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The topic of interactive image segmentation has received considerable attention in
the computer vision community in the last decade. Today, this topic is very mature and
commercial products exist which feature advanced researchsolutions. This means that
interactive image segmentation is today probably one of themost used computer vision
technologies world-wide. In this chapter we review one class of interactive segmen-
tation techniques, which use discrete optimization and a regional selection interface.
We begin the chapter by explaining the seminal work of Boykovand Jolly [9]. After
that the GrabCut technique [36] is introduced, which improves on [9]. GrabCut is the
underlying algorithm for the Background Removal tool in theMicrosoft Office 2010
product. In the third part of the chapter many interesting features and details are ex-
plained which are part of the product. In this process several recent research articles
are reviewed. Finally, the Background Removal tool, as wellas [9, 36], are evaluated in
different ways on publicly available databases. This includes static and dynamic user
inputs.1

1 Introduction

This chapter addresses the problem of extracting an object in an image with additional
hints from the user. This is different to the long-standing research topic of automati-
cally partitioning an image into the objects present in the scene, e.g. [38]. Firstly, user

1A historical note. The Background Removal tool was fully developed at the end of 2004 by Carsten
Rother and Vladimir Kolmogorov. It was part of an external release of Microsoft Expression Acrylic Graph-
ics Designer (technology preview) in June 2005 (called “smart select”). This included engineering solutions
to many practically interesting problems (see sec. 4), which were not addressed in [36]. For some problems,
our solutions are in fact very similar to recent work [31, 30]. Some of these practical problems motivated
our recent articles on the following topics: initialization and optimality [44], connectivity [43], bounding-
box prior [28], segmentation-based matting [35]. To fine-tune the Background Removal tool we employed
the robot user (see sec. 5.2), which was also used in [17] and motivated our very recent work on learning
interactive segmentation systems [34].
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interaction is needed to specify the object of interest. Secondly, quite often the user
wants to select only a part of an object, e.g. head of a person,or an arbitrary region
of interest. The intrinsically interactive nature of this problem makes it very attractive,
but also challenging. Hence, it has been a fruitful researchtopic for more than two
decades, where some work concentrates more on theoretical aspects, e.g. model and
optimization, and other work more on user aspects.

The question of what is the best interactive segmentation system today is hard to
answer. Many factors have to be considered: i) What is the user group (e.g. novice or
advanced users), ii) What is the user interface, iii) How to measure the user involvement
(e.g. total amount of interaction time, or number of user hints).

It is worth mentioning that approaches for interactive image segmentation have
influenced many related tasks. One example is the problem of joint object recognition
and segmentation, as can be seen in the TextonBoost framework [39] or the ObjCut
system [25]. Another example is the web-based retrieval system for classical vases
[26], which automatically runs segmentation technology inthe background.

Note that the focus of this chapter is on the binary segmentation problem, i.e. each
pixel belongs to either foreground or background. This is a simplified view of the prob-
lem since some pixels, especially close to the object boundary, are semi-transparent,
i.e. a mix of foreground and background colors. A brief discussion of this issue in the
context of a practical segmentation system is given in sec. 4.3.

The chapter is organized as follows. After a brief literature review in sec. 1.1, three
systems are presented, in the order of increased model-complexity: the Boykov and
Jolly approach (sec. 2), the GrabCut system (sec. 3), and thecommercial Background
Removal tool (sec. 4). In sec. 5 the methods are compared to other state-of-the art
techniques in two different experiments.

1.1 Interactive Image Segmentation - a Brief Review

In the following we categorize different approaches to interactive image segmentation
by their methodology and user-interfaces. Note that our brief review is not meant to be
comprehensive.

Magic Wand is probably the simplest technique. Given a user-specified “seed” point
(or region), a set of pixels is computed which is connected tothe seed point, where all
pixels in the set deviate, from the color of the seed point, only within a given tolerance.
Fig. 1(a) shows the result using Magic Wand in Adobe Photoshop 7 [1]. Because the
distribution in colour space of foreground and background pixels have a considerable
overlap, a satisfactory segmentation can not be achieved.

Intelligent Scissors (a.k.a. Live Wire or Magnetic Lasso) [32] allows a user to
choose a “minimum cost contour” by roughly tracing the object’s boundary with the
mouse. As the mouse moves, the minimum cost path from the cursor position back
to the last “seed” point is shown. If the computed path deviates from the desired one,
additional user-specified “seed” points are necessary. In fig. 1(b) the Magnetic Lasso
of Photoshop 7 was used, where a large number of seed points (here 19) were needed,
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(a) (b) (c) (d)

Figure 1: Foreground extraction with four different systems: (a) Magic Wand, (b)
Intelligent Scissors, (c) Graph cut [9], and (d) GrabCut [36], with segmentation result
in the bottom row and user interaction in the top row (image colors were changed for
better visualization, see original color image in fig. 1.7(a) (chapter 1). While the results
(b-d) are all visually acceptable, GrabCut needs fewest user interactions (two clicks).
Note, result (d) is the final result of GrabCut including semi-transparency using border
matting.

since both foreground and background are highly textured. One problem is that this
technique is not effective for objects with a long boundary (e.g. a tree with many
branches).

