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ABSTRACT

Driven by the emerging network applications, querying and mining

uncertain graphs has become increasingly important. In this paper,

we investigate a fundamental problem concerning uncertain graphs,

which we call the distance-constraint reachability (DCR) problem:

Given two vertices s and t, what is the probability that the distance

from s to t is less than or equal to a user-defined threshold d in

the uncertain graph? Since this problem is NP-hard, we focus on

efficiently and accurately approximating DCR online. Our main

results include two new estimators for the probabilistic reachabil-

ity. One is a Horvitz-Thomson type estimator based on the unequal

probabilistic sampling scheme, and the other is a novel recursive

sampling estimator, which effectively combines a deterministic re-

cursive computational procedure with a sampling process to boost

the estimation accuracy. Both estimators can produce much smaller

variance than the direct sampling estimator, which considers each

trial to be either 1 or 0. We also present methods to make these esti-

mators more computationally efficient. The comprehensive exper-

iment evaluation on both real and synthetic datasets demonstrates

the efficiency and accuracy of our new estimators.

1. INTRODUCTION
Driven by the emerging network applications, querying and min-

ing uncertain graphs has become increasingly important [19, 29,

30]. In this paper, we investigate a fundamental research problem

in uncertain graphs: the distance-constraint reachability (DCR)

query problem. In a deterministic directed graph, the reachability

query, which asks whether one vertex can reach another one, is the

basis for a variety of database (XML/RDF) and network applica-

tions (e.g., social and biological networks) [15, 27]. For uncertain

graphs, reachability is not a simple Yes/No question, but instead,

a probabilistic one. In the most common uncertain graph model,

edges are independent of one another, and each edge is associated

with a probability that indicates the likelihood of its existence [19,

29]. This gives rise to using the possible world semantics to model

uncertain graphs [19, 1].

A possible graph of an uncertain graph G is a possible instance

of G. A possible graph contains a subset of edges of G, and it has

a weight which is the product of the probabilities of all the edges

it has. The reachability from vertex s to vertex t is expressed as

the probability that s can reach t in all the possible graphs of G.

Consider a simple example in Fig. 1. We show an uncertain graph

G, and three of its possible graphs G1, G2 and G3, each witha

weight. We can see that s can reach t in G1 and G2 but not in G3.

If we enumerate all the possible graphs of G and add up the weights

of those possible graphs where s can reach t, we get the probability

that s can reach t in G (the probability is 0.5104).

Finding the (shortest-path) distance between two nodes is an-

(a) Uncertain Graph G (b) G1 with 0.0009072

(c) G2 with 0.0009072 (d) G3 with 0.0006048

Figure 1: Running Example

other important operation in uncertain graphs [28, 19]. The shortest-

path distance is a key factor in determining the influence or rela-

tionship between two vertices in a graph. Generally, the smaller

the distance, the stronger the influence, trust, or relationship [13,

23]. Therefore, in many applications, we are only interested in the

reachability between two nodes if their distance is under a given

threshold [28]. Taking the distance measure into consideration,

we define a distance-constraint reachability (DCR) query as fol-

lows: Given two vertices s and t in an uncertain graph G, what is

the probability that the distance from s to t is less than or equal

to a user-defined threshold d in the possible graphs of G? For the

example in Fig. 1, if the threshold d is selected to be 2, then, we

consider s cannot reach t in G2 (under this distance constraint).

The importance of distance-constraint reachability (DCR) query

is multi-fold. First, DCR query can contribute to a wide range of

real world applications, ranging from social network analysis to bi-

ological networks to ontology [23, 5, 4, 10, 11, 18]. For instance,

in trust social network, the trust ranking between any two persons

can be formulated as a distance-constraint reachability problem;

and in the protein-protein interaction network, DCR query can be

applied to compute the function similarity between two proteins

and the chance they belong to a common protein complex []. Sec-

ond, DCR is a core operator which forms the basis of other more

advanced queries. For instance, in the recent k-Nearest Neighbor

query studied in uncertain graph, DCR operators from the query

center s to its surrounding vertices are repetitively applied [19] .

Finally, the simple reachability is a special case of the distance-

constraint reachability (considering the case where the threshold d
is larger than the length of the longest path in the uncertain graph

G, or simply the sum of the all edge weight in G). The distance-

constraint can provide more informative results on top of the simple

reachability.



1.1 Problem Statement
Uncertain Graph Model: Consider an uncertain directed graph

G = (V, E, p, w), where V is the set of vertices, E is the set of

edges, p : E → (0, 1] is a function that assigns each edge e a

probability that indicates the likelihood of e’s existance, and w :
E → (0,∞) associates each edge a weight (length). Note that we

assume the existence of an edge e is independent of any other edge.

In our example (Figure 1), we assume each edge has unit-length

(unit-weight). Let G = (VG, EG) be the possible graph which is

realized by sampling each edge in G according to the probability

p(e) (denoted as G ⊑ G). Clearly, we have EG ⊆ E and the

possible graph G has Pr[G] sampling probability:

Pr[G] =
Y

e∈EG

p(e)
Y

e∈E\EG

(1 − p(e)).

There are a total of 2m possible graphs (for each edge e, there

are two cases: e exists in bG or not). In our example (Figure 1),

graph G has 29 possible graphs, and as an example for the graph

sampling probability, we have

Pr[G1] = p(s, a)p(a, b)p(a, t)p(s, c)(1 − p(s, b)) ×

(1 − p(b, t))(1 − p(s, c))(1 − p(b, c))(1 − p(c, b))

= 0.5 × 0.3 × 0.5 × 0.7 × (1 − 0.2) ×

(1 − 0.6) × (1 − 0.1) × (1 − 0.4) × (1 − 0.9)

= 0.0009072

Distance-Constraint Reachability: A path from vertex v0 to ver-

tex vp in G is a vertex (or edge) sequence (v0, v1, · · · , vp), such

that (vi, vi+1) is an edge in EG (0 ≤ i ≤ p − 1). A path is simple

if no vertex appears more than once in the sequence. We are con-

cerned with simple paths throughout the paper. Given two vertices

s and t in G, a path starting from s and ending at t is referred to

as an s-t-path. We say vertex t is reachable from vertex s in G if

there is an s-t-path in G. The distance or length of an s-t-path is

the sum of the lengths of all the edges on the path. The distance

from s to t in G, denoted as dis(s, t|G), is the distance or length of

the shortest path from s to t, i.e., minimal distance of all s-t-paths.

Given distance-constraint d, we say vertex t is d-reachable from s
if the distance from s to t in G is less than or equal to d.

