

Local cues and global constraints in image understanding

Olga Barinova

Lomonosov Moscow State University *Many slides adopted from the courses of Anton Konushin

Microsoft⁻ Research

Image understanding

- «To see means to know what is where by looking»
	- *David Marr, Vision, 1982*

We see Computer sees

Slide credit S. Narasimhan

6th Microsoft PhD Summer School, Cambridge, UK, 27 June – 1 July 2011.

Microsoft
Research Image understanding

Microsoft⁻ Image understanding**Research**

•[Scene interpretation](http://people.w3.org/rishida/photos/html/slides/0311-beijing1_031111_035240+8_beijing_e031124.jpg.html)

- outdoors
- urban
- street
- Beijing, China

6th Microsoft PhD Summer School, Cambridge, UK, 27 Slide credit: Fei-Fei, Fergus & Torralba Slide 4

灵大团结

Microsoft⁻ Image understanding Research

•Dimensionality reduction

What do we lose in perspective projection?

- Angles
- Distances and lengths

Figures © Stephen E. Palmer, 2002

Microsoft⁻ **Research** Why is image understanding difficult?

•Variability: interclass variability of appearance

6th Microsoft PhD Summer School, Cambridge, UK, 27 June – 1 July 2011.

Microsoft⁻ **Research** Why is image understanding difficult? •Variability: different viewpoints

Michelangelo 1475-1564

•Variability: different lighting

image credit: J. Koenderink

Microsoft⁻ **Research** Why is image understanding difficult? •Variability: deformations and occlusions

Xu, Beihong 1943 Slide credit: Fei-Fei, Fergus & Torralba

Microsoft[®] **Research** Reducing variability by using local cues

- •Motivation: stitching panoramas
	- Find distinctive points
	- Find an alignment that matches these points

Microsoft⁻ **Research** Reducing variability by using local cues

•Motivation: stereo matching

•Motivation: image retrieval object detection

Slide creit: S. Lazebnik

Research Learning local models from local cues

•Local features and descriptors

- Feature detectors
	- Harris-Laplace
	- LoG

Microsoft⁻

- DoG
- Dense sampling
- **Descriptors**
	- SIFT
	- Shape context
	- HOG
	- Pixel comparison

Learning local models from local cues

•Learning models from the data

Learning methods: • SVM **Boosting** • Random Forests • …… **Learned model** Output of the model Unseen data instance Data

Microsoft⁻ Research Learning local models from local cuest •Example: object detection using sliding window

- 'Local' has been the dominant paradigm in computer vision till the 2000s
- Works notoriously well for detection of rigid objects, e. g. faces [Viola, Jones, 2001], [Dalal, Triggs, 2005]

Learning local models from local cues

•Let's have a closer look at the results

Learning local models from local cues

•What the detector sees

Slide credit: Alyosha Efros

•Local ambiguity

Slide credit: Fei-Fei, Fergus & Torralba

•The world is structured, not everything is possible

- Local cues
- Similar appearance of similar objects
- Limited number of allowed deformations of the objects in 3d
- Global constraints
- Depth ordering and occlusions
- Rules of perspective projection

•
. ….

Chaotic world

Structured world

• Limited set of allowed deformations for the objects

Dali, 1931

• Occlusions

Research

Microsoft⁻

Magritte, 1957

• Depth ordering

• Rules of perspective geometry

Microsoft⁻ Research

Expressing constraints with graphical models

- Outline of the talk
	- The idea of graphical models
	- Examples:
		- Limiting the set of allowed deformations
		- Occlusion constraint
		- Depth ordering constraint
		- Modeling the rules of perspective geometry

Microsoft⁻ Research

Expressing constraints with graphical models

- Outline of the talk
	- **The idea of graphical models**
	- Examples:
		- Limiting the set of allowed deformations
		- Occlusion constraint
		- Depth ordering constraint
		- Modeling the rules of perspective geometry

Expressing constraints with graphical models

- Graphical models
	- Graphical representation of probability distributions
	- Graph-based algorithms for calculation and computation
	- Capture both local cues and global constraints by modeling dependencies between random variables

Picture credit: C. Bishop

- Graph representation
	- •Each node corresponds to a **random variable**
	- •**Dependent variables** are connected with edges
	- •**Clique** fully connected set of nodes in the graph •**Maximal clique** - a clique that is not a subset of any other cliques

 $p(x_1, x_4 | x_2, x_3) =$ $= p(x_1 | x_2, x_3) p(x_4 | x_2, x_3)$

Picture credit: C. Bishop

• Joint distribution and potentials

Joint distribution of all random variables can be written as a product of nonnegative **potentials** defined on maximal cliques:

$$
p(X) = \frac{1}{Z} \prod_{C} \psi_C(X_C) \qquad Z = \sum_{X} \prod_{C} \psi_C(X_C), \quad \psi_C(X_C) \ge 0
$$

$$
p(X) = \frac{1}{Z} \psi_1(x_1, x_2, x_3) \psi_2(x_2, x_3, x_4)
$$

• MAP-inference and energy function

Maximum a-posteriori (MAP) inference - find the values of all variables in the graphical model that maximize the joint probability *x = 0*

probability
\n
$$
\arg \max_{P(X)} p(X) = \arg \max_{Z} \frac{1}{Z} \prod_{C} \psi_C(X_C) =
$$
\n
$$
= \arg \max_{Z} \exp\left(-\sum_{C} E_C(X_C)\right) =
$$
\n
$$
= \arg \min_{Z} \sum_{C} E_C(X_C)
$$
\n
$$
= \arg \min_{Z} \sum_{C} E_C(X_C)
$$
\n
$$
= \sum_{C} E_C(X_C)
$$
\n
$$
= \sum_{C} E_C(X_C)
$$

