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In contrast to popular belief, proving
termination is not always impossible.

‘ BY BYRON COOK, ANDREAS PODELSKI,
AND ANDREY RYBALCHENKO
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THE PROGRAM TERMINATION problem, also known
as the uniform halting problem, can be defined as
follow
Using only a finite amount of time, determine
whether a given program will always finish running
or could execute forever.

This problem rose to prominence before the
invention of the modern computer, in the era of
Hilbert's Entscheidungsproblem:* the challenge to
formalize all of mathematics and use algorithmie
means to determine the validity of all statements.

In hopes of either solving Hilbert's challenge, or
showing it impossible, logicians began to search
for possible instances of undecidable problems.
Turing’s proof** of termination’s undecidability is
the most famous of those findings."

The termination problem is structured as an infinite

set of queries: to solve the problem
we would need to invent a method ca
pable of accurately answering either
“terminates” or “doesn’t terminate”
when given any program drawn from
this set. Turing's result tells us that
any tool that attempts to solve this
problem will fail to return a correct
answer on at least one of the inputs.
No number of extra processors nor
terabytes of storege nor new sophisti-
cated algorithms will lead to the devel
opment of a true oracle for program
termination.

Unfortunately, many have drawn
too strong of a conclusion about the
prospects of automatic program ter
mination proving and falsely believe
we are always unable to prove termi
nation, rather than more benign con
sequence that we are unable to always
prove termination. Phrases like “but
that's like the termination problem”
are often used to end discussions that
mightotherwise have led to viable par
tial solutions for real but undecidable
problems. While we cannot ignore
termination’s undecidability, if we
develop a slightly modified problem
statement we can build useful tools.
In our new problem statement we will
still require that a termination prow
ing tool always return answers that
are correct, but we will not necessarily
require an answer. If the termination
prover cannot prowe ordisprove termi
nation, it should return "unknown.”

Using only a finite smount of time,
determine whether a given program
will always finish running or could
execute forever, of return the answer
“unknown.”

key insights

m For decades, the same method was used
for proving termination. It has never been
applied successfully to large programs.

W A deep theorem in mathematical logic,
based on Ramsey’s theorem. holds the
key to a new method.

W The new method can scale to large
because it allows for the

o
is proved. &

i
nsequence of fhe resul th

simple pmof can befound in Strachey
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modular construction of termination
arguments.
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Automatic formal verification

- View artifact of interest as a mathematical system:
= Software

= Hardware
= Biological system

= Build tools that find proofs of correctness using
mathematics and logic

- 100% testing coverage

= Faster and more scalable than brute force
= Allows for 100% coverage even for infinite-state systems



Example property

“The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”
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“The mouse device driver’s event-handling routine
always eventually terminates”
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#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c q X
for (entry = DeviceExtension->Read(ueue.Flink; N
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRFP, Tail.Owverlay.ListEntry):
stack = IoGetCurrentlIrpStackLocation (irp):

= if (=stack-»FileCbject == File0Object) {

RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;

= £

S/ IoCancellrp() could have just been called on this IRF.

S/ What we're interested in is2 not whether IoCancellrp() was called

S/ (ie, nextIrp->Cancel iz set), but whether IoCancellrp() called (or

S/ i= about to call) our cancel routine. To check that, check the result
J/ of the test-and-set macro IoSetCancelBoutine.

- £

= if (oldCancelRoutine) {

E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.

- £
return irp:

o }

-] else {

E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.

- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):

o }

o H

} -

| v
I ln2292 col41 Ch 41 | |ms| .
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Proving termination

= Traditional termination proving method originally
proposed by the forefathers of computing

= E.g. Turing, “Checking a large routine”, 1949

Finally the checker has to verify that the process comes
to an end. Here again he should be assisted by the program-
mer giving a further definite assertion to be verified. This
may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops. To the pure
mathematician it is natural to_give an ordinal number. In

\ 2.5 == -\ 1 L
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Automating the search for proofs

-» Difficulties:

" Proving the inclusion R C > ; is hard in practice (and
undecidable in theory)

* Finding an f such that R C > f is even harder in practice (and
undecidable in theory)
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Automating the search for proofs

= Transition relations must be computed

R=Un[U"I)xU(1))

- Technically, computing U*(I) is undeciable, so we must
find a sound over-approximation using available
techniques:

U*(I) CQ

- () represents an infinite set of states, but has a
compact expression

42



Automating the search for proofs

#% Microsoft Development Environment [design] - mouclass.

= Transition relations must be computqe: e wer oo 1o o e

mouclass.c

for (entry = DeviceExtension->Read(ueun
entry != &DeviceExtension->Read(n

R — U m [(U* (I) % ll o entry = entry->Flink) {

irp = CONTATINING RECORD (entry, IR
stack = IoGetCurrentlIrpStackLocati
= if (=stack-»Filelbject == File(Objec
RemoveEntryList (entry):

aoldCancelRoutine = IoSetCancel

- Technically, computing U*(I) is undq ‘v
f/ Wnhat we're interested in is

find a sound over-approximation usin R ———

S/ i= about to call) our cance

teCh n iq u eS: i ;‘i of the test-and-set macro I

g if (oldCancelRoutine) {
= i

U* (I) C Q /{ Cancel routine not cal
- r

return irp:
o }

= else {
E £

. . . /f This IRFP was just cance
- Q represents an infinite set of states L e,
s

compact expression /7 Atso, the cancel soutin

S/ IRP's li=stEntry point t©
- £

ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->»

IoCancelIrp() could have ju
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Automating the search for proofs

= We use an over-approximation of the transition relation

R =UN[Q x Q]

= Since R C R’, we can prove termination by showing

R’QQf

= Meaning: there might be unrealistic transitions that we

have to worry about ‘ ‘
RI

46



Automating the search for proofs

= In practice, its extremely hard to find the right
overapproximation ()

= Luckily: recent breakthroughs in safety proving now
make this possible.

= In fact: the checking the validity of a termination
argument can be directly encoded as a safety property

- Tools like SLLAM can be used to prove validity

47



Automating the search for proofs

-» Difficulties:

" Proving the inclusion R C > ; is hard in practice (and
undecidable in theory)

* Finding an f such that R C > f is even harder in practice (and
undecidable in theory)
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Modular termination arguments
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Modular termination arguments

-> Modularity gives us freedom when looking for valid
arguments

= Strategy: refinement based on failed attempts
= Start with empty termination argument
= Checkinclusion
= |f inclusion check succeeds, termination has been proved

= |f it fails, synthesize a new ranking function from a
counterexample and add it in

= Go to start

62



Modular termination arguments

RT C0
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Modular termination arguments

R+ 9
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Modular termination arguments

R+ N
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Modular termination arguments

R+ 9y -&
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Modular termination arguments
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Rt C[>;
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Modular termination arguments

R+ 9

Rt C[>;

70



Modular termination arguments
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Modular termination arguments
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Modular termination arguments
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Automating the search for proofs
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TERMINATOR

copied = 0;

RT CThUT, UTs

while (x<y) { ."
x£= (£&XpYdd)
g(&yix) {*) {
} H[x]

X,

H[y] y/
copied = 1;
}
} else {
assert(T: || T2 || T3);

}

copied = 0;
84



TERMINATOR

copied = 0; J TN
: N RT C 17 UT5 U;Fi
\.\ while (x<y) { >>>M/\/\/\‘\

e
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) assert(7: || Tz || T3);
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Examples

~ Terminator Lemma Viewer

File Wiew Help
Proof Information

= Liemma s
—-main

6: while (x<100)

< |

Expression

r
L

(—=x)>=(-98)
(-x)<=((-H[=x])-1)

90

void maini)

{

int ® = nondet();

int * p = &x;

while (x<100) {
(*p)++;

=1 an nods Ly B3

LE

<] |

File: c*tmp*e*main.c, Line: &, Function main’
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“¢* Terminator Lemma Viewer

File View Help
Proof Information

|- Lemmas
- Ack

n = Ack(x,vy);

11l: return Ack(x,n);

Expression

y»=0
y<=(H[y]-1)

92

| >

Source Code

test.c
1: unsigned int Ack({unsigned int x, unsigned int y){ ~
2: if i==0) |
3: int mn;
4. if (y=0) {
S ¥v——;
H n = Acki{x, vy}’
T: } elze |
8: n=1;
9. }
10: x——;
11 return Ack(x,n);
12: } else |
13: return y+l1;
14: 1
15: }
1g:
17: woid main()
18: {
19: int x = nondet();
20+ int y = mondet(); B
21: Eckx,v); a

File: c'slam*src®teminatoridemosidtest c,

Line: & Function “Ack”




“¢* Terminator Lemma Viewer

File View Help
Proof Information

- Lemma s
- Ack
6: n = Reokix,y);

11: return Ack(x,n);

Expression

==
<= (H[=x]-1)
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Abstract

Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
mmﬂrd:xtpm:ﬁxms a path-sensitive and contexi-sensitdve pro-
zram smalysis and provides capacity for large program fragments
{12. more than 20,000 linss of:ode]'bog\sdnw:mimpmfw;zu-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
tal results om device dover dispatch routines from the Windows op-
emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenze of checking with dinary renchability aalysiz.

