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Note, this is an extended version of chapter 7 from the book:
Markov Random Fields for Vision and Image Processing, MI@sBi{6].
In this Technical Report, references to other chapters #@herespect to the book.
The differences are, a new section 4.3 and extra detailstiose3.2 and 3.3

The topic of interactive image segmentation has receivediderable attention in
the computer vision community in the last decade. Todag,ttpic is very mature and
commercial products exist which feature advanced reseaiations. This means that
interactive image segmentation is today probably one ofrtbst used computer vision
technologies world-wide. In this chapter we review one glaiinteractive segmen-
tation techniques, which use discrete optimization andysonal selection interface.
We begin the chapter by explaining the seminal work of Boyand Jolly [9]. After
that the GrabCuttechnique [36] is introduced, which imgsowon [9]. GrabCutis the
underlying algorithm for the Background Removal tool in t&rosoft Office 2010
product. In the third part of the chapter many interestirafiees and details are ex-
plained which are part of the product. In this process sévecent research articles
are reviewed. Finally, the Background Removal tool, as e®[B, 36], are evaluated in

different ways on publicly available databases. This idekistatic and dynamic user
inputs.®

1 Introduction

This chapter addresses the problem of extracting an olnject image with additional
hints from the user. This is different to the long-standiagearch topic of automati-
cally partitioning an image into the objects present in tteng, e.g. [38]. Firstly, user

1A historical note. The Background Removal tool was fully eleped at the end of 2004 by Carsten
Rother and Vladimir Kolmogorov. It was part of an externdéase of Microsoft Expression Acrylic Graph-
ics Designer (technology preview) in June 2005 (called ‘$relect”). This included engineering solutions
to many practically interesting problems (see sec. 4), lwvhiere not addressed in [36]. For some problems,
our solutions are in fact very similar to recent work [31,.38pme of these practical problems motivated
our recent articles on the following topics: initializati@and optimality [44], connectivity [43], bounding-
box prior [28], segmentation-based matting [35]. To fineetthe Background Removal tool we employed
the robot user (see sec. 5.2), which was also used in [17] atidated our very recent work on learning
interactive segmentation systems [34].



interaction is needed to specify the object of interest.o8dly, quite often the user
wants to select only a part of an object, e.g. head of a pemoam arbitrary region
of interest. The intrinsically interactive nature of thimplem makes it very attractive,
but also challenging. Hence, it has been a fruitful rese&rpit for more than two
decades, where some work concentrates more on theoredjfpaita, e.g. model and
optimization, and other work more on user aspects.

The question of what is the best interactive segmentatistesytoday is hard to
answer. Many factors have to be considered: i) What is thegreeip (e.g. novice or
advanced users), ii) What is the user interface, iii) How &@asure the user involvement
(e.g. total amount of interaction time, or number of usetg)in

It is worth mentioning that approaches for interactive imaggmentation have
influenced many related tasks. One example is the probleoirdfgbject recognition
and segmentation, as can be seen in the TextonBoost frat¢88jror the ObjCut
system [25]. Another example is the web-based retrievaksygor classical vases
[26], which automatically runs segmentation technologghimbackground.

Note that the focus of this chapter is on the binary segmientatoblem, i.e. each
pixel belongs to either foreground or background. This isrgplfied view of the prob-
lem since some pixels, especially close to the object bayndee semi-transparent,
i.e. a mix of foreground and background colors. A brief d&san of this issue in the
context of a practical segmentation system is given in s&c. 4

The chapter is organized as follows. After a brief literatteview in sec. 1.1, three
systems are presented, in the order of increased modelterityp the Boykov and
Jolly approach (sec. 2), the GrabCutsystem (sec. 3), ancbtihenercial Background
Removal tool (sec. 4). In sec. 5 the methods are comparechér state-of-the art
techniques in two different experiments.

1.1 Interactive Image Segmentation - a Brief Review

In the following we categorize different approaches toriattive image segmentation
by their methodology and user-interfaces. Note that o@fbeview is not meant to be
comprehensive.

Magic Wand is probably the simplest technique. Given a user-specifedd” point
(or region), a set of pixels is computed which is connectati¢oseed point, where all
pixels in the set deviate, from the color of the seed poiri; within a given tolerance.
Fig. 1(a) shows the result using Magic Wand in Adobe Photpghfi]. Because the
distribution in colour space of foreground and backgrouiélp have a considerable
overlap, a satisfactory segmentation can not be achieved.

Intelligent Scissors (a.k.a. Live Wire or Magnetic Lasso) [32] allows a user to
choose a “minimum cost contour” by roughly tracing the otielboundary with the
mouse. As the mouse moves, the minimum cost path from th@rcposition back
to the last “seed” point is shown. If the computed path degiditom the desired one,
additional user-specified “seed” points are necessaryglnifib) the Magnetic Lasso
of Photoshop 7 was used, where a large number of seed poames1B) were needed,
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Figure 1. Foreground extraction with four different sysgenfa) Magic Wand, (b)
Intelligent Scissors, (c) Graph cut [9], and (d) GrabCui[36th segmentation result
in the bottom row and user interaction in the top row (imagersowere changed for
better visualization, see original color image in fig. 1){¢hapter 1). While the results
(b-d) are all visually acceptable, GrabCut needs fewestingeractions (two clicks).
Note, result (d) is the final result of GrabCutincluding seéransparency using border
matting.

since both foreground and background are highly texturee @oblem is that this
technique is not effective for objects with a long boundayg( a tree with many
branches).

