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Abstract
Named entity lists provide important features for language un-
derstanding, but typical lists can contain many ambiguous or
incorrect phrases. We present an approach for automatically
learning weighted entity lists by mining user clicks from web
search logs. The approach significantly outperforms multiple
baseline approaches and the weighted lists improve spoken lan-
guage understanding tasks such as domain detection and slot
filling. Our methods are general and can be easily applied to
large quantities of entities, across any number of lists.
Index Terms: spoken language understanding, domain detec-
tion, slot filling, named entity lists, click logs

1. Introduction
Identifying spoken entities is a critical component of Spoken
Language Understanding (SLU) systems. Correctly extracted
entities can provide valuable information to many of the statis-
tical classifiers that enable understanding in automated conver-
sational systems. In this paper we will focus on two components
of SLU systems that enable basic machine understanding: do-
main detection and slot filling. Domain detection is often a top
level component of SLU systems that predicts an utterance’s do-
main and provides a guide for subsequent understanding com-
ponents, such as by limiting the types of information the system
can extract from that utterance. A dialog system can invoke
different information extraction depending on an automated do-
main classification of the utterance. For instance, given that an
utterance is classified into the restaurant domain, the slot filling
task is then to extract important phrases and detect their type
(such as the restaurant name or the style of food desired). These
statistical classifiers for domain detection and slot extraction
can further be significantly improved when provided with ac-
curate dictionaries that identify terms of interest. For instance,
a domain detection classifier that decides between the restau-
rant and movie domain could clearly benefit from knowing if a
movie name is present in the current utterance. Similarly, iden-
tifying if a phrase is a known movie name would provide an
important feature for a slot filling classifier that extracts movie
names.

Given a clean and unambiguous list of names, both domain
and slot detection performance can improve significantly. The
primary difficulty is in obtaining a high quality list without in-
vesting significant human effort to collect, clean, and curate it.
Even if significant effort is invested in creating a useful list of
movie names, ongoing effort will be required to keep the list
up to date with new movies. This process does not scale well
when a large set of lists is needed; for instance it would also
be useful to have high quality lists for actors, directors, restau-

rant names, city names, brand names, products, and more. In
order to provide broad coverage for the many types of lists that
could be useful, one approach is to leverage lists that have been
crowd sourced and are available online at websites such as Free-
base.com, or by mining the web for tables and lists within web-
sites. The challenge with incorporating such lists into statistical
classifiers is that they are often extremely noisy due to ambigu-
ous entries, mistakes during human generation, or errors result-
ing from automatic extraction. In the case of movies, Freebase
provides a list of about 150k movie names, but these include
rare movie titles that would typically not be a strong indicator
of a movie title (such as “chrome” or “holiday inn”). Similar
issues exist across most crowd sourced or automatically gener-
ated lists, which motivates an automated approach to predict the
ambiguity of a phrase or entity within a list.

In this paper we present a general approach to automati-
cally refine entity lists based on information available from web
search click logs. Given a noisy seed list, we score each mem-
ber in the list based on the click behavior of web search users
and then show that statistical models for SLU improve when
using the scored lists as features. In the remaining sections,
we first describe a general approach for learning weighted lists
from user click logs in Section 2. Section 3 then describes our
baseline domain and intent detection models. We describe ex-
periments and results (focusing on restaurant and movie tasks)
in Section 4. We review previous related work in Section 5 and
then summarize our conclusions in Section 6.

2. Refining noisy entities with search logs
There are plentiful resources on the web that provide typed en-
tity lists, such as for movies or restaurants. These lists can be
powerful features for many natural language processing tasks,
but only when the content is sufficiently free of ambiguity and
noise. A typical approach is to spend significant human effort
in cleaning entity lists before including them in statistical sys-
tems. Using just the raw list can even hurt system performance.
While expert human cleaning is possible when creating a small
number of entity dictionaries, the approach does not scale well
for potentially hundreds of dictionaries with thousands of enti-
ties. Maintenance is also a significant issue, given the constantly
changing nature of many lists, such as with new movie releases
or emerging celebrities.

This paper presents an automated process for refining en-
tity lists for use in statistical systems. Click logs from large
web search engines implicitly encode information that can be
automatically extracted and processed to refine entity lists from
noisy sources. Users of web search engines provide information
about entities in the course of typical search sessions by click-
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movies restaurants random
wikipedia.org (.120) yelp.com (.027) wikipedia.org (.027)

imdb.com (.093) wikipedia.org (.017) yahoo.com (.011)
amazon.com (.020) citysearch.com (.012) youtube.com (.009)

netflix (.004) urbanspoon.com (.005) facebook.com (.005)

Table 1: Frequently clicked websites in the context of various
lists (with probability of click).

ing on relevant websites, and this is recorded in search engine
logs. We will present results for improving lists of movie and
restaurant names as examples, but the approach is general and
could apply to a large set of potential typed lists. Our approach
mines the click logs of a large commercial search engine, but
similar approaches could be applied by instead mining the sites
returned by search engines in response to relevant queries.