Categories and Subject Deseriptors D2 4 [Sqfware]: Software

—Program Verificadon; D45 [Sofhware]: Operatdng
Systems—TF eliability

General Terms  Felisbility, Venfication

Esywords  Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usully constructed from a set of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, mmst evenmslly retarn to their caller. Consider the fonction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the
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mequest packst and FdoData-»TopOdfStack is the pointer to
another serisl-based device driver). In the case where the other de-
vice drver retums a3 refurn-value that indicates success, but places
0 in PIoStatusBlock-=Information, the serial emmmera-
tiom driver will fil w increment the vabe pointed to by nActual
(line 68), possibly cansing the driver to mfinitely execure this loop
and not renen to its calling context. The consequence of this ermor
is that the computer’s seral devices could become non-responsive.
Worse yet, depending on what actions the other device driver takes,
this loop may cause repeated scquiring end relessing of kemel
mesources (memory, locks, atc) at high priority and excessive phys-
ical tus activity. This exms work stresses the operating system,
the other drivers, and the nser spplications nmning on the system,
which may canse them to crash or become non-responsive oo,
This exsmple demonsirates how a notion of termination is cen-
tral to the process of ensuring that reactive systems can always re-
act. Uniil now no swomstic femunston tool has ever been sble

o provide a capadity for large program ﬂspnenls {20,000 Lines)

effects, abc. Inﬂnspaperwe desmhesmhalm],ca]ledl"fmt—
TOR.

TERMINATOR s mast distinsmizhing aspect, with respact to pre-
vions methods and tools for proving program temminstion, is how it
shifts the balance between the two tasks of consirucsing and respac-
tvely checking the termination argument. The classical method is
to construct an expression defining the ramk of a state and then to
check that its value decreases i every wansition from a reachable
smate 10 & next one. The constuction of the ranking fimction is the
hard part and forms & task that needs to be applied to the whole
program. The checking part is relatively easy. In o method, the
tazk of consmucting mnking functons is the relatvely easy part;
they are constmcted on demand besed on the examinaton of only
a few salacted paths through the prosram.

Furthermore, TERMINATOR is Dot required fo constmact only
mcmmmnmmargummhnmﬂmasetofgmssso\f
possible armments, some of which may be bad zuesses. That is,
this set need not be the exact sef of the ‘right’ ranking fimctons ut
oaly a suparser. We find the same monotoniciny of the refinement
of the tenmination argument 35 with iterative absTaction refinement
for safety (the set of predicates need not be the exact set of ‘Tight’
pradicanes but only a superser).

Checkinz the temminafion argmment is the hard part of owr
method. This is because the terminston srmment is now 2 sat
of rankins fimctions, not 8 singls ranking fimction. With a single
ranking fimction one mmest show that the rank decreases from the
pre- to posi-state after exeouting each single Tansiton step. In owr
semng it is not suficient o look ar 3 single ransidon step. Instead,
we st consider all fiuite sequences of tramsitions. We must show
that, for every seguencs, one of the ranking fimction: decresses

nondet {} ;
nondet () ;

{
le {x<100)

Function ‘'main’
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Figure 12, Results of experiments using an integration of TERMI-
NATOR with the Windows Static Driver Verifier[21] product (SDV)
on the standard 23 Windows OS device drivers used to test SOV,
Each device driver exports from 5 to 10 dispatch routines, all of

which nmst be proved terninating.
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Figure 12, Results of experiments using an integration of TERMI-
NATOR with the Windows Static Driver Verifier[21] product (SDV)
on the standard 23 Windows OS device drivers used to test SOV,
Each device driver exports from 5 to 10 dispatch routines, all of

which nmst be proved terninating.
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teme code can always react. We describe 3 new program temins-
mmﬂrd:xtpm:ﬁxms a path-sensitive and contexi-sensitdve pro-
zram smalysis and provides capacity for large program fragments
{1-2. more than 20,000 linss of code) together with support for pro-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
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emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenze of checking with dinary renchability aalysiz.

Categories and Subject Deseriptors D2 4 [Sqfware]: Software
—Program Verificadon; D45 [Sofhware]: Operatdng

Systems—TF eliability

General Terms  Felisbility, Venfication

Esywords  Program rermination model checking, program verifi-
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1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usully constructed from a set of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, mmst evenmslly retarn to their caller. Consider the fonction
in Figure 1 which is called from several dispatch routines within
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ral to the process of ensuring that reactive systems can
act. Uniil now no swomstic iemunston tool has evel
mplmjﬂeacapaun fm'largepmgmmﬁspnm( =32

mequest packet and FdoData- :-Top:l:stac:f.ti:(
d

-pof
effects, abc. T.nthlspaperwedesmbesmhalmLcaJled
TOR.

TERMINATOR s mast distinmuizhing azpect, with req
vions methods and tools for proving program ferminstiy
shifts the balance between the two tasks of consiruciing|
tvely checking the terminston argument. The classicy
to construct an expression defining the ramk of a state
check that its value decreases in every wansition from
sate 10 & next one. The constuction of the ranking fim
hard part and forms & task that needs to be applied i
progrem. The checking part is relatively easy. In o )
tazk of consmucting mnking Simctons is the relatvely
they are constmcted on demsnd besed on the examina
a few salacted paths through the prosram.

Furthermore, TERMINATOR is Dot required fo cog
ome comect termnation argument ot rather @ set of]
possible armments, some of which may be bad znesg
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of the tenmination argument 25 with iterative absTaction
for safety (the set of predicates nesd not be the exact 5
pradicanes but only a superser).
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method. This is because the terminstion srpument iy
of rankins fimctions, not 8 singls ranking fimction. W
ranking fimction one nmst show that the rank decreas
pre- o posi-state after expouting each singls Tansidon
seming it is not suficient o look at 2 single ransidon =
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Figure 12, Results of experiments using an integration of TERMI-
NATOR with the Windows Static Driver Verifier[21] product (SDV)
on the standard 23 Windows OS device drivers used to test SOV,
Each device driver exports from 5 to 10 dispatch routines, all of

which nmst be proved terninating.
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2 Send in the Terminator

AMICROSDFTTOOL LOOKS FORPROGRAMS THATFREEZEUP BY GARY STIX

lan Turing, the mathemartician whae
Awag among the founders of computer

science, showed in 1936 thatitis im-
possible to devse analgorithm to prove that
any given program will always run to com-
pleton. The essence of his argument was
thatsuch an algorithm can abwrays teip upif
itanalyzes iselfand finds thatitis unableto
stop. “Ttkads toa bgical paradea,” remarks
David Schmidt, professar of computer sci-
ence arKansas Stare University. Ona prag-
matic level, the inability to “erminate,” as
itis called in computerese, is familiartcany
user of the Windows operating system whe
hasclicked a monse buttonand then stared
indefinite by at the hourglass icon indic aring
that the program 1s looping endlessly
through the same ines of code.