Segmentation in Discrete Domain. Boykov and Jolly were the first to formulate a
simple generative MRF model in discrete domain for the td$kraary image segmen-
tation [9]. This basic model can be used for interactive sagmation. Given some user
constraints in the form of foreground and background brsiste regional constraints,
the optimal solution is computed very efficiently with grapht, see an example in fig.
1(c). The main benefits of this approach are: global optimatiractical efficiency,
numerical robustness, ability to fuse a wide range of visuals and constraints, un-
restricted topological properties of segments, and agipiiity to N-D problems. For
these reasons, this approach inspired many other methosgarfous applications in
computer vision, see e.g. chapter 9on bilayer segmentatiadeo. It also inspired the
GrabCutsystem [36, 7], which is the main focus of this chagiieabCut solves a more
challenging problem, namely the joint optimization of segtation and estimation of
global properties of the segments. The benefit is a simplarinterface in form of a
bounding box, see example in fig. 1(d). Note, such joint ojztiion have been done
in other contexts before. An example is depth estimatiorteénes images [4] where
the optimal partitioning of the stereo images and the glpbaperties (affine warping)
of each segment are optimized jointly.

Since the work of Boykov and Jolly, many articles on intekecsegmentation
using graph cut and a brush interface have been publishey are [29, 16, 15, 44,



2, 40, 30, 34, 17] which we will discuss in more detail latere Would like to refer
to chapter 8where the discrete labeling problem is relageddontinuous one, which
gives a common framework for explaining and comparing thy@gular approaches,
random walker [16], graph cut [9] and geodesic distance f2Jother interesting set
of discrete functionals are based on ratio, e.g. area ovendmry length, see e.g.
[14, 19, 23].

Segmentation in Continuous Domain. There are very close connections between
the spatially, discrete MRFs, as mentioned above, andti@réa formulations in the
continuous domain. The first continuous formulations weggressed in terms of
snakes [20] and geodesic active contours [12], relateddondll-known Mumford-
Shah functional [33]. The goal is to find a segmentation thaimizes a boundary
(surface) under some metric, typically image-based Rieniaammetric. Traditionally,
techniques such as level-sets were used, which howevenbrguaranteed to find a
local optimum. Recently, many of these functionals weremefilated, using convex
relaxation, i.e. the solution lives in th@, 1] domain, which allows to achieve global
optimality and bounds in some practical cases (see chapjerAn example for in-
teractive segmentation with a brush-interface is [42], whbe optimal solution of a
weighted TV-norm is computed efficiently. Instead of usimyweex relaxation tech-
niques, the continuous problem can be approximated on aetisgrid and solved,
globally optimally, using graph cut. This can be done forrgdsset of useful metrics,
see [10, 22]. Theoretically, the discrete approach is iofesince the connectivity of
the graph has to be large in order to avoid metrication atsfaln practice, however,
artifacts are rarely visible when usinggaodesidistance, see e.g. fig. 1(d) with an
underlying 8-connected graph. In sec. 3.1 we will give aaptklationship between
the continuous Chan-Vese functional [13] and the discresbdGut functional.

Paint-Selection. Conceptually the brush interface and the so-called “psatéction”
interface [30] are very similar. The key difference is thaeav segmentation is visual-
ized after each mouse movement, i.e. instant feedback wtalging a stroke. In sec.
4 a more detailed comparison with the Background Removalgagpven.

2 Basic Graph Cut model for Image Segmentation

Boykov and Jolly [9] addressed the problem of interactivage segmentation based
on initial trimapT = {Tg, Tg, Tu }. The trimap partitions the image into three séfs:
andTg comprises of pixels selected by the user as either foregrourbackground
respectively, andy is the remaining set of unknown pixels. The image is an array
z=(z,...,z,...,2n) Of intensities (grey, color, or any other n-dimensionalres),
indexed by integen. The unknown segmentation of the image is expressed asan arr
of “opacity” variablesx = (x,...,Xn) at each pixel. In general, @ x, < 1 (e.g. in
a-matting), but [9] use discrete-valued (hard) segmentataviables, € {0, 1} , with

0 for background and 1 for foreground. The parameteiescribes the distributions for
foreground and background intensities. The basic apprvafd] assumes that such
distributions (intensity models or histograms= {hg(z),he(z)} for foreground and



background) are either known a priori, or assembled diyéicim labelled pixels from
the respective trimap regiofig, Tr. Histograms are normalized to sum to 1 over the
range of intensities, i.e[,hr(z) = 1. This means that the histograms represent the
observation likelihood, i.eP(z|x = 0) = hg(z) andP(z|x = 1) = he (7).