Segmentation in Discrete Domain. Boykov and Jolly were the first to formulate a
simple generative MRF model in discrete domain for the task of binary image segmen-
tation [9]. This basic model can be used for interactive segmentation. Given some user
constraints in the form of foreground and background brushes, i.e. regional constraints,
the optimal solution is computed very efficiently with graphcut, see an example in fig.
1(c). The main benefits of this approach are: global optimality, practical efficiency,
numerical robustness, ability to fuse a wide range of visualcues and constraints, un-
restricted topological properties of segments, and applicability to N-D problems. For
these reasons, this approach inspired many other methods for various applications in
computer vision, see e.g. chapter 9on bilayer segmentationin video. It also inspired the
GrabCut system [36, 7], which is the main focus of this chapter. GrabCut solves a more
challenging problem, namely the joint optimization of segmentation and estimation of
global properties of the segments. The benefit is a simpler user interface in form of a
bounding box, see example in fig. 1(d). Note, such joint optimization have been done
in other contexts before. An example is depth estimation in stereo images [4] where
the optimal partitioning of the stereo images and the globalproperties (affine warping)
of each segment are optimized jointly.

Since the work of Boykov and Jolly, many articles on interactive segmentation
using graph cut and a brush interface have been published; a few are [29, 16, 15, 44,
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2, 40, 30, 34, 17] which we will discuss in more detail later. We would like to refer
to chapter 8where the discrete labeling problem is relaxed to a continuous one, which
gives a common framework for explaining and comparing threepopular approaches,
random walker [16], graph cut [9] and geodesic distance [2].Another interesting set
of discrete functionals are based on ratio, e.g. area over boundary length, see e.g.
[14, 19, 23].

Segmentation in Continuous Domain. There are very close connections between
the spatially, discrete MRFs, as mentioned above, and variational formulations in the
continuous domain. The first continuous formulations were expressed in terms of
snakes [20] and geodesic active contours [12], related to the well-known Mumford-
Shah functional [33]. The goal is to find a segmentation that minimizes a boundary
(surface) under some metric, typically image-based Riemannian metric. Traditionally,
techniques such as level-sets were used, which however are only guaranteed to find a
local optimum. Recently, many of these functionals were reformulated, using convex
relaxation, i.e. the solution lives in the[0,1] domain, which allows to achieve global
optimality and bounds in some practical cases (see chapter 12). An example for in-
teractive segmentation with a brush-interface is [42], where the optimal solution of a
weighted TV-norm is computed efficiently. Instead of using convex relaxation tech-
niques, the continuous problem can be approximated on a discrete grid and solved,
globally optimally, using graph cut. This can be done for a large set of useful metrics,
see [10, 22]. Theoretically, the discrete approach is inferior since the connectivity of
the graph has to be large in order to avoid metrication artifacts. In practice, however,
artifacts are rarely visible when using ageodesicdistance, see e.g. fig. 1(d) with an
underlying 8-connected graph. In sec. 3.1 we will give another relationship between
the continuous Chan-Vese functional [13] and the discrete GrabCut functional.

Paint-Selection. Conceptually the brush interface and the so-called “paint-selection”
interface [30] are very similar. The key difference is that anew segmentation is visual-
ized after each mouse movement, i.e. instant feedback whiledrawing a stroke. In sec.
4 a more detailed comparison with the Background Removal tool is given.

2 Basic Graph Cut model for Image Segmentation

Boykov and Jolly [9] addressed the problem of interactive image segmentation based
on initial trimapT = {TF ,TB,TU}. The trimap partitions the image into three sets:TF

andTB comprises of pixels selected by the user as either foreground or background
respectively, andTU is the remaining set of unknown pixels. The image is an array
z = (z1, . . . ,zn, . . . ,zN) of intensities (grey, color, or any other n-dimensional values),
indexed by integern. The unknown segmentation of the image is expressed as an array
of “opacity” variablesx = (x1, . . . ,xN) at each pixel. In general, 0≤ xn ≤ 1 (e.g. in
α-matting), but [9] use discrete-valued (hard) segmentation variablesxn ∈ {0,1} , with
0 for background and 1 for foreground. The parameterω describes the distributions for
foreground and background intensities. The basic approachin [9] assumes that such
distributions (intensity models or histogramsω = {hB(zi),hF(zi)} for foreground and
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background) are either known a priori, or assembled directly from labelled pixels from
the respective trimap regionsTB,TF . Histograms are normalized to sum to 1 over the
range of intensities, i.e.

∫

zhF(z) = 1. This means that the histograms represent the
observation likelihood, i.e.P(zi |xi = 0) = hB(zi) andP(zi |xi = 1) = hF(zi).