MAP-inference = energy minimization

- Methods for MAP-inference
	- Many computationally efficient methods for inference in graphical models have been developed:
		- graph cuts
		- TRW
		- belief propagation
		- expectation propagation
		- MCMC
		- ….
	- All these methods have limitations and can be used to minimize energy functions of specific forms \rightarrow the art is to find tradeof between flexibility and tractability

Microsoft⁻ Research

Expressing constraints with graphical models

- Outline of the talk
	- The idea of graphical models
	- **Examples:**
		- **Limiting the set of allowed deformations**
		- Occlusion constraint
		- Depth ordering constraint
		- Modeling the rules of perspective geometry

Expressing constraints with graphical models

• Limiting the set of allowed deformations

•Model should be flexible enough, but constrain the allowed deformations of an object

Microsoft⁻ Research
Limiting the set of allowed deformations

• Pictorial structures model

•**Pictorial structures** strike a good balance between flexibility and tractability

[Fischler & Elschlager 73], [Felzenshwalb & Huttenlocher 00]

Microsoft⁻ Research
Limiting the set of allowed deformations

• Pictorial structures model

•Each vertex corresponds to a part of a person: *'Head', 'Torso', 'Legs', 'Arms'*

•Edges form a tree

•Person detector - for each vertex find a corresponding position from the set of valid positions

$$
Pr(P_{tor}, P_{arm}, ... | Im) \propto \prod_{i,j} Pr(P_i | P_j) \prod_{i} Pr(Im(P_i))
$$

$$
\uparrow \qquad \qquad \downarrow
$$

 part geometry

• Pose estimation

• Pedestrian detection

Microsoft⁻ Research

Expressing constraints with graphical models

- Outline of the talk
	- The idea of graphical models
	- **Examples:**
		- Limiting the set of allowed deformations
		- **Occlusion constraint**
		- Depth ordering constraint
		- Modeling the rules of perspective geometry

Expressing constraints with graphical models

• Occlusions

• Occlusions and self occlusions make the task of object detection even harder

Joint work with Victor Lempitsky and Pushmeet Kohli, CVPR10

• Local model

Model from [Gall & Lempitsky, CVPR09]

Joint work with Victor Lempitsky and Pushmeet Kohli, CVPR10

• Each image pixel belong to no at most one object

Joint work with Victor Lempitsky and Pushmeet Kohli, CVPR10

• Modeling the occlusion constraint

x – labelling of image patches, x_i = index of hypothesis, if the patch votes for hypothesis, $x_i = 0$, if the patch votes for background

y – labelling of hypotheses, binary variables: $y =1$, if the object is present, *y = 0*, otherwise

Joint work with Victor Lempitsky and Pushmeet Kohli, CVPR10

• Modeling the occlusion constraint

x – labelling of image patches, x_i = index of hypothesis, if the patch votes^{δ} for hypothesis, $x_i = 0$, if the patch votes for

Microsoft⁻

Research

background

Key idea : joint MAP-inference in x and y Joint work with Victor Lempitsky and Pushmeet Kohli, CVPR10

- Graphical model
	- If labeling of **y** is fixed, the values of x_i are independent
	- So we can maximize **x** out first and perform inference over **y**

• Comparison

Without occlusion constraint Using occlusion constraint

White = correct detection Green = missing object Red = false positive

Code available online!!!

Joint work with Victor Lempitsky and Pushmeet Kohli, CVPR10

Microsoft⁻ **Research**

Expressing constraints with graphical models

- Outline of the talk
	- The idea of graphical models
	- **Examples:**
		- Limiting the set of allowed deformations
		- Occlusion constraint
		- **Depth ordering constraint**
		- Modeling the rules of perspective geometry

Expressing constraints with graphical models

• Depth ordering

- The size of an object depends on the distance from the viewpoint
- Viewpoint is set by the position of horizon and ground plane in the image

• Viewpoint \rightarrow prior on the size of the objects

Object Position/Sizes **Viewpoint**

Hoiem et al. , CVPR2006

• Detected objects \rightarrow viewpoint

Object Position/Sizes **Viewpoint**

Microsoft⁻

Research

Hoiem et al. , CVPR2006

• Graphical model

Microsoft⁻

Research

Hoiem et al. , CVPR2006

• Prior on the size an position of the objects

P(object) P(object | surfaces, viewpoint)

6th Microsoft PhD Summer School, Cambridge, UK, 27 June – 1 Ju**l, @iem et al., CVPR2006**

