
Transparent Privacy Control via Static
Information Flow Analysis

Xusheng Xiao Nikolai Tillmann Manuel Fahndrich
Jonathan de Halleux Michal Moskal

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

{t-xuxiao, nikolait, maf, jhalleux, micmo}@microsoft.com

Microsoft Research Tech Report MSR-TR-2011-93

August 7, 2011

Abstract

A common problem faced by modern mobile-device platforms is that third-
party applications in the marketplace may leak private information without noti-
fying users. Existing approaches adopted by these platforms provide little infor-
mation on what applications will do with the private information, failing to ef-
fectively assist users in deciding whether to install applications and in controlling
their privacy. To address this problem, we propose a transparent privacy control
approach, where an automatic static analysis reveals to the user how private in-
formation is used inside an application. This flow information provides users with
better insights, enabling them to determine when to use anonymized instead of real
information, or to force script termination when scripts access private information.
To further reduce the user burden in controlling privacy, our approach provides a
default setting based on an extended information flow analysis that tracks whether
private information is obscured before escaping through output channels. We built
our approach into TouchDevelop, a novel application-creation environment that
allows users to write application scripts on mobile devices, share them in a web
bazaar, and install scripts published by other users. To evaluate our approach, we
plan to study a portion of published scripts in order to evaluate the effectiveness
and performance of information flow analysis. We also plan to carry out a user
survey to evaluate the usability of our privacy control and guide our future design.

1 Introduction
Modern mobile-device platforms like iOS [3] , Android [1] and Windows Phone [7]
provide a central place, called app stores or marketplaces, for finding and downloading

1

Figure 1: Visualization of information flow of a sample application

third-party applications. These third-party applications allow users to add more func-
tionality to their devices. For application developers, the central marketplace makes
it easy to distribute their apps. Applications for mobile devices are typically written
using traditional programming languages in traditional desktop development environ-
ments that provide APIs to access the touch screen, sensors, network and so on.

TouchDevelop [5]1, a novel application-creation environment, enables users to write
small applications directly on mobile devices using touch screens. We call applications
written in TouchDevelop “scripts”. TouchDevelop also provides a “script bazaar” that
allows users to publish their scripts; the source code of a script is made available as part
of the publishing process. Other TouchDevelop users can then discover, comment, and
review published scripts. If desired, users can install published scripts onto their own
mobile devices and run them as well as modify them. The TouchDevelop script bazaar
is similar to the existing marketplace concept, but all scripts are free to download and
install, and their source code is available as well.

A common problem faced by these mobile-device platforms is that the published
applications in the marketplace may leak private information through output chan-
nels. Many of these applications access the mobile-device resources like sensors and
GPS that may contain or capture and expose private information, and share them us-
ing remote cloud services or web services [11] without notifying users. Similarly, in
TouchDevelop, a script can read a user’s geolocation and post it on facebook [2] or
silently send it to a web service. To mitigate these problems, iOS requests permissions
before applications can access users’ geolocations and Android asks for permissions
before users can install applications. However, these platforms provide little informa-
tion about how these applications may use users’ private information, requiring users to
make uninformed decisions on whether to install applications and how to control their
privacy. This privacy control mechanism leads to a situation where users simply install
applications without questioning the requested permissions, even if the applications
ask for more permissions than needed [11, 12].

To better protect users’ privacy while preserving the fun and utility of applications,

1TouchDevelop has been previously called as TouchStudio [25]

2

Figure 2: Grant Access To Private Information

we propose a transparent privacy control approach, where an automated static analy-
sis reveals to the user how private information is used within a script. The results of
this information flow [9] analysis are shown to the user, thereby enabling her to make
informed decisions about when to use anonymized instead of real data, or to force ter-
mination of scripts when they access private information sources, such as the phone’s
geolocation and camera. We use the term Source to refer to the origin of any private
data and similarly, we use Sink to refer to any point where data may leak from a script.
When an application script is submitted for publication, our approach automatically
computes all information flow of private information via static analysis and visualizes
the information flows, as shown in Figure 1. The visualization of a script’s informa-
tion flow shows what sources of private information the script accesses, and how that
information may leak from the user’s device.

The computed information flows by themselves may not be useful enough for users
to make decisions whether or not to grant a script access to private information. For
example, a script can encode the user’s phone number into the color intensity of some
pixels inside a picture to be shared. The information flow will reveal that private infor-
mation from the camera and contact sources flow to the share sink, but a user may be
hard pressed to recognize any changed pixels in the picture being posted.

To distinguish the sharing of a picture taken directly from the camera or the pic-
ture library from the potential malicious sharing of a tampered picture, our approach
extends the static analysis to track whether private information is tampered with before
it leaks from the device into a sink (e.g., the web). Using this tamper information, we
can define a policy to classify an information flow as a safe or unsafe: if untampered
private information flows into a vetted sink, which shows a dialog for users to review
the information, our approach considers the flow as a safe flow; otherwise, the flow is
an unsafe flow.

When the application is executed for the first time, our approach allows users to

3

choose among real data (default for sources only appearing in safe flows), anonymized
data (default for sources in unsafe flows), or abort execution2, as shown in Figure
2. This anonymized/real/abort setting provides two more flexible choices for users:
(1) using the anonymized information, users can experiment with applications before
granting applications the access to real information; (2) aborting an execution prevents
an unintended access to a resource, and leaves a stack trace at the access point for
diagnosis. To minimize the extra burden introduced on users, our approach does not
ask users to grant access to the private information not flowing to sinks, and provides
default settings based on whether the private information only appears in safe flows.