The segmentation task addressed in [9] is to infer the unkrapacity variables
from the given modetv and image data. For this, an energy functioB is defined
so that its minimum should correspond to a good segmentdtidhe sense that it is
guided both by the given foreground and background intghstograms and that the
opacity is “coherent”, reflecting a tendency to solidity dbfects. This is captured by a
“Gibbs” energy of the form:

E(X,w,z) =U(X,w,z) +V(X,2) . (1)

The data tern evaluates the fit of the segmentatioito the dataz, given the model
w, and is defined for all pixels ifiy as:

Uix@2)= 3 ~logh(z)in =0 ~loghe@ha =1+ 5 Hoan) (@)
nely neTpUTg

where[¢] denotes the indicator function taking valued @or a predicatep, and the
termH(xn,n) constrains certain variables to belong to foreground ok@amund re-
spectively, i.e.H(Xy,n) = y([Xn = 0][n € Te] + [Xn = 1][n € Tg]), wherey is a large
enough constant. The smoothness term can be written as

Vix,z)= 5 dismn) ™ (A +A2exp{—Bl[zm—2l|*}) o # X, (3)
(mn)es

where /" is the set of pairs of neighboring pixels, add(-) is the Euclidean dis-
tance of neighbouring pixels This energy encourages caberi regions of similar
intensity-level. In practice, good results are obtainedibfining pixels to be neigh-
bours if they are adjacent either horizontally/verticaltydiagonally (8-way connectiv-
ity). Note that factodis- () and larger neighborhoods help the smoothness\&raz)
to better approximate a geometric length of the segmemntéibandary according to
some continuous metric, see [10]. This reduces geometifaas. When the constant
Az is set to 0, the smoothness term is simply the well-knowrglgirior, encouraging
smoothness everywhere. Practically, as shown in [9], Hasvever, far more effective
to setA; > 0 as this relaxes the tendency to smoothness in regions bfdoigtrast.

-1
The constanp is chosen to bef3 = (2<(zm— zn)2>) , where(-) denotes expecta-

tion over an image sample. This choice®E&nsures that the exponential term in (3)
switches appropriately between high and low contrast (8pe The constantd; and
A2 should be learned from a large corpus of training data. aridifferent learning
approaches have been suggested in the past, ranging frgafe simss-validation [8],
over max-margin learning [41], and very recently paramesgtimation in an interac-
tive setting [34]. In most of our experiments the values wesed to the reasonable
choice ofA; =5 andA, = 50.

Now that energy (1) is fully defined, the Boykov&Jolly [9] meldor binary seg-
mentation can be formulated as estimation of a global mimmu

%= argminE(x, w,2). (4)
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Figure 2: (a) The energy of the GrabCut+ model decreases Iderations. (b)
Initial result after first iteration of the GrabCut+ algdwit, where initialization is as in
fig. 1(d). (c) The GMMs, her& =5, for foreground (blue) and background (red) do
overlap considerably (visualized RG-slice). (d,e) Thelfirault for segmentation and
GMMs.

Exact global minima can be found using a standard minimurmaximum flow algo-
rithm [11] (chapter 2). Since the desired results are oftrachieved with the initial
trimap, additional user interactions are necessary. Thdmuan flow computation
for these additional interactions can be made very effidignteusing flow from the
previous computation (see details in [9]).

3 GrabCut+: Image Segmentation using iterative Graph
Cut

The following description of GrabCut contains additionedalls, and a few minor mod-
ifications, compared to the original version [36, 7], herreeriame GrabCut+is used.
The algorithm described in the previous section often givgsactice good results,
as shown in fig. 1(c), however, it fully relies on the user tbroethe color distributions
for foreground and background. One problem is that it do¢sxaloit the information
given by the unlabeled data to learn, or infer, the unknowraipaterw in a better
way. In the following we describe one approach which makesaighe unlabeled
data. The simple idea is to find jointly the optimal settingsthe model parametes
and segmentatiox This is done as before by minimizing the functional in (1pjsat
to the given user constraints. Note that by optimizimg/e implicitly assume that both
foreground and background are represented well by comjtdbdtions. The impli-
cations of this assumption are discussed later in detail.eXyoiting the unlabeled
data we are able to achieve good results with fewer usersrgmrhpared to the previ-
ous approach in sec. 2. In particular we show that it is samesisufficient to simply
specify the object with a bounding box, i.e. the $etis empty, (see example in fig.
1(d)). Unfortunately, optimizing this energy with resptcboth unknownsp andx, is
a very challenging problem, in fact itis NP-hard [44], axdssed later. Hence, in this
section and the following one, questions concerning dffeoptimization procedures,
optimality, and initialization are addressed.



3.1 The GrabCut Model

The first modification of the basic segmentation model, asrie=d in sec. 2, is done
by switching from an explicit representation of intensifgtdbutions via histograms
to a parametric representation via Gaussian Mixture Mo@&dMs) [36, 8, 37]. This
more compact form of representation is particularly hdlpficase of RGB colors (n-
dimensional intensities).

