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ABSTRACT
Large ontologies and taxonomies are automatically harvested from
web-scale data. These taxonomies tend to be huge, noisy, and con-
tains little context. As a result, cleansing and enriching those large-
scale taxonomies becomes a great challenge. A natural way to en-
rich a taxonomy is to map the taxonomy to existing datasets that
contain rich information. In this paper, we study the problem of
matching two web scale taxonomies. Besides the scale of the prob-
lem, we address the challenge that the taxonomies may not contain
enough context (such as attribute values). As existing entity reso-
lution techniques are based directly or indirectly on attribute values
as context, we must explore external evidence for entity resolution.
Specifically, we explore positive and negative evidence in external
data sources such as the web and in other taxonomies. To integrate
positive and negative evidence, we formulate the entity resolution
problem as a problem of finding optimal multi-way cuts in a graph.
We analyze the complexity of the problem, and propose a Monte
Carlo algorithm for finding greedy cuts. We conduct extensive ex-
periments and compare our approach with three existing methods
to demonstrate the advantage of our approach.

1. INTRODUCTION
One of the computational grand challenges for the 21st century

is integrating, representing, and reasoning over human knowledge.
For centuries, innumerable efforts have been devoted to manage hu-
man knowledge, and a large variety of domain-specific or domain-
general ontologies and taxonomies have been constructed for this
purpose.

Large scale modern ontologies and taxonomies are automatically
harvested from a large amount of data, for example, the web cor-
pus [27, 36, 11]. An automatically harvested taxonomy typically
has the following characteristics:

• The taxonomy has a large number of categories. For ex-
ample, Probase [36, 26] has 2.7 millions categories. In ad-
dition to popular categories such as country and artist, the

∗This work is done at Microsoft Research Asia. The first au-
thor’s internship was partially supported by NRF (National Re-
search Foundation of Korea)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th  September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 21508097/11/08... $ 10.00.

taxonomy contains long tail concepts that are very concrete
and specific, for example, 18th century European painters,
coastal Chinese provinces, and basic watercolor techniques.
Each category contains a number of sub-categories or in-
stances. The entire taxonomy can be considered a database
of millions of tables.

• Since the taxonomy is automatically harvested using infor-
mation extraction and machine learning techniques, inevitably
it contains noises and inconsistencies. For example, the cat-
egory of US presidents may contain the following instances:

{ · · · , George H. W. Bush, George W. Bush, Dubya, Presi-
dent Bush, G. W. Bush Jr., · · · }
Here, “George H. W. Bush” and “Dubya” refer to the same
person, while “George W. Bush” and “George H. W. Bush”
refer to two different persons.

• The raw taxonomy contains little context. Typically, each en-
tity is only represented by a name. For example, for “George
H. W. Bush” in the US presidents category, we have no in-
formation such as birthday, political party, religious belief,
etc.

Cleaning and enriching a large-scale, automatically harvested
taxonomy poses great challenges. Clearly, most cleaning requires
entity resolution. To enrich the taxonomy, a natural approach is to
map the taxonomy to all sorts of existing datasets that contain rich
information about the entities. However, in order to perform such
mapping, we must address the problem of entity resolution first.

Entity resolution relies on the context of the entity. For a per-
son, such a context may include attribute-based information, such
as his name, birthday, affiliation, etc., or relationship-based infor-
mation, such as as co-authorship, etc. In summary, state-of-the-art
entity resolution approaches can be classified into the following 3
categories [7].

• Attribute-based entity resolution: This approach uses a
similarity measure over attributes, and two instances that have
attribute similarity above a certain threshold are considered
to be the same entity.

Example: A and B have the same (or a very similar) name,
affiliation, birthday → A and B are the same entity.

• Naı̈ve relational entity resolution: In addition to the at-
tributes of the two instances themselves, this approach also
considers the attribute similarity of their related instances.

Example: A and B have similar attributes, and A and B have
co-authors with very similar attributes → A and B are the
same entity.



• Collective entity resolution: Whether two instances map to
the same entity or not also depends on whether their related
instances map to the same entities.

Example: A and B have similar attributes, and A and B have
co-authors with very similar attributes, and A and B’s coau-
thors map to the same entity → A and B are the same entity.

Clearly, all of the above approaches, including collective entity
resolution, are directly or indirectly based on attribute similarity.
This creates a big challenge for the taxonomy mapping application.
A raw, automatically harvested taxonomy does not have much con-
text for its instances or concepts. Each instance only has a name,
and entity resolution based on names only is clearly error-prone.