DEFINITION 1. (s-t distance-constraint reachability) The prob-

lem of computing s-t distance-constraint reachability in an uncer-

tain graph G is to compute the probability of the possible graphs

G, in which vertex t is d-reachable from s, where d is the distance

constraint. Specifically, let

I
d
s,t(G) =

(

1, if dis(s, t|G) ≤ d

0, otherwise

Then, the s-t distance-constraint reachability in uncertain graph G
with respect to parameter d is defined as

R
d
s,t(G) =

X

G⊑G

I
d
s,t(G) · Pr[G] . (1)

Note that the problem of computing s-t distance-constraint reach-

ability is a generalization of computing s-t reachability without

the distance-constraint, which is often referred to as the two-point

reliability problem [20]. Simply speaking, it computes the total

sampling probability of possible graphs G ⊑ G, in which vertex

t is reachable from vertex s. Using the aforementioned distance-

constraint reachability notation, we may simply choose an upper

bound such as W =
P

e∈E
w(e) (the total weight of the graph

as an example), and then RW
s,t(G) is equivalent to the simple s-t

reachability.

Computational Complexity and Estimation Criteria The simple

s-t reachability problem is known to be #P-Complete [25, 6], even

for special cases, e.g., planar graphs and DAGs, and so is its gener-

alization, s-t distance-constraint reachability. Thus, we cannot ex-

pect the existence of a polynomial-time algorithm to find the exact

value of Rd
s,t(G) unless P=NP . The distance-constraint reacha-

bility problem is much harder than the simple s-t reachability prob-

lem as we have to consider the shortest path distance between s
and t in all possible graphs. Indeed, the existing s-t reachability

computing approaches have mainly focused on the small graphs (in

the order of tens of vertices) and cannot be directly extended to

our problem (Section 5). Given this, the key problem this paper

addresses is how to efficiently and accurately approximate the s-t
distance-constraint reachability online.

Now, let us look at the key criteria for evaluating the quality of

an approximate approach (or the quality of an estimator). Let bR be

a general estimator for Rd
s,t(G). Intuitively, bR should be as close

as Rd
s,t(G). Mathematically, this property can be captured by the

mean squared error (MSE), E( bR−Rd
s,t(G))2, which measures the

expected difference between an estimator and the true value. It can

also be decomposed into two parts:

E( bR − R
d
s,t(G))2 = V ar( bR) + (E bR − R

d
s,t(G))2

= V ar( bR) + (Bias bR)2

An estimator is unbiased if the expectation of the estimator is

equal to the true value (Bias bR = 0), i.e., E( bR) = Rd
s,t(G) (for

our problem). The variance of estimator V ar( bR) measures the

average deviation from its expectation. For an unbiased estimator,

the variance is simply the MSE. In other words, the variance of

an biased estimator is the indicator for measuring its accuracy. In

addition, the variance is also frequently used for the constructing

the confidence interval of an estimate for approximation and the

smaller the variance, the more accurate confidence interval estimate

we have [24]. All estimators studied in this paper will be proven to

be the unbiased estimators of Rd
s,t(G). Thus, the key criterion to

discriminate them is their variance [24, 12].

Besides the accuracy of the estimator, the computational effi-

ciency of the estimator is also important. This is especially impor-

tant for online answering s-t distance-constraint reachability query.

To sum, in this paper, our goal is to develop an unbiased estimator

of Rd
s,t(G) with minimal variance and low computational cost.

Minimal DCR Equivalent Subgraph: Before we proceed, we

note that given vertices s and t, only subsets of vertices and edges

in G are needed to compute the s-t distance-constraint reachabil-

ity. Specifically, given vertices s and t, the the minimal equivalent

DCR subgraph Gs = (Vs, Es, p, w) ⊆ G where

Vs = {v ∈ V |dis(s, v|G) + dis(v, t|G) ≤ d},

Es = {e = (u, v) ∈ E|dist(s, u|G) + w(e) + dis(v, t|G) ≤ d}.

Basically, Vs and Es contain those vertices and edges that appear

on some s-t paths whose distance is less than or equal to d. Clearly,

we have Rd
s,t(Gs) = Rd

s,t(G). A fast linear method utilizing BSF

(Bread-First-Search) can help extract the minimal equivalent DCR

subgraph []. Since we only need to work on Gs, in the reminder of

the paper, we simply use G for Gs when no confusion can arise.

2. BASIC MONTE­CARLO METHODS
In this section, we will introduce two basic Monte-Carlo meth-

ods for estimating Rd
s,t(G), the s-t distance-constraint reachability.



2.1 Direct Sampling Approach
A basic approach to approximate the s-t distance-constraint reach-

ability is using sampling: 1) we first sample n possible graphs,

G1, G2, · · · , Gn of G according to edge probability p; and 2) we

then compute the shortest path distance in each sample graph Gi,

and thus Id
s,t(Gi). Given this, we have the basic sampling estimator

( bRB):

R
d
s,t(G) ≈ bRB =

Pn

i=1 Id
s,t(Gi)

n

The basic sampling estimator bRB is an unbiased estimator of the

s-t distance-constraint reachability, i.e.,

E( bRB) = R
d
s,t(G)

Its variance can be simply written as [12]

V ar( bRB) =



We refer to E1 and E2 as the inclusion edge set and the exclusion

edge set, respectively.

Note that for a nonempty prefix group, the inclusion edge set E1

and the exclusion edge set E2 are disjoint (E1 ∩ E2 = ∅). In Fig-

ure 1, if we want to specify those possible graphs which all include

edge (s, a) and do not contain edges (s, b) and (b, t), then, we may

refer those graphs as ({(s, a)}, {(s, b), (b, t)})-prefix group. To

facilitate our discussion, we introduce the generating probability of

the prefix group G(E1, E2) as:

Pr[G(E1, E2)] =
Y

e∈E1

p(e)
Y

e∈E2

(1 − p(e))

This indicates the overall sampling probability of any possible graph

in the prefix group.

Given this, the s-t distance-constraint reachability of a (E1, E2)-

prefix group is defined as

R
d
s,t(G(E1, E2)) =

X

G∈(G(E1,E2))

I
d
s,t(G) ·

Pr[G]

Pr[G(E1, E2)]
(2)

Basically, it is the overall likelihood that t is d-reachable from s
conditional on the fixed prefix G(E1, E2). It is easily derived that

Rd
s,t(G) = Rd

s,t(G(∅, ∅)).

The following lemma characterizes the s-t distance-constraint

reachability of (E1, E2)-groups and forms the basis for its efficient

computation. Its proof is omitted for simplicity.

LEMMA 1. (Factorization Lemma) For any (E1, E2)-prefix

group of uncertain G and any uncertain edge e ∈ E\(E1 ∪ E2),

R
d
s,t(G(E1, E2)) = p(e)Rd

s,t(G(E1 ∪ {e}, E2)) +

(1 − p(e))Rd
s,t(G(E1, E2 ∪ {e}))

In addition, we note that for any (E1, E2)-prefix group of uncer-

tain G, if E1 contains a d-path from s to t, then, Rd
s,t(G(E1, E2)) =

1; if E2 contains a d-cut between s and t, then, Rd
s,t(G(E1, E2)) =

0. Also, E1 containing a d-path and E2 containing a d-cut cannot

be both true at the same time though both can be false at the same

time.