Foreground and background are modeled separately with ledali-covariance
Gaussian (her& = 7). In order to deal with the GMM tractably, in the optimiza-
tion framework, an additional vectér= {ky, ... ,ks,...,kn} is introduced, withk, €
{1,...K}, assigning, to each pixel, a unique GMM component, one caompieither
from the foreground or the background model, according,te 1 or 02 This means
that the unknown parametercomprises the variables

= {k, 7 (K, e (K), Z¢ (K), T (K), Hs(K), Za(K), k=1...K},

with 7T as mixture weighting coefficients, which sum up to 1, ar{#l),>(k) as mean
and covariance matrix for each Gausskahlt is important to note that fitting a GMM
model is strictly speaking an ill-posed problem since fiftmGaussian to the color of
a single pixel gives an infinite likelihood (see [5] sec. 9)2.Hence, the covariance
matrix is restricted to have a minimum variance, e (235

Using the same energy (1), the GrabCut model is defined asititeoptimization
(estimation) for segmentationand parameter®

ﬁ:argmxin mai)nE(x,w,z). (5)

The key difference between the Boykov&Jolly model (4) anel @rabCutmodel (5)
is that in (5) the minimization is also done with respectdo It is worth noting that
the GrabCutmodel and the functional of Chan-Vese [13, 2fontinuous domain,
related to the Mumford-Shah functional [33], share someerties. In both models
the key problem is the joint optimization of segmentatiod giobal properties of the
segmented regions.

3.2 The Optimization Procedure

The pseudo-code for GrabCut+is given in fig. 3. The usersstardefining the initial
trimap using either a bounding box or lasso interface. Theaums thaflg is outside
the marked regionly inside the marked region afig is an empty set. As suggested
in [36] results improve iffg only comprises pixels which are inside a strip around the
outside of the marked regidh The intuition is that the relevant background training
data is often close to the object. In fact, pixels outsids #tip are ignored throughout

2Using “soft assignments” of probabilities for each compuirte a given pixel would give a significant
additional computational expense for a negligible prattienefit.

SNote, an efficient variant for using GMMs in a segmentatianfework has been suggested in [39]. A
different GMM with 2K Gaussian is fitted first to the whole image. This gives a fixaiasnent vectok,
which is not updated during the optimization @fandx.

4The width of the strip is chosen as a small fraction of the biingpnbox dimensions. In the experiments,
sec. 5.1, the width is set to 10 pixels as in [28].



Algorithm 1 : GrabCut+

Require: Tg using bounding box or lasso user interface. Bet 0, Ty = Tg
1: Initialize x,=0forne Tg andx, =1forne Ty
2: Estimate initiale using EM (with smart initialization fok)
3: for sweep=1—-5do
4:  Updatex given currentw using graph cut
5. Updatew given curren using EM
6: end for
User Edit: Update user trimafy = {Tg, Tg, Ty } and go to step 3

Figure 3: The pseudocode for GrabCut+ with bounding boxssdanput.

the whole optimization procedure. The trima@glefines uniquely the segmentatign
which is used to initialize the unknown color model This initialization step was not
discussed in [36], however, it is quite important. One chagca random initialization
for k, however, the following “smart initialization” works bett Consider the set of
background pixelsx, = 0. The first principal axis is computed from image data
of this set. Then the data is projected onto this axis anegdatcordingly. Finally,
the sorted set is divided inté groups, which defines for each pixethe assignment
variablek,. Givenk, a standard EM-style procedure for GMM fitting can be invaked
This means that in the “M” step, the Gaussian, ir.u,%, are fitted in a standard
way, see [36] for details. In the “E” stdpis optimized by enumerating all components
k € K, and choosing the one with lowest energy. In practice thessteps are executed
4 times. The foreground pixels are processed similarly.

The main procedure alternates the following two steps: VeGiv, the segmenta-
tion x is inferred with graph cut as in sec. 2, ii) Given the segméni, the unknown
modelw is inferred using the above EM-style procedure for GMM fititn each step
the total energ¥ is guaranteed to not increase. The method can be run untilah lo
minimum is found, but in practice we simple stop it after adixeimber of 5 iterations.
Fig. 2 shows the power of running the iterative GrabCut+pdare. Finally, the user
can update the trimap and the main procedure is run agaim #eiprevious section,
re-using of flow gives a speed-up.

Note that a small modification of this procedure let us applgh®&ut+for a stan-
dard brush interface [9], as done in the experiments. Fdr shep 1 in fig. 3 is ini-
tialized asx, = 0 forne Tg, X, = 1 for n € T andx, ='?" for n € Ty, where label
'?” means unlabeled and those pixels are ignored in stept2eadiligorithm. In the ex-
treme case wherg- is an empty set, we can proceed as in GrabCut+ andg, setl for
n e Ty. Inthe same way, it can be set= 0 forn € Ty if Tg = 0. Finally, it may occur
that the user cannot provide any useful input, i.e. both BetandTg are empty. For
example, the foreground object touches all for sides ofriegie, and hence the tight-
est bounding box is of the same size as the image. Anotheasoda an automatic
segmentation system, where the user might want to extraaijgct without any user



input. An example is the web-based retrieval systems foes/§26]. In those cases,
whereTe = 0 andTg = 0, a simple procedure is run which places a foregroundsalip
in the center of the image, where the area of the ellipse fsofithe image area. The
implicit assumption is that the object is more likely preisierthe image center. Note
that a similar procedure is utilized in [26]. Note that for@flthe above missing-data
cases, i.eTr = 0 and/orTg = 0, the tricks for better initialization, discussed in séd
can potentially be used.