We built a prototype of our privacy control into the TouchDevelop app and de-
ployed the static information flow analysis as part of the cloud services that allow users
to share scripts. The availability of the submitted scripts’ source code and the simplic-
ity of TouchDevelop language make TouchDevelop a suitable platform to evaluate our
approach. We plan to study a portion of published scripts for evaluating the effective-
ness and performance of our information flow analysis. We also plan to carry out a user
survey to evaluate the usability of our privacy control and guide our future design.

2 TouchDevelop Language
TouchDevelop allows users to create applications using an imperative and statically
typed language [25]. The imperative features of the language enable users to update
local and global variables, as well as the state of objects. Static typing enables the
TouchDevelop editor to make good suggestions for property selection and argument
completion, which makes editing code easier and faster.

A TouchDevelop script consists of a number of actions (procedures) and global
variables. The body of actions consists of: (1) expressions that either update local or
global variables (assignments), invoke another action, or invoke a predefined property;
(2) conditional statements if−then−else, (3) loop statements, for, while, and foreach,
that iteratively execute a block of statements. The global variables are statically typed
and their current value is accessible across multiple actions.

As a statically typed language, TouchDevelop defines a number of data types (e.g.,
Number or String for s, or Picture for p in Figure 3). Each data type provides a number
of properties (e.g., → create picture of global singleton object media). For the sake
of the simplicity, the language does not provide features that allow users to define new
types or properties.

For the purposes of our information flow analysis, we map the TouchDevelop con-
cepts to a simpler model. We can think of each kind of value as having two separate
parts: 1) an immutable part, and 2) a mutable part. Many types of values have only an
immutable part and no mutable part, e.g., Number, String, and GeoLocation. Other
types of values have both immutable parts and mutable parts. E.g., Picture has an
immutable part that is associated with whether the picture is valid (i.e., whether the
pointer is null). The mutable part of a picture consists of the actual pixel colors at each
coordinate of the picture.

2The abort option is not implemented in first released version of TouchDevelop.

4

1 action foo() : Nothing {
2 var s := ”unclassified”;
3 var p := media→ create picture();
4 var l := senses→ current location; // classified
5 s := l→ describe(); // classified
6 p → draw text(s); // p’s mutable state is classified
7 p → share(”facebook”);
8 }

Figure 3: Example of classified information flow.

Mutable and Immutable Values: We track information flow separately for the mu-
table and immutable parts of values. The immutable part of an object is copied when-
ever a value is assigned from one local to another, passed as parameter, returned from
a method, stored or loaded from a global variable. The immutable part of a value is
tracked precisely at each program point and assignments are strong assignments that
replaces the original values.

The mutable part of an object is affected only by pre-defined property invocations
(i.e., primitive methods). We track the mutable part of values using an abstraction
where we have a single mutable location per type. Every value of that type shares that
same mutable location. All updates to the mutable part are weak updates.

Primitive properties are annotated with information that indicates from which pa-
rameters (and thus which kinds) the mutable state is read, and also which mutable states
are written (parameters and return values).

Embedded References: Because values may have embedded pointers to other values
that could be mutable, we also keep track of such embedded references using directed
edges from one mutable location to another. The model currently does not accommo-
date references from immutable parts to mutable parts, but we have not found a need for
that. Establishing a reference from one value to another implies a write to the mutable
state of the first.

Globals: To simplify the description in the remainder of the paper, we eliminate
global variables from the model completely. Global variables are treated as extra pa-
rameters and return values from each action. One can easily transform a program with
globals to a program without globals by adding all globals used in an action (and ac-
tions called) as extra parameters, and all globals modified by an action as extra return
values. Inside an action, access to a global is not different than access to a local vari-
able.

In the explanations of the rest of the paper, we will thus no longer explicitly talk
about global variables.

Parameters: Parameters of an action are treated as ordinary locals inside an action.
They are pre-initialized by the action invocation, but otherwise act no differently than

5

normal local variables.

Results: Result variables are ordinary locals inside an action. Upon return, their
immutable parts (values) are copied to the caller’s locals that receive the results of the
invocation.

2.1 Simplified Language
We assume that our input program consists of a number of actions, where each action
has any number of parameters and any number of results. The body of an action con-
sists of a control flow graph of basic blocks, with a distinguished entry block and a
distinguished exit block. Conditionals branching on condition c are transformed into
non-deterministic branches to the then and else blocks, where the target blocks are
augmented with a first instruction of the form assume(c) and assume(not c).

The instructions inside a block have the following forms:

Instruction ::= x := y | r := p(x1..xn)

| r1..rn := a(x1..xm) | assume(x) | assume(¬x)

An instruction is either a simple assignment from one local to another, a primitive
property invocation of parameters x1..xn binding the result to a variable r, an action
invocation with parameters x1..xm binding the results of the action to r1..rn, or a
special assume statement arising from conditional branches.

We assume that primitive operations always return a value, even if it is the Nothing
value.

2.2 Classified Information Flow
In this section, we illustrate several examples to show how scripts written in Touch-
Studio may leak private information (referred to as classified information). Figure 3
shows an example of how classified information flows among values, such as Number
and String. At line 4, the geolocation l becomes classified since it contains the geoloca-
tion data obtained via the GPS. Here, we refer to the property senses→ current location
as a Source of geolocation data. At Line 5, the location is transformed into a string and
assigned to s, thereby making s classified. At Line 6, the location string s is rendered
as text into the picture p, causing p to be classified. At Line 7, the share action of p
leaks the classified data of the user’s geolocation to facebook. Here we refer to the
property share as a Sink. One thing to note is that if Line 5 is moved to after Line 6
that sets the value of s to p, then p is not considered as classified. This is because the
type of s, String, is a value type, and thus the update of s does not affect p.