Algorithm 1 R(G, E1, E2)

Parameter: G: Uncertain Graph;
Parameter: E1: Inclusion Edge List;
Parameter: E2: Exclusion Edge List;
1: if E1 contains a d-path from s to t then
2: return 1;
3: else if E2 contains a d-cut from s to t then
4: return 0;
5: end if
6: select an edge e ∈ E\(E1 ∪ E2) {Find a remaining uncertain edge}
7: return p(e)R(G, E1 ∪ {e}, E2) + (1− p(e))R(G, E1, E2 ∪ {e})

Algorithm 1 describes the divide-and-conquer computation pro-

cedure for Rd
s,t(G) based on Lemmas 1. To compute Rd

s,t(G), we

will invoke the procedure R(G, ∅, ∅). Based on the factorization

lemma (Lemma 1), this procedure first partitions the entire set of

possible graphs of uncertain graph G into two parts (prefix groups)

using any edge e in G:

R
d
s,t(G(∅, ∅)) = p(e)Rd

s,t(G({e}, ∅))+(1−p(e))Rd
s,t(G(∅, {e})).

Then, it applies the same approach to partition each prefix group of

possible graphs recursively (Line 6−7) until prefix group G(E1, E2)
with either E1 containing a d-path or E2 containing a d-cut (Line

1 − 5).

The computational process of the recursive procedure R can be

represented in a full binary enumeration tree. In the tree, each node

corresponds to a prefix group G(E1, E2) (also an invoke of the pro-

cedure R). Each internal node has two children, one correspond-

ing on including an uncertain edge e, another excluding it. In other

words, the prefix group is partitioned into two new prefix groups:

G(E1 ∪ {e}, E2) and G(E1, E2 ∪ {e}). Further, we may consider

each edge in the tree is weighted with probability p(e) for edge

inclusion and 1 − p(e) for edge exclusion. In addition, the leaf

node can be classified into two categories, L which contains all the

leaf nodes with E1 containing a d-path, and L which contains the

remaining leaf nodes, i.e., all those leaf nodes with E2 include a

d-cut. Figure 2 (a) illustrates the enumeration tree.

The computational complexity of this procedure is determined

by average recursive depth (average prefix-length), i.e., the average

number of edges |E1 ∪E2| we have to select in order to determine

whether t is d-reachable from s for all the possible graphs in the

prefix group. If the average recursive depth is a, then, a total of

O(2a) prefix groups need to be enumerated, which can be signifi-

cantly smaller than the complete O(2m) possible graphs of G. In

Section A, we introduce an approach in selecting the uncertain edge

e (Line 6) for each prefix group of the possible graph G(E1, E2) to

minimize the average recursive depth.

In the following two subsections, we discuss how to transform

the exact reachability computation algorithm R into an accurate

approximation scheme of Rd
s,t(G).

3.2 Tree­based Estimation and Unequal Prob­
ability Sampling Framework

In this subsection, we will study an estimation framework of

Rd
s,t(G) using its recursive binary enumeration tree representation

and unequal probability sampling scheme [24].

Unequal Probability Sampling (UPS) Framework: To estimate

Rd
s,t(G), we apply the unequal sampling scheme. We consider that

each leaf node in the enumeration tree is associated with a weight,

the generating probability of the corresponding prefix group,

Pr[G(E1, E2)]. Next, we sample each leaf node G(E1, E2) with

probability q(G(E1, E2)), where the sum of all leaf sampling prob-

ability (q(G(E1, E2)) is 1. Note that in general, the leaf sampling

probability q can be different from the leaf weight in the unequal

sampling framework.

Given this, we now study the well-known unequal sampling esti-

mator, the Hansen-Hurwitz estimator [24]: assuming we sampled

n leaf nodes, 1, 2, · · · , n, in the enumeration tree, and let Pri be

the weight associated with the i-th sampled leaf node and let qi be

the leaf sampling probability, then the Hansen-Hurwitz estimator

(denoted as bRHH ) for Rd
s,t(G) is:

bRHH =
1

n

n
X

i=1

PriI
d
s,t(G)

qi

(3)

In other words, we may consider each leaf node in L contributes

Pri and each leaf node in L contributes 0 to the estimation. It is

easy to show the Hansen-Hurwitz estimator ( bRHH ) is an unbiased

estimator for Rd
s,t(G), and its variance can be derived as

V ar( bRHH) =
1

n
(
X

i∈L

qi(
Pri

qi

− R
d
s,t(G))2 +

X

i∈L

qiR
d
s,t(G)2)

Applying the Lagrange method, we can easily find that the op-

timal sampling probability for minimal variance V ar( bRHH) is

achieved when qi = Pri, and the minimal variance is V ar( bRHH) =
1
n
Rd

s,t(G)(1 − Rd
s,t(G)). This result suggests the best leaf sam-



(a) Enumeration Tree of Recursive Computation of Rd
s,t(G) (b) Divide and Conquer

Figure 2: Divide-and-Conquer method

pling probability q to minimize the variance of bRHH is the one

equal to the leaf weight (generating probability of the prefix group)

in L.

Given this, we can sample a leaf node in the enumeration tree as

follows: Simply tossing a coin at each internal node in the tree to

determine whether edge e should be included (in E1) with proba-

bility p(e) or excluded (in E2) with probability 1−p(e); continuing

this process until a leaf node is reached. Basically, we perform a

random walk starting from the root node and stopping at the leaf

node in the enumeration tree, and at each internal node, we ran-

domly select the edge based on the p(e) defined in the uncertain

graph.

Interestingly, we note this UPS estimator is equivalent to the di-

rect sampling estimator, as each leaf node is counted as either 1 or

0 (like Bernoulli trial): bRHH = bRB . In other words, the di-

rectly sampling scheme is simply a special (and optimal) case of the

Hassen-Hurvitz estimator! This leads to the following observation:

for any optimal Hassen-Hurvitz estimator ( bRHH ) or direct sam-

pling estimator ( bRB), their variance is only determined by n and

has no relationship to the enumeration tree size. This seems to be

rather counter-intuitive as the smaller the tree-size (or the smaller

number of the leaf nodes), the better chance (information) we have

for estimating Rd
s,t(G).

A Better UPS Estimator: Now, we first introduce another UPS

estimator, the Horvitz-Thomson estimator ( bRHT ), which can pro-

vide smaller variance than the Hansen-Hurvitz estimator bRHH and

the direct sampling estimator bRB under mild conditions. Assum-

ing we sampled n leaf nodes in the enumeration tree and among

them there are l distinctive ones 1, 2, · · · , l (l is also referred to as

the effective sample size), let the inclusion probability πi be prob-

ability to include leaf i in the sample, which is define as πi =
1−(1−qi)

n where qi is the leaf sampling probability. The Horvitz-

Thomson estimator for Rd
s,t(G) is:

R̂HT =
l

X

i=1

PriI
d
s,t(G)

πi

(4)

Note that if qi is very small, then π ≈ nqi. The Horvitz-Thomson

estimator (R̂HT ) is an unbiased estimator for the population total

(Rd
s,t(G)). Its variance can be derived as [24]

V ar( bRHT ) =
X

i∈L

„

1− πi

πi

«

Pr2
i +

X

i,j∈L,i6=j

„

πij − πiπj

πiπj

«

PriPrj ,

where πij is the probability that both leafs i and j are included in

the sample: πij = 1 − (1 − qi)
n − (1 − qj)

n + (1 − qi − qj)
n.