Existing large-scale ontologies [27, 11] address this problem, by
using natural language text appearing around the entity name as
contextual information for entity resolution. However, such context
is inherently noisy, which requires subsequent automatic reasoning
to eliminate inconsistency. Such reasoning is computationally in-
tensive and also highly conservative, which limits the scalability
and recall of these methods.

In contrast, our goal is to tackle the dual challenges of the lack
of context, and the scalability to web-scale ontologies. The second
challenge is especially important for Probase, containing 16 million
instances of unique names. Suppose we want to map its instances
to Freebase, which contains 13 million entities. It is infeasible to
perform 16 million × 13 million pairwise entity resolution.

Overview of Our Approach
Overcoming the two challenges mentioned above is essential to ef-
fectively cleaning and enriching a web scale taxonomy. To address
the challenge of not having enough contextual information for en-
tity resolution, we collect probabilistic relational evidence from ex-
ternal sources, and use this external evidence for entity resolution.

Specifically, we collect two types of evidence. The first type of
evidence is positive evidence. For example, suppose in the cate-
gory of US cities there are two instances, “New York City” and
“the Big Apple.” Since the two names have no lexical similarity, it
is impossible to come to the conclusion that they actually refer to
the same entity unless we find evidence elsewhere. There are many
external sources that may provide such evidence. For example, we
may find a sentence that says “... New York City, also known as the
Big Apple ...” or we may find that “the Big Apple” is listed as one
of the synonyms for “New York City” in Wikipedia. One question
is, how do we know “the Big Apple” in the external source refers
to “the Big Apple” in the taxonomy? The answer is that we do not
know for sure. However, we are not relying on a single instance.
The fact that the same set of instances co-occurs in the taxonomy as
well as in the external sources reinforces the mappings between the
corresponding pairs. In our approach, positive evidence is proba-
bilistic, and the associated probability indicates the strength or the
credibility of the evidence.

We rely on positive evidence from external sources because our
data itself does not have much context information. However, using
positive evidence only is very risky, particularly when the external
sources (e.g., the world wide web) are not always reliable and infor-
mation extraction methods have errors. Without counter-evidence,
we may conclude that two instances refer to the same entities if
they show some insignificant similarity.

To solve this problem, we focus on a more important type of ex-
ternal evidence, which is negative evidence. If we find a sentence
that says “... presidents such as George W. Bush, Bill Clinton, and
George H. W. Bush”, then we may conclude that George W. Bush
and George H. W. Bush refer to two different persons, because a
well formed list probably contains no duplicates. The idea of using

negative evidence is not new. For example, when resolving ref-
erences of co-authors of a paper, we know that each name in the
co-author list refers to a unique person. However, in our work, we
go beyond the data we have to explore negative evidence in exter-
nal sources. We show that such kind of negative evidence can be
found in many external sources, for example, in tables or lists on
the web, or in a very well organized taxonomy (such as Freebase).

Finally, given both positive and negative evidence, we face the
task of consolidating them to achieve entity resolution of high ac-
curacy. For instance, knowing that x is similar to y, and y is similar
to z (positive evidence), and also knowing that x is not z (negative
evidence), how do we perform entity resolution for x, y, and z? In
this paper, we formulate the problem of entity resolution with pos-
itive/negative evidence as a multi-way graph cut problem, and we
propose a greedy approach to effectively solve the problem.

Besides the challenge of lacking context for entity resolution, we
also have the scalability challenge. Consider mapping Probase, an
automatically harvested taxonomy, to Freebase, a community built
taxonomy. It is important to create mappings between multiple tax-
onomies for two reasons. First, mappings improve understanding,
even if the two taxonomies are in the same domain. Second, taxon-
omy construction is a costly process, and it saves time and money
if an existing taxonomy can be used to enrich a new taxonomy, and
vice versa.

Since Probase contains 16 million entities in more than 2 mil-
lion categories, and Freebase contains 13 million entities in 12.7
thousand categories, pairwise entity resolution is infeasible. In-
stead of comparing every pair of entities, we first look at the cat-
egories they belong to in each taxonomy. The intuition is that
we probably do not need to compare entities in the category of
“rare plants” with entities in the category of “animals.” However,
we might need to associate the category of “endangered species”
with the category of “animals.” The challenge is that among the
12.7 thousand× 2 million pairs of categories between Freebase
and Probase, how do we figure out which pairs need our attention?