Now let’s look at another example shown in Figure 4. At Lines 5, the message
msg is added to the message collection msgs. The message collection msg keeps the
references to msg, which means that msg can be accessed from msgs at a later time.
At Line 6, msg becomes classified, which causes msgs to be classified indirectly. At
line 7, msg2, the i-th message in msgs, may contain the data of msg or other messages.
Thus, msg2 should also be considered as classified. We refer to this type of information

6

1 action foo(msg : Message, msgs: MessageCollection, i: Number) : Nothing {
2 pic := senses→ take camera picture;
3 pic→ share(’facebook’,’share a pic’);
4 s := bar();
5 msgs→ add(msg);
6 msg→ set message(s);
7 msg2 := msgs→ at(i);
8 msg2→ share(’facebook’);
9 y := false;

10 if s→ contains(’Seattle’) then {
11 y := true;
12 }
13 }
14

15 action bar() returns r : String{
16 l := senses→ current location;
17 r := locations→ describe location(l);
18 }

Figure 4: Example implicit and reference-type classified information flows.

flow as reference-type flow, since it occurs through objects such as message collections
that contain references to other objects such as messages.

Another type of information flow that can potentially leak private information is
implicit flow [9, 10]. Implicit flow arises from control structures such as if statements
where the condition depends on classified information. The statements in the branches
of the conditional statement can leak the outcome of the condition which allows later
code to determine the classified information indirectly. Consider the example of im-
plicit flow shown in Figure 4. The classified local s is used at the if statement at Line
10. By observing the values of y, users can guess whether the geolocation data stored
in s contains the substring Seattle. Thus, to prevent such kind of information leak, we
need to consider y as classified.

3 Application Capability Identification
The application capabilities tell users what kinds of mobile-device resources (such
as sensors and wireless network) an application uses, which is useful information
for users to decide whether to install the application. For example, if a game like
minesweeper [4] has the capabilities of accessing your contacts and web, then it prob-
ably may leak your contacts to the web. These resources can be classified as sources
(such as camera or geolocation) and sinks (such as web or facebook sharing). To use
these resources, application developers need to use the APIs provided by the device-
specific development environment, also called software development kit (SDK). Table
1 shows the kinds of sources and the sinks provided by the TouchDevelop APIs.

Some mobile-device platforms such as iOS prompt the user with a dialog when an

7

Capability Description

Source

Camera Takes a picture through the camera.
GeoLocation Gets the geo location, possibly using GPS.
Picture Accesses the picture libraries.
Music Accesses the music.
Microphone Records the microphone.
Contacts Chooses emails or phone numbers.

Sink

Contacts Saves an email or phone number to the phone.
Media Saves pictures to the phone.
Sharing Share information through social services, email or short

messages.
Web Accesses the web, downloading or uploading data.

Table 1: Capabilities (sources and sinks) provided by the TouchDevelop APIs

application tries to access certain resources for the first time. However, iOS only inform
users of geolocation information obtained from the GPS, ignoring other resources such
as phone contacts or web accesses. Other mobile-device platforms such as Android use
an install-time manifest to show all the resources that the application needs to access.
However, as we mentioned in Section 1, developers have to specify these resources
and they tend to claim more than needed [26]. These two ways of reporting application
capabilities may fail to provide users the accurate and complete information of what
resources are actually used by application. Users may have to trust the application
reviewers or developers for the “claimed information” and make uninformed decisions
at application install time.

Automated Application Capability Identification: To assist users in making in-
formed decision based on the accurate and complete information of what resources are
access by applications, our approach provides a static analysis that scans through the
application script to automatically identify application capabilities. We have annotated
all TouchDevelop APIs with source and sink information. We use a fixpoint algorithm
to compute the capabilities used by each action of a script. For each action in a script,
our approach parses the action into an abstract syntax tree (AST), and automatically
scans each statement node in the AST to identify what sources and sinks are used. If
a statement in an action a1 is an action call to another action a2, our approach unions
the sources and sinks of a2 to a1. A fixpoint is reached if the computed sources and
sinks for each action do not change. Since application developers can only use the
APIs provided by the device-specific SDK for accessing mobile-device resources, our
analysis results are guaranteed to be accurate and complete.

4 Static Information Flow Analysis
In this section, we present the overview of our static information flow analysis and
then describe details of how our approach statically computes information flows using
summaries computed by static symbolic execution [17].

8

4.1 Overview
Our approach statically computes information flows using summaries of basic blocks
and actions. To compute the summaries, our approach simulates program executions,
statement by statement, using static symbolic execution [17]. Our approach maintains
the abstract state of the script and updates the state according to the simulated execution
of a statement. The state maps local variables to sets of sources. In addition it maps
a single mutable location for each type to sources. Finally, the state maps sinks to
sources flowing to that sink. Sinks can be thought of as additional mutable locations
that accumulate what flows into them. Information flow from a source s1 to a sink s2
arises whenever source s1 appears in the abstract state of sink s2. The sources in our
maps are represented as a set of value elements consisting of constant sources and input
parameter names. Input parameter names are used to represent symbolic information
that allows us to determine where parameters flow.

In order to handle implicit flow arising from control flow statements that branch on
classified information, we use an additional special local variable named pc. The pc
variable is assigned (augmented) with source information at conditionals at the entry
both branches. At each basic block, the pc is defined by the value of pc at the immediate
dominator block instead of all predecessor blocks as is the case for normal locals.

Our approach uses a fix-point algorithm to iteratively compute the summaries of
basic blocks in an action and then uses the summaries of basic blocks to compute sum-
maries of actions. By instantiating the summaries with concrete values for symbolic
parameter names and global variables, we can compute summaries of actions calling
other summaries as well as for recursive actions.

4.2 Summaries of Basic Blocks and Actions
We separate the state into three parts: 1) local variable information, 2) pc information
for implicit flow, and 3) mutable state information. The first two are program point spe-
cific, the mutable state is not. The mutable state consists of one classification per kind,
and a set of edges between kinds representing possible references from the mutable
state of objects of one kind to objects of another kind.