The segmentation task addressed in [9] is to infer the unknown opacity variablesx
from the given modelω and image dataz. For this, an energy functionE is defined
so that its minimum should correspond to a good segmentation, in the sense that it is
guided both by the given foreground and background intensity histograms and that the
opacity is “coherent”, reflecting a tendency to solidity of objects. This is captured by a
“Gibbs” energy of the form:

E(x,ω ,z) =U(x,ω ,z)+V(x,z) . (1)

The data termU evaluates the fit of the segmentationx to the dataz, given the model
ω , and is defined for all pixels inTU as:

U(x,ω ,z) = ∑
n∈TU

− loghB(zi)[xn = 0]− loghF(zi)[xn = 1]+ ∑
n∈TF∪TB

H(xn,n) (2)

where[φ ] denotes the indicator function taking values 0,1 for a predicateφ , and the
term H(xn,n) constrains certain variables to belong to foreground or background re-
spectively, i.e.H(xn,n) = γ([xn = 0][n ∈ TF ] + [xn = 1][n ∈ TB]), whereγ is a large
enough constant. The smoothness term can be written as

V(x,z) = ∑
(m,n)∈N

dis(m,n)−1 (λ1+λ2exp{−β ||zm− zn||
2}) [xn 6= xm], (3)

whereN is the set of pairs of neighboring pixels, anddis(·) is the Euclidean dis-
tance of neighbouring pixels This energy encourages coherence in regions of similar
intensity-level. In practice, good results are obtained bydefining pixels to be neigh-
bours if they are adjacent either horizontally/verticallyor diagonally (8-way connectiv-
ity). Note that factordis·() and larger neighborhoods help the smoothness termV(x,z)
to better approximate a geometric length of the segmentation boundary according to
some continuous metric, see [10]. This reduces geometric artifacts. When the constant
λ2 is set to 0, the smoothness term is simply the well-known Ising prior, encouraging
smoothness everywhere. Practically, as shown in [9], it is,however, far more effective
to setλ2 > 0 as this relaxes the tendency to smoothness in regions of high contrast.

The constantβ is chosen to be:β =
(

2
〈

(zm− zn)
2
〉

)−1
, where〈·〉 denotes expecta-

tion over an image sample. This choice ofβ ensures that the exponential term in (3)
switches appropriately between high and low contrast (see [8]). The constantsλ1 and
λ2 should be learned from a large corpus of training data. Various different learning
approaches have been suggested in the past, ranging from simple cross-validation [8],
over max-margin learning [41], and very recently parameterestimation in an interac-
tive setting [34]. In most of our experiments the values werefixed to the reasonable
choice ofλ1 = 5 andλ2 = 50.

Now that energy (1) is fully defined, the Boykov&Jolly [9] model for binary seg-
mentation can be formulated as estimation of a global minimum

x̂ = argmin
x

E(x,ω ,z). (4)
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Figure 2: (a) The energy of the GrabCut+ model decreases over12 iterations. (b)
Initial result after first iteration of the GrabCut+ algorithm, where initialization is as in
fig. 1(d). (c) The GMMs, hereK = 5, for foreground (blue) and background (red) do
overlap considerably (visualized RG-slice). (d,e) The final result for segmentation and
GMMs.

Exact global minima can be found using a standard minimum cut/maximum flow algo-
rithm [11] (chapter 2). Since the desired results are often not achieved with the initial
trimap, additional user interactions are necessary. The maximum flow computation
for these additional interactions can be made very efficientby reusing flow from the
previous computation (see details in [9]).

3 GrabCut+ : Image Segmentation using iterative Graph
Cut

The following description of GrabCut contains additional details, and a few minor mod-
ifications, compared to the original version [36, 7], hence the name GrabCut+ is used.

The algorithm described in the previous section often givesin practice good results,
as shown in fig. 1(c), however, it fully relies on the user to define the color distributions
for foreground and background. One problem is that it does not exploit the information
given by the unlabeled data to learn, or infer, the unknown parameterω in a better
way. In the following we describe one approach which makes use of the unlabeled
data. The simple idea is to find jointly the optimal settings for the model parameterω
and segmentationx. This is done as before by minimizing the functional in (1) subject
to the given user constraints. Note that by optimizingω we implicitly assume that both
foreground and background are represented well by compact distributions. The impli-
cations of this assumption are discussed later in detail. Byexploiting the unlabeled
data we are able to achieve good results with fewer user inputs compared to the previ-
ous approach in sec. 2. In particular we show that it is sometimes sufficient to simply
specify the object with a bounding box, i.e. the setTF is empty, (see example in fig.
1(d)). Unfortunately, optimizing this energy with respectto both unknowns,ω andx, is
a very challenging problem, in fact it is NP-hard [44], as discussed later. Hence, in this
section and the following one, questions concerning different optimization procedures,
optimality, and initialization are addressed.
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3.1 The GrabCut Model

The first modification of the basic segmentation model, as described in sec. 2, is done
by switching from an explicit representation of intensity distributions via histograms
to a parametric representation via Gaussian Mixture Models(GMMs) [36, 8, 37]. This
more compact form of representation is particularly helpful in case of RGB colors (n-
dimensional intensities).