2.1. Scoring entity lists with click logs

Given a noisy typed list, our goal is to generate a score for each
entity in the list that reflects the likelihood that the entity is a
good member of the list. The resulting score should be high
for entities that have unambiguous membership in the list, and
low for entities that have ambiguous or incorrect membership.
In the case of the movie title list from Freebase, “The Dark
Knight” is a phrase that uniquely references a movie, but the
list also contains the title “Hotel” (a small movie from 2003)
that has meaning in many other contexts. The difference be-
tween these two phrases can be easily identified by examin-
ing the search click logs. Three quarters of user clicks for the
query “The Dark Knight” belong to just three sites: Wikipedia,
IMDB, and Warner Brothers. For the query “Hotel” user clicks
are more evenly distributed: one quarter of the clicks go to ho-
tels.com, followed by a broad distribution of clicks on sites such
as travelocity.com, orbitz.com, etc. (with negligible clicks on
any movie related sites).

Whether or not a phrase belongs in an entity list can be
evaluated by considering the websites users click when search-
ing for that phrase. In order to have a scalable process for any
type of list, a method for automatically determining the rela-
tionship between a website and a list is required. Equation 1
proposes such a measure, which computes the probability of
a click on a particular website (urli) given a proposed list of
queries. This measure aggregates the clicks received by a par-
ticular website for queries on the candidate list (querySeedSet),
divided by clicks received for all websites in the context of the
candidate list:

p(urli|querySeedSet)=
clicks(urli|querySeedSet)P
j clicks(urlj |querySeedSet)

(1)

where clicks is the sum of all clicks that a particular website
received over all queries in the seed query list:

clicks(urli|querySeedSet)=P
querym∈querySeedSet

clickCount(urli|querym) (2)

Given a candidate list, the most related sites can be automati-
cally inferred from the user click logs in this way. In this paper
we simplify websites to just the basic domain name from the
url, although future work could explore ways to determine the
optimal granularity for url simplification. Simplification is an
important aspect of the approach, because it provides a method
to generalize specific web pages to broader websites that can be
associated with entity lists. In the case of movies, imdb.com
and netflix.com are reasonable generalizations, but for larger
sites such as google.com it would be preferable to have a more

movies/random restaurants/random
netflix.com (93|4.5) yelp.com (14.7|2.7)
imdb.com (32|3.5) opentable.com (12.8|2.6)

wikipedia.com (4.3|1.5) wikipedia.com (.6|-.4)
yellowpages.com (.02|-4) answers.com (.2|-1.7)

Table 2: Example sites in the context of seed lists (likelihood
ratio | log likelihood ratio).

granular form (such as google.com/movies). Table 1 presents
the top sites associated with three lists: movie titles from Free-
base, restaurant names generated from automatic web mining,
and a set of 100k random web queries. We collect over 1 bil-
lion clicks for these lists from about one year of click logs and
keep the top 10k domains (the remaining domains are treated as
unknown).

These click distributions can then be compared to the click
distribution for a particular phrase to evaluate if the phrase is
a good match to an overall list. A phrase that is a high qual-
ity match would be expected to have a click distribution simi-
lar to the list as a whole, while a low quality match would be
more similar to a background model of random queries. This
behavior can be represented with likelihood ratios comparing
the probability of a click on a site in the context of the seed en-
tity list versus the probability of a click on a site in the context
of any random web search. For example, the likelihood ratio
for a site (urli) in the context of a seed set of movie names,
against a background model of random queries, would be as in
Equation 3:

movieRatio(urli)=
p(urli|movieSeedSet)

p(urli|randomSeedSet)
(3)

The log likelihood ratio is an alternative form, where
movieLogRatio(urli) = log(movieRatio(urli). Example like-
lihood ratios are given in Table 2. Comparing clicks on a site
in the context of a list versus clicks on the site for a set of ran-
dom queries emphasizes the relationship of a particular site to
a list of entities more so than just the raw click probabilities
given in Table 1. For example, while netflix.com receives a
smaller percentage of the overall clicks for the movie domain
than wikipedia.com, it is clear that a click on netflix.com is a
stronger indicator that a search is related to movies when com-
pared with a background distribution of random web queries.