Atom ::= Sources(i) | Parameter(i) | PCin

Classification ::= Set of Atom

LocalMap ::= Block → Local → Classification

SinkMap ::= Block → Sink(i)→ Classification

PCMap ::= Block → Classification

MutableState ::= Kinds(i)→ Classification

References ::= Set of (Kinds(i)×Kinds(i))

9

The fixpoint computation then computes the following data structures:

Lpre, Lpost : LocalMap

PCpre, PCpost : PCMap

Spre, Spost : SinkMap

Mpre,Mpost : Block → MutableState

Rpre, Rpost : Block → References

Lpre contains the local information on entry to a particular block, whereas Lpost con-
tains the corresponding information at exit of the block, and similarly for PCpre and
PCpost. The sink maps Spre and Spost contain the classification of the predefined sinks
on entry and exit of blocks. Mpre and Mpost contain the mutable state classification
and Rpre and Rpost contain the reference links between mutable states.

4.2.1 Block Summary

We initialize Lpre for entry blocks of actions to map each parameter local i to the
singleton {Parameter(i)} and to the empty set for all other locals. Similarly, we
initialize PCpre for entry blocks to the singleton {PCin} which allows computing
symbolic summaries of actions that can be applied in contexts where the PC is classified
differently. The sink map Spre for the entry block is empty. These maps will not change
during the global fix point of the analysis.

The information for Rpre and Mpre for the entry block keep track under which
assumptions the action has been analyzed. It is initially empty, but may grow as the
action is invoked in a context with larger M or R, causing the blocks of the action to
be re-analyzed.

For non-entry blocks, the starting state is defined as follows:

Lpre(b) =
⊔

b′inpred(b)

Lpost(b
′)

Spre(b) =
⊔

b′inpred(b)

Spost(b
′)

Mpre(b) =
⊔

b′inpred(b)

Mpost(b
′)

Rpre(b) =
⋃

b′inpred(b)

Rpost(b
′)

PCpre(b) = PCpost(dom(b))

The locals on entry to a block are simply the union of the post local state of all prede-
cessor blocks, where union is defined point-wise on the map (similarly for the sinks,
mutable state, and reference links). For the PC classification is obtained by the post PC
classification of the immediate dominator of block b.

10

4.2.2 Action Summary

We assume each action has a single exit block. The summary of an action is simply the
post state of the exit block of the action. For each action, we keep track of the initialM
and R under which it was analyzed in the information for its entry block. If we see a
call to the action with a larger M or R, we update that information for the entry block
and propagate the changes through the blocks of the action.

An example summary of the action foo in Figure 4 is:

State ={
L = {s → GeoLocation, pic → Camera, y → GeoLocation,

msg → GeoLocation,msg2 → GeoLocation},
S = {Sinks(1)→ Camera},
PC = {},
M = {Picture → Camera,Message → GeoLocation}
R = {< MessageCollection,Message >}
}

Here the state of locals L shows that the local s contains the geolocation data, pic
contains the camera data, y contains geolocation data due to the implicit flow from s
to y, and the local msg gets geolocation data from s at Line 5. The state of mutable
locations M shows that the mutable state of Picture contains the camera data and the
mutable state of Message contains the geolocation data. The state of references R
contains a pair showing that MessageCollection is linked to Message. Due to this
link, msg2 reads the mutable data of msgs and is considered to contain the geolocation
data. The state of sinks S shows that the sharing sink, pic → share, contains camera
data, which come from the local pic. The states of pc is empty, since the pc does not
carry the camera data after the if−then−else block.

4.2.3 Script Analysis

Since users can invoke actions within a script manually and one invocation can com-
municate information to another invocation via globals and mutable state, we have to
analyze scripts as the following synthetic code:

1 while (true) {
2 if (∗) {
3 ..,g {a 11}..g {a 1m 1} := a 1(.., g {a 11}..g {a 1m 1});
4 }
5 if (∗) {
6 ..,g {a 21}..g {a 2m 2} := a 1(.., g {a 21}..g {a 2m 2});
7 }
8 ..
9 }

The loop simulates the repeated invocations performed by a user of an arbitrary action,
where the state is maintained by the global variables passed from one action to another.

11

The analysis analyzes this loop starting with empty classifications for all values
and an empty reference set. A fixpoint is reached if the state does not change from one
iteration to the next.

Due to this loop, the final fixpoint will have equal classifications for all M andR at
each program point. Thus, an implementation of the analysis can simplify the handling
of M and R.

4.3 Classified Information Propagation
In this section, we describe how our approach propagates classified information in
scripts.

4.3.1 Property Annotations

We assume that all primitive properties are annotated with a set ReadsMutable con-
sisting of the parameter indices of parameters whose mutable state is read by the prop-
erty. Similarly, there is a set WritesMutable consisting of the indices of parameters
whose mutable state is written by the property. Additionally, we use index 0 in the
WritesMutable set to indicate whether the mutable state of the result depends on the
classification of all the inputs to the property. By default, we assume that all immutable
parts of all parameters are read by a property and that all read parts flow into the result’s
immutable part. Additionally, the set EmbedsLinks contains the set of edges between
kinds that are potentially established by the property as references from the mutable
state of one value to another.

A set of source indices Sources indicates which predefined sources flow into the re-
sult value through this property invocation. Finally, a set of sink indices Sinks indicates
to which predefined sinks the classification of the parameters flow.

This information is used during the statement-based propagation to compute the
propagation effected by a property invocation.

4.3.2 Statement-Based Propagation

The following rules show the propagation of the state for each kind of instruction. We
assume L, PC, M and R are the initial states, and L′, PC ′, M ′ and R′ are the post
states.