Foreground and background are modeled separately with eachK full-covariance
Gaussian (hereK = 7). In order to deal with the GMM tractably, in the optimiza-
tion framework, an additional vectork = {k1, . . . ,kn, . . . ,kN} is introduced, withkn ∈
{1, . . .K}, assigning, to each pixel, a unique GMM component, one component either
from the foreground or the background model, according toxn = 1 or 0.2 This means
that the unknown parameterω comprises the variables

ω = {k,πF(k),µF(k),ΣF (k),πB(k),µB(k),ΣB(k), k= 1. . .K},

with π as mixture weighting coefficients, which sum up to 1, andµ(k),Σ(k) as mean
and covariance matrix for each Gaussiank.3 It is important to note that fitting a GMM
model is strictly speaking an ill-posed problem since fitting a Gaussian to the color of
a single pixel gives an infinite likelihood (see [5] sec. 9.2.1). Hence, the covariance
matrix is restricted to have a minimum variance, e.g. 1/2552.

Using the same energy (1), the GrabCut model is defined as the joint optimization
(estimation) for segmentationx and parametersω

x̂ = argmin
x

min
ω

E(x,ω ,z). (5)

The key difference between the Boykov&Jolly model (4) and the GrabCut model (5)
is that in (5) the minimization is also done with respect toω . It is worth noting that
the GrabCut model and the functional of Chan-Vese [13, 27] incontinuous domain,
related to the Mumford-Shah functional [33], share some properties. In both models
the key problem is the joint optimization of segmentation and global properties of the
segmented regions.

3.2 The Optimization Procedure

The pseudo-code for GrabCut+ is given in fig. 3. The user starts by defining the initial
trimap using either a bounding box or lasso interface. This means thatTB is outside
the marked region,TU inside the marked region andTF is an empty set. As suggested
in [36] results improve ifTB only comprises pixels which are inside a strip around the
outside of the marked region4. The intuition is that the relevant background training
data is often close to the object. In fact, pixels outside this strip are ignored throughout

2Using “soft assignments” of probabilities for each component to a given pixel would give a significant
additional computational expense for a negligible practical benefit.

3Note, an efficient variant for using GMMs in a segmentation framework has been suggested in [39]. A
different GMM with 2K Gaussian is fitted first to the whole image. This gives a fixed assignment vectork,
which is not updated during the optimization ofω andx.

4The width of the strip is chosen as a small fraction of the bounding box dimensions. In the experiments,
sec. 5.1, the width is set to 10 pixels as in [28].

7



Algorithm 1 : GrabCut+

Require: TB using bounding box or lasso user interface. SetTF = /0,TU = T̄B

1: Initialize xn = 0 for n∈ TB andxn = 1 for n∈ TU

2: Estimate initialω using EM (with smart initialization fork)
3: for sweep= 1−5 do
4: Updatex given currentω using graph cut
5: Updateω given currentx using EM
6: end for

User Edit: Update user trimapT = {TF ,TB,TU} and go to step 3

Figure 3: The pseudocode for GrabCut+ with bounding box or lasso input.

the whole optimization procedure. The trimapT defines uniquely the segmentationx,
which is used to initialize the unknown color modelω . This initialization step was not
discussed in [36], however, it is quite important. One choice is a random initialization
for k, however, the following “smart initialization” works better. Consider the set of
background pixels,xn = 0. The first principal axis is computed from image datazn

of this set. Then the data is projected onto this axis and sorted accordingly. Finally,
the sorted set is divided intoK groups, which defines for each pixeln the assignment
variablekn. Givenk, a standard EM-style procedure for GMM fitting can be invoked.
This means that in the “M” step, the Gaussian, i.e.π ,µ ,Σ, are fitted in a standard
way, see [36] for details. In the “E” stepk is optimized by enumerating all components
k∈K, and choosing the one with lowest energy. In practice these two steps are executed
4 times. The foreground pixels are processed similarly.

The main procedure alternates the following two steps: i) Givenω , the segmenta-
tion x is inferred with graph cut as in sec. 2, ii) Given the segmentation x, the unknown
modelω is inferred using the above EM-style procedure for GMM fitting. In each step
the total energyE is guaranteed to not increase. The method can be run until a local
minimum is found, but in practice we simple stop it after a fixed number of 5 iterations.
Fig. 2 shows the power of running the iterative GrabCut+ procedure. Finally, the user
can update the trimap and the main procedure is run again. As in the previous section,
re-using of flow gives a speed-up.

Note that a small modification of this procedure let us apply GrabCut+ for a stan-
dard brush interface [9], as done in the experiments. For that, step 1 in fig. 3 is ini-
tialized asxn = 0 for n ∈ TB, xn = 1 for n ∈ TF andxn =’?’ for n ∈ TU , where label
’?’ means unlabeled and those pixels are ignored in step 2 of the algorithm. In the ex-
treme case whereTF is an empty set, we can proceed as in GrabCut+ and setxn = 1 for
n∈ TU . In the same way, it can be setxn = 0 for n∈ TU if TB = /0. Finally, it may occur
that the user cannot provide any useful input, i.e. both setsTF andTB are empty. For
example, the foreground object touches all for sides of the image, and hence the tight-
est bounding box is of the same size as the image. Another scenario is an automatic
segmentation system, where the user might want to extract anobject without any user
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input. An example is the web-based retrieval systems for vases [26]. In those cases,
whereTF = /0 andTB = /0, a simple procedure is run which places a foreground ellipse
in the center of the image, where the area of the ellipse is half of the image area. The
implicit assumption is that the object is more likely present in the image center. Note
that a similar procedure is utilized in [26]. Note that for all of the above missing-data
cases, i.e.TF = /0 and/orTB = /0, the tricks for better initialization, discussed in sec.4.1
can potentially be used.