Using Taylor expansions and Lagrange method, we can find the

minimal variance can be approximated when qi = Pri. This basi-

cally suggests the similar leaf sampling strategy (the random walk

from the root to the leaf) for the Hansen-Hurwitz estimator can be

applied to the Horvitz-Thomson estimator as well. However, dif-

ferent from the Hansen-Hurwitz estimator, the Horvitz-Thomson

estimator utilizes each distinctive leaf once. Though in general the

variances between the Hansen-Hurwitz estimator and the Horvitz-

Thomson estimator are not analytically comparable, in our tree-

based sampling framework and under reasonable approximation,

we are able to prove the latter one has smaller variance.

THEOREM 1. (V ar( bRHT ) ≤ V ar( bRHH)) When for any sam-

ple leaf node i, nPri ≪ 1, V ar( bRHH)−V ar( bRHT )=O(
P

i∈L Pr2
i ).

The proof of the theorem can be found in the complete technical

report []. This result suggests that for small sample size n and/or

when the generating probability of the leaf node is very small, then

the Horvitz-Thomson estimator is guaranteed to have smaller vari-

ance. In Section 4, the experimental results will further demon-

strate the effectiveness of this estimator. A reason for this estimator

to be effective is that it directly works on the distinctive leaf nodes

which partly reflect the tree structure. In the next subsection, we

will introduce a novel recursive estimator which more aggressively

utilizes the tree structure to minimize the variance.

3.3 Optimal Recursive Sampling Estimator
In this subsection, we explore how to reduce the variance based

on the factorization lemma (Lemma 1). Then, we will describe a

novel recursive approximation procedure which combines the de-

terministic procedure with the sampling process to minimize the

estimator variance.

Variance Reduction: Recall that for the root node in the enumer-

ation tree, we have the following results based on the the factoriza-

tion lemma (Lemma 1):

R
d
s,t(G) = p(e)Rd

s,t(G({e}, ∅)) + (1 − p(e))Rd
s,t(G(∅, {e}))

To facilitate our discussion, let τ = Rd
s,t(G), τ1 = Rd

s,t(G({e}, ∅))

and τ2 = Rd
s,t(G(e, ∅)).

Now, instead of directly sampling all the leaf nodes from the root

(like suggested in last subsection), we consider to estimate both τ1

and τ2 independently, and then combine them together to estimate

τ . Specifically, for n total leaf samples, we deterministically allo-

cate n1 of them to the left subtree (including edge e, τ1), and n2 of



them to the right subtree (excluding edge e, τ2); then, we can apply

the aforementioned sampling estimators, such as bRHH , or equiv-

alently bRB), to both subtrees. Let bR1 and bR1 be the estimators

for τ1 (left subtree) and τ2 (right subtree), respectively. Thus, the

combined estimator for Rd
s,t(G) is

bR = p(e) bR1 + (1 − p(e)) bR2 (5)

Clearly, this combined estimator is unbiased as both bR1 and bR2

are unbiased estimators for τ1 and τ2, respectively. Why this might

be a better way to estimate Rd
s,t(G)? Intuitively, this is because

we eliminate the “uncertainty” of edge e from the estimation equa-

tion. Of course, the important question is how such elimination can

benefit us, and to answer this, we need address this problem: what

are tho optimal sample allocation strategy to minimize the overall

estimator variance?

The variance of the combined estimator depends on the variance

of the two individual estimators (they are independent and their

covariance is 0):

V ar( bR) = p(e)2V ar( bR1) + (1 − p(e))2V ar( bR2)

= p(e)2
τ1(1 − τ1)

n1
+ (1 − p(e))2

τ2(1 − τ2)

n2

When τ1 and τ2 are known, we clearly can find the optimal sam-

ple allocation (n1 and n2 are functions of τ1 and τ2) for minimiz-

ing V ar( bR). However, in this problem, such prior knowledge is

clearly unavailable. Given this, can we still allocate samples to re-

duce the variance? An interesting discovery we made is when the

sample size allocation is proportional to the edge inclusion proba-

bility, i.e., n1 = p(e)n and n2 = (1 − p(e))n, the variance of the

original optimal Hassen-Hurvitz estimator V ar( bRHH) = τ(1−τ)
n

can be reduced!

THEOREM 2. (Variance Reduction) When, n1 = p(e)n and

n2 = (1 − p(e))n, V ar( bR) =≤ V ar( bRHH), and more specifi-

cally, the variance is reduced by

V ar( bRHH) − V ar( bR) =
p(e)(1 − p(e))(τ1 − τ2)

2

n

Recall τ1 is the overall probability of those leaf nodes in the left

subtree (G({e}, ∅)) and in L, i.e., when edge e is included and t is

d-reachable from s and τ2 is the overall probability of those possi-

ble graphs where e is excluded. Clearly, when edge e is included,

the probability for t is d-reachable from s is greater. Especially, this

lemma suggests the bigger the impact for edge e being included or

excluded, the greater the variance reduction effect (directly propor-

tional to (τ1−τ2)
2). In addition, this sample size allocation method

can be generalized and applied at the root node of any subtree in the

enumeration tree for reducing the variance.

Recursive Sampling Estimator: Given this, we introduce our re-

cursive sampling estimator bRR, which is outlined in Algorithm 2.

Basically, it follows the exact computational recursive procedure

(Algorithm 1) and recursively split the sample size n to ⌊np(e)⌋
and n − ⌊np(e)⌋ for estimating Rd

s,t(G(E1 ∪ {e}, E2)) and

Rd
s,t(G(E1, E2 ∪ {e})), respectively (Line 10). In addition, when

the sample size n is smaller than the threshold (typically the thresh-

old is very small, less than 5), we can avoid the recursive allocation

by perform the direct sampling (Line 1 and 2). Note that when the

sample size is very small, all the non-recursive sampling estima-

tors, including bRHT , bRHH , and bRB , all become equivalent.