Case x := y

L′ = L[x 7→ L(y) ∪ PC]
PC ′ = PC

M ′ =M

R′ = R

S′ = S

12

Note how the PC classification flows into the new classification of x. This is needed to
keep track of implicit flow.

Case r := p(x1..xn) First we compute the input classification, which consists of the
classification of all input parameters, the classification of all kinds for which there is a
parameter annotated with ReadsMutable.

Common = PC ∪ Sourcesp ∪
⋃
i

L(xi) ∪
⋃

j∈ReadsMutablep

Cl(M,R, kind(xj))

The helper function Cl(M,R, i) computes the union of the classification of all kinds j
reachable from i via edges in R. Note that Reach(R, i, i) is true for all R.

Cl(M,R, i) = {M(j) | Reach(R, i, j)}

With this information, we can now update the result and the mutable state.

L′ = L[r 7→ Common]

PC ′ = PC

M ′(i) =

{
M(i) ∪ Common if ∃j ∈WritesMutablep and Reach(R, kind(xj), i)
M(i) otherwise

R′ = R ∪ EmbedsLinksp

S′(i) =

{
S(i) ∪ Common if i ∈ Sinksp
S(i) otherwise

Case assume(x) or assume(not x)

L′ = L

PC ′ = PC ∪ L(x)
M ′ =M

R′ = R

S′ = S

Assume statements cause the PC classification to be augmented with the classification
of the condition.

Case r1..rn = a(x1..xm) First, we updateMpre(entrya) toM tMpre(entrya) and
Rpre(entrya) toRtRpre(entrya). If necessary, propagate changes through blocks of
a. We use the state at the exit block of a as the summary of a to be applied at the current
invocation. Since the summary contains some symbolic information for parameter
classification and pc classification, we first instantiate the exit block information with
the invocation site information. Let σ be the substitution

σ = [PCin 7→ PC,Parameter(i) 7→ L(xi)]

13

Now we compute instantiated versions of the exit block summaries:

Ls = σ(Lpost(exita))

Ms = σ(Mpost(exita))

Rs = σ(Rpost(exita))

Ss = σ(Spost(exita))

Note that no PC information flows out of the action. Let r′1..r
′
n be the result locals in

action a. The final states after the invocation of action a is then:

L′ = L[ri 7→ Ls(r
′
i)]

PC ′ = PC

M ′ =M tMs

R′ = R ∪Rs

S′ = S t Ss

5 UnTampered- and Tampered-Classified Information
The source to sink information flow we compute so far may not be enough to make
good policy decisions about which scripts are good and which scripts are bad. For
example, a script taking a picture with the camera and then posting it to facebook may
be a reasonable script, especially since posting to facebook will prompt the user and
display the text and picture that will be posted. The user thus has a way to vet the
information being posted to a degree.

However, a malicious script could try to encode the user’s phone number into the
color intensity of some pixels in the posted picture. From an information flow perspec-
tive, we would simply see that sources camera and contact flow to share. The users
looking at the picture being posted will likely not notice changed pixels containing the
hidden phone number.

Can we distinguish somehow between these two cases? Our attempt to do so is
based on the following assumption: for sinks that prompt the user to review the infor-
mation (e.g., emails, sms, phone calls, facebook posts), we want to distinguish if the
information being posted is recognizable by the user as containing sensitive informa-
tion or not. In the case where pixels in the picture taken by the camera are modified
based on classified contact information, we want to consider the information in the pic-
ture as tampered and thus apply a harsher policy than if the information is not tampered
with.

In order to track tampering, we introduce an operator Tamper that can be applied
to the existing sources.

Atom ::= Sources(i) | Parameter(i) | PCin | Tamper(Atom)

14

Note that the set of atoms is not unbounded, as this is not a free algebra. Indeed,
Tamper(Tamper)(s) = Tamper(s) for all s.

Additionally, we annotate all properties p with a single bit Tampersp indicating
whether any input classifications are transformed into tampered output classifications
for the result and writes to the mutable store.

The rule for handling the flow at property invocations then needs to be modified
insofar as the classification Common now becomes:

InFlow = PC ∪
⋃
i

L(xi) ∪
⋃

j∈ReadsMutablep

Cl(M,R, kind(xj))

Common = Sourcesp ∪
{

InFlow if ¬Tampersp
Tamper(InFlow) if Tampersp

Applying Tamper to an entire classification, just means applying the operator point-
wise to the set elements.

6 Transparent Privacy Control
By applying the static analysis, we compute information flows on a per action and
per script basis and show summaries of which sources flow to which sinks in each
action and in the script as a whole. As an example, Figure 1 shows the summary of
the script named location and maps, which can send a text message containing the
user’s current location or take a picture with the user’s current location embedded in
it and save the picture into the media storage library of the mobile device. This flow
summary transparently shows the information flows of the application: by looking at
the information flows at install time, users can understand what private information the
application uses and where this private information may escape.

Once a user install application scripts, they can run the scripts on their devices and
grant the scripts access to real information if desired. The first time a user runs a script,
our approach allows the user to use anonymized data for each source that flows into a
sink or abort execution at the access point. In this way, our approach prevents leaking
of a user’s private information while preserving the fun and utility of applications to
a reasonable extent. To minimize a user’s effort in granting accesses to sources, we
further define a policy that classifies flows into safe and unsafe flows, which are used
to provide different default settings.

Classification of Safe and Unsafe Flows: Our policy is based on the assumption
described in Section : we consider a flow as a safe flow if it is an untampered flow
to a vetted sink. A vetted sink is a sink that results in an explicit dialog at runtime,
presenting the particular information flowing to the sink to the user and asking the user
to confirm the flow. For example, a post to facebook would prompt the user to review
the information before the actual sharing happens. Since the data is untampered, the
user can make an informed choice of whether or not to share the data. We may evolve
the policy of what constitutes a safe flow based on user feedback, and we will update the
policy when more sources and sinks are added into the system. Our approach considers

15

as unsafe flows the other flows, including untampered flows to unvetted sinks and all
tampered flows.

