniques in cases whese
this sirategy would have previously failed. To synthesize the deci-
sion predicates we employ a form of symbolic execution on spuri-
ous ¥CTL counterexamples together with an application of Farkas™
lemmma [23].

‘With our new approach we can sutomatically prove pmperus
of infinite-state programs in minutes or seconds which were in-
tractable using existing tools. Examples include code fragments
drawn from the PostzreSQL database server, the Apache web
server, and the Windows OF kernel.

Limitarioms. Inpractice, the applicability and performance of our

is dependent on the heuristic used to choose new decision
predicates when given an abstract representation of a specific point
in a spurious counterexample. The predicate synthesis machanism
implemented in our tool is applicable primarily to infinite-state pro-
grams over arithmetic variables with commands that only contain
linear arithmetic. However, no matter which predicate selection
mechanism is used, our predicate-based determinization strategy is
sound. Thus, unsound spproximations to predicate synthesis conld
potentially be used in instances where the systems considered do
not meet the constraints given sbove. Our technique is also based

mummmmpmmmdmm

POPL'II. January 26-28, 2011, Anstin, Tex
womuwn—mm-nmnnl 1000

! Abadi and Lampert [3] make this point using the terminclogy of “refine-
ment mappings” and “mace equivalence” imstead of phrasing it in the con-
tet of temporal logics.

ki
rs
eiburg de

s that release

pinlock

on: No B

Abstract. We propose an abstr:
gram terminates on all inputs.

uses ranking relations to conse:
program states. One of the attr.

Byron Cook - Andreas Podelski - Andrey

Ryhalchenko

Deql

e ded
the termi
ments fo |
ing for &
e
cal
15|
md
col

Proving That Non-Blocking

Abstract. We

to & program analysis
the use of recursion and n
analysis tooks to naturally
temporal properties (e.q. H
terexamples for branching-
Using examples drawn frof
web server, and Windows
bility of our work.

1 Introduction

‘We describe a method of provig
transition systems. We ohserve
minism, temporal reasoning cas
of the tasks necessary for reasol
search, hacktracking, eventuali
time, ete.) are then naturally p
Using known safety analysis to
for discovering termination arg
poral logic provers whase powe
underlying tools.

Based on our method, we h
poral properties of C programs
datahase server, the Apache wel
nique leads to speedups by or
CTL (VCTL). Similar performa)
our technique in combination wj
minization procedure [15].

Limitations. While in prineip]
tion systems, our approach is

recursive infinite-state progran|
support the universal fragments|

Proving stahilization for biological systems

Byron Cook?, Jasmin Fisher!, Elzbieta Krepska!, and Nir Piterman?

! Microsoft Research
* Queen Mary, University of London
3 VU University Amsterdam
* Imperial College London

Abstract. We describe an efficient procedure for proving stabilization
of biological systems modeled as qualitative networks. For sealability, our
procedure uses modular proof techniques, where state-space exploration
is applied only locally to small pieces of the system rather than the en-
tire system as & whole. Our procedure exploits the observation that, in
practice, the form of modular proofs required can be restricted to a very
limited set. Using our new procedure, we have solved a number of chal-
lenging published examples, including & 3D model of the mammalian
epidermis, & model of metabolic networks operating in type-2 diabetes,
and a model of fate determination of vulval precursor cells in the C. ele-
gans worm. Our results show many orders of magnitude speedup in cases
where previous stabilzation proving techniques were known to succeed,
and new results in cases where tools had previously failed.

1 Introduction

Biologists are increasingly turning to techniques from computer science in their
quest to understand and predict the behavior of complex biological svstems [2-4].
In particular, the application of formal verification tools to models of biological
processes is gaining impetus among biologists, In some cases known formal veri-
fication techniques work well (e.g. [5-7]). Unfortunately in other cases—such as
proving stabilization [8]—we find that existing abstractions and heuristics are
not effective.

In this paper we address the open challenge to find scalable algorithms for
proving stabilization of hiological systems. In computer science terms, we are
trving to prove a liveness property similar to termination of large parallel sys-
tems. The sizes of these systems forces us to use some form of modular reasoning.
Unfortunately, hecause stahilization is a liveness property, we must be careful
when using the more powerful cyclic modular proof rules (e.q. [9,10]), as they are
formally only sound in the context of safety [11]. Furthermore, we find that the
complex temporal interactions between the modules are crucial to the stabiliza-
tion of the system as a whole; meaning that we cannot use scalable techniques
that simply ahstract away the interactions altogother.