3.3 Properties of the GrabCut model

In the GrabCut model there is the freedom to choose an apptegoreground and
background color distribution®. It is straightforward to see that distributions which
are more compact, and model the data well, give a lower eRerfgis means that
implicitly it is assumed that both foreground and backgibsegments are more likely
represented by a compact distribution in color space.

One important question is whether the GrabCut model has plicitrbias towards
certain segmentations. This was analyzed in Vicente et4d] By disregarding the
smoothing ternV in (3). They first showed that by using a histogram represiemnta
in RGB space it is possible to write the term “miBE(x, w,z)” in (5) explicitly in the
form of a new energ#’(x, z) with higher-order cliques or. This higher-order energy
E’ has two different types of terms: i) a convex function oygk,, and ii) a concave
function, for each histogram bik, over S, xn[n € Bin(k)], i.e. all pixels which are
assigned to bitk. The convex function (first type) has lowest energy if exabdlf of
the pixels in the image are assigned to foreground and baakdrespectively. Hence,
this is a bias towards balanced segmentations. The congaggdn (second type) has
lowest energy if all pixels, which are assigned to the same live the same label,
either 0 or 1. Note that these two types of terms often cotlra&nce each other
in practice so that the optimal segmentation is not a degémsolution, e.g. not all
undefined pixels are either all foreground or all backgroundn extreme case the bias
towards balanced segmentation is more prominent. Thisénah pixels are assigned
to unique histogram bins. Then all concave terms are coitsstao that the energy
consists of the convex part only. In the other extreme cakenwll pixels are assigned
to the same histogram bin, the bias disappears howeveg, ien concave and convex
terms cancel each other out. Note, an interesting obsenvatas made in [44] that
results do improve considerable when choosing the weigthti®bias individually for
each image.

Unfortunately, optimizing the higher-order eneffgly with respect te, is an NP-
hard problem [44]. An optimization procedure f6f was suggested in [44], based on
dual decomposition ([3] and chapter 22, which also proviaéswer bound for the
energy. This procedure achieved global optimality in 61%est cases for the Grab-
Cutdatabase of 49 images [18] and a bounding box input. Hexvéw the remaining
39% of test cases, the dual decomposition approach pertoratieer poorly. Many of
those test cases were “camouflage images”, where foregamahtackground colors

SFor example, assume all foreground pixels have the same tbalo the lowest unary term is achieved
by modeling the foreground distribution with one (or mangritical) Gaussian with minimum variance.



do overlap considerably, (example in fig. 2 in [44]). In [44t@mparison with an
iterative GrabCut-style procedure, as described in fig. & done, with the differ-
ence that histograms replace GMMs and that the whole imatpideithe box is used
as background training data. The iterative procedure aetiglobal optimality only
in 4% of cases, i.e. very often got trapped in a local minimuDespite this disad-
vantage, the iterative procedure performed well in termeradr rate. In 80% of test
cases, where dual-decomposition achieved lower enemgitettative procedure is only
slightly worse in terms of error rate. However, for the renirag 20% of cases the it-
erative procedure is often considerably better. Henceféh&tive procedure achieved
even a lower total error rate .(B%) than the dual-decomposition approach %%6). It
can be expected that the iterative procedure will perforenesetter with a different
initialization step, as discussed in sec. 4.1. Note thgtg4eb suggested a semi-global
procedure, which eventually beats the iterative procesalftest cases.

4 Background Removal: Image Segmentation in MS
Office 2010

Designing a product, based on the GrabCut+tool (sec. 3) st many interest-
ing, practical and theoretical, issues have to be addresHeid section discusses all
of the topics for which the Background Removal tool and thal@ut+ tool differ.
We begin by revisiting the optimization procedure and thean@ine additional model
constraints.

4.1 Initialization and the Bounding Box Prior

It turns out that choosing the initial segmentatigrbased on the user trimap i.e.
step 1 in fig. 3, is crucial for the performance of the full pgdare. In the following
three different initialization schemes are compared fer hunding box input. All
approaches have in common tlgt= 0 for n € Tg, however, they differ in the treatment
of pixels inTy. The first approach, calletinitFullBox” , is described in sec. 3.2, and
setsxp = 1 for alln € Ty. The second method, callébhitThirds” , was suggested in
[28]. First, a background color model is trained from pixal3g. Then the probability
of all pixels inTy are evaluated under the background GMM. One third of thelpixe
with lowest probability are set to foreground, and one thiiith highest probability are
set to backgrourfd The remaining pixels are set to '?’, i.e. are ignored in Seyf
fig. 3. The last approach, calléthitParametric”, is implemented in the Background
Removal tool and is similar to the “InitThirds” proceduret ladditionally considers
the smoothing ternv of the energy. For this a new parametric energy is introduced
E"(x,0,z) = E(X,w,z) + SnAXn, with E as defined in sec. 3.1. Hereis chosen
such that the background GMM is trained from pixelsTg and the distribution for
the foreground is a constant, uniform distribution. Thebglooptimum ofE” for all
continuous values ok can be computed efficiently using parametric maxflow {23]