3.3 Properties of the GrabCut model

In the GrabCut model there is the freedom to choose an appropriate foreground and
background color distributionsω . It is straightforward to see that distributions which
are more compact, and model the data well, give a lower energy5. This means that
implicitly it is assumed that both foreground and background segments are more likely
represented by a compact distribution in color space.

One important question is whether the GrabCut model has an implicit bias towards
certain segmentations. This was analyzed in Vicente et al. [44] by disregarding the
smoothing termV in (3). They first showed that by using a histogram representation
in RGB space it is possible to write the term “minω E(x,ω ,z)” in (5) explicitly in the
form of a new energyE′(x,z) with higher-order cliques onx. This higher-order energy
E′ has two different types of terms: i) a convex function over∑nxn, and ii) a concave
function, for each histogram bink, over ∑nxn[n ∈ Bin(k)], i.e. all pixels which are
assigned to bink. The convex function (first type) has lowest energy if exactly half of
the pixels in the image are assigned to foreground and background respectively. Hence,
this is a bias towards balanced segmentations. The concave function (second type) has
lowest energy if all pixels, which are assigned to the same bin, have the same label,
either 0 or 1. Note that these two types of terms often counter-balance each other
in practice so that the optimal segmentation is not a degenerate solution, e.g. not all
undefined pixels are either all foreground or all background. In an extreme case the bias
towards balanced segmentation is more prominent. This is when all pixels are assigned
to unique histogram bins. Then all concave terms are constants, so that the energy
consists of the convex part only. In the other extreme case, when all pixels are assigned
to the same histogram bin, the bias disappears however, since then concave and convex
terms cancel each other out. Note, an interesting observation was made in [44] that
results do improve considerable when choosing the weight ofthis bias individually for
each image.

Unfortunately, optimizing the higher-order energyE′, with respect tox, is an NP-
hard problem [44]. An optimization procedure forE′ was suggested in [44], based on
dual decomposition ([3] and chapter 22, which also providesa lower bound for the
energy. This procedure achieved global optimality in 61% oftest cases for the Grab-
Cut database of 49 images [18] and a bounding box input. However, for the remaining
39% of test cases, the dual decomposition approach performed rather poorly. Many of
those test cases were “camouflage images”, where foregroundand background colors

5For example, assume all foreground pixels have the same color then the lowest unary term is achieved
by modeling the foreground distribution with one (or many identical) Gaussian with minimum variance.
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do overlap considerably, (example in fig. 2 in [44]). In [44] acomparison with an
iterative GrabCut-style procedure, as described in fig. 3, was done, with the differ-
ence that histograms replace GMMs and that the whole image outside the box is used
as background training data. The iterative procedure achieved global optimality only
in 4% of cases, i.e. very often got trapped in a local minimum.Despite this disad-
vantage, the iterative procedure performed well in terms oferror rate. In 80% of test
cases, where dual-decomposition achieved lower energy, the iterative procedure is only
slightly worse in terms of error rate. However, for the remaining 20% of cases the it-
erative procedure is often considerably better. Hence, theiterative procedure achieved
even a lower total error rate (8.1%) than the dual-decomposition approach (10.5%). It
can be expected that the iterative procedure will perform even better with a different
initialization step, as discussed in sec. 4.1. Note that [44] also suggested a semi-global
procedure, which eventually beats the iterative process for all test cases.

4 Background Removal: Image Segmentation in MS
Office 2010

Designing a product, based on the GrabCut+ tool (sec. 3) means that many interest-
ing, practical and theoretical, issues have to be addressed. This section discusses all
of the topics for which the Background Removal tool and the GrabCut+ tool differ.
We begin by revisiting the optimization procedure and then examine additional model
constraints.

4.1 Initialization and the Bounding Box Prior

It turns out that choosing the initial segmentationx, based on the user trimapT, i.e.
step 1 in fig. 3, is crucial for the performance of the full procedure. In the following
three different initialization schemes are compared for the bounding box input. All
approaches have in common thatxn = 0 for n∈ TB, however, they differ in the treatment
of pixels inTU . The first approach, called“InitFullBox” , is described in sec. 3.2, and
setsxn = 1 for all n∈ TU . The second method, called“InitThirds” , was suggested in
[28]. First, a background color model is trained from pixelsin TB. Then the probability
of all pixels inTU are evaluated under the background GMM. One third of the pixels
with lowest probability are set to foreground, and one thirdwith highest probability are
set to background6. The remaining pixels are set to ’?’, i.e. are ignored in step2 of
fig. 3. The last approach, called“InitParametric” , is implemented in the Background
Removal tool and is similar to the “InitThirds” procedure but additionally considers
the smoothing termV of the energy. For this a new parametric energy is introduced
E′′(x,ω ,z) = E(x,ω ,z) +∑n λxn, with E as defined in sec. 3.1. Hereω is chosen
such that the background GMM is trained from pixels inTB, and the distribution for
the foreground is a constant, uniform distribution. The global optimum ofE′′ for all
continuous values ofλ can be computed efficiently using parametric maxflow [23]7.