Paper Organization
The rest of the paper is organized as follows. In Section 2, we
discuss related work. Section 3 describes the taxonomies we are
working with. In Section 4, we introduce the types of evidence we
use for entity resolution. Section 5 presents our method of entity
resolution and taxonomy matching. In Section 6, we report experi-
mental results, and we conclude in Section 7.

2. RELATED WORK
Entity resolution, or reference reconciliation, is a challenging

problem in data integration. Naive methods for entity resolution are
based on string similarity [25, 13]. Machine learning approaches
are introduced to combine domain knowledge with string similar-
ity measures [8, 29]. String similarity based methods cannot handle
the case where an entity can have totally different names, for exam-
ple, ‘The Governator’ as a nickname for ‘Arnold Schwarzenegger.’
Furthermore, supervised methods are costly in our scenario, since
the taxonomies we are dealing with contain millions of categories
(domains), which means we need millions of training data sets.

Entity resolution is critical for integrating relational data [19].
A database table usually has multiple columns and contains many
values. Attribute-based entity resolution is effective if the data is
rich and noise free. But there are also challenges; for example, at-
tributes in the two tables may require reconciliation as well; some
attributes may be more important than others for measuring simi-
larity for records [2]; and the data is never noise free. A possible
approach is to regard attributes and their values as classes and enti-
ties on their own, and leverage relations among them to help solve



the entity resolution problem. This leads to the relational entity res-
olution approach [1], which says two similar instances are likely to
be the same entity if the instances that they are associated with are
similar. Bhattacharya et al. [6] introduced the collective entity res-
olution approach, which strengthens this heuristic by requiring that
the instances they are associated with must not only look similar,
but need to be the same entities.

Recent approaches also leverage knowledge acquired from exter-
nal sources for domain-independent entity resolution. For example,
some approaches extract entities’ surface forms (names or aliases)
from Wikipedia and build a synonym dictionary for entities [14,
10, 21]. Given a name, we first find Wikipedia articles correspond-
ing to the name or to its synonyms, and then create a bag-of-words
vector for the name, using the words from the Wikipedia articles.
Finally, we compare two names using metrics such as the cosine
similarity for entity resolution. These approaches assume entities
have corresponding Wikipedia articles, but that covers a very small
percentage of entities. One way to extend it is to consider transitive
relation of positive evidence (i.e., if x is a synonym of y, and y is
a synonym of z, then x might be a synonym of z), although it may
introduce some noise.

Some recent work employs negative evidence for entity resolu-
tion. Dong et al. [17] focus on the case where each entity has a
set of attribute values. They use a propagation method to link re-
lated mentions, and use negative evidence to restrict the propaga-
tion. However, the constraint rules for negative evidence is hand-
crafted. Most recently, Whang et al. [34] use domain knowledge as
negative rules. Entity resolution relies on attributes and values of
the entities, and the approach does not scale well when the num-
ber of entities and rules become large. Basu et al. [4] introduced
a probabilistic clustering framework using a Hidden Markov Ran-
dom Field with must-links and cannot-links embedded in it. This
clustering method is only applicable when the number of clusters
is known a priori.

Ontology integration has been studied in the context of small-
scale domain-specific ontologies. Specifically, ILIADS [30] em-
ploys a similarity measure, linearly combining lexical, structural
and extensional similarities, between categories, entities, and prop-
erties. GLUE [16] trains a classifier using lexical similarity, and ex-
ploits the structure of ontology using relaxation labeling. It focuses
on matching concepts between ontologies, assuming instances are
rather clean. Meanwhile, [32] discusses mapping instances using
an SVM classifier combining string and structural similarity. All
these methods, however, assume integrating small-scale ontologies
and cannot scale over a large number of entities and concepts. In
addition, as web-scale ontologies cover a large number of domains,
their assumptions of (a) high structural similarity between ontolo-
gies and (b) existence of sufficient human-labeled training data
become unrealistic as well. For web-scale taxonomies [27, 11],
cleansing is tightly coupled with population, using textual context
for resolution. Our work complements these approaches by cleans-
ing in a batch.

3. TAXONOMIES
A taxonomy or an ontology provides a shared conceptualization

of a domain. Recently, there is a lot of interest in using structured
data to empower search or other applications. A general purpose
taxonomy about worldly facts is indispensable in understanding the
user intent, and many efforts are being devoted to composing and
managing such taxonomies.