6The choice of using a third as the threshold is arbitrary dmailsl be learned from data.
’Since we were not aware of parametric maxflow in 2004, a sitibgriative procedure is utilized, which
re-uses flow.
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From the set of all solutions fdg”, one solutionx is selected using the following
heuristic. The segmentation with smallest foreground srselected which also meets
the following criteria: The maximum distance of the largeshnected component to
any four sides of the box is smaller than a fixed threshold (2596 of a side of the
bounding boxj. The inspiration for the “InitParametric” initializatioprocedure is
the following. First, the user is more likely to select a bdung box which is tight
around the object. We refer to this idea asbloeinding box priorand it motivated the
work in [28]. Secondly, as in “InitThirds” the foregroundgseentation is often “far
away” in feature space from the given background distrdsutiHowever, in contrast
to “InitThirds” the foreground segmentation is spatialgherent with this procedure.

An experiment gives an indication of the quality of resultsieh can be achieved
with these three methods. For this test the GrabCutdatébBeimages) is used to-
gether with the bounding boxes from [28] (see online [18])t has to be stressed
that the following error rates have to be taken with caregesithe data-set is rather
smalfl®, and parameters were not traiféd The exact settings for GrabCut+are as
defined in sec. 3, i.eA\; =5,A, = 50,K = 7. Results are as follows. Initializing Grab-
Cut+ with “InitFullBox” gave an error rate of.8%.? It seems that the initialization of
“InitThirds” is clearly a better choice since the error rdtepped from 9% to 50%,
which is the same conclusion as in [28]. Running the BackgddRemoval tool, which
uses “InitParametric”, gave a slightly higher error rat&&5%.

Note that this experiment did not enforce the very sensiblending box prior,
which ensures that the final segmentation is close to thesgdected bounding box.
Indeed, by enforcing this prior the error rate can be redwcei7%. The algorithm
to achieve this is described in [28] and runs graphcut itexgt while forcing certain
pixels to belong to foreground. We refer the interested ee&al [28] for several al-
ternative procedures for enforcing the bounding box prar.interesting direction of
future work could be to use as initialization procedure tThirds” and to exploit the
parametric maxflow approach of “InitParametric” to enfottee bounding box prior.

4.2 Modeling User Intention

The ultimate goal of a segmentation system is that a useeeehithe desired result
in as short time as possible. For this goal, the energy defmedc. 3.1 might not
be the optimal model. One problem with the above model isithatagnostic to the
sequencef user interactions. By exploiting this sequence the itib@rof the user can

8Note that this is the same criteria as the weak tightnessittamdlefined in [28].

9Note, the bounding boxes from [28] deviate slightly from tréginal set of bounding boxes. The
bounding boxes which are different touch the image bounddnife the object does not. This modification
simplifies the segmentation task and also removes the pnaiblat in one image the original bounding box
was of the same size as the image itself.

10A larger, e.g. 1000+, data-set with high-quality groundtiris needed in the future. Note that for
product testing a medium-sized data-set was created, \algotincludes images which are not photographs,
e.g. graphics and hand-drawn sketches.

11As discussed in detail later, image segmentation is anddtiee process hence parameters have to be
trained anyway with the user in the loop, as in sec. 5.2.

120ne small modification did reduce the error rate 1%8. This was done by choosing a random initial-
ization fork in step 2 in fig. 3. It shows that initialization is very impant and can effect the final result
considerably, and that the data-set may be to small.
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be modeled in a better way. Two simple ideas, which are mliz the Background
Removal tool, will be discussédl Other ideas for modeling the user’s intention are
presented in recent work [45, 30], which investigate altve models and different
user interfaces.

The first idea is to avoid the so-called “fluctuation effe@0]. Consider a current
imperfect segmentation where the user has placed thetjl&aesground brush stroke.
Two effects are undesirable: a) pixels change label froediarund to background, and
b) pixels which are spatially far away, change label fromkigaound to foreground,
since the user may not notice it. We enforce the sensibleti@nisthat the change
in the segmentation must be, in this case, from backgroufaéground and also 4-
connected to the latest foreground brush. Achieving cairnigcis in general an NP-
hard problem (see chapter 22and [43]), hence we solve itangtmple post-processing
steg?. The same procedure is applied for a background brush. Ibighvio note that
with this connectivity prior, parameters in the GrabCut+dmlomay be chosen quite
differently, see [34}°. Also, note that many systems which do not use an explicityuna
term, such as [2] and random walker [16], are guaranteedtigfys#his connectivity
property®.

The second idea, achieves the desired property that thet katesh stroke always
has a noticeable effect on the current segmentation, whiaiated to the “progressive
labeling” concept in [30]. Consider the case where the ciirsegmentation has a
dominant color of red in the background, and a small regiotheftrue foreground
is also red, which is, however, currently incorrectly lazkl A foreground brush in
this small region may fail to select the whole region, sinte tinary terms in the
region strongly favor the background label, i.e. red beiagkground. The underlying
problem is that the general global color model as defined in 1 is not always
appropriate for modeling objects. A practical solution t@ome this problem is to
simply give pixels which are in the latest foreground brusble a much higher weight,
e.g. 80%, and all other foreground pixels a lower weight.(2a9o6 weight). The same
procedure is applied for a (latest) background btisNote that this aggressive color
modeling procedure does only work in conjunction with thexabidea of connectivity
with the latest brush stroke.