The curment version of Micresoft’s oper-
ating systermn, known as XP, is momr stable
than previous ones. But mamifacturers of
printers, MP3 players and other device s srill
write fanlty “deiver™ software that lets the
peripheral interact with the operating system.
Sa X P users have not lost familiarity with
trozen howgbisses, The rescarch armof Mi-
crosoft has e drecenty to addiess the long-
simmering frugranon by focusing on tods
tocheck drivers for the absence of bugs.

Microsaft Besearch hasyet to contmadict
Turing, but it has started presenting papers
at conferences on a ol called Terminator
that tries to prove that a deiver will finish
what it 15 doing. Computer scientists had
never sieceeded until now in constructing a
practical automated verifier for termination
of large programs becanse of the ghost of
Turing, asserts Byron Codk, a theoretical
computer scientist at Microsoft Researchs
labaratary inCambridge, England, wha led
the projct. “Turing proved that the prab-
lem was undecidable, and in some senss,
thatscared people off” hesays,

Blending several previous techniques for
automated program analysis, Terminator
creates a finite re presentation of the infinite
number of states that a driver could accupy
while execuring a program. It then amemprs
1o derive a logical argument that shows that
the sofrarare will finish its task. It does this

WOWW. B CIE M. Com

by comhbining multiple “ranking functions,”
which mea sire how far a device driver has
progressed through the loopsin a program,
sequences of irstroe tions that rerun
until a specified condition is met.
Terminator begins with an itial,
rather weak a rgument that it e fine s
repeatedly based on informarion
learned from previous failed at-
tempts at creating a proof (a suffi-
ciently strong argument ). The pro-
cedure may consume hours on a
powerful computer until, if evers-
thinggoes according to plan, a proof
emerges that shows that no execu-
tion pathway inthe dover will cavse
the drcaded howrglassing.
Terminater, which has been op-
erating for only nine months and
has yet to be distributed to outside
developersof Windowsdevice driv-
ers, has turned up a few ermina-
ticn bugs in drivers for the soon-to-

ALAH TURING created amathematical proof
that expla nsthe uncertainty of any computer
program ever completing a task.

be-rekased Vista version of Win-
dows whik trying to come up witha proof.
Cook predicts that Terminator may eventu-
ally find proofs for 99.9 percent of commer-
cial programs that finish exeaiting. {Of
course, some programs are designed to run
forever.) Turing, however, can still rest in
peace. “There will always be an input to
Terminator that you can't prove will termi-
nate,” Cook savs, “Butifvou canmake Ter-
minator work for any program in the real
woarld, then it doesn't really matter.”

Patrick Consatof the Ecale Marmale Su-
perieure in Paris, a pioneer inmathemarcal
program analysis, notes that Terminater
should work fora limitedsetof welldefined
applicatiors. *I doubt, for example, that
Terminator is able to handle mathematical-
by hard termination problems™—thoss for
floating-point numbers o programs that
run at the same time. Cook does not dis-
agree, saying that he plans to develop termi-
nation proof methods for such programs.
Finding a way to ensure that more complex
programs donot freezeis such a difficult
challenge, however, that Cook thinks it
could consume the restaf his career.
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\Worldwide, s oftware bugs cost
billlons of dollars In 1088 &8 every
year, which explaing a trend
ARG companiss for sutomat ed
programv erlfication. (n 2005

Mie ros oft released an automared
bug-cane ing progr am, Sl e
Driver Yerlfier,that checks the
Bource code frdevice drivers
ags rtamahemalca modal o
devermine whetheritdeviates
from Ius ex pected behavior.

STAtic ver IFiars In ok for
programminge rmor s that caus e a
ProgramTostap ITs execution. &
device driver, forinstance s hould
nevarinte ractwith program B
before lthas donesowith
program A, or lowillsImply ce 458
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Results of experiments using an mtegration of TERMI-
h the Windows Static Driver Verifier[21] product (SDV)
dard 23 Windows OS device drivers used to test SDV.
2 driver exports from 5 to 10 dispatch routines, all of
LI be proved terminating.
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Abstract
Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
tion prover that perfiorms a path-sensitive and contest-sensifive pro-
zram smalysis and provides capacity for large program fragments
{12. more than 20,000 linss of:ode]'bog\ahummimpmfw;tu-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
tal results om device dover dispatch routines from the Windows op-
emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenge of checking with Sinary reachability anafysis.
Categories and Subject Deseriptors D2 4 [Sqfware]: Software
—Program Verificadon; D45 [Sofhware]: Operatdng
Systems—TF eliability

General Terms  Felisbility, Venfication

Esywords  Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usually constucted fom a sat of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, must evenmally retam to their caller. Consider the fimction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the
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Abstract. We describe a new program termination analysis designed to
handle imperative programs whose termination depends on the mutation
of the program’s heap. We first describe how an abstract interpretation
can be used to construct a finite number of relations which, if each is
well-founded, implies termination. We then give an abstract interpreta-
tion based on separation logic formuls which tracks the depths of pieces
of heaps. Finally, we combine these two techniques to produce an ag-
tomatic termination prover. We show that the analysis is able to prove
the termination of loops extracted from Windows deviee drivers that
eould not be proved terminating before by other means; we also discuss
a previously unknown bug found with the analysis.

1 Introduction

Consider the code fragment in Fig. 1, which comes from the source code of a
Windows device drver. Does this loop guarantee termination? It's supposed to:
failure of this loop to terminate would have catastrophic effects on the stahility
and responsiveness of the computer. Why wonld it be a problem if this loop didn't
terminate? First of all, the deviee that this code is managing would cesse to
function. Secondly, due to the fact that this code exeentes at kernel-level priority,
non-termination would cause it to starve other threads running on the system.
Note that we cannot simply kill the thread, as it can be holding kernel locks and
modifying kemel-level dats-structures—foreibly killing the thread would leave
the operating system in an inconsistent state. Furthermore, if the loop hangs,
the machine might not actually crash * Instead, the thread will likely just hang
until the user resets the machine. This means that the bug cannot be diagnosed
using post-crash analysis tools.

This example highlights the importance of termination in systems level code:
in order to improve the responsiveness and stability of the operating system it
is vital that we can sutomatically check the termination of loops like this one.
In this case, in order to prove the termination of the loop, we need to show the
following conditions:

1. DeviceExrtension->Readfuens.Flink is & pointer to & cirenlar list of ele-
ments (via the Flink field).

3 Although hanging kernel-threads can trigger other bugs within the operating system.
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Abstract

An Ivanance asserion for a program lecation £ is 2 statement that
always bolds at f during execurtion of the program. Program mmwari-
ance analyses infer imariance assertions that can be usefiil when
trying te prove safery properdes. We nse the term varimce arser-
fion to mean a satement that holds between any smte at £ and any
previows sate that was alse at ¢. This paper is concemed with the
development of analyses for variance assertions and ther applica-
tion fo proving emunaton and lvensss properties. We describe
a method of consmucting program vanance analyses fom mwar-
ance analyses. If we change the underlying invariance analysis, we
et a different variance analysis. We describe several applicadons
of the method mchiding variance amalyses using linear arithmetic
and shape amalysts. Using experimental results we demonstrate that
thess varance apalyses give mse to a new breed of termunafion
provers which are competitive with and sometimes better than to-
day’s stafte-of-the-arm tenmination provers.