We choose two web-scale taxonomies, namely Freebase [9] and
Probase [36], to study the problem of ontology mapping and entity
resolution. From their major features listed in Table 1, we can see
the two taxonomies are unique in their own ways. Probase is au-

tomatically harvested from web data. Although both Probase and
Freebase are big, Probase is unique in the sense that it has an ex-
tremely large number of categories (2 million in Probase vs. 12.7
thousand in Freebase). For example, in Probase, Emerging Mar-
kets is a category on its own, and it includes subcategories such as
BRIC, and instances or entities such as China, Mexico, Russia, In-
dia, Brazil, etc. The goal of Probase is to cover as many concepts
of worldly facts in the collective mind of human beings as possi-
ble, in the hope that it will enable better understanding of human
communications (natural language).

Table 1: Two unique taxonomies.
Freebase Probase

how is it built? manual automatic
data model deterministic probabilistic
taxonomy topology mostly tree DAG
# of categories 12.7 thousand 2 million
# of entities 13 million 16 million
information about entity rich sparse
adoption widely used new

On the other hand, Freebase has richer information about many
entities. For example, for someone like Barack Obama, Freebase
has the date of his birth, names of his spouse and kids, information
about his religion, political party, etc. Although Probase contains
a list of attributes for each category (i.e., Probase knows a date of
birth is an attribute of a person), there are not many attribute values.
Thus, a big motivation for matching the two taxonomies is to enrich
the content of Probase at the entity level, and to enrich the content
of Freebase at the category level.

Compared with manually constructed taxonomies, taxonomies
automatically generated from data have advantages in scale and
costs. Probase [36] is a research prototype that aims at building
a unified taxonomy of worldly facts from web data and search log
data. Compared with Freebase, the Probase taxonomy is extremely
rich. The core taxonomy alone (which is learned from 1.68 billion
web pages and 2 years’ worth of Microsoft Bing’s search log) con-
tains more than 2 million categories, while Freebase contains about
12.7 thousand categories. As categories in Probase correspond to
concepts in our mental world, Probase is valuable to a wide range
of applications, such as search [33], where there is a need to inter-
pret users’ intent.

Probase contains many IS-A relationships that are harvested us-
ing so called Hearst linguistic patterns [23], that is, SUCH AS like
patterns. For example, a sentence that contains “... artists such as
Pablo Picasso ...” can be considered evidence for the claim that
Pablo Picasso is an instance in the artist category. For each cate-
gory, Probase also collects a large set of attributes that can be used
to describe instances in the category. For instance, the artist cate-
gory may contain such attributes as name, age, nationality, genre,
specialization, etc. Furthermore, Probase contains many relation-
ships among instances of different categories. Figure 1 shows an
interface which users can use to browse the Probase taxonomy, and
we can see a category (politicians) has many super categories, sub
categories, instances, and similar categories.

It is not difficult to see that there is a strong need to integrate a
taxonomy like Freebase with a taxonomy like Probase. With the in-
tegration, Freebase will have more information about categories, al-
lowing Freebase to understand human concepts better, and Probase
will have more information for each instance, giving Probase more
knowledge in inference. In this paper, we study the challenges in
creating a mapping between such taxonomies under this setting.



Figure 1: The Probase Taxonomy.

4. EXTERNAL EVIDENCE
In this section, we discuss how to obtain and quantify evidence

from external sources, and in Section 5 we discuss how to use the
evidence for entity resolution. Previous work assumes that each
entity comes in a context, for example, a text window where an
entity appears, or a set of attributes (such as a person’s gender or
birthday) that describe the entity. Such context information is then
used as positive or negative evidence. However, the context may
be insufficient or noisy (e.g., the text window around an entity may
contain irrelevant information that confuses entity resolution). In
our work, we focus on a large number of entities that come with
little context. For instance, assuming a list contains nothing but
three names George W. Bush, George H. W. Bush, and Dubya, how
to find out how many distinct entities it contains? In this section,
we explore evidence beyond entities’ immediate context to solve
this problem.

4.1 Negative Evidence
Let (xi, yi) denote the claim that xi and yi represent the same

entity. Any evidence that supports the claim (xi, yi) is called pos-
itive evidence, and any evidence that rejects the claim (xi, yi) is
called negative evidence.