Granting Accesses: When running the script for the first time, the user is presented
with all sources flowing to unsafe sinks along with a radio button group for each source
that allows the user to choose among anonymized information, real information, or
abort execution 3 for that private information, shown in Figure 2. Anonymized in-
formation means that the runtime provides the script with anonymized information (a
fixed picture or a fixed geolocation etc.), Real information means the script gets access
to the real information on the users’ devices, and abort execution means that the run-
time stops the execution at the access point. By using the anonymized data, the user
can safely experiment with an application to determine if it does something useful prior
to even considering whether to allow access to real information. Additionally, the abort
execution option provides a stack trace at the access point, which is valuable for those
users who are able to inspect the source code in order to diagnose the flows.

Default Settings of Accesses: To minimize users’ efforts in granting accesses, our
approach provides default settings: for sources that appear only in safe flows, the de-
fault setting is to use real information; for other sources, the default setting is to use
anonymized information. This default setting provides a reasonable way for users to
simply confirm the accesses while protecting their private information. The anonymized/re-
al/abort settings for each kind of private information can be changed at will by users in
the settings for that script. Users can also choose the option of all anonymized on the
top or the all real option on the bottom (so users have to scroll down before they can
choose this option).

7 Evaluation Plan
This section presents the evaluation plan of our approach. We integrated our static
information flow analysis as part of the TouchDevelop [6] website, where users can
search, comment and install published scripts. Our analysis analyzes every submitted
script to compute capabilities and information flows, which are then shown to users in
the script installation page. We built a prototype of transparent privacy control into the
TouchDevelop App [5]. Our prototype prompts users the first time a installed script
runs and asks users to grant accesses to private information. We plan to conduct three
evaluations to evaluate the effectiveness of computing information flows, the perfor-
mance of information flow analysis, and the user experiences of our privacy control
and default settings.

7.1 Information Flow Study
TouchStudio [25], the previous version of TouchDevelop, was one of the 100 most
downloaded apps among over 13,000 apps on 4/14/2011. With the exciting script shar-

3The abort behavior is not implemented in the first released version of TouchDevelop.

16

ing and many other improvements, we expect TouchDevelop to receive similar or better
download records and we would receive many submitted scripts as our study subjects.
We plan to select part of these submitted scripts to study whether our static analysis
can effectively identify information flows.

7.2 Performance Evaluation
To analyze all the scripts submitted by users, the static analysis must have acceptable
performance even if it is running on the cloud server. We plan to collect a certain
number of submitted scripts of different sizes and study the analysis time on the cloud
server. This performance study can provide us insights on whether some optimization
techniques are required or more precise static analysis can be pursued.

7.3 Usability Study
To study the user experiences of our privacy control and to evaluate our default settings,
we plan to perform a user survey with a portion of TouchDevelop users. This user study
can provide us feedbacks on whether our privacy control overwhelms users. We plan
to build a survey dialog into the TouchDevelop App and randomly select a number
of users to participate our survey. We expect to randomly choose at least 300 users
to participate our survey. To fit the questions into the touch screen (i.e., no need to
scroll) and not introduce too much burden on users for the survey, we plan to ask three
questions about our privacy control and default settings:

1. Do you feel your privacy is respected and protected?
Yes/ No/ Don’t Care

2. Which option did you like?
All anonymized or All real/ Individual Settings/ Don’t Care

3. Do you like our default settings?
Yes/ No/ Don’t Care

Additionally, we plan to study the user interactions with the TouchDevelop app as
a substitute measure of user experience. We plan to instrument the buttons clicked by
users and use this data to infer the user experiences of our privacy control:

1. We collect the data of number of clicks on “capabilities” and “information flow”
buttons. This data can show whether information of capabilities and information
flows is useful for users at install time.

2. We collect the data of number of clicks on “all anonymized/real” and “indi-
vidual setting” buttons. This data can show whether users prefer to using “all
anonymized/real” setting or using “individual setting” for each source.

3. We use the length of user interaction with TouchDevelop app to infer the user
experience of our privacy control. For example, we can learn from the user
interactions that how many users stop using TouchDevelop app after some time,

17

such as a week. When users uninstall the TouchDevelop App, we will ask users
to fill in the reason why they do not like the TouchDevelop app and study how
many reasons are related to our privacy control.

8 Related Work
In this section, we compare our work with other approaches that identify application
capabilities, track information flows, grant accesses to private information, and auto-
matically validates mobile apps.

User-Aware Application Capabilities: Mobile-device platforms like Android [1]
and social-network platforms like Facebook [2] use manifests to show application ca-
pabilities and request permissions at install time. As we discussed in Section 3, the
capabilities shown in the manifests are claimed by developers and are not accurate
or complete, since developers tend to claim more capabilities than needed, violating
the principle of least privilege [24]. Other mobile-device platforms like iOS [3] and
research approaches like TaintDroid [11] report application capabilities the first time
applications try to access a resource. Although the reported capabilities are accurate,
these approaches only present part of the application capabilities. For example, iOS
only shows the capability of geolocation to users; TaintDroid reports only the capabili-
ties accessed by the executed code and cannot detect the capabilities in the unexecuted
code. Our approach provides annotations on all the APIs used to access resources on
devices and applies static analysis to compute application capabilities, which is guar-
anteed to be accurate and complete.

Wetherall et al. propose a concept called privacy revelation [27], which requires
that (1) users must be aware of the spread of personal information based on user-
relevant context; (2) users should be able to give feedback before information expo-
sure; (3) users can learn from other users’ experiences. Part of our approach can be
considered as one instance of their concept, since our approach reveals information
flows to users and requests users to grant access to private information. However, our
approach adapts static information flows analysis to expose information at both the in-
stall time and the first time users run the applications, while their developing systems
are all based on dynamic analysis, which cannot provide information before users even
installs an application. Moreover, our anonymize/real/abort setting encourages users to
try out applications with safe default settings, while their approach encourages sharing
of privacy revelations.