6The choice of using a third as the threshold is arbitrary and should be learned from data.
7Since we were not aware of parametric maxflow in 2004, a simpleiterative procedure is utilized, which

re-uses flow.
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From the set of all solutions forE′′, one solutionx is selected using the following
heuristic. The segmentation with smallest foreground areais selected which also meets
the following criteria: The maximum distance of the largestconnected component to
any four sides of the box is smaller than a fixed threshold (e.g. 25% of a side of the
bounding box)8. The inspiration for the “InitParametric” initializationprocedure is
the following. First, the user is more likely to select a bounding box which is tight
around the object. We refer to this idea as thebounding box priorand it motivated the
work in [28]. Secondly, as in “InitThirds” the foreground segmentation is often “far
away” in feature space from the given background distribution. However, in contrast
to “InitThirds” the foreground segmentation is spatially coherent with this procedure.

An experiment gives an indication of the quality of results which can be achieved
with these three methods. For this test the GrabCut data-set(50 images) is used to-
gether with the bounding boxes from [28] (see online [18])9. It has to be stressed
that the following error rates have to be taken with care, since the data-set is rather
small10, and parameters were not trained11. The exact settings for GrabCut+ are as
defined in sec. 3, i.e.λ1 = 5,λ2 = 50,K = 7. Results are as follows. Initializing Grab-
Cut+ with “InitFullBox” gave an error rate of 9.0%.12 It seems that the initialization of
“InitThirds” is clearly a better choice since the error ratedropped from 9.0% to 5.0%,
which is the same conclusion as in [28]. Running the Background Removal tool, which
uses “InitParametric”, gave a slightly higher error rate of5.95%.

Note that this experiment did not enforce the very sensible bounding box prior,
which ensures that the final segmentation is close to the userselected bounding box.
Indeed, by enforcing this prior the error rate can be reducedto 3.7%. The algorithm
to achieve this is described in [28] and runs graphcut iteratively while forcing certain
pixels to belong to foreground. We refer the interested reader to [28] for several al-
ternative procedures for enforcing the bounding box prior.An interesting direction of
future work could be to use as initialization procedure “InitThirds” and to exploit the
parametric maxflow approach of “InitParametric” to enforcethe bounding box prior.

4.2 Modeling User Intention

The ultimate goal of a segmentation system is that a user achieves the desired result
in as short time as possible. For this goal, the energy definedin sec. 3.1 might not
be the optimal model. One problem with the above model is thatit is agnostic to the
sequenceof user interactions. By exploiting this sequence the intention of the user can

8Note that this is the same criteria as the weak tightness condition defined in [28].
9Note, the bounding boxes from [28] deviate slightly from theoriginal set of bounding boxes. The

bounding boxes which are different touch the image boundary, while the object does not. This modification
simplifies the segmentation task and also removes the problem that in one image the original bounding box
was of the same size as the image itself.

10A larger, e.g. 1000+, data-set with high-quality ground truth is needed in the future. Note that for
product testing a medium-sized data-set was created, whichalso includes images which are not photographs,
e.g. graphics and hand-drawn sketches.

11As discussed in detail later, image segmentation is an interactive process hence parameters have to be
trained anyway with the user in the loop, as in sec. 5.2.

12One small modification did reduce the error rate to 7.1%. This was done by choosing a random initial-
ization fork in step 2 in fig. 3. It shows that initialization is very important and can effect the final result
considerably, and that the data-set may be to small.
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be modeled in a better way. Two simple ideas, which are realized in the Background
Removal tool, will be discussed13. Other ideas for modeling the user’s intention are
presented in recent work [45, 30], which investigate alternative models and different
user interfaces.

The first idea is to avoid the so-called “fluctuation effect” [30]. Consider a current
imperfect segmentation where the user has placed the (latest) foreground brush stroke.
Two effects are undesirable: a) pixels change label from foreground to background, and
b) pixels which are spatially far away, change label from background to foreground,
since the user may not notice it. We enforce the sensible constraint that the change
in the segmentation must be, in this case, from background toforeground and also 4-
connected to the latest foreground brush. Achieving connectivity is in general an NP-
hard problem (see chapter 22and [43]), hence we solve it witha simple post-processing
step14. The same procedure is applied for a background brush. It is worth to note that
with this connectivity prior, parameters in the GrabCut+ model may be chosen quite
differently, see [34]15. Also, note that many systems which do not use an explicit unary
term, such as [2] and random walker [16], are guaranteed to satisfy this connectivity
property16.

The second idea, achieves the desired property that the latest brush stroke always
has a noticeable effect on the current segmentation, which is related to the “progressive
labeling” concept in [30]. Consider the case where the current segmentation has a
dominant color of red in the background, and a small region ofthe true foreground
is also red, which is, however, currently incorrectly labeled. A foreground brush in
this small region may fail to select the whole region, since the unary terms in the
region strongly favor the background label, i.e. red being background. The underlying
problem is that the general global color model as defined in sec. 3.1 is not always
appropriate for modeling objects. A practical solution to overcome this problem is to
simply give pixels which are in the latest foregroundbrush stroke a much higher weight,
e.g. 80%, and all other foreground pixels a lower weight (e.g. 20% weight). The same
procedure is applied for a (latest) background brush17. Note that this aggressive color
modeling procedure does only work in conjunction with the above idea of connectivity
with the latest brush stroke.