In this paper we show that in practice non-circular modular proofs can be
found using local livenoss lemmas of a limited form:

[FG(p1) n....AFG(ps)] = FG(a)

Predicates

acuk

perties expressed in CTL without fair-
¥ syntax-directed manner using state-
whereas LTL requires deeper reason-
ces and the subtle relationships betwean

to make an LTL prover for infinite-state
e closer to what one wonld expect from
Se the observaton that ViCTL without faimess
action of LTL. The problem with this stratezy
teces don't always fit together: there are cases when,
ome instances of nondeterminism in the ransition system,
flone is not powerful encugh to prove an LTL property.

|ese cases our LTL prover works around the problem using
Inz we call decizion predicates, which are used to character-
treat such instances of nondeterminism. A decision predi-
fepresented as a pair of first-order logic formulae (a,b),
be formmls o defines the decizsion predicate’s presupposi-
when the decision is made), and b characterizes the binary
pzde when this p ition holds. Any from
state & in the system that meets the constraint af) Ab{s")
rnished by the decision predicate (o, b) from a(s)a—bis').
hze decision predicates as the basis of a partial symbolic
pization procedure: for each predicate we nfroduce a new
Iy varizble [3] to predict the future outcome of the decision.
friially determinizing with respect to these prophecy vari-
b find that CTL proof mathods succesd, thms zllowing ns
LTL properties with CTL proof technigues in cases where
tezy would have previously failed. To synthesize the deci-
Idicates we employ a form of symbolic execution on spuri-
'L counterexamples together with an application of Farkas”
[23].

our new spproach we can sutomatically prove propertes
te-state PrOgrams in minmtes or seconds which were in-
E using existing tools. Examples include code fragments
From the PostereSQL database server, the Apache web
jnd the Windows O5 kemnel.

foms. Inpractice, the applicability and performance of our
jpe iz dependent on the heuristic used to choose new decision
fe= when given an abstract representation of a specific point
jrious counterexample. The predicate synthesis mechanism
poted in our tool is applicable primarily to infinite-state pro-
ver arithmetic variables with commands that only contain
frithmetic. However, no mamer which predicate selection
fizm is used, our predicate-based determinization strategy is
Fhus, unsound approximations to predicate synthesis conld
[ty be used in instances where the systems considered do
b the constraints given sbove. Our technique is also basad

prid Lampert [3] maks this poimt using the tarminelogy of “refine-
ppings” and “wace equivalence” instead of phrasing it in the con-
jmparal logics.

Ryhalchenko

ITEOT TN IO ¢ I TOCIT | |

SCS TATIRTITE TCTATTOTS TO TOTESCT
program states. One of the aLlr:l

d

k
irg
reiburg de

[s that release

spinlock
4

on: No F

Byron Cook - Andreas Podelski - Andrey

Misunderstanding the halting problem

=» Automatic searches for proofs of program termination
don’t make for exciting demos

= Termination bugs found from failed proof attempts are
usually more entertaining

Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help
mouclass.c | 4%
for (entry = DeviceExtension->ReadQueuns.Flink; :E

entry != sDeviceExtension->ReadQueue;
5 entry = entry->Flink)

irp = CONTAINING RECORD (entry, IRP, Tail.Cverlay.ListEntry);
stack = IoGetCurrentIrpStackLocation (irp);

=] if (stack-»FileObject == FileObject)

RemoveEntryList (entry);

oldCancelRoutine = IoSetCancelRoutine (irp, NULL):

=] /"

// IoCancellrp() could have just been called on this IRP.

// What we're interested in is not whether IoCancellrp() was called

// lie, nextIrp->Cancel iz set), but whether IoCancellrp() called (or _d
// iz about to call) our cancel routine. To check that, check the result

// of the test-and-set macro IoSetCancelRoutine.

r I
if (oldCancelRoutine)
I/
// Cancel routine not called for this IRP. Return this IRP.
r I/
return irp;
r }
else

// This IRP was just cancelled and the cancel routine was (or will
// be) called. The cancel routine will complete this IRP as scon as
// we drop the spinlock. So don't do anything with the IRP.

// Blso, the cancel routine will try to dequeue the IRP, so make the
// IRE's listEntry point to itself.

ASSERT (irp->Cancel);
InitializeListHead (&irp->Tail.Overlay.ListEntzy):

Jq \ -

120 Ready Ln 2292 Col 41 Ch41 NS

r

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c q X
for (entry = DeviceExtension->Read(ueue.Flink; N
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRFP, Tail.Owverlay.ListEntry):
stack = IoGetCurrentlIrpStackLocation (irp):

= if (=stack-»FileCbject == File0Object) {

RemoveEntryList (entry):

oldCancelRoutine = IoSetCancelRoutine (irp, NULL) !
= £
S/ IoCancellrp() could have just been called on this IRF.
S/ What we're interested in is2 not whether IoCancellrp() was called
S/ (ie, nextIrp->Cancel iz set), but whether IoCancellrp() called (or

S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £

= if (oldCancelRoutine) {

E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.