B3These ideas were realized in Microsoft Expression Acryliaphics Designer (technology preview).
Unfortunately, due to constraints in the Microsoft Officeghuct, it was not possible to realize them exactly,
as described below. The difference is that in the MS Officsivarall user foreground and background brush
strokes are treated as one (latest) foreground and bacidjtmush stroke respectively.

1“Note that other automatic techniques can be used in thesfusuch as [35] based on [43], or the the
“geodesic star convexity prior” of [17].

15The reason is that one of the main effects of the Ising priammMRF (weightA; in (3)) is to smooth
out wrongly labeled isolated regions. By enforcing conivéygtthese isolated regions are not permitted in
the solution space, hence a different weight for the Isingr pnight perform better.

18|n this context, we also post-process the initial segmimtatvhich is the result of a bounding box (or
lasso) input, such that only one 4-connected foregrouncpooent is present. Note that no constraint on the
background label is enforced, since many objects do haweshol

17An improvement could be to model, in case of a foreground Hyrttse background color model in a
different way, such that it is more representative for tleigreentation task.

12



4.3 Dealing with Large Images and Semi-Transparency

For the segmentation of large images, e.g. 20MPixels, imsputationally too expen-
sive to perform graph cut in the given resolution. In the Bgokind Removal tool a
3-level multi-resolution approach is adapted. The fullrsegtation procedure is run
only on a small resolution of about@MPixels8. Then the segmentation result is
up-scaled to a medium resolution of abouBMPixels®, where graph cut is run again
in a small band around the up-scaled segmentation, as in A3ilimportant observa-
tion, which is not discussed in [31], is that the energy fdfedént resolutions must be
learned (or set) differently. This can be seen from the faat tatio of segmentation
area over boundary length is resolution-dependent. Inif2d]shown how to set pa-
rameters, in particulax;, A, andf in (3), for a smaller resolution given that the energy
was learned on a higher resolution. Finally, the mediunellselution is up-scaled to
the final resolution with a fast and simple procedure, whicbsdnot look at the input
image. This is done by up-scaling the binary segmentati@a A-pass re-sampling op-
eration with a Gaussian kernel. This produces a grey-scsgé which we threshold
at the value of 0.5 to yield a final binary high-resolutionreegtation. An alternative
approach is the joint bilateral up-scaling technique of E3tused in [30]. One practi-
cal aspect is that the values for small and medium resolhigoe to be taken with care
since it can happen that the computation time for graph ciitariband for the medium
resolution is considerable high. Another practical aspetiat the user brushes are
given in the highest resolution. Hence, care must be talatthle final segmentation
obeys the user constraints.

Going from a binary segmentation to a continuous, greytsegmentation, is the
topic of image matting and a large research area in itsedf,esg. [46, 35]. In the
Background Removal tool we deal with it in a fast way whichiiagtically satisfying
in many cases. The image of an object boundary is alwaystisliglurred, due to
camera effects (discrete CCD chip and point-spread-fancti cameraf. We model
this by simply blurring the hard segmentation with a Gauskernel, where the kernel
size is image-resolution dependent. The true foregroufmsare then determined
using the color-stealing process of [36].

5 Evaluation and Future Work

As mentioned in the introduction, the question of what ishibst interactive segmen-
tation system today is hard to answer. To cast some lightismtrestion, two specific
experiments were performed. First, with a static user infSetcond, with a so-called
“robot user” which simulates a simple novice user. The ralsstr is used to train and
compare different systems in a truly interactive setting.

18The image is scaled-down such that the longest image-saleaximum of 300 pixels long.
191 the longest image-side is more than 1280pixels, it isest@lown to 1024pixels.
20Effects like true transparency, sub-pixel structure (bair), or out-of-focus background, are ignored.
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5.1 Static User Input

A plausible type of user interaction, for objects with notessively long boundaries, is
that the user draws with a “fat pen” around the boundary obthject, which produces
a relatively tight trimap. Obviously for such a user input athod should exploit
the fact that the true boundary is more likely in the middl¢haf user drawn band. As
above, the GrabCutdatabase (50 images) is used which psostcth a trimap, derived
by simply eroding the ground truth segmentation, see ofli8g Several articles have
reported error statistics for this data-set, using the greege of misclassified pixels
within the unknown trimap regiof,2%. As above, the following error rates have to be
taken with care since the database is small and the methadsweproperly trained.
Also, all parameter settings for GrabCut+ (and variants)adrie as described above.

Applying simple graph cut without any global color modeling. energy in (1)
without unary ternU, gives an error rate 0f.0%. As discussed in detail in chapter 8,
one bias of graph cut is the so-called “shrinking bias”, segmentations with a short
boundary are preferred. In contrast, Random walker [16]dsssof a “shrinking bias”
and instead a “proximity bias” towards segmentations whighequally far away from
the given foreground and background trimap respectivelyvi@usly, this is a better
bias for this data-set, hence the error rate for random wike4% (see [155°. Note,
in [40] (see also chapter 8) a continuum of solutions is preskwhich vary with re-
spect to the proximity bias. As to be expected, the setfing ¢ in [40]) which exploit
the proximity bias most, is the best. On this note, a simpselyae method which ig-
nores the image data achieves a quite low error rate5%4 The baseline method
simply classifies each pixel according to the Euclidianadise to the foreground and
background region respectivédy It is worth to note that there is a method which beats
the baseline, that is Random walker with an “adaptive ttokekhg”, which better ex-
ploits the proximity bias, see [15].