Negative evidence is particularly important in entity resolution.
For instance, string similarity may provide strong evidence that
George W. Bush is likely President Bush, and President Bush is
likely George H. W. Bush. Intuitively, we may conclude that George
W. Bush is George H. W. Bush, unless there is negative evidence to
break the transitivity.

The challenge is then, how to find negative evidence? Previous
work is based on data content. For example, if two persons with
similar names have different birthdays, then we can conclude that
they cannot be the same individual, unless the data is wrong. How-
ever, in many cases (e.g., taxonomies such as Probase), we do not
have sufficient content information for all entities.

We argue that although individual data items may not contain
much content, the community formed by the related items may
contain valuable clues for entity resolution. In our work, we derive
negative evidence based on how the data is inter-connected inter-
nally (e.g., in the taxonomies we are studying) as well as externally
(e.g., on the web).

The ‘Birds of a Feather’ Principle (BoF)
Here is our intuition: Michael Jordan the professor and Michael
Jordan the basketball player may not have too many friends in com-
mon. In other words, unless two persons with similar names have
many common friends (i.e., their friends also have similar names),
it is not likely that the two names refer to the same individual.

In a taxonomy (such as Probase), a data element may not contain
much content, but the connections among the elements can be ex-
tremely rich. We use the connections, or the structure formed by the
data, as a most important source of evidence. Specifically, we con-
sider two types of connections: i) the connection between elements
and the category they belong to (e.g., {Michael Jordan, Shaquille
O’Neal} and basketball players) ; and ii) the connection between
attributes and the category they describe (e.g., {genre, artist, pro-
ducer} and album). In a modern taxonomy such as Probase, cate-
gories, elements, and attributes are all objects, and they are inter-
connected in a graph. Thus, a category can be regarded as a graph
community formed by elements and attributes. We derive impor-
tant negative evidence from such communities:

Negative evidence from the community: Let t be a threshold, and
c1, c2 be two categories. We consider sim(c1, c2) ≤ t as negative
evidence for any claim (x, y) where x ∈ c1, and y ∈ c2.

Here, sim(c1, c2) measures the similarity between two categories.
We define sim(c1, c2) by linear combination as follows:

sim(c1, c2) = λ · f(Ec1 , Ec2) + (1− λ) · f(Ac1 , Ac2) (1)

where Ec, and Ac denote the set of elements and attributes in cat-
egory c respectively, λ is a parameter that balances the importance
between elements and attributes, and f is a set similarity function
based on Jaccard distance.

The ‘Clean data has no duplicates’ Principle (CnD)
If a list is well formed, then it probably does not contain any du-
plicates. Freebase is manually created and maintained. Thus, we
can be relatively certain that each element in a Freebase category is
a unique element in that category. This gives us negative evidence
for entity resolution. For example, given that George W. Bush and
George H. W. Bush both appear in the category of US Presidents,
we can conclude that the two very similar names cannot be refer-
ring to the same individual.

Probase, on the other hand, is automatically created and main-
tained. Thus, a category may contain duplicates. For example,
Bill Clinton and William J. Clinton may both appear in the cate-
gory of US Presidents. Still, we can derive negative evidence from
Probase. As we mentioned, Probase derives the IS-A relationship
from Hearst patterns. For example, from the sentence “US Presi-
dents such as George W. Bush, Bill Clinton, George H. W. Bush,”
Probase concludes that George W. Bush, Bill Clinton, George H. W.
Bush are US Presidents. But given that the three names appear in
the same sentence, we can conclude that the three names represent
three individuals. In other words, there is negative evidence for the
claim (George H. W. Bush, George W. Bush), but there is likely no
negative evidence for (Bill Clinton, William J. Clinton).

Besides Freebase and Probase, we also derive negative evidence
from the web using the same argument. One source of evidence
comes from Wikipedia. Wikipedia contains many lists such as a
list of mountains. Furthermore, the lists are well formed and easily
identifiable: they all have a title in the form of “list of ***.” We ex-
tract entity names from the list, and assume mentions in the list will
represent different entities. Furthermore, Wikipedia has structured
tables. Usually, a table has an entity column and multiple attribute
columns. In the entity column, we can get entity names and assume
there are no duplicates. In theory, we can apply the same reasoning
to data on the web. However, web data is often very noisy, which
reduces the quality of the negative evidence.

4.2 Positive Evidence
Each piece of positive evidence is associated with a weight in the

range of [0, 1], which indicates how strong the evidence is. For in-



stance, string similarity can be used as a source of evidence. Table 2
gives some examples, where we use Jaccard similarity to measure
how strong the evidence is.