Finally, for each individual candidate phrase in a list, a
score can be generated based on the sites clicked on for that
phrase. One potential score can be viewed as a weighted click
vote over the sites clicked for that phrase, where p(urli|phrase)

is the portion of clicks on a particular site in the context of a
single phrase and movieRatio(urli) weights the site with the
likelihood ratio that the site is a movies site (from Equation 3):

diffRatio(phrase)=
P

i p(urli|phrase)∗movieRatio(urli) (4)
When weighted by the logMovieRatio, the score can be inter-
preted as the difference of cross entropies, comparing the cross
entropy of the phrase click distribution and the movie click dis-
tribution with the cross entropy of the phrase click distribution
and the random query click distribution:

logDiffRatio(phrase)=P
i p(urli|phrase)∗log(p(urli|movieSeedSet))−

p(urli|phrase)∗log(p(urli|randSeedSet)) (5)
This factors to Equation 6 below, which is equivalent to the (log)
likelihood ratio weighted voting proposed in Equation 4.

logDiffRatio(phrase)=P
i p(urli|phrase)∗log(

p(urli|movieSeedSet)
p(urli|randSeedSet)

) (6)
Typical diffRatios are: 20 for “grumpier old men”, 9.3 for “the
dark knight”, while “hotel” is 0.25 and “chrome” is 0.11.
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Figure 1: Movie list weights comparison

2.2. Evaluating weighted entity lists

The above scoring alternatives can be directly evaluated by
comparing the scored lists on a simple entity extraction task
(Section 4 evaluates the approach in the context of down-
stream SLU components). After computing the diffRatio and
logDiffRatio scores for the lists, we normalize the phrases
with standard text to speech processing and then evaluate using
labeled speech data on correct transcripts from a conversational
dialog system. To evaluate each scoring function, potential en-
tities are labeled in the training data if a phrase’s score is above
some threshold. F-Score can then be computed while sweep-
ing across all possible score thresholds to generate a learning
curve. In addition to the two scores derived from the click logs,
we also compare to three additional baselines: word length,
character length, and the phrase’s probability from a language
model trained on web search queries. Word and character length
provide reasonable baselines because longer entities tend to be
less ambiguous. The probability from the web query language
model provides a score related to the likelihood of the phrase,
where rarer phrases can be considered less ambiguous (and
therefore more likely to be a good member for the entity list).

Finally, we also train a classifier with ten fold cross-
validation on the data set, which combines the five different
scoring functions as features in a model that predicts list mem-
bership. The classifier training set is the set of candidate phrases
extracted from our dialog training set with the complete list of
entities, where the target is true or false (whether that instance
of the phrase was labeled as an entity by a human annotator).
The data for both restaurants and movies contains about 6k in-
stances that occur in the candidate dictionaries, with about 1k
instances labeled as true entity occurrences (recall is limited be-
cause an additional few hundred true entities do not occur in our
dictionaries). The classifier used in these experiments learns
boosted decision tree stumps (adaboost [1]), as implemented
by the icsiboost tool. The plots present F-score across varying
score thresholds for the five individual scores, as well as the
combination adaboost classifier. We preprocess the raw lists to
include only those phrases that received ten or more clicks in
our logs, which significantly cleans irrelevant noise from the
lists with little loss in recall. Figure 1 compares results for
movies, while restaurant results are in Figure 2.

Both figures show that using just word or character thresh-
olds provides reasonable performance with a large improvement
over using the original entire list (this corresponds to no thresh-
old, at the far right of each graph). The blocky steps in perfor-
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Figure 2: Restaurant list weights comparison

mance for the length scores are a result of the relatively lim-
ited granularity available in the simple scores. The probabil-
ity generated by the web language model performs worse than
any other score because it only indicates something about the
general probability of the phrase occurring; however, tests on a
separate held-out set showed that it proved to be a useful fea-
ture in the overall combination classifier. The diffRatio and
logDiffRatio achieve the best F-score among the individual
score types across most operating points. The diffRatio score
slightly outperforms, perhaps as a result of the sharper scores
used in weighting that were otherwise dampened with a log
function in the logDiffRaio score. In both cases the combi-
nation classifier significantly outperforms any individual score,
making it an appealing approach if some small amount of la-
beled entity data is available. The combination can be trained
on a relatively small amount of data because only the scores are
used as input features, but the resulting classifier can be used
for cleaning an entire entity list because the component scores
can be automatically generated for any unseen candidate en-
tity phrase. The learning curve plots show that performance on
name extraction with a simple dictionary look up can be sig-
nificantly improved by making use of the proposed scoring ap-
proaches. In the next sections we describe our statistical spo-
ken language understanding models and then describe how the
scored entity lists can be incorporated to improve the models.

3. Domain and Slot Filling Models
A comprehensive survey of previous approaches for domain and
slot detection can be found in [2]. We follow these state-of-the-
art approaches for our baseline domain and slot detection.