The computational complexity of this recursive sampling esti-

mator is O(na), where a is the average recursive depth or the av-

erage length from the root node to the leaf node in the enumera-

Algorithm 2 OptEstR(G, E1, E2, n)

Parameter: E1: Inclusion Edge List;
Parameter: E2: Exclusion Edge List;
Parameter: n: sample size;
1: if n ≤ threshold {Stop recursive sample allocation} then

2: return bRHH(G, E1, E2, n); {apply non-recursive sampling esti-
mator}

3: end if
4: if E1 contains a d-path from s to t then

5: return 1;
6: else if E2 contains a d-cut from s to t then
7: return 0;
8: end if

9: select an edge e ∈ E\(E1 ∪ E2) {Find a remaining uncertain edge}
10: return p(e)OptEstR(G, E1 ∪ {e}, E2, ⌊np(e)⌋)+

(1− p(e))OptEstR(G, E1, E2 ∪ {e}, n− ⌊np(e)⌋);

tion tree. But it tends to be more computationally efficient than

the UPS estimators bRHH and bRHT . This is because the recur-

sively sampling estimator visits the upper-part of the enumeration

tree (for the recursive sample size allocation) only once and does

not need perform any coin-toss for the each node at this part of the

tree. However, the UPS estimators have to perform coin-toss for

each node and may repetitively revisit the same node in the upper-

level of the tree, where this new estimator visits each node only

once. Finally, we note that the analytically comparison between

the variance of the Horvitz-Thomson estimator bRHT and the re-

cursively estimator bRR is not conclusive, though the experimental

evaluation clearly establishes the superiority of the new sampling

estimator (Section 4).

4. EXPERIMENTAL EVALUATION
In the experimental study, we will focus on studying the accu-

racy and computational efficiency of different sampling estimators

on both synthetic and real datasets. Specifically, the sampling esti-

mators include: 1) bRB : this is the direct sampling estimator using

A∗ algorithm for searching shortest path distance. The sampling

process is also combined with the search process to maximize its

computational efficiency; 2) bRD
B : we apply a state-of-the-art vari-

ance reduction method, Dagger Sampling [17, 12], on top of the

aforementioned direct sampling estimator to boost the estimation

accuracy; 3) bRP : this is the path-based estimator based on [16]

which needs to enumerate all the d-paths from s to t; 4) bRHT : this

is the Horvitz-Thomson estimator based on the unequal probabilis-

tic sampling framework; 5) bRRHH : this is the optimal recursive

sampling estimator OptEstR and when the number of samples in

the recursive sampling process is less than the threshold (set to be

5), the non-recursive sampling estimator bRHH (Hansen-Hurwitz

estimator) is used; 6) bRRHT : this is the optimal recursive sam-

pling estimator OptEstR and when the number of samples in the

recursive sampling process is less than the threshold (5), the non-

recursive sampling estimator bRHT (Horvitz-Thomson estimator) is

used. For all the last three estimators, they all utilize the FindDPath

procedure to select the next edge in the recursive computation pro-

cedure. In addition, we omit the results for bRHH (Hansen-Hurwitz

estimator) because it is equivalent to the direct sampling estimator
bRB .

To compare the accuracy of these different sampling estimators,

we utilize two criteria: the relative error and the estimation vari-

ance. For the relative error, we apply R∗ procedure to recursive

compute the exact distance-constraint reachability. Let R be the

exact result and bR be the estimation result. Then, the relative er-



ror ǫ is computed as ǫ = | bR−R|
R

. For the estimation variance, for

each query, we will run each estimator K times, and thus, we have

100 different estimating results: bR1, bR2, · · · , bRK (in this work, we

set K = 100). The estimation variance σ is estimated as: σ =
P

K
i=1

( bRi−R)2

K−1
. Here R is the estimation average (

PK

i=1
bRi)/K.

The computational efficiency is evaluated by the running time of

each estimator.

All algorithms are implemented by using C++ and the Standard

Template Libaray (STL) and were conducted on a 2.0GHz Dual

Core AMD Opteron CUP with 4.0GB RAM running Linux.

We first report the experimental results on synthetic uncertain

graphs. Here, the graph topologies are generated by either Erdös-

Rényi random graph model or power law graph generator [7]. The

edge weight is randomly generated between 1 to 100 according to

uniform distribution. The edge probability is randomly generated

between 0 to 1 according to uniform distribution.

Small Random Graph: In this experiment, we generate an Erdös-

Rényi random graph with 5000 vertices and edge density 10. We

report the relative error, estimation variance, and the query time

with respect to the edge number of minimal DCR equivalent sub-

graph size Gs. Recall Gs is the uncertain subgraph which will be

used for the sampling estimator. We partition the queries into four

groups 15− 25, 26− 35, 36− 45 and 46− 55. This is because for

any graph with edge number no larger than 15, the exact computa-

tion can be done very efficiently; and when the graph size is larger

than 55, it becomes too expensive to compute the exact distance-

constraint reachability. Since in this experiment, we would like to

report the relative error, we limit ourselves to the smaller Gs. For

each of the four groups, we generate 1000 random queries. In ad-

dition, the sample size is set to be 1000 for each estimator.

Table 1 shows the relative errors of six different estimators. Over-

all, the two recursive estimators bRRHH and bRRHT are the clear

winners and bRRHT is slightly better than bRRHH . They can cut the

relative error of the direct sampling estimator bRB by more than half

. The Dagger sampling method can only reduce the relative error

of bRB by less than 10%. The path-based sampling estimator bRP

and bRHT are comparable though the latter is slightly better. They

can reduce the relative error of the direct sampling estimator by

around 45%. However, as we will see that the path-based sampling

is much more computationally expensive as it has first enumerate

all the d-paths from the source vertex s to the destination vertex t.
Table 2 reports the relative variance efficiency of different ap-

proaches using the variance of the direct sampling estimator σ
bRB

as the baseline. Thus, in the second column under bRB , we have

the value to be 1, and the second column under bRD
B , the values

are σ
bRD

B

/σ
bRB

. The relative variance efficiency is consistent with

the results on relative error. Comparing with baseline variance, the

Dagger sampling estimator bRD
B , the path-based estimator bRP , the

Horvitz-Thomson estimator bRHT achieves the variance reduction

by on average 72%, 50% and 40%; the recursive sampling oper-

ators bRRHH and bRRHT reduces the variance by almost 5 times

(with 26% and 22% variance reduction)!

Table 3 shows the computational time of different sampling op-

erators. First, we can see that when the extracted subgraph Gs is

fairly small (less than 35 edges), the exact recursive algorithm R∗

is quite fast (even faster than most of the sampling approach). How-

ever, when the subgraph grows, the exact computational cost grows

exponentially. Second, the path-based method is the slowest one

as we expected (it is on average 1.65 times slower than the direct

sampling approach with A∗ search); and the unequal sampling es-

timator bRHT is around 1.5 times faster than the direct sampling
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estimator. Finally, very impressively, the two recursively estima-

tors are much faster than other estimators: especially, bRRHH is on

an average 20 times faster than the direct sampling estimator and
bRRHT is around 10 times faster!