Table 2: String similarity as positive evidence.
id claim evidence
1 (Bill Clinton, President Clinton) .33
2 (George W. Bush, Dubya) 0
3 (George W. Bush, George H. W. Bush) .75

Although string similarity seems to work well in some general
cases, its limitations are obvious: i) For claim 2, the evidence based
on string similarity has 0 weight, yet we know George W. Bush
is also known as Dubya; ii) For claim 3, George H. W. Bush and
George W. Bush have strong string similarity, yet they are father
and son, not a single person.

In our work, we obtain positive evidence to support the claim
that George W. Bush and Dubya refer to the same person. To do
this, we need to go beyond string similarity, and explore the re-
lationships among the two instances directly in external sources.
Specifically, we explore Wikipedia and the web for positive evi-
dence. Wikipedia has been used for disambiguation in several re-
cent works [14, 10]. In our work, we consider some special con-
structs used in Wikipedia.

• Wikipedia Redirects: Some Wikipedia pages do not have
their own content, and accesses to such pages are redirected
to other pages. We use xi ∼ yi to denote the redirection.

• Wikipedia Internal Links: Links to internal pages are ex-
pressed in shorthand by [[Title | Surface Name]]
in Wikipedia, where Surface Name is the anchor text, and
the page it links to is titled Title. Again, we denote it as
xi ∼ yi, where xi is the anchor text, and yi is the title.

• Wikipedia Disambiguation Pages: An ambiguous phrase may
correspond to multiple Wikipedia pages, each representing
a specific interpretation of the phrase. Wikipedia puts such
pages together for each ambiguous phrase. We denote this as
x ∼ yi, where x is the ambiguous phrase, and yi is the title
of any of the Wikipedia pages.

• Besides Wikipedia, we also explore positive evidence on the
web. We select several patterns, including ‘x also known as
y’, ‘x, whose nickname is y’, etc., and construct a large set
of x ∼ y.

4.3 Quantifying positive evidence
The evidence that supports a claim (x, y) may come from mul-

tiple sources, and each source gives a score in the range of [0,1] as
an indicator of the strength of the evidence.

Each source employs its own mechanism to score the evidence.
For example, for string similarity, a useful measure is the Jaccard
coefficient: w(x,y) =

|x∩y|
|x∪y| , where x∩y denotes the set of common

words in x and y, and x ∪ y denotes the union of words in x and
y. Alternatively, we can use Dice’s coefficient, w(x,y) = 2nt

nx+ny
,

where nt is the number of character bigrams found in both strings,
and nx and ny are the number of bigrams in string x and y respec-
tively.

Both the Jaccard and the Dice’s coefficients may encounter some
problems. Consider the highschool category which contains the
following instances {riverdale high school, riverfall high school}.
The two have high similarity (0.5 based on Jaccard, 0.9 based on
Dice’s coefficient) because they share a substring “high school.”

Unfortunately, this is a very common substring in the highschool
category. To correct this problem, we use weighted Jaccard simi-
larity, where the weight is defined by the inverse of term frequency.

Other sources may collect multiple pieces of evidence for a claim.
For example, in Wikipedia links, there are 32,467 occurrences of
united states ∼ usa, and 122 occurrences of George W. Bush ∼
George Bush. We can use the Sigmoid function to take into consid-
eration the multiple occurrences.

w(x,y) =

{
1

1+e1−t t > 0

0 t ≤ 0
(2)

where t is the number of occurrences. Hence, if there is only a
single piece of evidence backing up a claim, then the evidence has
a weight of 0.5. When t becomes larger, the weight becomes closer
to 1.

Finally, assume evidence from k sources returns a vector of k
scores, (a1, a2, · · · , ak), where each score ai is in the range of
[0, 1]. Our goal is to map the k scores into one score in the range
[0, 1]. We apply the noisy-or model.

1− (1− a1) · (1− a2) · · · (1− ak) (3)

Intuitively, the evidence for a claim has a high score as long as
one evidence source gives it a high score. For instance, though
George W. Bush and Dubya share no lexical similarity, Wikipedia
frequently suggests Dubya is his nickname (strong evidential simi-
larity).

5. METHODS
This section discusses how we use the evidence for entity reso-

lution.

5.1 Problem Definition
We formally abstract claim (x, y) as graph connectivity, using

graph G = (V,E) with a set of vertices V representing the union
of entities from two taxonomies, and a set of edges E with weight
quantifying positive evidence between two entities (Eq 3).