The domain detection classifier uses boosted decision tree
stumps (adaboost [1]). Baseline features incorporate all uni-
grams, bigrams, and trigrams from each utterance and the clas-
sifier learns among five potential domains (although we focus
on two: movies and restaurants). Including basic entity lists can
improve performance, so we add binary features from already
available human curated dictionaries that indicate presence for:
cities, hotels, actors, directors, movie genre, movie awards, and
movie characters. We also include unweighted versions of our
restaurant and movie name lists, as an additional baseline. Fi-
nally, we incorporate the weights for restaurant and movie en-
tities by providing a real valued feature that is populated with
the max score for each entity type (movie and restaurant) that
is found in the corresponding scored entity list. Domain mod-
els take scores from all of the proposed weighting types and the
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Model overall movie restaurant
F-Score F-Score F-Score

baseline .926 .907 .891
+ unweighted lists .928 .919 .889
+ weighted lists .932 .933 .900

Table 3: Domain detection error and F-score results

classifier learns how the scores should be combined.
We compare two modeling approaches for the sequence

tagging task of slot extraction. A standard linear chain CRF
model [3] is trained using the CRF++ tool to learn a tag for each
word in an utterance: in name, outside name, or begin name
(IOB representation). Features are generated from the current
word, previous word, previous previous word, next word, and
next next word, as well as the previous predicted tag. Simple
entity list features are incorporated by adding the same contex-
tual features as in the case of words, but based on IOB tags
that encode whether the word sequence is present in an entity
list. Weighted entity lists are then incorporated in much the
same way, but first the scored list is clustered into ten clusters
with K-means clustering and then ten lists of increasing preci-
sion are produced where the first includes the entire list and the
last includes only those entities that occur in the highest scor-
ing cluster. Then ten features are added to the CRF, based on
the tags produced by the dictionaries of increasing precision.
We compare with a semi-CRF model [4] that incorporates the
same word based features (the implementation from [5]). Un-
weighted entity lists provide binary features for phrases that oc-
cur in the list, while weighted lists provide a real valued feature
equal to the score of an occurring phrase. The weighted lists use
only the score produced from the combined adaboost classifier,
which performed slightly better than each individual score (and
better than providing all scores as features to the CRFs).

4. SLU Experiments
We evaluate the impact of weighted entity lists in the context of
domain and slot models for a spoken dialog system. Our do-
main training data consists of 16k utterances, each annotated
with one of five domains. We report on a test set of 2k ut-
terances, but we will primarily focus on F-score for the movie
and restaurant domains (about 300 utterances each). Table 3
presents results for our baseline model, adding unweighted lists,
and then with all unweighted and weighted lists. Unweighted
lists improve performance for movie utterances, although not
for restaurant utterances. Improvements in movie F-score are
nearly double the gain achieved by adding a simple unweighted
list. Overall five class domain F-Score is also improved by in-
corporating the weighted lists.

Slot filling results are presented in Table 4. Results are de-
rived from five fold cross-validation on two separate sets: 2,400
movie utterances which contain 2,000 movie names and 3,000
restaurant utterances which contain 1,350 restaurant names.
The unweighted movie list provides a large performance im-
provement for both CRF and semi-CRF models; then, incor-
porating the weighted list provides an additional 1.5% absolute
improvement for the CRF model and 2.5% improvement for the
semi-CRF model. The unweighted restaurant list provides a
large performance improvement for both CRF and semi-CRF
models, and incorporating the weights provides further large
gains for the semi-CRF model (although not the CRF).

Model CRF F-Score semi-CRF F-Score

m
ov

ie
s baseline .658 .667

+unweighted list .736 .717
+weighted list .751 .742

re
st

s. baseline .715 .737
+unweighted list .745 .752

+weighted list .745 .776
Table 4: Name slot tagging

5. Related Work
Much previous work has shown that dictionaries and lists can
improve language segmentation tasks. Lists extracted from
structured databases provide gains in information extraction
tasks [6, 7] and named entities help in dialog systems [8]. More
recent work has shown that unsupervised extraction from web-
sites and query logs provides valuable features for information
extraction [9] and weighting these features is better than simple
lists [10]. Recent work uses search click logs [11, 12], although
their approach focuses on (query, document) pairs, rather than
our (list, siteDomain) pairs that better generalize for scoring
lists. The most similar approach to ours is [13], which asso-
ciates user browsing history with product attributes (although
they constrain their approach to very small lists). Other previ-
ous approaches have shown the benefit of processing the click
graph for extracting related queries [14, 15], but to our knowl-
edge none have enriched the approach for scoring lists.

6. Conclusions
We present a general approach to score entity lists by learning
from user clicks in web search logs. The method can be ap-
plied to any typed list that garners a reasonable amount of web
search activity. Our contribution builds on previous click min-
ing approaches and proposes a novel algorithm that compares
click distributions on a phrase to aggregate click distributions of
typed lists. We then show that weights improve example spo-
ken language understanding tasks of domain detection and slot
filling for movies and restaurants.
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