Cotegories and Subject Descripiors D24 [Sothware Ensineer-
ing]: Sofrware Program Verification; F.3.1 [Logicr and Meanings
af Programs]: Specifying and Verifying and Feasoning about Pro-
ERms

General Terms  \erification, Beliability, Lansoages
Eeywords Formal Venification, Sofware Model Chedldng, Pro-
eram Analysis, Livenass, Termination

1. Imtroduction

An imvarignoe analysis takes in a program as ingut and infers a set
of possibly disjunciive Svanance assertions (oo, imariants) that
is mdexed by program locations. Each location ¢ in the program
has an imvaniant that always belds during any execution at £. These
iovariants can serve many purposes. They might be used directly
to prove safety properties of programs. Or they might be used in-
directly, for exampls, to 2id the construction of abstract TAnsition
relations during symbolic seftware model checking [29]. Ifa de-
sired safety property is not directly provable from a given imvariant,

Crueen Mary, University of London
oheami@dcs gmul_ac uk

the user {or algorithm calling the invariance analysis) might try to
refine the abstraction. For example, if the el is based on abstract
interpretation they may choose to improve the absraction by delay-
ing the widening operation [1£], using dymamic partitioning [33],
emploving a different abstract domain, etc

The amm of this paper is to develop an analnguus sat of tols
for program termination and livensss: we inroduce a class of ols
called variance gnaiyzer which infer asserdons, called vaviance
azzertions, that hold bemwesn amy state at a locarion ¢ and amy
previous state that was also at location £. Mot that a single variance
aszention may itself be a disjunction. We presant a gensric method
of consmucing varance analyses fom owarance analyses. For

each mvaniance analysis, we can construct what we call its mduced

variance iy

This paper also ntraduces a condition on vanance asseTtons
called the iocal rermmamon predicars. In this work, we show bow
the variance assertons inferred durins our analysis can be wsed to
establish local ermination predicates. If this predicate can be es-
tablished for each vanance assemion inferred for a program. whale
Droeram termmarion bas been proved: the comecmess of this step
relies on a result from [37] on digunctively weil unded over-
approximarions. Analozously to iovariance anatysis, even if the in-
duced vanance analysis fails to prove whole program remminaden
it cam still produce usefol mformation. If the predicate can be estab-
lished onty for some subset of the vanance assertions, this indaces
a different liveness property that holds of the program. Morsgver,
the mformation inferred can be used by other termination provers
basad on disfunctive well-foundedness. such as TermimaToR [14].
If the underlying invariance amalysis is based on absiract mierpre-
tation, the user or alzorthm could use the same abstraction refine-
ment techniques that are available for imarance anabyses.

In fhis paper we ihstate the utility of our approach with three
induced vanance analyses. We comnstmact a vanance amalysis for
arithmetic prozrams based on the Octazon abstmact domain [34].
The memem]fsls used as imput to wralgumtmnmmpnsed
afa standard analysis based on Octazon. and a post-analysis phase
that recovers soms disjumctive i gives ris= to a fast
and yet surprisingly acourate termination prover. We similariy con-
strct an induced variance anakysis bassd on the domain of Polyhe-
dra [23]. Finally, we show that an indnced variance analysis based
on the separation domain [24] is an Improvemsnt on a fermination
prover that was recently described in tha literatore [3]. These thres

Mutomatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook®, Dino Distefano®, and Peter W. O'Hearn -2

! Microsoft Research
? Queen Mary, University of London

Abstract. We describe a new program termination analysis designed to
handle imperative programs whose termination depends on the mutation
of the program’s heap. We first describe how an abstract interpretation
can be used to construct a finite number of relations which, if each is
well-founded, implies termination. We then give an abstract interpreta-
tion based on separation logic formuls which tracks the depths of pieces
of heaps. Finally, we combine these two techniques to produce an ag-
tomatic termination prover. We show that the analysis is able to prove
the termination of loops extracted from Windows deviee drivers that
eould not be proved terminating before by other means; we also discuss
a previously unknown bug found with the analysis.

I Introduction

[Consider the code fragment in Fig. 1, which comes from the source code of a
Vindows deviee driver. Does this loop guarantee termination? It's supposed to:
ailure of this loop to terminate would have catastrophie effects on the stability
hnd responsiveness of the computer. Why would it be a problerm if this loop didn't
erminate? First of all, the deviee that this code s managing would cesse to
unction. Secondly, due to the fact that this code exeentes at kernel-level priority,
won-termination would cause it to starve other thresds running on the system.
Vote that we cannot simply kill the thread, as it ean be holding kernel locks and
modifving kemel-level dats-structures—foreibly killing the thread would leave
he operating system in an inconsistent state. Furthemmore, if the loop hangs,
he machine might not actually crash.? Instesd, the thread will likely just hang
mtil the user resets the machine. This means that the bug cannot be diagnosed
wsing post-crash analysis tools.

This example highlights the importance of termination in systems level code:
n order to improve the responsiveness and stability of the operating system it
s vital that we can automatically check the termination of loops like this one.
n this case, in order to prove the termination of the loop, we need to show the
ollowing conditions:

1. DeviceExrtension->Readfuens.Flink is & pointer to & cirenlar list of ele-
ments (via the Flink field).

4 Although hanging kernel-threads can trigger other bugs within the operating system.
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An Ivanance asserion for a program lecation £ is 2 statement that
always holds at £ during execation of the program. Program mwari-
ance analyses infer imariance assertions that can be usefiil when
trying te prove safery properdes. We nse the term varimce arser-
rign 10 mean a satement that bolds berween any sate at £ and any
previows sate that was alse at ¢. This paper is concemed with the
development of analyses for vanance asserfion: and ther applica-
tion fo proving emunaton and lvensss properties. We describe
a method of consmucting program vanance analyses fom mwar-
ance analyses. If we change the underlying invariance analysis, we
et a different variance analysis. We describe several applicadons
of the method mchiding variance amalyses using linear arithmetic
and shape amalysts. Using experimental results we demonstrate that
thess varance apalyses give mse to a new breed of termunafion
provers which are competitive with and sometimes better than to-
day’s stafte-of-the-arm tenmination provers.

Cotegories and Subject Descripiors D24 [Sothware Ensineer-
ing]: Sofrware Program Verification; F.3.1 [Logicr and Meanings
af Programs]: Specifying and Verifying and Feasoning about Pro-
ERms

General Terms  \erification, Beliability, Lansoages

Eeywords Formal Venification, Sofware Model Chedldng, Pro-
eram Analysis, Livenass, Termination

1. Imtroduction

An imvarignoe analysis takes in a program as ingut and infers a set
of possibly disjunciive Svanance assertions (oo, imariants) that
is mdexed by program locations. Each location ¢ in the program
has an imvaniant that always belds during any execution at £. These
iovariants can serve many purposes. They might be used directly
to prove safety properties of programs. Or they might be used in-

directly, for exampls, to 2id the construction of abstract TAnsition
relations during symbolic seftware model checking [29]. Ifa de-
sired safety property is not directly provable from a given imvariant,
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Abstract

In recent years we have seen great progress made in the area of au-
tomatic source-level static analysis tools. However, most of today’s
program verification teols are limited to properties that guarantee
the absence of bad events (safety properfies). Until now no for-
mal software analysis tool has provided fully automatic support for
proving properties that ensure that good events eventually happen
(liveness properties). In this paper we present such a tool, which
handles liveness properties of large systems written in C. Liveness
properties are described in an extension of the specification lan-
guage used in the SDV system. We have used the tool to automat-
ically prove cnitical liveness properties of Windows device drivers
and found several previously unknown liveness bugs
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Windows kemel APIs that acquire resources and APTs that release
Tesources. For example:

A device driver should never call KeReleaseSpinlock
unless it has already called KeAcquireSpinlock.

This is a safety property for the reason that any counterexample
to the property will be a finite execution through the device dover
code. We can think of safety properties as guaranteeing that speci-
fied bad events will not happen (i.e. calling KeReleaseSpinlock
before calling KeAcquireSpinlock). Note that SDV cannot check
the equally important related liveness property:

If a driver calls KeAcquireSpinlock then it must eventu-
ally make a call to KeReleaseSpinlock.

Caregories and Subject Descriptors D24 [Software Eng
ing]: Software/Program Verification; F.3.1 [Logics and Meﬂmngs
of Programs]: Specifymng and Venfying and Reasoning about Pro-
grams

General Terms  Verification, Reliability, Languages

Keywords Formal Venfication, Software Model Checking, Live-
ness, Termination

1. Infroduction

As computer systems become ubiquitous, expectations of system
dependability are rising. To address the need for improved software
quality, practitioners are now beginning to use static analysis and
automatic formal verification tools However, most of software
wverification tools are cumrently limited to safeqy properties [2, 3]
(see Section 5 for discussion). No software analysis tool offers
fully automatic scalable support for the remaining set of properties:
liveness properties.