Given G, our aim is to group entities into clusters, so that entities
in the same cluster refer to the same real-life entity. Specifically,
we want to find a cut C ⊆ E to specify which edges we want to
cut from G, such that each connected component in G′(V,E −C)
corresponds to the same real-life entity. Among all possible cuts,
our goal is to find C that are (a) best supported by positive evidence
and (b) not rejected by negative evidence. More formally, our goal
is to find G′ satisfying the following criteria:

• Positive Evidence: G′(V,E−C) should maximize the pos-
itive evidence supporting the claim e ∈ E − C quantified
as w(e). In other words, C should minimize the following
objective function: ∑

e∈C

w(e)

• Negative Evidence: A valid solution G′ should disconnect
x and y rejected by some piece of negative evidence Ni.

This problem can be formalized as the multi-multiway cut prob-
lem [3]. In this problem, given G and k sets N1, . . . , Nk of ver-
tices, the goal is to find a subset C of edges whose removal discon-
nects every x, y ∈ Ni for some i with minimal cost. This problem
can be formulated as the following integer programming problem
[3]:
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Figure 2: A graph with i) 6 entities connected by positive ev-
idence of different weights, and ii) two pieces of negative evi-
dence: {a,c} ∈ N1 and {b,d} ∈ N2.

minimize
∑
e∈C

w(e)x(e)

subject to

∀P ∈ P :
∑
e∈P

x(e) ≥ 1

∀e ∈ E : x(e) ∈ {0, 1}

where P denotes the set of all paths between u, v ∈ Ni for some i.
However, finding an exact solution requires ILP (integer linear pro-
gramming) optimization populating binary decision variables x(e)
for every entity pair, O(1014) in our problem, with the constraints
enumerating all possible paths between every entity pair mentioned
in negative evidence and requiring their disconnection. Even the
best known approximation algorithm [3] requires expensive LP op-
timization and P enumeration, and is still too expensive for our
target problem. In addition, this solution has O(logk) approxima-
tion ratio, which is also not desirable for our target problem of large
k.

To build a scalable approximation algorithm, we revisit the two
principles discussed in Section 4, which we will describe in detail
in the following two sections.

• Using the ‘Clean data has no duplicates (CnD)’ principle:
We use negative evidence from clean data to develop an ap-
proximate graph cut that is highly efficient and accurate.

• Using the ‘Birds of a Feather (BoF)’ principle: We localize
our graph to compare only the entities in matching categories
c1 and c2 with high sim(c1, c2) > t, as the BoF principle
rejects (x, y), when x ∈ c1, y ∈ c2, sim(c1, c2) ≤ t.

5.2 Using the CnD Principle
As Section 4 discussed, negative evidence from some sources,

e.g., Freebase created and maintained manually, does not contain
any duplicates. Such cleanness can be exploited for efficient graph
cut computation. More formally, we define clean data as follows:

DEFINITION 5.1 (CLEAN EVIDENCE). k sets of negative evi-
dence N1, . . . , Nk is clean, if and only if x ∈ Ni and y ∈ Nj with
different names cannot refer to the same real-life entity.

For example, N ′
1 ={Bill Gates, Bill Clinton} and N ′

2 ={William
Gates, Bill Clinton} are not clean, as Bill and Willam Gates refer to

the same entity. In clear contrast, N1 ={Bill Gates, Bill Clinton}
and N2 ={Barack Obama, Bill Clinton} is a clean set.

For a clean set, our optimization problem can be reduced to a
special case of multi-multiway cut with k = 1, known as the mul-
tiway cut problem [15]. That is, we can aggregate k sets of neg-
ative evidence into a single set ∪iNi. For example, in the above
clean set example, we can aggregate N1 and N2 into a single set
∪iNi ={Bill Gates, Bill Clinton, Barack Obama}, suggesting any
claim (x, y) for x, y ∈ ∪iNi should be rejected. The same ag-
gregation would not work for the dirty set example, as Bill and
William Gates in ∪iN

′
i ={‘Bill Gates’, ‘Bill Clinton’, ‘William

Gates’} refer to the same person and should not be rejected.
The multiway cut problem is proved to be NP-hard when m =

| ∪i Ni| ≥ 3, and an efficient “isolation heuristic” gives an approx-
imation ratio of 2− 2

m
[15]. In this paper, we discuss this heuristic,

though there is an approximation algorithm with possibly better ra-
tios, e.g., 1.348 [24], as all other existing solutions do not scale for
our graph, requiring LP optimization.