• Comparison

Car: TP / FP Ped: TP / FP

 $Initial: 2 TP / 3 FP$ FP Final: $7 TP / 4 FP$

Hoiem et al. , CVPR2006

Local Detector from [Murphy-Torralba-Freeman 2003]

• Comparison

Car: TP / FP Ped: TP / FP

 $Initial: 1 TP / 14 FP$ FP Final: $3 TP / 5 FP$

Hoiem et al. , CVPR2006

Local Detector from [Murphy-Torralba-Freeman 2003]

Microsoft⁻ Research

Expressing constraints with graphical models

- Outline of the talk
	- The idea of graphical models
	- **Examples:**
		- Limiting the set of allowed deformations
		- Occlusion constraint
		- Depth ordering constraint
		- **Modeling the rules of perspective geometry**

Expressing constraints Research with graphical models

• Rules of perspective geometry

Microsoft⁻

- Straight lines lying on parallel planes in 3D intersect in the image plane in **vanishing point**
- Vanishing point corresponding to vertical lines is called **zenith**
- All vanishing points which correspond to horizontal lines lie on the same straight line called **horizon**

• Geometric primitives and geometric parsing

Image of man-made environment Line Edge pixels Equate Segments

Lines Vanishing points Zenith and horizon Joint work with Elena Tretyak, Victor Lempitsky and Pushmeet Kohli, ECCV10

Microsoft⁻ Research
Modeling the rules of perspective geometry • Traditional approach: bottom-up pipeline

1. *Grouping edge pixels into line segments*

2.Grouping line segments and VPs estimation

3. Horizon and zenith estimation

*Tuytelaars 1998, Antone 2000, Almansa 2003, Aguilera 2005, Boulanger 2006 , Tardif 2009

Microsoft⁻ Research Modeling the rules of perspective geomet

- Energy function
	- All geometric primitives are detected in the simultaneously by energy minimization:

$$
E_{total}(\mathbf{s}, \mathbf{l}, \mathbf{h}, z | \mathbf{p}) = \sum_{i=1..P} E_{edge}(p_i | \mathbf{s}) + \sum_{i=1..S} E_{segment}(s_i | \mathbf{l}) +
$$

$$
\sum_{i=1..L} E_{line}(l_i | \mathbf{h}, z) + \sum_{1 \le i < j \le H} E_{horizon}(h_i, h_j | z) + E_{prior}(\mathbf{s}, \mathbf{l}, \mathbf{h}),
$$

p – edge pixels, *s* – line segments, *l* – lines, *z* – zenith, *h* – horizontal vanishing points

Joint work with Elena Tretyak, Victor Lempitsky and Pushmeet Kohli, ECCV10

Microsoft⁻ Research
Modeling the rules of perspective geometry

Discretization of the model

Candidate vanishing points

Candidate line segments

Candidate lines

Candidate edge pixels

6th Microsoft PhD Summer School, Cambridge, UK, 27 June – 1 July 2011.

Microsoft⁻ Research Modeling the rules of perspective geometry

• Graphical model

– factors correspond to the potentials of the energy function

 \bigcap – nodes correspond to geometric primitives

Joint work with Elena Tretyak, Victor Lempitsky and Pushmeet Kohli, ECCV10

• Results of geometric parsing

Input image Detected geometric primitives

Joint work with Elena Tretyak, Victor Lempitsky and Pushmeet Kohli, ECCV10

Microsoft⁻ Research Modeling the rules of perspective geometry

• Comparison

Result of geometric parsing with full energy

Code available online!!!

Omitting horizon constraint

Bottom-up pipeline

Microsoft⁻ Research Modeling the rules of perspective geometry

• Comparison

Result of geometric parsing with full energy

Code available online!!!

Omitting horizon constraint

Bottom-up pipeline

6th Microsoft PhD Summer School, Cambridge, UK, 27 June – 1 July 2011.

Microsoft⁻ Research Modeling the rules of perspective geometry

- Application: single-view geometry
	- 3-d reconstruction = recovering 3-d structure of the scene from its projection(s)
	- Single-view 3-d reconstruction is an Illposed problem, infinite number of possible solutions

Joint work with Vadim Konushin, Anton Yakubenko, Hwasup Lim, and Anton Konushin, ECCV08

- The structure of 3d model
	- 3d model is composed of ground plane and a number of vertical wallsVertical walls polygons

Joint work with Vadim Konushin, Anton Yakubenko, Hwasup Lim, and Anton Konushin, ECCV08

• The structure of 3d model

Parameterization:

- •(n-1) X-coordinates of polyline fractures p_x^i , ($i = 2, ..., n$)
- \bullet (n) X-coordinate of VP v_x^i , ($i = 1, ..., n$)
- •*Horizon level h*
- •*Y-coordinate of polyline left end* p_y^1

Microsoft⁻ **Research** Application: single-view geometry

• Demo

single image 3d model

Joint work with Vadim Konushin, Anton Yakubenko, Hwasup Lim, and Anton Konushin, ECCV08

Thank you for attention!

Thanks to Microsoft Research Connections for the support of creating courses on computer vision at MSU