- £
return irp:

o }

-] else {

E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.

- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):

o }

o H

} -

| v
121 I ln2292 col41 Ch 41 | |ms| .

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

122 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

123 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

124 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

125 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

126 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

127 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

128 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

129 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

130 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

131 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

132 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

133 | || Ln 2292 Col 41 ch 41

File Edit ‘Wiew Insert Formatb Tools Acktions Help

i'ﬁ.ﬂeply|ﬁReplvtn.ﬁ.l_l|.}_—aFnrﬂard|.;j __1|_&| L |£-}|._I’_"3 x | i v G TA¢|@!

You replied on 1)26/2006 12:53 AM,

From: ‘1#MWOWV Sent: Sat 12/10/2005 3:52 AM
To Byron Cook,

e

Subject: RE: Queskion about mouclass driver

Still solwving the halting problem I see. If yvou ever find spare time, vou might also want to give & go
art Hilhert Prohlem #3, i.e. the Riemann hypothesiz [(http://www.maths.ex.ac. uk/~mwmatkins/ zeta/33-a. htn)

Now Lo wour actual dquestion @)

Thi=, iz indeed fucked. The for loop should be scrapped so that the else clause can read the next
entry bhefore whacking it.

Note also that *two* processors will be wedgied, not just one: the cancel routine will wait until the
lock held by the caller i=s dropped, which will newver happen. In short, the loop won't terminate until
the user terminates the machine. ¥ou don't even get a courtesy crash.

For extra credit, notice the O(n*m) condition created by the invocation by MousecClassCleanuplOusues,
where 1 iz the number of non-FO matching objects in the heginning of the gqueues and m is the nunber of
matching ones. DO3 attack anvone?

- 4

From: Ewron Cook
Gent: Friday, Decemwber 09, 2005 6:42Z PM
To: Adrian Oney
Jubject: Question about mouclass driver

&

File Edit ‘Wiew Insert Formatb Tools Acktions Help

i'ﬁ.ﬂeply|ﬁReplvtn.ﬁ.l_l|.}_—aFnrﬂard|.;j __1|_&| L |£-}|._I’_"3 x | i v G TA¢|@!

You replied on 1)26/2006 12:53 AM,

From: ‘1#MWOWV Sent: Sat 12/10/2005 3:52 AM
To Byron Cook,

e

Subject: RE: Queskion about mouclass driver

Still solwving the halting problem I see. If yvou ever find spare time, vou might also want to give & go
art Hilhert Prohlem #3, i.e. the Riemann hypothesiz [(http://www.maths.ex.ac. uk/~mwmatkins/ zeta/33-a. htn)

Now Lo wour actual dquestion @)

Thi=, iz indeed fucked. The for loop should be scrapped so that the else clause can read the next
entry bhefore whacking it.

Note also that *two* processors will be wedgied, not just one: the cancel routine will wait until the
lock held by the caller i=s dropped, which will newver happen. In short, the loop won't terminate until
the user terminates the machine. ¥ou don't even get a courtesy crash.

For extra credit, notice the O(n*m) condition created by the invocation by MousecClassCleanuplOusues,
where 1 iz the number of non-FO matching objects in the heginning of the gqueues and m is the nunber of
matching ones. DO3 attack anvone?

- 4

From: Ewron Cook
Gent: Friday, Decemwber 09, 2005 6:42Z PM
To: Adrian Oney
Jubject: Question about mouclass driver

&

File Edit ‘Wiew Insert Formatb Tools Acktions Help

i'ﬁ.ﬂeply|ﬁReplvtn.ﬁ.l_l|.}_—aFnrﬂard|.;j __1|_&| L |£-}|._I’_"3 x | i v G TA¢|@!

You replied on 1)26/2006 12:53 AM,

From: ‘1#MWOWV Sent: Sat 12/10/2005 3:52 AM
To Byron Cook,

e

Subject: RE: Queskion about mouclass driver

Still solwving the halting problem I see. If yvou ever find spare time, vou might also want to give & go
art Hilhert Prohlem #3, i.e. the Riemann hypothesiz [(http://www.maths.ex.ac. uk/~mwmatkins/ zeta/33-a. htn)

Now Lo wour actual dquestion @)

Thi=, iz indeed fucked. The for loop should be scrapped so that the else clause can read the next
entry bhefore whacking it.

Note also that *two* processors will be wedgied, not just one: the cancel routine will wait until the
lock held by the caller i=s dropped, which will newver happen. In short, the loop won't terminate until
the user terminates the machine. ¥ou don't even get a courtesy crash.

