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Games can be very hard!

® Partially observable stochastic games
& States only partially observed
® Multiple agents choose actions

& Stochastic pay-offs and state transitions depend on state and all the
other agents’ actions

¢ Goal: Optimise long term pay-off (reward)
® Just like life: complex, adversarial, uncertain, and we are in it for
the long run!



Approximations

From single player’s | .
Partially Observable Markov Decision Process (POMDP)

Approximate Reinforcement Learning

Unsupervised Learning

Solutions Supervised Learning

e Always takes optimal actions
¢ Delivers best entertainment value
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Drivatar™
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Demo: Forza Motorsport

XBOX Game

e Dynamic Racing Line
e Learning a Drivatar
e Using a Drivatar

FORZA
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Drivatars Unplugged

Drivatar
Learning System

Car Behaviour

) Drivatar Racing Line
Behaviour Model

“Built-In” Al Behavio
Development Tool
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The Racing Line Model




Drivatars: Main ldea

® Two phase process:
1. Pre-generate possible racing lines prior to the race from a
(compressed) racing table.
2. Switch the lines during the race to add variability.
Compression reduces the memory needs per racing line

segment
& Switching makes smoother racing lines.
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Racing Tables

Segments a a, a5 a,
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Minimal Curvature Lines
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Reinforcement Learning
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Tabular Q-Learning
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Results

® Game state features
* Separation (5 binned ranges)
* Last action (6 categories)
* Mode (ground, air, knocked)
* Proximity to obstacle

¢ Available Actions
* 19 aggressive (kick, punch)
* 10 defensive (block, lunge)
* 8 neutral (run)

® Q-Function Representation
* One layer neural net (tanh)
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Learning Aggressive Fighting
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Learning “Aikido” Style Fighting

Punishment for decrease in either player’s health
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Motivation
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Competition is central to our lives

Innate biological trait

Driving principle of many sports

Chess Rating for fair competition

ELO: Developed in 1960 by Arpad Imre EIS
Matchmaking system for tournaments
Challenges of online gaming

Learn from few match outcomes efficiently
Support multiple teams and multiple players per team
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The Skill Rating Problem

Given:
Match outcomes: Orderings among k teams consisting of n_, n, ..., ;.
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players, respectj:

® Questions:

Skill s, for each
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Two Player Match Outcome Model

® Latent Gaussian performance model for fixed skills
® Possible outcomes: Player 1 wins over 2 (and vice versa)




Efficient Approximate Inference

Fast and efficient approximate message passing using
Expectation Propagation




Applications to Online Gaming

® Leaderboard
Global ranking of all players
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Xbox 360 & Halo 3

® Xbox 360 Live
® Launched in September 2005
® Every game uses TrueSkill™ to match players
® > 35 million players
¢ > 4 million matches per day
¢ > 2 billion hours of gameplay / month

¢ Halo 3
® Launched on 25t September 2007
® Largest entertainment launch in history
> 200,000 player concurrently (peak: 1,000,000)
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Demo: Halo 3

Halo 3 Game

e Matchmaking
e Skill Stats

 Tight Matches "
S




Halo 3 in Action
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Learning to Play Go




The Game of Go

® Started about 4000 years ago in ancient China.
® About 60 million players worldwide.

® 2 Players: Black and White.
® Board: 19x19 grid.

® Rules:

¢ Turn: stone placed on vertex.
& Capture.

® Aim: Gather territory




Computer Go

® 5th November 1997:

asparov ponders his next move
(CHNMN)

® Best Go programs cannot beat amateurs.




Computer Go

Minimax
® Minimax search defeated. /N
A( lookahead
¢ High Branching Factor. L//\M

¢ Go: ~200 :
¢ Chess: ~35 ?atlon

® Complex Position Evaluation.
¢ Stone’s value derived from configuration of surrounding stones.




Monte Carlo Go o0 06
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Territory Hypothesis



Monte Carlo Go




Monte Carlo Go




Monte Carlo Go




Monte Carlo Go

This node
Seen: 3 times
Win: 2/3 times




From the Experts
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Learning From the Experts
with TrueSkill
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Learning From the Experts
with TrueSkill
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Learning From the Experts
with TrueSkill

(W) psj4141 [KWN]




Prune Away the
Bad Moves




Machine Learning Assisted Monte Carlo Go

Monte Carlo Go Pattern Ranking System

Play random games (‘rollouts’).
Each game gives a sample win/loss.
Average estimates position value. * Learn pattern rankings using TrueSkill.
Store game tree in memory. * Moves chosen over other moves by experts
Bootstrap rollout policy. are inferred to have higher value.

* Training Data: 200,000 Expert Go Games.

Pattern Pruning

* Too many possible moves to evaluate.
* Pattern system estimates move quality.
* Prune bad moves from the game tree.




Demo: The Path of Go

cczmmm The Path of Go

jm‘TH e MSRC Go Al (written in F#)
S0FGO e TrueSkill Match Making
® e XNA Game Studio
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Conclusions
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Computer games can be used as test beds for research.

Machine learning can be used to improve the user experience in
computer games.

Both research and applications are in their infancy and there are
many open questions.

XNA framework exists to plug in machine learning algorithms.
For more question, please drop us a line

Joaquin Quinonero Candela, Ralf Herbrich, Thore Graepel
Online Services and Advertising Group




joaquinc @ microsoft.com
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