13These ideas were realized in Microsoft Expression Acrylic Graphics Designer (technology preview).
Unfortunately, due to constraints in the Microsoft Office product, it was not possible to realize them exactly,
as described below. The difference is that in the MS Office version all user foreground and background brush
strokes are treated as one (latest) foreground and background brush stroke respectively.

14Note that other automatic techniques can be used in the future, such as [35] based on [43], or the the
“geodesic star convexity prior” of [17].

15The reason is that one of the main effects of the Ising prior inan MRF (weightλ1 in (3)) is to smooth
out wrongly labeled isolated regions. By enforcing connectivity these isolated regions are not permitted in
the solution space, hence a different weight for the Ising prior might perform better.

16In this context, we also post-process the initial segmentation, which is the result of a bounding box (or
lasso) input, such that only one 4-connected foreground component is present. Note that no constraint on the
background label is enforced, since many objects do have holes.

17An improvement could be to model, in case of a foreground brush, the background color model in a
different way, such that it is more representative for this segmentation task.
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4.3 Dealing with Large Images and Semi-Transparency

For the segmentation of large images, e.g. 20MPixels, it is computationally too expen-
sive to perform graph cut in the given resolution. In the Background Removal tool a
3-level multi-resolution approach is adapted. The full segmentation procedure is run
only on a small resolution of about 0.07MPixels18. Then the segmentation result is
up-scaled to a medium resolution of about 0.8MPixels19, where graph cut is run again
in a small band around the up-scaled segmentation, as in [31]. An important observa-
tion, which is not discussed in [31], is that the energy for different resolutions must be
learned (or set) differently. This can be seen from the fact that ratio of segmentation
area over boundary length is resolution-dependent. In [21]it is shown how to set pa-
rameters, in particularλ1,λ2 andβ in (3), for a smaller resolution given that the energy
was learned on a higher resolution. Finally, the medium-level solution is up-scaled to
the final resolution with a fast and simple procedure, which does not look at the input
image. This is done by up-scaling the binary segmentation via a 2-pass re-sampling op-
eration with a Gaussian kernel. This produces a grey-scale image which we threshold
at the value of 0.5 to yield a final binary high-resolution segmentation. An alternative
approach is the joint bilateral up-scaling technique of [24] as used in [30]. One practi-
cal aspect is that the values for small and medium resolutionhave to be taken with care
since it can happen that the computation time for graph cut inthe band for the medium
resolution is considerable high. Another practical aspectis that the user brushes are
given in the highest resolution. Hence, care must be taken that the final segmentation
obeys the user constraints.

Going from a binary segmentation to a continuous, grey-level segmentation, is the
topic of image matting and a large research area in itself, see e.g. [46, 35]. In the
Background Removal tool we deal with it in a fast way which is practically satisfying
in many cases. The image of an object boundary is always slightly blurred, due to
camera effects (discrete CCD chip and point-spread-function of camera)20. We model
this by simply blurring the hard segmentation with a Gaussian kernel, where the kernel
size is image-resolution dependent. The true foreground colors are then determined
using the color-stealing process of [36].

5 Evaluation and Future Work

As mentioned in the introduction, the question of what is thebest interactive segmen-
tation system today is hard to answer. To cast some light on this question, two specific
experiments were performed. First, with a static user input. Second, with a so-called
“robot user” which simulates a simple novice user. The robotuser is used to train and
compare different systems in a truly interactive setting.

18The image is scaled-down such that the longest image-side isa maximum of 300 pixels long.
19If the longest image-side is more than 1280pixels, it is scaled-down to 1024pixels.
20Effects like true transparency, sub-pixel structure (e.g.hair), or out-of-focus background, are ignored.
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5.1 Static User Input

A plausible type of user interaction, for objects with not excessively long boundaries, is
that the user draws with a “fat pen” around the boundary of theobject, which produces
a relatively tight trimap. Obviously for such a user input a method should exploit
the fact that the true boundary is more likely in the middle ofthe user drawn band. As
above, the GrabCut database (50 images) is used which provides such a trimap, derived
by simply eroding the ground truth segmentation, see online[18]. Several articles have
reported error statistics for this data-set, using the percentage of misclassified pixels
within the unknown trimap regionTU

21. As above, the following error rates have to be
taken with care since the database is small and the methods were not properly trained.
Also, all parameter settings for GrabCut+ (and variants of it) are as described above.

Applying simple graph cut without any global color modeling, i.e. energy in (1)
without unary termU , gives an error rate of 9.0%. As discussed in detail in chapter 8,
one bias of graph cut is the so-called “shrinking bias”, i.e.segmentations with a short
boundary are preferred. In contrast, Random walker [16] hasless of a “shrinking bias”
and instead a “proximity bias” towards segmentations whichare equally far away from
the given foreground and background trimap respectively. Obviously, this is a better
bias for this data-set, hence the error rate for random walker is 5.4% (see [15])22. Note,
in [40] (see also chapter 8) a continuum of solutions is presented which vary with re-
spect to the proximity bias. As to be expected, the setting (p=∞ in [40]) which exploit
the proximity bias most, is the best. On this note, a simple baseline method which ig-
nores the image data achieves a quite low error rate of 4.5%. The baseline method
simply classifies each pixel according to the Euclidian distance to the foreground and
background region respectively23. It is worth to note that there is a method which beats
the baseline, that is Random walker with an “adaptive thresholding”, which better ex-
ploits the proximity bias, see [15].