Ac ple to this property may not be finite—thus making
it a liveness property. More precisely, a counterexample to the prop-
erty is a program trace in which KefcquireSpinlockis called but
it is mot followed by a call to KeReleaseSpinlock This trace may
be finite (reaching term.].natmn) or infinite. We can think of liveness
properties as ensuring that certain good things will eventually hap-
pen (e that KeReleaseSpinlock will eventually be called in the
case that a call to KeAcquireSpinlock occurs).

Liveness properties are much harder to prove than safety prop-
erties. Consider, for example, a sequence of calls to functions:
“£(3; g(); h0;7. Itis easy to prove that the function f is al-
ways called before h: in this case we need only to look at the struc-
ture of the control-flow graph. It is much harder to prove that b is
eventually called after £: we first have to prove the termination of
g In fact, in many cases, we must prove several safety properties in
order to prove a single liveness property. Unfortunately, to practi-
tioners liveness is as important as safety. As one co-author leamed
while spending two years with the Windows kernel team:
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Abstract

We describe a simple and efficient algorithm for proving
the termination of a class of loops with nonlinear assign-
ments to variables. The method is based on divergence test-
ing for each variable in the cone-of-influence of the loop’s
termination condition. The analysis allows us to automati-
cally prove the termination of loops that cannot be handled
using previous techniques. The paper closes with experi-
mental results using short examples drawn from imdustrial
code.

1 Introduction

From the very beginnings of the formal analysis of soft-
ware [12, 14], the task of formally verifying the correctness
of a program has been decomposed into the tasks of prov-
ing correctness jf the program terminates, and separately
proving termination. Deciding termination. in general. is
obviously undecidable, but thanks to considerable research
progress over the vears (e.g.. [9. 20, 5. 23, 3, 6. 13, 4. 16.
18,21, 8, 7]). a variety of techniques and heuristics can now
automatically prove termination of many loops that occur in
practice.

bycook@microsoft.com

while (x < vy} {
X = pow(x,3) - 2spow(x,2) - X + 2;
}
}

This paper outlines a new proof procedure for cases of this
sort. Using combination techniques described in [1] and [2].
our intention for this proposed procedure is to be combined
with the existing termination analysis techniques—making
future termination provers a little less temperamental.

The proposed technique is based on divergence testing:
the transition system of each program variable is indepen-
dently examined for divergence to plus- or minus-infinity.
The approach is limited to loops containing only polyno-
muial update expressions with finite degree, allowmg ighly
efficient computation of certain regions that guarantee di-
vergence. Like all automated termination provers, the tech-
nique can't handle all loops. However. it is very fast, it
is sound, and it can prove termination in cases that previ-
ously could not be handled or could be handled only by a
much more expensive analysis. Our hope is that. in prac-
tice, this restricted analysis (and some extensions) will han-
dle the termination of the majority of loops in which a non-
linear analysis is required. In our investigations, we have
found that this simple type of nonlinear loop appears in in-
dustrial numerical computations and nonlinear digital fil-

Proving That Programs Eventually Do Something Good

Byron Cook

Microsoft Research
by cook@microsoft com

Andrey Rybalchenko

EPFL and MPI-Saarbricken
rybal@mpi-sb.mpg.de

Abstract

In recent years we have seen great progress made in the area of au-
tomatic source-level static analysis tools. However, most of today’s
program verification teols are limited to properties that guarantee
the absence of bad events (safety properfies). Until now no for-
mal software analysis tool has provided fully automatic support for
proving properties that ensure that good events eventually happen
(liveness properties). In this paper we present such a tool, which
handles liveness properties of large systems written in C. Liveness
properties are described in an extension of the specification lan-
guage used in the SDV system. We have used the tool to automat-
ically prove cnitical liveness properties of Windows device drivers
and found several previously unknown liveness bugs
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Windows kemel APIs that acquire resources and APTs that release
Tesources. For example:

A device driver should never call KeReleaseSpinlock
unless it has already called KeAcquireSpinlock.

This is a safety property for the reason that any counterexample
to the property will be a finite execution through the device dover
code. We can think of safety properties as guaranteeing that speci-
fied bad events will not happen (i.e. calling KeReleaseSpinlock
before calling KeAcquireSpinlock). Note that SDV cannot check
the equally important related liveness property:

If a driver calls KeAcquireSpinlock then it must eventu-
ally make a call to KeReleaseSpinlock.

ing]: Software/Program Verification; F.3.1 [Logics and Mgﬂrjings
of Programs]: Specifymng and Venfying and Reasoning about Pro-
grams

General Terms  Verification, Reliability, Languages

Keywords Formal Venfication, Software Model Checking, Live-
ness, Termination

1. Infroduction

As computer systems become ubiquitous, expectations of system
dependability are rising. To address the need for improved software
quality, practitioners are now beginning to use static analysis and
automatic formal verification tools However, most of software
wverification tools are cumrently limited to safeqy properties [2, 3]
(see Section 5 for discussion). No software analysis tool offers
fully automatic scalable support for the remaining set of properties:
liveness properties.

Ac ample to this property may not be finite—thus making
it a liveness property. More precisely, a counterexample to the prop-
erty is a program trace in which KefcquireSpinlockis called but
it is not followed by a call to KeReleaseSpinlock This trace may
be finite (reaching termination) or infinite. We can think of liveness
properties as ensuring that certain good things will eventually hap-
pen (e that KeReleaseSpinlock will eventually be called in the
case that a call to KeAcquireSpinlock occurs).

Liveness properties are much harder to prove than safety prop-
erties. Consider, for example, a sequence of calls to functions:
“£(3; g(); h0;7. Itis easy to prove that the function f is al-
ways called before h: in this case we need only to look at the struc-
ture of the control-flow graph. It is much harder to prove that b is
eventually called after £: we first have to prove the termination of
g In fact, in many cases, we must prove several safety properties in
order to prove a single liveness property. Unfortunately, to practi-
tioners liveness is as important as safety. As one co-author leamed
while spending two years with the Windows kernel team:
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erv besinmi . . i : : - Live- pen (e that KeReleaseSpinlock will eventually be called in t
From the very beginnings of the fo_m_]_al analysil procedure’s scalability is achieved r]m:_mgh the use of environment InsertTaillist (&listHead,LinkPtr(irp)); Pe case that a call to KeAcquireSpinlock oceurs).
ware [12, 14], the task of formally verifying the col models that abstract away the surrounding threads. The procedure’s } Liveness properties are much harder to prove than safety prop-
of a program has been decomposed into the tasks accuracy is due to a novel method of incrementally constructing } while {irp != NULL); erties. Consider, for example, a sequence of calls to functions:
- ) 3 environment abstractions. Our method finds the conditions that a “£(); g(); h);" It is easy to prove that the function £ is al-
Ing correctness '!1)4‘ the program terminates, and s thread ires of its env t in order to blish terminati KeReleaseSpinLock (&Ext -=SpinLock, irgl); - ot g e s P’“’ -

- P 1 A : q] = o 1T f system ways called before h: in this case we need only to look at the struc-
proving termination. Deciding termination, in g{ by looking at the conditions necessary to prove that certain paths : fure of the control-flow graph. It is much harder to prove that h is
obviously undecidable. but thanks fo considerable] through the thread represent well-founded relations if executed in Figure 1. Code fragment from a keyboard device driver whose ter- ysis and eventually called after £: we first have to prove the termination of
progress over the years (e.g.. [0, 20, 5. 23, 3, 6. | f-""_‘m""tﬁffh@ui’mﬂ threads. Thlﬂ paper 51"95; dfscnl’tmiu‘;f ex- mination partially depends on the correct behavior of other threads software g In fact, in many cases, we must prove several safety properties in

- i . perimental results using an implementation of our procedure on from the driver. i arder to ve 2 sinele Liv erty. Unfortuately. to fi-
18,21, 3 7). a variety Of.IEC : ues and heuristicd Windows device drivers, and a description of a previously unknown zi [oﬁ‘erg tioners IiE:?e:sai:];g " ;:;Esagr:;fet\; As one cu-ailz.‘l::or lcl:;i'litd
automatically prove termination of many loops thaf bug found with the tool. o ! 45 Lmporta ey S ¢

. g . . . . . operties: while spending two years with the Windows kernel team:
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termination condition. The analysis allows us fo
cally prove the termination of loops that cannot b
using previous techniques. The paper closes witl
mental results using short examples drawn from il
code.