Finally, the effect of adding global color models is invgatied. The error rate of
graph cut reduces from@ to 66% using the GrabCut+ algorithm in fig. 3 with one
sweep (step 3). Multiple iterations of GrabCut+ reduce thereate further to %%,
and the Background Removal tool achieves basically the saroerate of 58%.24 To
conclude, global color models do help considerably gragtbesed techniques, and
they may also help the best perform methods for this dateasetlso conjectured in
[15].

21A small fraction of pixels in the ground truth are unlabelddg to transparency effects. These pixels
are not counted when computing the error rate.

22In [15] some variations of the random walker formulation gieen, which however, produce quantita-
tively the same results.

23The baseline method dose not treat thin structures wellgéharskeletonisation approach might even
perform better.

?“Note that by exploiting additionally the idea that the raletraining data for the background GMM
is more likely in a strip around the unknown region (as predidvith the data-set), the error rate of Grab-
Cut+ drops from %% to 53%.
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5.2 Dynamic user input

The set-up is described in detail in Gulshan et. al. [17],cleesnly some aspects are
mentioned here. To measure the amount of user interactamiimnteractive system, we
invented the so-called “robot user” [34]. It can be used fithdearning and evaluating
segmentation systems, see [34]. Given a new image, it stéhtsn initial set of brush
stroke€® and computes a segmentation. It then places a circular Istuske in the
largest connected component of the segmenta&titor area, placed at a point farthest
from the boundary of the component. The process is repeptedd0 times, generating
a sequence of 20 simulated user strokes, which is diffea@nedch algorithm. Fig.
4(b) shows an example (see also video in [18]). From the seguef interactions,
one number for the amount of user interaction is derived Wwinmeasures, in rough
words, the average number of brush strokes necessary &vachgood quality result
(details in [17]). A small user study confirmed that the iat#ion effort of the robot
user, indeed, correlates reasonable well with the truetedfa novice usersee [34].

The dataset for this experiment consists of 151 images wihbrgl truth segmen-
tations, which is a mix of existing datasets including Grabdhd VOC'09, see [18].
The free parameters for all systems were trained using-sagtation, 75— 76 split
repeated 10 times.

Table 1 presents the results for five different methods, and 4(d) depicts the
average error rate for the sequence of robot user interectiche “Geo” method of [2],
based on geodesic distance, performed worst. This is nptisung since the method
does not regularize the boundary and is sensitive to the &@ation of brush strokes
(see chapter 8). Fig. 4(c) gives an example. Graph cut “GE€&.(2) performed
considerably bettéf. The main difference of graph cut compared to the following
three systems is that it does not impose any “shape” priardBa Walker “RW” [16],
for instance, guarantees a connectivity of the segmentatith respect to brushes,
e.g. a pixel with label 0 is 4/8-connected to a backgroundibriience, even without
global color models Random Walker performs as well as grapphThe Background
Removal tool “BR” is the second best performing system (gdann fig. 4(b)). It
exploits the same connectivity property as Random Walketr,additionally utilizes
global color models. Finally, the best performing metho® [17] imposes a strong
“geodesic star convexity prior” on top of the simple graphsystem “GC”. Note that
this convexity prior is even more restrictive than a conivégtprior (see fig. 14 in
[17]), which seems to be an advantage in praéfice

5.3 Future Work

Many ideas for future work were already mentioned above ta@idy, the model for
Background Removal can be improved further using stronlgape priors, e.g. [17],
improved local MRF modeling, e.g. flux [35], or better globalor models, e.g. [17].

25They were chosen manually with one stroke for foregroundthrek strokes for background.

26Here the implementation of [18] was used. It includes an irgma, additional trick, which mixes the
GMMs with a uniform distribution.

27This is supported by testing against another variant of “G@@ich performed slightly worse (effort
10.66). It removes all foreground islands which are not corettd a foreground brush stroke in a post-
processing step.
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Method | Geo [2] GC (sec.2) RW][16] BR(sec.3) GSC][1[]
Effort 15.14 12.35 12.31 10.82 9.63

Table 1: Comparison of five different systems in terms of trerage number of brush
strokes needed by the robot user to achieve good results.

W o ©

Error

0246 8101214161820
No. of strokes

(d)

Figure 4: (a) Input image (original in color). (b) Result bitrobot user using the
“BR” system, with 085% of misclassified pixels (image colors adapted for befter
sualization). The segmentation is outlined with a blacktevtine, and the robot user
inputs are white and black circles for the foreground andkgeaund respectively (long
strokes are initial, manual user strokes). (c) Result fr@ed” system which is con-
siderably worse, error.81%. (d) Performance of five different systems utilizing the
robot user (error in log-scale).
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Apart from improving the model we believe that further impements may be achieved
by focusing more on user aspects.
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