Varying Sample Size: In the second experiment, we study how

sample size affect the estimation accuracy and performance. Here,

we vary the sample size from 200 to 2000 and run different sam-

pling estimators on the same uncertain graph as in the first exper-

iment. Figure 3 illustrates the relative variance efficiency of dif-

ferent sampling estimator with respect to different sample size. In

general, we can see that most of the sampling operators tend to

have better variance efficiency as the sample size increases com-

pared with the baseline direct sampling estimator. However, such

trend does not hold for the path-based estimator. Based on their

variance analysis, we can see both path-based estimator and the di-

rect sampling estimator is in verse to the sample size. Thus, they

would both reduce the variance in the similar rate. Again, the two

recursively sampling estimators are the clear winner as they can

reduce the baseline variance by almost 10 times! Figure 4 shows

the computational time of different sampling estimators. In gen-

eral, as the sample size increases, their running time also increases.

However, we can see that the increase of the recursive sampling

estimator is the smallest.

Scalability: In this experiment, we study the scalability of different

estimators. In Table 4, we report their running time on large power-

law graphs with number of vertices from 100, 000 to 800, 000. We

ran 1000 queries on each graph with sample size 1000. We can see

that as the graph size increases, the average running time of differ-

ent sampling estimators also increases slightly. The direct sampling

estimators and the path-based estimator have similar performance;

and the Horvitz-Thomson estimator bRHT takes around 60% less

time to estimate than these methods. The two recursive sampling

estimators are the fastest and they are on average 10 times faster

than the direct sampling estimators!

Real Uncertain Graph: We study different sampling approaches

on a real uncertain graphs: DBLP. The DBLP is provided by au-

thors in [19]. This dataset is a coauthor graph with 226, 000 ver-

tices and 1, 400, 000 edges. In this experiment, we ran 1000 ran-

dom queries with sample size 1000. Table 5 reports the relative

error and the running time of the different approaches. In order to

report the relative error, we constrain the extracted subgraphs with

number of edges less than 50.

5. CONCLUSIONS
In this paper, we study a novel s-t distance-constraint reachabil-

ity problem in uncertain graphs. We not only develop an efficient

exact computation algorithm, but also present different sampling

methods to approximate the reachability. Specifically, we introduce



Table 1: Relative Error (in %)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

15-25 3.42 3.00 0.98 0.90 0.96 0.71

26-35 2.52 2.80 1.50 1.08 0.90 0.72

36-45 2.30 1.75 1.17 1.77 1.36 1.33

46-55 1.79 1.42 1.59 1.39 1.33 1.30

Table 2: Relative Variance Efficiency
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

15-25 1.00 0.81 0.15 0.12 0.12 0.08

26-35 1.00 0.77 0.44 0.23 0.27 0.17

35-45 1.00 0.58 0.58 0.45 0.23 0.20

45-55 1.00 0.73 0.82 0.80 0.44 0.43

Table 3: Query Time (in ms)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

15-25 313.93 31.43 53.20 19.36 10.77 14.98

26-35 358.45 344.77 563.69 232.66 20.44 34.27

35-45 313.92 313.61 535.46 234.52 23.25 42.91

45-55 343.89 345.06 565.61 251.27 23.00 45.13

Table 4: Scalability (in Seconds)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

100000 28.44 29.96 29.72 12.80 3.79 5.67

200000 40.48 39.40 39.16 11.84 1.57 1.70

400000 82.03 81.76 78.68 34.23 13.33 16.05

600000 31.05 31.17 29.68 10.76 2.20 2.26

800000 85.70 86.26 79.87 34.67 6.63 8.35

Table 5: DBLP
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

ǫ 0.04 0.03 0.02 0.02 0.01 0.01

σ 0.95 0.96 0.95 0.33 0.02 0.04

Table 6: Relative Error with Thresholds (in %)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

2 3.43 2.46 2.39 1.57 1.80 1.86

5 3.52 2.53 2.46 1.58 1.70 1.56

15 3.38 2.52 2.13 1.72 1.98 1.46

25 3.64 2.48 2.27 1.73 2.14 1.61

35 3.54 2.53 2.48 1.68 2.30 1.74

45 3.51 2.68 2.32 1.63 2.35 1.70

Table 7: Query Time with Thresholds (in Seconds)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

2 22.86 22.96 22.16 8.18 0.95 1.19

5 35.05 35.68 34.25 11.25 2.43 2.92

15 35.33 35.58 33.89 11.27 2.68 3.53

25 35.94 36.08 34.53 11.29 2.96 3.97

35 35.68 36.22 34.85 11.16 3.02 4.18

45 21.85 21.86 21.37 8.29 1.50 2.57

Table 8: Query Time with Random Graphs (in Seconds)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

100k-300k 503 550 677 148 38 71

300k-500k 649 645 1978 174 51 92

500k-700k 691 745 4783 199 59 106

700k-900k 742 756 - 211 64 119

900k-1100k 809 - - 215 64 115

Table 9: Query Time with Power-Law Graphs (in Seconds)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

100k-300k 245 287 15312 123 36 59

300k-500k 353 437 - 162 61 92

500k-700k 456 682 - 210 102 151

700k-900k 473 675 - 234 117 159

900k-1100k 497 780 - 243 122 168

Table 10: Relative Error with Real Graphs (in %)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

DBLP 4.40 3.23 1.66 1.71 1.94 1.74

Yeast PPI 3.85 3.47 1.36 2.22 2.21 1.73

Fly PPI 3.62 3.22 1.40 1.92 2.08 1.64

Table 11: Query Time with Real Graphs (in Seconds)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

DBLP 51.65 55.50 5915.12 26.08 5.93 10.08

Yeast PPI 1.15 1.97 4959.37 0.50 0.11 0.21

Fly PPI 2.55 4.77 215.98 1.13 0.45 0.67

Table 12: Relative Variance with Real Graphs (in Seconds)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

DBLP 1.00 0.41 - 0.86 0.39 0.39

Yeast PPI 1.00 0.65 - 0.52 0.33 0.21

Fly PPI 1.00 0.49 - 0.44 0.38 0.20



a unified unequal probabilistic sampling estimation framework and

a novel Monte-Carlo method which effectively combines the deter-

ministic recursive computational procedure and sampling process.

Both can significantly reduce the estimation variance. Especially,

the recursive sampling estimator is accurate and computationally

efficient! It can on average reduce both variance and running time

by an order of magnitude comparing with the direct sampling esti-

mators. In the future work, we would like to investigate how the es-

timation method can be applied into other graph mining and query

problem in uncertain graphs.
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APPENDIX

A. CONSTRUCTING FAST EXACT AND AP­

PROXIMATION ALGORITHM
In this section, we will discuss a method for edge selection and

quickly test the distance-constraint reachability. Then we will com-

bine this method with our aforementioned recursive algorithm to

construct both exact and approximate algorithms.

A.1 Recognizing d­pat h or d­cut
In this subsection, we focus on the following problem: given a

resulting graph G of G, how can we quickly determine whether t is

d-reachable from s or not? Specifically, we would like to visit as

few number of edges in G as possible for this task. This is because

later we will apply the developed procedure for this task to selecting

the next edge in the recursive computation procedure (Algorithm 1

and 2).