1 Introduction

From the very beginnings of the formal analysi|
ware [12, 14], the task of formally verifying the col
of a program has been decomposed into the tasks
ing correctness if the program terminates, and s
proving termination. Deciding termination. in g
obviously undecidable, but thanks to considerablel
progress over the years (e.g.. [9, 20, 5. 23, 3, 6. |
18, 21. 8, 7]). a variety of techniques and heuristic
automatically prove termination of many loops tha
practice.

Abstract

Concurrent programs are often designed such that certain fune-
tions executing within crtical threads must terminate. Examples
of such cases can be found in operating systems, web servers, e-
mail clients, etc. Unforimately, no known automatic program ter-
mination prover supports a practical method of proving the termi-
nation of threads. In this paper we describe such a procedure. The
procedure’s scalability is achieved through the use of environment
models that abstract away the surrounding threads. The procedure’s
accuracy is due to a novel method of incrementally constructing
environment abstractions. Our method finds the conditions that a
thread requires of its env t in order to establish terminati
by looking at the conditions necessary to prove that certain paths
through the thread represent well-founded relations if executed in
isolation of the other threads. The paper gives a description of ex-
perimental results using an implementation of our procedure on
Windows device drivers, and a description of a previously unknown
bug found with the tool.
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Dep ‘We describe a method of proving temporal properties of (possibly infinite-state)
transition systems. We ohserve that, with subtle use of recursion and nondeter-

minism, temporal reasoning can be encoded as a program analysis problem. All
of the tasks necessary for ressoning about temporal properties |e.g. abstraction

search, backtracking, eventuality checking, tree counterexamples for branching- Windows kemel APIs that acquire resources and APTs that release

time, ete.) are then naturally performed by off-the-shelf program analysis tools. ltion lea of au- Tesources. For example:
j[_'lslmﬁ known safety analysis tools (e.g. [2, 5, .61 j] together .“'iLT techniques £ today’s A device driver should never call KeReleaseSpinlock
. or discovering termination arguments (e g. , 17|}, we can implement tem- + - : .
e des poral logic provers whase power is effectively limited only by the power of the farantee tnless it has abeady called KehcquireSpinlock

the termi; underlying tools,
ments to Based on our method, we have developed a prototype tool for proving tem-
ine for e poral properties of C programs and applied it to problems from the PostgreSQL L
fe database server, the Apache web server, and the Windows 08 kernel. Our tech-
cal nique leads to speedups by orders of magnitude for the universal fragment of

CTL (VCTL). Similar performance improvements result when proving LTL with
s our technique in combination with a recently described iterative symbaolic deter-
me minization procedure [13].
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Abstract

We describe a new algorithm for proving temporsl properties ex-
pressed in LTL of infinite-state programs. Our approach takes ad-
vantage of the fact that ITL properties can often be proved more
efficiently using technigues wsually associated with the branching-
time logic CTL than they can with native LTL algorithms. The
caveat is that, in certzsin instances, nondeterminism in the sys-
tem’s fransition relation can cause CTL methods to report coun-
terexamples that are spurious with respect to the coriginal LTL
formmla. To address this problem we describe an algorithm that,
as it attempts to apply CTL proof methods, finds and then re-
moves problematic nondeterminism 'ma am mh’ms on Lhe po—

Eric Koskinen
University of Cambridge
ejk39@cam.ac.uk

cousins [3, 32, 4—1]'. Properties expressed in CTL without fair-
mess cam be proved in a purely syntax-directed manner nsing state-
based reasoning techniques, whereas LTL requires desper resson-
ing about whole sets of races and the subtle relationships between
families of them

In this paper we aim 0 make sn ITL prover for infinite-state
programs with performance closer to what one would expect from
a CTL prover. We use the observation that ¥CTL without faimess
can be a useful abstraction of LTL. The problem with this strategy
is that the pieces don't always fit together: there are cazes when,
due to some instances of nondeterminizm in the ransition system,
WCTL slone is not powerful encugh to prove an LTL property.

In these cases our LTL prover works around the problem using

tentially spurious 1
temporal properties (e.g. backtracking, eventuality checking, tree coun- is msgm u;lng decision predicares, and removed nsmg a something we call decision predicares, which are used to character- ket
terexamples for branching-time properties, abstraction refinement, atc.). perial, symbolic determinization procedurs which inmoduces new ize and treat such instances of nondeterminism. A decision predi- rs
Using examples drawn from the PostgreSQL database server, Apache prophecy variables to predict the fumre outcome of these choices. cate is reprasented as a pair of first-order logic formmla (a,b). eiburg de

web server, and Windows OS kernel, we demonstrate the practical via-
bility of our work.

1 Introduction

We demonstrate—using examples tsken from the PostgreSQL
database server, Apache web server, and Windows OS5 kemel—
that our method can yield enonmous performance improvements
in comparison to Enown tools, allowing us to sutomatically prove
properties of programs where we could not prove them before.

Categories and Subjecy Descriprors D24 [Software Engineer-

where the formmla o defines the decision predicate’s presupposi-
tion (ie when the decision is made), and b characterizes the binary
choice made when this presuppesition holds. Any transition from
stata 5 to state 5° in the system that meets the constraint a{ =) ab{s")
is distingmished by the decision predicats (o, b) from af s ) a-b{s).

We use decision predicates as the basis of a partial symbolic
determinization procedure: for each predicate we inmoduce a new

DE‘P ‘We describe a method of proving temporal properties of (possibly infinite-state) ing]: Soﬁn:m?m.;r_am \7mﬁcmon—wﬂ d:ledsu:lg C?I_'m' pcmp” M‘E‘ﬁ: 5 o M;ﬁf;nﬁ?ﬂznrm] de?‘?::_
transition systems. We ohserve that, with subtle use of recursion and nondeter- :.e;:ﬁimofs n;];s?ﬂf gwrz'::d[%z::’;;gff:nmlk?a:m i5 ables. we find that CTL pmofmeﬂmdll succesd, thus a]l:?ing s
minism, temporal reasoning can .hc encoded as a program eu.ml}'sis problem. .J\II ing and Verifying and Reasoning sbout Prozrams; F.3.2 [Logics to prove LTL properties with CTL proof techniques in cases whese
of the tasks necessary for reasoning about temporal properties (e.g. abstraction and Meaningz of Programs]: Semantics of Programming Languages—  this siwategy would have previowsly failed. To synthesize the deci-
search, hacktracking, eventuality checking, tree counterexamples for branching- Program analysis “““_Pgld{*:ms we ml"-"l.'f a ﬁmﬁ:f 5‘_:"’0]“: Tm ?“;;lz‘m' < that release
i ) . - - aff-the-s . ous counterexamples toga with an application o as”
tll‘l?t‘: ete) are then naLura.lly performed by 0.“ the bh.t‘“ program fa.na]_\'als ifm)]a. Gemeral Terms  Verification, Theory, Relisbility 1 R
Using known safety analysis tools (e.g. [2,5,8, 24, 32|) together with techniques ‘With our new approach we can sutomatically prove properties inlock
. for discovering termination arguments (e.g. [3,6, 17]), we can implement tem- Keywords  Linear temporal logic, formal verification, termination, of infinita-state programs in minutes or seconds which were in- i3
e deg poral logic provers whase power is effectively limited only by the power of the Program analysis, model checking tractable using existing tools. Examples include cods frapments -
the termi underlying tools. ) drawn from (h.e__Posl;lne'SQI_ database server, the Apache web
ments to Based on our method, we have developed a prototype tool for proving tem- 1. Introduction server, and the Windows O kernel.
ine for e poral properties of C programs and applied it to problems from the PostgreSQL The common wisdom amongst users and developers of tools that Limitations. Inpractice, the applicability and performance of our
te database server, the Apache web server, and the Windows 08 kernel. Our tech- prove tempaoral properties of systems is that the linear specifica- . ls_depm_dentundlehemsnc used to choose new decision
nigue leads to speedups by orders of magnitude for the universal fragment of ton logic LTL [33] is more muuitive than CTL [10]. bar thar prop- predicates when given an abstract representation of a specific point
[=y COTL (VCTL). Simil P - -ements resalt wh ring L'TL with erties expressed in the universal fragment of CTL (¥CTL) with- in a spurious counterexample. The predicate synthesis machanism
us °TL ( h ']'_ 1 a.r.pcr _Dma'_’c" Improvements r.cbu _“’ U‘_ proving S w out faimess constraints are often easier to prove than their LTL implemented in our tool is applicable primarily to infinite-state pro-
our technique in combination with a recently described iterative symbaolic deter- grams over arithmetic variables with commands that cnly contain
me minization procedure [13]. linear arithmetic. However, no matter which pradicate selection
oo mechanism is used, our predicate-based determinization stratagy is
L - — - - sound. Thus, unsound spproximations to predicate synthesis conld
Limitations. While in principle our technique works for all classes of transi- Parmission to maks diginal or hard copias of l or part of this work for perscnal o fally be used in instances where the sys considered do
tion svstems, our approach is currently geared to support only sequential non- ;:ﬁHMLmam&mﬂ?&&mw:‘?;&M 10t meet the constraints given shove. Our technique is also based
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Abstract. We
to & program analysis
the use of recursion and nondare
analysis tooks to naturally perform the reasoning necessary
temporal properties (e.g. backtracking, eventuality checking, tree
terexamples for branching-time properties, abstraction refinement, ate. ).
Using examples drawn from the PostgreSQL database server, Apache
web server, and Windows OS kernel, we demonstrate the practical via-
bility of our work.