Information Flow Analysis: Xie and Aiken [28] present an approach that statisti-
cally detect security vulnerabilities in scripting languages. Their approach statically
computes summaries of blocks and procedures of PHP and detects security vulnera-
bilities at the block level, intraprocedural level, and interprocedural level. Since their
approach is tuned to focus on detecting SQL injection and cross site scripting (XSS)
vulnerabilities [16], their approach cannot be directly applied to compute general in-
formation flows. For example, their approach does not handle reference-type flows
shown in Figure 4, and would lose track of flows after built-in procedure calls (e.g.,

18

senses→ take camera picture) that cannot be analyzed by their approach. The hybrid
analysis approach proposed by Chandra et al. [8] primarily tracks the information flow
at runtime, but uses static analysis to flow security labels to variables defined or updated
in non-executed branches. Although our approach is similar to these two approaches
in computing information flows using static analysis, our approach further uses muta-
ble locations to simplify analysis of reference-type flows and tracks untampered- and
tampered-classified information for classifying safe and unsafe flows.

Language-based information flow [23] allows developers to annotate variables with
security attributes. These attributes can be used by compilers to enforce information
flow controls. For example, Slam [15] shows that information flow labels can be ap-
plied to a simple language with reference types and Jif [20, 21] extends Java language
with statically-checked information flow annotation. Laminar [22] allows developers
to specify security regions and provide information flow controls on both language
and JVM/OS levels. Although these language-extending approaches are effectively in
guaranteeing information flow controls, they impose additional burdens on developers
when writing applications, which is undesirable for writing scripts on mobile devices
in the context of TouchDevelop.

Dynamic taint analysis [11,30] has been applied to track information flows on both
mobile platforms like Android and desktop platform like Windows. These approaches
track tainted data during runtime and monitor the behaviors of applications for identi-
fying information leaks. These approaches can precisely identify information leaks if
there is any tainted data trying to escape, providing accurate runtime information about
the leaks for analysis. However, to reduce runtime overhead, these approaches usually
ignore implicit flows raised by control structures. Moreover, to detect potential infor-
mation leaks for all submitted applications, dynamically executing these applications
to detect potential information leaks requires too much overheads, and it is impractical
to execute all possible paths. These limitations make these approaches inappropriate
on computing information flows for all submitted applications.

Access Granting: Mobile-device platforms like Android [1] and social-network plat-
forms like Facebook [2] use manifests to request permissions at install time. Once
permissions are given by users, the permissions cannot be changed. Since only the
information of the “claimed capabilities” is given to users at install time, users cannot
make informed decisions on granting accesses and usually grant all the accesses even
if applications ask for excessive permissions [26]. To assist users in making informed
decisions on granting access, our approach presents information flows to describe how
applications may do with users’ private information. Our anonymized/real/abort ac-
cess granting also provides a way for users to try out applications before using private
information, and these accesses can be changed at will.

iOS and Windows User Account Control [18] prompts a dialog to request permis-
sions from users when applications try to access a resource or make security/privacy-
related system-level changes. Similarly, these prompt approaches fail to provide infor-
mation about the usage of the resources for users to make decisions and users become
habituated to just allow the accesses [19, 29]. Besides providing application capabili-
ties and information flows, our approach provides sensible default settings of accesses

19

to resources in order to minimize users’ efforts in granting accesses. In this way, users
can safely experience applications even if they just accept the default settings.

Zhu et al. propose an approach that uses application-level dynamic taint analysis to
track the movement of sensitive user data as it flows through applications [30]. When
tainted data is found before the system call is about to enter, their approach allows users
to choose among logging the action, blocking the system call, or randomize the tainted
data. Our anonymized/real/abort setting is inspired by their approach and we extend
their access granting settings by using static information flow analysis. Based on the
information flows analysis extended to track tampered/untampered classified informa-
tion, our approach defines policies to classify safe and unsafe flows and assign different
default accesses, requiring less efforts from users. Thus, given a flow describing that
a picture taken from the camera is shared directly via facebook (a vetted sink), our
approach would consider it as benign and uses real information as the default setting,
while their approach can only identify it as an unsafe flow and require input from users.

Automated Security Validation of Mobile Apps Gilbert et al. present a vision of
making mobile apps more secure via automated validation [14]. They propose using
commodity cloud infrastructure to emulate smartphones and run the submitted apps to
dynamically track information flows and actions. Based on the information flow and
action tracking, they propose to automatically detect malicious behavior and misuse
of sensitive data via further analysis of dependency graph [13] or natural language
processing. Although our information flow analysis is similar to their runtime tracking,
our approach further tracks whether information is tampered before the information
exposure and lets users use anonymized information to try out applications instead of
defining policies to detect malicious behaviors.

9 Conclusion
Central application downloading service provided by modern mobile-device platforms
allows users to download third-party applications, adding more functionalities into mo-
bile devices. However, these applications may leak private information without noti-
fying users. Existing approaches provide inaccurate or incomplete information about
resources used by applications, failing to assist users in making informed decisions on
whether to install applications and controlling their privacy. We present a transparent
privacy control approach, which adapts static analysis to compute information flows
and allows users to control their privacy by using anonymized information or abort ex-
ecution instead of using private information. We built a prototype of our approach into
TouchDevelop, an application-creation environment that let users to write applications
using the touchscreen and install written applications published by other users. We plan
to conduct evaluations to study the effectiveness of static information flow analysis and
usability of our privacy control.

