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Automatic formal verification 

 View artifact of interest as a mathematical system: 
 Software 

 Hardware 

 Biological system 

 etc …… 

 

 Build tools that find proofs of correctness using 
mathematics and logic 

 

 100% testing coverage 
 Faster and more scalable than brute force 

 Allows for 100% coverage even for infinite-state systems 

 

 

 

 

 
 

 



7 

Example property 

 

 

 

 

   “The parallel port device driver’s event-handling 
routine only calls KeReleaseSpinLock() when 
IRQL=PASSIVE”  
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Proving termination 

 Traditional termination proving method originally 
proposed by the forefathers of computing 

 

 E.g. Turing, “Checking a large routine”, 1949 
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Automating the search for proofs 

 

 

 Difficulties: 

 

 Proving the inclusion                  is hard in practice (and 
undecidable in theory) 

 

 Finding an    such that                 is even harder in practice (and 
undecidable in theory) 
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find a sound over-approximation using available 
techniques:  

 

 

      represents an infinite set of states, but has a 
compact expression 
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Automating the search for proofs 

 We use an over-approximation of the transition relation 

 

 

 

 Since               , we can prove termination by showing 

 

 

 

 Meaning: there might be unrealistic transitions that we 
have to worry about 

 R’ 
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Automating the search for proofs 

 In practice, its extremely hard to find the right 
overapproximation  

 

 Luckily: recent breakthroughs in safety proving now 
make this possible. 

 

 In fact: the checking the validity of a termination 
argument can be directly encoded as a safety property 

 

 Tools like SLAM can be used to prove validity 
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Modular termination arguments 

 Modularity gives us freedom when looking for valid 
arguments 

 

 Strategy: refinement based on failed attempts 

 Start with empty termination argument 

 Check inclusion 

 If inclusion check succeeds, termination has been proved 

 If it fails, synthesize a new ranking function from a 
counterexample and add it in 

 Go to start 
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copied = 0;  

    . 

    . 

    . 

 

 

    if (!copied) { 

        if (*) { 

            H[x] = x; 

            H[y] = y; 

            copied = 1; 

        } 

    } else {  

        assert(T1 || T2 || T3); 

    } 

         

         

              

             

             

              

                    

               

 

 

 

 

 

 

    x = f(x,y); 

    g(&y,x); 

} 

         

         

 

 

 

 

 

 

 

 

 

 

 

     

     

while(x<y) { 

         

     

Terminator 

copied = 0; 
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Misunderstanding the halting problem 

 Automatic searches for proofs of program termination 
don’t make for exciting demos 

 

 Termination bugs found from failed proof attempts are 
usually more entertaining 
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Future work 

 Previous wisdom: proving termination for industrial systems 
code is impossible 

 

 Now people are beginning to think that it’s effectively “solved”.   

 

Much left to do, including 
 Complex data structures (safety) 

 Infinite-state systems w/ bit vectors (safety) 

 Binaries (safety) 

 Non-linear systems (liveness and safety) 

 Better support for concurrent programs 

 Modern programming features (e.g. closures)  

 Finding preconditions to termination 

 Scalability, performance, precision 
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Future work 

 

Termination proving is at the heart of many undecidable 
problems (e.g. Wang’s tiling problem) 

 

 Modern termination proving techniques could 
potentially be used to building working tools 

 

 Challenge: “black-box” solutions to undecidable 
problems die in the most unpredictable ways 
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Conclusion 

 Conventional wisdom about termination overturned 
 Undecidable does not mean we cannot soundly approximate a solution 

  

Terminator shows that automatic termination proving is not 
hopeless for industrial systems code 

 

 Current state-of-the-art solutions based on 
 Abstraction search for safety property verification (e.g. SLAM) 

 Farkas-based linear rank function synthesis 

 Ramsey-based modular termination arguments  

 Separation Logic based data structure analysis 
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For more information 

 http://research.microsoft.com/Terminator 

 Research papers 

 Recorded technical lectures 

 Contact details 

 

 CACM review article 

 

 
  

 

  