1 Introduction

‘We describe a method of proving temporal properties of (possibly infinite-state)
transition systems. We ohserve that, with subtle use of recursion and nondeter-
minism, temporal reasoning can be encoded as a program analysis problem. All
of the tasks necessary for ressoning about temporal properties |e.g. abstraction
search, backtracking, eventuality checking, tree counterexamples for branching-
time, ete) are then naturally performed by off-the-shelf program analysis tools.
Using known safety analysis tools (e.g. [2,5,8, 24, 32|) together with techniques
for discovering termination arguments (e.g. [3,6, 17]), we can implement tem-
poral logic provers whase power is effectively limited only by the power of the
underlying tools.

Based on our method, we have developed a prototype tool for proving tem-
poral properties of C programs and applied it to problems from the PostgreSQL
database server, the Apache web server, and the Windows 08 kernel. Our tech-
nique leads to speedups by orders of magnitude for the universal fragment of
CTL (VCTL). Similar performance improvements result when proving LTL with
our technique in combination with a recently described iterative symbaolic deter-
minization procedure [15].

Limitations. While in prineiple our technique works for all classes of transi-
tion systems, our approach is currently geared to support only sequential non-
recursive infinite-state programs as its input. Furthermore, we currently only
support the universal fragments of temporal logics (i.e. YOTL rather than CTL).

Proving That Non-Blocking Algorithms Don’t Block

e quicome of these choices.
pken from the PostgreSQL
Windows OF kernel—
ce improvemants
to sutomatically prove
prove them before.

Categories and Subjecy Descriprors D24 [Software Engineer-
ing]: SoftwareProgram Verification—DModel checking; Correct-
ness proofs; Relishility; D.4.5 [Operanng Sysems]: Reliabiling—
Verification; F3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning sbout Programs; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages—
Program analysis

General Terms  Verification, Theory, Raliability

Eeywords  Linear temporal logic, formal verification, termination,
program analysis, model checking

1. Imtroduction

The common wisdom amongst users and developers of tocls that
prove temporal properties of systems is that the linear specifica-
tion logic LTL [33] is more intuitive than CTL [10], bat that prop-
erties expressed in the universal fragment of CTL (¥CTL) with-
out faimess constraints are often easier to prove than their LTL

Pacmissicn to maks diginl or hard copiss of 21l or part of thiz work for persenal o
clavicen 230 is granmd witheus fos provided taar copiss are 20t made or divmbured
for profit or comsmarcial ahantage and dat copies bear this notice and the full citation
on the it page. To copy othenwisa, to repoblith, to post on sarvers or o

C V-MIES LTL requires desper resson-
pces and the subtle relationships between

A to make an ITL prover for infinita-state
fiance closer to what one would expect from
dse the observation that ¥CTL without faimess
ffsraction of LTL. The problem with this stratezy
freces don't abways fit together: there are cases when,
0 some instances of nondeterminizm in the ransition system,
slone is not powerful encugh to prove an LTL property.

In these cases our LTL prover works around the problem using
something we call decizion predicares, which are usad to character-
ize and wreat such instances of nondeterminizm. A decizion predi-
cate is Tepresented as a pair of first-order logic formulae (a, b),
where the formmla o defines the decision predicate’s presupposi-
tion (ie when the decision is made), and b characterizes the binary
choice made when this presuppesition holds. Any transition from
stata 5 to state 5° in the system that meets the constraint a{ =) ab{s")
is distingmished by the decision predicats (o, b) from af s ) a-b{s).

We use decision predicates as the basis of a partial symbolic
determinization procedure: for each predicate we inmoduce a new
prophecy variable [3] to predict the future ontcome of the decision.
After partially determinizing with respect to these prophecy var-
ahbles, we find that CTL proof methods succeed, thus allowing us
to prove LTL properties with CTL proof techniques in cases whese
this sirategy would have previously failed. To synthesize the deci-
sion predicates we employ a form of symbolic execution on spuri-
ous ¥CTL counterexamples together with an application of Farkas™
lemmma [23].

‘With our new approach we can sutomatically prove pmperus
of infinite-state programs in minutes or seconds which were in-
tractable using existing tools. Examples include code fragments
drawn from the PostzreSQL database server, the Apache web
server, and the Windows OF kernel.

Limitarioms. Inpractice, the applicability and performance of our

is dependent on the heuristic used to choose new decision
predicates when given an abstract representation of a specific point
in a spurious counterexample. The predicate synthesis machanism
implemented in our tool is applicable primarily to infinite-state pro-
grams over arithmetic variables with commands that only contain
linear arithmetic. However, no matter which predicate selection
mechanism is used, our predicate-based determinization strategy is
sound. Thus, unsound spproximations to predicate synthesis conld
potentially be used in instances where the systems considered do
not meet the constraints given sbove. Our technique is also based
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! Abadi and Lampert [3] make this point using the terminclogy of “refine-
ment mappings” and “mace equivalence” imstead of phrasing it in the con-
tet of temporal logics.
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Proving stahilization for biological systems

Byron Cook?, Jasmin Fisher!, Elzbieta Krepska!, and Nir Piterman?

! Microsoft Research
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3 VU University Amsterdam
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Abstract. We describe an efficient procedure for proving stabilization
of biological systems modeled as qualitative networks. For sealability, our
procedure uses modular proof techniques, where state-space exploration
is applied only locally to small pieces of the system rather than the en-
tire system as & whole. Our procedure exploits the observation that, in
practice, the form of modular proofs required can be restricted to a very
limited set. Using our new procedure, we have solved a number of chal-
lenging published examples, including & 3D model of the mammalian
epidermis, & model of metabolic networks operating in type-2 diabetes,
and a model of fate determination of vulval precursor cells in the C. ele-
gans worm. Our results show many orders of magnitude speedup in cases
where previous stabilzation proving techniques were known to succeed,
and new results in cases where tools had previously failed.

1 Introduction

Biologists are increasingly turning to techniques from computer science in their
quest to understand and predict the behavior of complex biological svstems [2-4].
In particular, the application of formal verification tools to models of biological
processes is gaining impetus among biologists, In some cases known formal veri-
fication techniques work well (e.g. [5-7]). Unfortunately in other cases—such as
proving stabilization [8]—we find that existing abstractions and heuristics are
not effective.