20

Acknowledgment
We would like to thank all researchers and developers at Microsoft Research who
helped to shape our approach in countless discussions.

References
[1] Android. http://www.android.com/.

[2] Facebook. http://www.facebook.com/.

[3] iOS. http://www.apple.com/ios/.

[4] Minesweeper. http://en.wikipedia.org/wiki/Minesweeper (computer game).

[5] TouchDevelop. http://research.microsoft.com/TouchDevelop.

[6] TouchDevelop Website. http://www.touchdevelop.com/.

[7] Windows Phone. http://www.microsoft.com/windowsphone/.

[8] Deepak Chandra and Michael Franz. Fine-Grained Information Flow Analysis
and Enforcement in a Java Virtual Machine. In Annual Computer Security Appli-
cations Conference (ACSAC), pages 463–475, 2007.

[9] Dorothy E. Denning. A Lattice Model of Secure Information Flow. Commun.
ACM, pages 236–243, 1976.

[10] Dorothy E. Denning and Peter J. Denning. Certification of Programs for Secure
Information Flow. Communications of The ACM, pages 504–513, 1977.

[11] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. TaintDroid: An Information-Flow Track-
ing System for Realtime Privacy Monitoring on Smartphones. In Proc. OSDI,
pages 1–6, 2010.

[12] Adrienne Porter Felt, Kate Greenwood, and David Wagner. The Effectiveness of
Application Permissions. In Proc. WebApps, pages 7–7.

[13] Jeanne Ferrante and Karl J. Ottenstein. The Program Dependence Graph And
Its Use in Optimization. ACM Transactions on Programming Languages and
Systems, 9:319–349, 1987.

[14] Peter Gilbert, Byung-Gon Chun, Landon P. Cox, and Jaeyeon Jung. Vision: Au-
tomated Security Validation of Mobile Apps At App Markets. In Proceedings
of the second international workshop on Mobile cloud computing and services,
MCS ’11, 2011.

[15] Nevin Heintze and Jon G. Riecke. The SLam Calculus: Programming with Se-
crecy And Integrity. In Symposium on Principles of Programming Languages,
pages 365–377, 1998.

21

http://www.android.com/
http://www.facebook.com/
http://www.apple.com/ios/
http://research.microsoft.com/TouchDevelop
http://www.touchdevelop.com/
http://approjects.co.za/?big=windowsphone/

[16] G. Hoglund and G. Mcgraw. Exploiting Software: How To Break Code. Pearson
Education, 2004.

[17] James C. King. Symbolic Execution and Program Testing. Commun. ACM,
19(7):385–394, 1976.

[18] MICROSOFT. What is User Account Control?, 2011.
http://windows.microsoft.com/en-US/windows-vista/What-is-User-Account
-Control.

[19] Sara Motiee, Kirstie Hawkey, and Konstantin Beznosov. Do Windows Users
Follow The Principle of Least Privilege?: Investigating User Account Control
Practices. In Proceedings of the Sixth Symposium on Usable Privacy and Security,
SOUPS ’10, 2010.

[20] Andrew C. Myers. JFlow: Practical Mostly-Static Information Flow Control. In
Symposium on Principles of Programming Languages, pages 228–241, 1999.

[21] Andrew C. Myers and Barbara Liskov. Protecting Privacy using The Decentral-
ized Label Model. ACM Transactions on Software Engineering and Methodology,
pages 410–442, 2000.

[22] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. Mckinley, and Em-
mett Witchel. Laminar: Practical Fine-grained Decentralized Information Flow
Control. In SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 63–74, 2009.

[23] Andrei Sabelfeld and Andrew C. Myers. Language-Based Information-Flow Se-
curity. IEEE Journal on Selected Areas in Communications, 2002.

[24] J H Saltzer and M D Schroeder. The Protection of Information in Computer
Systems. Proceedings of the IEEE, pages 1278–1308, 1975.

[25] Nikolai Tillmann, Michal Moskal, and Jonathan de Halleux. TouchStudio - Pro-
gramming Cloud-Connected Mobile Devices via Touchscreen. Microsoft Techni-
cal Report MSR-TR-2011-49, 2011.

[26] T. Vidas, N. Christin, and L. Cranor. Curbing Android Permission Creep. In
Proceedings of the Web 2.0 Security and Privacy 2011 workshop (W2SP 2011),
Oakland, CA, May 2011.

[27] D. Wetherall, D. Choffnes, B. Greenstein, S. Han, P. Hornyack, J. Jung,
S. Schechter, and X. Wang. Privacy Revelations for Web And Mobile Apps. In
Proceedings of the 13th USENIX conference on Hot topics in operating systems,
HotOS’13, pages 21–21, Berkeley, CA, USA, 2011. USENIX Association.

[28] Yichen Xie and Alex Aiken. Static Detection of Security Vulnerabilities in Script-
ing Languages. In Proceedings of the 15th conference on USENIX Security Sym-
posium - Volume 15, 2006.

22

[29] Ka-Ping Yee. Aligning Security and Usability. IEEE Security and Privacy, 2:48–
55, 2004.

[30] David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David Wether-
all. TaintEraser: Protecting Sensitive Data Leaks Using Application-Level Taint
Tracking. SIGOPS Oper. Syst. Rev., pages 142–154, 2011.

23

	Introduction
	TouchDevelop Language
	Simplified Language
	Classified Information Flow

	Application Capability Identification
	Static Information Flow Analysis
	Overview
	Summaries of Basic Blocks and Actions
	Block Summary
	Action Summary
	Script Analysis

	Classified Information Propagation
	Property Annotations
	Statement-Based Propagation

	UnTampered- and Tampered-Classified Information
	Transparent Privacy Control
	Evaluation Plan
	Information Flow Study
	Performance Evaluation
	Usability Study

	Related Work
	Conclusion