Finally, the effect of adding global color models is investigated. The error rate of
graph cut reduces from 9.0% to 6.6% using the GrabCut+ algorithm in fig. 3 with one
sweep (step 3). Multiple iterations of GrabCut+ reduce the error rate further to 5.6%,
and the Background Removal tool achieves basically the sameerror rate of 5.8%.24 To
conclude, global color models do help considerably graph cut-based techniques, and
they may also help the best perform methods for this data-set, as also conjectured in
[15].

21A small fraction of pixels in the ground truth are unlabeled,due to transparency effects. These pixels
are not counted when computing the error rate.

22In [15] some variations of the random walker formulation aregiven, which however, produce quantita-
tively the same results.

23The baseline method dose not treat thin structures well, hence a skeletonisation approach might even
perform better.

24Note that by exploiting additionally the idea that the relevant training data for the background GMM
is more likely in a strip around the unknown region (as provided with the data-set), the error rate of Grab-
Cut+ drops from 5.6% to 5.3%.
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5.2 Dynamic user input

The set-up is described in detail in Gulshan et. al. [17], hence only some aspects are
mentioned here. To measure the amount of user interaction inan interactive system, we
invented the so-called “robot user” [34]. It can be used for both learning and evaluating
segmentation systems, see [34]. Given a new image, it startswith an initial set of brush
strokes25 and computes a segmentation. It then places a circular brushstroke in the
largest connected component of the segmentationerror area, placed at a point farthest
from the boundary of the component. The process is repeated up to 20 times, generating
a sequence of 20 simulated user strokes, which is different for each algorithm. Fig.
4(b) shows an example (see also video in [18]). From the sequence of interactions,
one number for the amount of user interaction is derived which measures, in rough
words, the average number of brush strokes necessary to achieve a good quality result
(details in [17]). A small user study confirmed that the interaction effort of the robot
user, indeed, correlates reasonable well with the true effort of a novice user, see [34].

The dataset for this experiment consists of 151 images with ground truth segmen-
tations, which is a mix of existing datasets including GrabCut and VOC’09, see [18].
The free parameters for all systems were trained using cross-validation, 75−76 split
repeated 10 times.

Table 1 presents the results for five different methods, and fig. 4(d) depicts the
average error rate for the sequence of robot user interactions. The “Geo” method of [2],
based on geodesic distance, performed worst. This is not surprising since the method
does not regularize the boundary and is sensitive to the exact location of brush strokes
(see chapter 8). Fig. 4(c) gives an example. Graph cut “GC” (sec. 2) performed
considerably better26. The main difference of graph cut compared to the following
three systems is that it does not impose any “shape” prior. Random Walker “RW” [16],
for instance, guarantees a connectivity of the segmentation with respect to brushes,
e.g. a pixel with label 0 is 4/8-connected to a background brush. Hence, even without
global color models Random Walker performs as well as graph cut. The Background
Removal tool “BR” is the second best performing system (example in fig. 4(b)). It
exploits the same connectivity property as Random Walker, but additionally utilizes
global color models. Finally, the best performing method “GSC” [17] imposes a strong
“geodesic star convexity prior” on top of the simple graph cut system “GC”. Note that
this convexity prior is even more restrictive than a connectivity prior (see fig. 14 in
[17]), which seems to be an advantage in practice27.

5.3 Future Work

Many ideas for future work were already mentioned above. Certainly, the model for
Background Removal can be improved further using stronger shape priors, e.g. [17],
improved local MRF modeling, e.g. flux [35], or better globalcolor models, e.g. [17].

25They were chosen manually with one stroke for foreground andthree strokes for background.
26Here the implementation of [18] was used. It includes an important, additional trick, which mixes the

GMMs with a uniform distribution.
27This is supported by testing against another variant of “GC”, which performed slightly worse (effort

10.66). It removes all foreground islands which are not connected to a foreground brush stroke in a post-
processing step.
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Method Geo [2] GC (sec. 2) RW [16] BR (sec. 3) GSC [17]
Effort 15.14 12.35 12.31 10.82 9.63

Table 1: Comparison of five different systems in terms of the average number of brush
strokes needed by the robot user to achieve good results.
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Figure 4: (a) Input image (original in color). (b) Result of the robot user using the
“BR” system, with 0.85% of misclassified pixels (image colors adapted for bettervi-
sualization). The segmentation is outlined with a black-white line, and the robot user
inputs are white and black circles for the foreground and background respectively (long
strokes are initial, manual user strokes). (c) Result from “Geo” system which is con-
siderably worse, error 1.61%. (d) Performance of five different systems utilizing the
robot user (error in log-scale).
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Apart from improving the model we believe that further improvements may be achieved
by focusing more on user aspects.
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