A straightforward solution to this problem is to utilize Dijkstra

or A∗ algorithm to compute the shortest-path distance from s to t
in G. However, in these types of algorithms, when we visit a new

vertex v in G, we have to immediately visit all its neighbors (cor-

responding to visiting all outgoing edges in v) in order to maintain

the estimated shortest-path distance from s to them so far. This

“eager” strategy thus requires us to visit a large number of edges in

G and it is also the essential step in the shortest-path distance com-

putation. Fortunately, in our problem, we do not need to compute

the exact distance between s and t (Lemma ?? and Lemma ??).

Indeed, we only need to determined whether there is a d-path from

s to t or not.

Given this, we design a DFS fashion procedure to discover the

d-path from s to s. This DFS procedure is “lazy” compared with

the Dijkstra or A∗ algorithm. Basically, a new edge is needed to

expand only if it should be visited along the depth-first-search pro-

cess and it is promising to be on a d-path. The DFS procedure is

sketched in Algorithm 3. Starting from vertex s, we will start to

explore its first neighbor (its next neighbor will be explored only if

there is no d-path which can be find going through the earlier ones,

Line 5), and then recursively visit the neighbors of this neighbor.

Pruning Search Space: To reduce the number of edges which



Algorithm 3 FindDPath(G, v, path, plen)

Parameter: G: Graph Defined by Selected Existence Edges;
Parameter: v: the current vertex;
Parameter: path: the current active path;
Parameter: plen: the current active path length;
1: if v = t {Find a d-path} then
2: return path;
3: end if
4: for each v′ ∈ N(v) {visit v′ from closest to farthest} do
5: if (plen + w(v, v′) < gdis(s, v′)) {(a) gdis(s, v′) is reduced}

∧(gdis(v′, t) + plen + w(v, v′) ≤ d) {(b) estimated total length
no larger than d} then

6: gdis(s, v′)← plen + w(v, v′); {update gdis(s, v′) }
7: FindDPath(G,v′, path ∪ {v′}, plen + w(v, v′));
8: end if

9: end for
10: gdis(v, t) ← minv′∈N(v){w(v, v′) + g(v′, t)}; {update

gdis(v, t)}

need to visited, we design a pruning technique which can deter-

mine whether an edge (v, v′) should be expanded at a given time

(Line 5). The condition is based on whether the new edge (v, v′)
has the potential to be on a d-path. Note that all the vertices in G
(including all edges in G) satisfy dis(s, v|G) + dis(v, t|G) < d
which suggests that every vertex has the potential to be on a d-path

in G. However, for G ⊆ G, since some edges are not selected

in the resulting graph G, some vertices may not appear in any d-

path. To perform the pruning, we maintain two values gdis(s, v)
and gdis(v, t) associated with each vertex v, which records the

current shortest path distance from s to v on the partial graph

visited by DFS so far (gdis(s, v)) and the lower bound estimate

on the shortest path distance from v to t (gdis(v, t)).

Initially, gdis(s, v) has an infinite value (∞) for each vertex ex-

cept vertex s (gdis(s, s) = 0), and gdis(v, t) = dis(v, t|G). The

maintenance of g(s, v′) is straightforward (Line 6): if the new path

from s to v′ has smaller length, we update g(s, v′). The g(v, t)
is defined recursively and is updated (at traceback) when we have

visited each of its neighbors (Line 10): g(v, t) is chosen as the min-

imal one of the weights between v to its neighbors v′ plus their esti-

mated shortest distance to t, i.e., g(v, t) = minv′∈N(v) w(v, v′) + g(v′, t).

For the currently visited vertex v, we will check each of its

neighbors v′ according to the increasing order of the edge weight

w(v, v′). This order can help minimize the number of times to re-

visit any given node. If any of the neighbors v′ can be visited, i.e.,

edge (v, v′) may be part of a d-path, it has to satisfy two condi-

tions (Line 5): a) it decreases the gdis(s, v′), i.e., the new path

from s to v′ has smaller length than the earlier ones; and b) the

new path from s to v′ together with the updated lower bound of the

shortest-path distance from v′ to t is no higher than d. Basically

these two conditions are the necessary ones for the new edge (v, v′)
may occur in a d-path. The FindDPath algorithm has the following

property:

LEMMA 2. If Algorithm 3 returns a path, it is the d-path from

s to t defined in the order of DFS procedure; if it does not return

a path, there is no d-path from s to t. Also, if we allow this proce-

dure to continue search after its discovery of the first d-path, this

procedure can eventually enumerate all the d-path from s to t in G.

We note that we can utilize this algorithm to enumerate all the d-

paths in G, which is the first step in the path-based estimator for

the Rd
s,t(G) (Subsection 2.2). In the next subsection, we will fuse

this algorithm with Algorithm 1 for a fast exact computation of

Rd
s,t(G).

A.2 The Complete Algorithm

Algorithm 4 R∗(G, E1, E2, Sv, Si)

Parameter: Sv : Vertex Stack for DFS;
Parameter: Si: Edge Index Stack for DFS;
1: if Sv .top() = t {Condition 1: E1 contains a d-path} then

2: return 1;
3: end if
{Find next edge e = (v, v′) can be explored in DFS:}

4: e← NextEdge(G, E1, E2, Sv , Si)
5: if e = ∅ {Condition 2: E2 contains a d-cut} then
6: return 0
7: end if

8: return p(e)R∗(G, E1 ∪ {e},E2,Sv .push(w), Si.push(1))
+(1− p(e))R∗(G, E1,E2 ∪ {e},Sv ,Si);

Procedure NextEdge(G, E1, E2, Sv , Si)
1: while !Sv .empty() do

2: v ← Sv .top();
3: for i from Si.top() to |N(v)| do
4: v′ ← v[i] {v’s i-th neighbor}; e = (v, v′); Si.top() + +;
5: if e /∈ E2 {not in excluding edge list} ∧ plen(Sv)+w(v, v′) <

gdis(s, v′)∧gdis(v′, t)+plen(Sv)+w(v, v′) ≤ d {conditions
(a) and (b)} then

6: if e ∈ E1 {Determined earlier} then

7: Sv .push(v′); Si.push(1); goto 2;
8: else
9: return e

10: end if

11: end if
12: end for
13: Sv .pop(), Si.pop() {DFS trace back};
14: end while

15: return ∅

In this subsection, we will combine recursive computation pro-

cedures R(Algorithm 1) and FindDPath(Algorithm 3) together to

calculate Rd
s,t(G) efficiently. The combination of OptEstR with

FindDPath is similar and thus is omitted for simplicity. Recall in

procedure R, the first key problem is how to select an uncertain

edge e for any G(E1, E2) prefix group of possible graphs. To solve

this problem, we choose the edge e to be the one which needs to be

visited once we all edges in E1 (and E2) have been visited in the

process of identifying the first d-path according to the FindDPath

procedure. Note that the edges in the exclusion set E2 are explic-

itly marked as the “forbidden” edges when they are in the line to be

visited for identifying the d-path, i.e., they cannot be utilized dur-

ing the search process. In other words, we may also consider edge

e is the next edge to be visited for the G(E1, E2) prefix group.