For extra credit, notice the O(n*m) condition created by the invocation by MousecClassCleanuplOusues,
where 1 iz the number of non-FO matching objects in the heginning of the gqueues and m is the nunber of
matching ones. DO3 attack anvone?

- 4

From: Ewron Cook
Gent: Friday, Decemwber 09, 2005 6:42Z PM
To: Adrian Oney
Jubject: Question about mouclass driver

&

-» Introduction

- Termination basics & history

> New advances for program termination proving
= Proving termination argument validity
" Finding termination arguments

-» Conclusion

137

-» Introduction

- Termination basics & history

> New advances for program termination proving
= Proving termination argument validity
" Finding termination arguments

-» Conclusion

138

=> Previous wisdom: proving termination for industrial systems

code is impossible

- Now people are beginning to think that it’s effectively “solved”.

=> Much left to do, including

139

Complex data structures (safety)
Infinite-state systems w/ bit vectors (safety)
Binaries (safety)

Non-linear systems (liveness and safety)
Better support for concurrent programs
Modern programming features (e.g. closures)
Finding preconditions to termination

Scalability, performance, precision

< Termination proving is at the heart of many undecidable
problems (e.g. Wang’s tiling problem)

- Modern termination proving techniques could
potentially be used to building working tools

= Challenge: “black-box” solutions to undecidable
problems die in the most unpredictable ways

140

Conclusion

- Conventional wisdom about termination overturned

= Undecidable does not mean we cannot soundly approximate a solution

- TERMINATOR shows that automatic termination proving is not
hopeless for industrial systems code

- Current state-of-the-art solutions based on

= Abstraction search for safety property verification (e.g. SLAM)
= Farkas-based linear rank function synthesis

= Ramsey-based modular termination arguments

= Separation Logic based data structure analysis

141

For more information

- http://research.microsoft.com/TERMINATOR

= Research papers
= Recorded technical lectures
= Contact details

- CACM review article

142

review articles

DOI:10.1145/1941487 1041508

In contrast to popular belief, proving
termination is not always impossible.

| BY BYRON COOK, ANDREAS PODELSKI,
AND ANDREY RYBALCHENKO

Proving
Program
Termination

THE PROGRAM TERMINATION problem, also known
as the uniform halting problem, can be defined as
follows:
Using only a finite amount of time, determine
whether a given program will abways finish running
or could execute forever.

This problem rose to prominence before the
invention of the modern computer, in the era of
Hilbert's Entscheidungsproblem: the challenge to
formalize all of mathematics and use algorithmic
means to determine the validity of all statements.
In hopes of either solving Hilbert’s challenge, or
showing it impossible, logicians began to search
for possible instances of undecidable problems.
Turing’s proof* of termination’s undecidability is
the most famous of those findings."

The termination problem is structured as an infinite

decision problem.
rrcﬂnmnen}z\ to whether or ot Turing proved the undecidabiliy in®. Technically
he did net, but is an easy of the result that is proved. A
simple proof can befound in Wrxhz} -

B8 COMMUNICATIONS OF THEACM | MAY 2011 | WOL 55 | WO.§

set of queries: to solve the problem
we would need to invent a method ca-
pable of accurately answering cither
“terminates” or “doesn't terminate”
when given any program drawn from
this set. Turing’s result tells us that
any tool that attempts to solve this
problem will fail to return a correct
answer on at least one of the inputs.
No number of extra processors nor
terabytes of storage nor new sophistl
nudatgummmwm leadto the d«.vd
opment of a true oracle for program
termination.

Unfortunately, many have drawn
too strong of a conclusion about the
prospects of automatic program ter-
mination proving and falsely believe
we are always unable to prove termi-
nation, rather than more benign con-
sequence that we are unable to abvays
prowe termination. Phrases like “but
that's like the termination problem”
are often used to end discussions that
mightotherwise hawe led to viable par-
tial solutions for real but undecidable
problems. While we cannot ignore
termination's undecidabili we
develop a slightly modified problem
statement we can build useful tools.
In ournew problem statement we will
still require that @ termination prov
ing tool always return answers that
arecorrect, but we wil | not necessarily
require an answer. If the terminaton
provercannot prove or disprove termi-
nation, it should return “unknown.”

Using only a finite amount of time,
determine whether a given program
will abways finish running or could
execute forever, of return the answer
“unknown.”

key insights

m For decades, the same method was used
for proving termination. It has never been
spplied successtuly tolarge programs.

W A deep theorem in mathematical logic
based on Ramsey'’s thearem, holds the
key to 3 new method.

m The new method can scale to large
programs because it allows for the
‘modular construction of termination