In this paper we address the open challenge to find scalable algorithms for
proving stabilization of hiological systems. In computer science terms, we are
trving to prove a liveness property similar to termination of large parallel sys-
tems. The sizes of these systems forces us to use some form of modular reasoning.
Unfortunately, hecause stahilization is a liveness property, we must be careful
when using the more powerful cyclic modular proof rules (e.q. [9,10]), as they are
formally only sound in the context of safety [11]. Furthermore, we find that the
complex temporal interactions between the modules are crucial to the stabiliza-
tion of the system as a whole; meaning that we cannot use scalable techniques
that simply ahstract away the interactions altogother.

In this paper we show that in practice non-circular modular proofs can be
found using local livenoss lemmas of a limited form:

[FG(p1) n....AFG(ps)] = FG(a)
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Misunderstanding the halting problem

=» Automatic searches for proofs of program termination
don’t make for exciting demos

= Termination bugs found from failed proof attempts are
usually more entertaining

Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help
mouclass.c | 4%
for (entry = DeviceExtension->ReadQueuns.Flink; :E

entry != sDeviceExtension->ReadQueue;
5 entry = entry->Flink)

irp = CONTAINING RECORD (entry, IRP, Tail.Cverlay.ListEntry);
stack = IoGetCurrentIrpStackLocation (irp);

=] if (stack-»FileObject == FileObject)

RemoveEntryList (entry);

oldCancelRoutine = IoSetCancelRoutine (irp, NULL):

=] /"

// IoCancellrp() could have just been called on this IRP.

// What we're interested in is not whether IoCancellrp() was called

// lie, nextIrp->Cancel iz set), but whether IoCancellrp() called (or _d
// iz about to call) our cancel routine. To check that, check the result

// of the test-and-set macro IoSetCancelRoutine.

r I
if (oldCancelRoutine)
I/
// Cancel routine not called for this IRP. Return this IRP.
r I/
return irp;
r }
else

// This IRP was just cancelled and the cancel routine was (or will
// be) called. The cancel routine will complete this IRP as scon as
// we drop the spinlock. So don't do anything with the IRP.

// Blso, the cancel routine will try to dequeue the IRP, so make the
// IRE's listEntry point to itself.

ASSERT (irp->Cancel);
InitializeListHead (&irp->Tail.Overlay.ListEntzy):

Jq \ -
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#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c q X
for (entry = DeviceExtension->Read(ueue.Flink; N
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRFP, Tail.Owverlay.ListEntry):
stack = IoGetCurrentlIrpStackLocation (irp):

= if (=stack-»FileCbject == File0Object) {

RemoveEntryList (entry):

oldCancelRoutine = IoSetCancelRoutine (irp, NULL) !
= £
S/ IoCancellrp() could have just been called on this IRF.
S/ What we're interested in is2 not whether IoCancellrp() was called
S/ (ie, nextIrp->Cancel iz set), but whether IoCancellrp() called (or

S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £

= if (oldCancelRoutine) {

E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.

- £
return irp:

o }

-] else {

E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.

- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):

o }

o H

} -

| v
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#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

122 | || Ln 2292 Col 41 ch 41




#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }
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#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }
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#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }
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#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }
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#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }
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#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }
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#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }
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#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }
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#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }
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S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
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for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
=] / <
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }
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You replied on 1)26/2006 12:53 AM,

From: ‘1#MWOWV Sent:  Sat 12/10/2005 3:52 AM
To Byron Cook,

e

Subject:  RE: Queskion about mouclass driver

Still solwving the halting problem I see. If yvou ever find spare time, vou might also want to give & go
art Hilhert Prohlem #3, i.e. the Riemann hypothesiz [(http://www.maths.ex.ac. uk/~mwmatkins/ zeta/33-a. htn)

Now Lo wour actual dquestion @)

Thi=, iz indeed fucked. The for loop should be scrapped so that the else clause can read the next
entry bhefore whacking it.

Note also that *two* processors will be wedgied, not just one: the cancel routine will wait until the
lock held by the caller i=s dropped, which will newver happen. In short, the loop won't terminate until
the user terminates the machine. ¥ou don't even get a courtesy crash.

For extra credit, notice the O(n*m) condition created by the invocation by MousecClassCleanuplOusues,
where 1 iz the number of non-FO matching objects in the heginning of the gqueues and m is the nunber of
matching ones. DO3 attack anvone?

- 4

From: Ewron Cook
Gent: Friday, Decemwber 09, 2005 6:42Z PM
To: Adrian Oney
Jubject: Question about mouclass driver

&
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=> Previous wisdom: proving termination for industrial systems

code is impossible

- Now people are beginning to think that it’s effectively “solved”.

=> Much left to do, including

139

Complex data structures (safety)
Infinite-state systems w/ bit vectors (safety)
Binaries (safety)

Non-linear systems (liveness and safety)
Better support for concurrent programs
Modern programming features (e.g. closures)
Finding preconditions to termination

Scalability, performance, precision



< Termination proving is at the heart of many undecidable
problems (e.g. Wang’s tiling problem)

- Modern termination proving techniques could
potentially be used to building working tools

= Challenge: “black-box” solutions to undecidable
problems die in the most unpredictable ways
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Conclusion

- Conventional wisdom about termination overturned

= Undecidable does not mean we cannot soundly approximate a solution

- TERMINATOR shows that automatic termination proving is not
hopeless for industrial systems code

- Current state-of-the-art solutions based on

= Abstraction search for safety property verification (e.g. SLAM)
= Farkas-based linear rank function synthesis

= Ramsey-based modular termination arguments

= Separation Logic based data structure analysis
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For more information

- http://research.microsoft.com/TERMINATOR

= Research papers
= Recorded technical lectures
= Contact details

- CACM review article
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review articles

DOI:10.1145/1941487 1041508

In contrast to popular belief, proving
termination is not always impossible.

| BY BYRON COOK, ANDREAS PODELSKI,
AND ANDREY RYBALCHENKO

Proving
Program
Termination

THE PROGRAM TERMINATION problem, also known
as the uniform halting problem, can be defined as
follows:
Using only a finite amount of time, determine
whether a given program will abways finish running
or could execute forever.

This problem rose to prominence before the
invention of the modern computer, in the era of
Hilbert's Entscheidungsproblem: the challenge to
formalize all of mathematics and use algorithmic
means to determine the validity of all statements.
In hopes of either solving Hilbert’s challenge, or
showing it impossible, logicians began to search
for possible instances of undecidable problems.
Turing’s proof* of termination’s undecidability is
the most famous of those findings."

The termination problem is structured as an infinite

decision problem.
rrcﬂnmnen}z\ to whether or ot Turing proved the undecidabiliy in®. Technically
he did net, but is an easy of the result that is proved. A
simple proof can befound in Wrxhz} -

B8 COMMUNICATIONS OF THEACM | MAY 2011 | WOL 55 | WO.§

set of queries: to solve the problem
we would need to invent a method ca-
pable of accurately answering cither
“terminates” or “doesn't terminate”
when given any program drawn from
this set. Turing’s result tells us that
any tool that attempts to solve this
problem will fail to return a correct
answer on at least one of the inputs.
No number of extra processors nor
terabytes of storage nor new sophistl
nudatgummmwm leadto the d«.vd
opment of a true oracle for program
termination.

Unfortunately, many have drawn
too strong of a conclusion about the
prospects of automatic program ter-
mination proving and falsely believe
we are always unable to prove termi-
nation, rather than more benign con-
sequence that we are unable to abvays
prowe termination. Phrases like “but
that's like the termination problem”
are often used to end discussions that
mightotherwise hawe led to viable par-
tial solutions for real but undecidable
problems. While we cannot ignore
termination's undecidabili we
develop a slightly modified problem
statement we can build useful tools.
In ournew problem statement we will
still require that @ termination prov
ing tool always return answers that
arecorrect, but we wil | not necessarily
require an answer. If the terminaton
provercannot prove or disprove termi-
nation, it should return “unknown.”

Using only a finite amount of time,
determine whether a given program
will abways finish running or could
execute forever, of return the answer
“unknown.”

key insights

m For decades, the same method was used
for proving termination. It has never been
spplied successtuly tolarge programs.

W A deep theorem in mathematical logic
based on Ramsey'’s thearem, holds the
key to 3 new method.

m The new method can scale to large
programs because it allows for the
‘modular construction of termination