A major difficulty to implementing the aforementioned edge se-

lection strategy is that we have to couple two recursive procedures

(R and FindDPath) together. To solve this problem, we use two

stacks Sv and Si to simulate the DFS process for FindDPath: stack

Sv records the current active vertices (the active path) of the Find-

DPath for the partial group (G, E1, E2), and Si records the index

of the next edge in the line to be visited for the corresponding ver-

tex in stack Sv . To start with the search, we always store vertex s
in the bottom of stack Sv and put index 1 in Si as the first edge of

s needs to be visited first.

Using stacks Sv , Si, the procedure NextEdge describes how we

can get the next uncertain edge to be visited according to the Find-

DPath procedure (Algorithm 4). Basically, we apply the stacks and

iterations (Line 1, 3) to simulate the recursive process. Specifi-

cally, the top of stack Sv records the current active vertex v (Line

2) and we iterate on each of its remaining neighbors from Si.top()
to |N(v)| to search for the next candidate edge, which has the po-

tential to be a d-path(condition (a) and (b), Line 5 in FindDPath and

in NextEdge). Note that we do not consider those edges which have



been determined to be excluded from the resulting graph e /∈ E2

(Line 5). However, edge e = (v, v′) may be selected more than

once and after the first time is being visited, this edge is not uncer-

tain any more, i.e., e ∈ E1 (Line 6). In this case, we will continue

the search process by adding v′ to stack Sv and planning to visit its

first edge (Line 7). For any vertex v, if we exhaust all its outgoing

edges (or neighbors), we have to trace back (pop up the vertices in

the stack) to find the next edge (Line 13). Finally, when there are

no edges that can be selected to further extend the search (Sv is

empty, Line 1), empty edge ∅ is returned.

The complete algorithm using the NextEdge procedure is illus-

trated in R∗ (Algorithm 4). Here, we not only utilize the NextEdge

procedure for selecting the next edge e, but also use it to answer

whether E1 contains a d-path or E2 contains a d-cut for Algo-

rithm 1: if the top element of stack Sv is vertex t, then we basically

find a d-path from s to t using edges in E1; if the returned edge e is

∅ which suggests that there is no way to further extend the search,

then we can determine there is no d-path from s to t. Line 1−7 are

based on these two conditions to determine whether the recursion

can be stopped.

Finally, in Algorithm 4, for simplification, we omit the details

on how to handle the two cost functions g(s, v) and g(v, t) associ-

ated with each vertex v in order to prune the search process. Their

updates also need a stack-like mechanism to maintain, which are

similar to Sv and Si. The complete description of R∗ which in-

cludes the details of maintaining these two cost functions can be

found in the complete technical report [3].

The enumeration process in Figure 2(b) illustrates the compete

algorithm (R∗) which uses the DFS procedure for selecting next

edge. The correctness of the R∗ is easily established by Lemma 1,

?? and 2, and

R
d
s,t(G) = R∗(G, ∅, ∅, Sv.push(s), Si.push(1),

where stacks Sv and Si are empty initially. The total computa-

tional complexity of R∗ can be written as O(2aL), where a is the

average height of enumeration tree generated by R∗ and L is the

average number of edges (vertices) visited by FindDPath procedure

for determining whether there is a d-path in E1 or a d-cut in E2.

Note that a is the lower bound of L as some edges in the inclusion

set (E1) can be visited more than once by the NextEdge procedure

(Line 7 in NextEdge).

B. RELATED WORK
Our work on distance-constraint reachability query is a general-

ization of the two point reliability problem, or the simple s-t reach-

ability problem [20]. There has been an extensive study on comput-

ing the two points reliability exactly and no known exact methods

can handle networks with one hundred vertices except for certain

special topologies [20]. The exact techniques can be generally clas-

sified into two main classes: the first class computes the set of all

paths from s to t or the set of all cuts between them, and then ap-

plies the inclusion-exclusion formula or its extension [2, 9] to cal-

culate the exact reliability measure; the second class recursively se-

lects edges to transform graphs into those simplified graphs where

the series-parallel formula and its generalization (similar to com-

puting the conductance in the electrical network) [22] can directly

compute the s-t reachability. The recursive transformation in the

second class is similar to the factorization lemma developed in this

paper. However, in computing the simple reachability, an edge is

considered to be either contracted, i.e., eliminating the edge from

the graph and merging its two adjacent vertices into one, or to be

deleted from the graph. However, due to the distance-constraint, we

cannot perform the edge contraction in our problem and neither we

can compute reachability using the series-parallel formula. From

the exact computation perspective, the recursive method proposed

in this paper is a generalization of the second class method and it

can be applied to answer reachability problems with other types of

constraints.

Monte-Carlo methods have been studied to estimate the two point

reliability on large graphs [12]. From the user view point of view,

the quality of a Monte-Carlo method is measured by both its com-

putational efficiency and its accuracy (estimator variance). The ba-

sic method is based on directly sampling, just like the bRB estima-

tor used in this paper. Since it variance is quite high, researchers

have developed methods in trying to improve its accuracy. How-

ever, most of the methods for variance reduction need the per-

computation of path or cut sets [12, 16], which clearly are too ex-

pensive for online query. The bRP estimator is an extension of this

type of efforts. Though the methods proposed in this paper even

target on the general distance-constraint reachability, they can be

applied to the simple reachability. To the best of our knowledge,

the Horvitz-Thomson estimator bRHT and the recursive estimator
bRR have not been studied or discovered for the simple reachabil-

ity.

Managing and mining uncertain graphs has recently attracted

much attention in the database and data mining research commu-

nity [19, 28, 29, 30]. Potamias et. al. recently studied the k-Nearest

Neighbors in uncertain graphs [19]. They provide a list of alterna-

tive shortest-path distance measure in the uncertain graph in order

to discover the k closest vertices to a given vertex. They also com-

bine sampling with Dijkstra’s single source shortest-path distance

algorithm for estimation. The estimator used in [19] is based on

direct sampling. Our work differs from theirs because we consider

constrain the shortest-distance between two vertices and our goal

is to compute the probability of those uncertain graphs satisfying

such a condition. We propose fast and accurate estimators for this

purpose. In [28], Yan et. al. studied how to discover shortest

paths in uncertain graph with the condition that each such path has

at least a certain probability in the possible graphs of the uncertain

graph to be the shortest one. Zou et. al. study mining frequent

subgraphs [29] and top k-cliques [30] in a single uncertain graph.

In addition, we note there are a lot of recent researches in in-

corporating and handling uncertainty in the database system [1].

Our work specifically targets the uncertainty in graphs. Finally,

this study is also related to the latest efforts in managing graph

data and most of the studies have focused on the key graph queries,

such as reachability [15, 27] and shortest-path distance query [26].

However, they do not consider the aspect of uncertainty in graph

management.