The isolation heuristic works as follows. For any “terminal”
tj ∈ ∪iNi, we will find its minimum weight “isolating cut”, which
is a subset of edges, whose removal disconnects tj from all other
terminals. Such a cut can be found by connecting all other termi-
nals to a shared new vertex v with infinite weight and running the
maximum flow algorithm from tj to v. Once we find the isolating
cut for each terminal node, the union of the sets is an approximate
answer. A more detailed description is available in Algorithm 1.

Algorithm 1 Isolation heuristics
Require: G = (V,E), terminals ∪iNi = {t1, . . . , tm}

For each ti, compute a minimum weight isolating cut Ei

Output E1 ∪ . . . ∪Em−1, assuming w(E1) ≥ . . . ≥ w(Em−1)
(without loss of generality)

In our problem, as we collect negative evidence that is both clean
and dirty, we divide it into two sets N and N ′, i.e., N ∪ N ′ =
∪iNi and take a two-phase approach: First, we run the isolation
heuristics for clean set N . Once we get connected components, we
investigate each Ni ∈ N ′, to identify violated entity pairs s, t ∈ Ni

which belong to the same connected component. Once we collect
all such pairs, we can find a minimum weight cut using s as a source
node and t as a sink, known as s− t cut [18], separating two pairs
and thus eliminating a violation. S − t cut can be computed in
polynomial time for every violated pair.

For faster computation, we consider a greedy approximation of
isolation heuristics. Specifically, we start from G with singleton
clusters, i.e., G′ = (V, ϕ), where all terminals are trivially isolated.
We can then greedily add the isolating cut with the highest weight
first.

As the problem is NP-hard, this greedy heuristic finds a sub-
optimal solution, as illustrated in Figure 2 with two pieces of neg-
ative evidence N1 = {a, c} and N2 = {b, d}. Starting from
singleton clusters, we iteratively add edges in decreasing order of
weights– We will choose to insert edges (a, b), (c, d), (a, e), (c, f).
After these four inserts, the next candidate would be (a, f), which
is not an isolating cut because it violates N1 and generates a path
from a to c. Similarly, (b, f) is not an isolating cut because it gen-
erates a path from b to d. We thus skip these two candidates and
continue to add (d, f). This insert terminates the search, as we can-
not add any more edges without violating negative evidence. This
solution with a cost of 0.4+ 0.3+ 0.6+ 0.6 = 1.9 is sub-optimal,
as adding (a, f) and (b, f) instead of (c, f) and (d, f) would lower
the cost to 0.4 + 0.3 + 0.1 + 0.7 = 1.4.

We thus implement a Monte Carlo approach in Algorithm 2 to
randomize edge insertion with probability proportional to the cost



from the “randomized candidate list” RCL. Furthermore, this pro-
cedure can be repeated several times and the lowest cost cut can be
identified as a solution.

Algorithm 2 Monte Carlo heuristics
Require: G = (V,E), N = N1, ..., NM

E′ = ϕ, RCL = E
while RCL is not empty do

Randomly select e from RCL with probability proportional to
its weight
RCL = RCL \ {e}
if e is an isolating cut then

E′ = E′ ∪ {e}
end if

end while
return (V,E′)

After a graph cut, each connected component corresponds to one
real-life entity. As each Freebase entity corresponds to a unique
real-life entity, each component has at most one Freebase entity,
which we label with belief 1.0 and then propagate to unlabeled
Probase entities using Random Walk with Restart to calculate the
label probability of each node in the subgraph. Once the propaga-
tion converges, the scores can be used to prune out Probase entities
with low scores.

5.3 Using the BoF Principle
As computing cuts is expensive, we reduce the given graph such

that entities in E belong to the matching categories. That is, for our
aim of entity resolution, a book entity cannot refer to a person. We
can thus use ontological information, representing which category
the entity belongs to, in order to significantly reduce the graph size.

To decide whether two categories c1, c2 are a match, we dis-
cussed sim(c1, c2) in Eq. 1, combining the similarity between el-
ement sets Ec and attribute sets Ac of the two categories. More
specifically:

• f(Ec1 , Ec2): Most existing ontology integration work quan-
tifies a set similarity between Ec1 and Ec2 , e.g., using Jaccard
similarity or its variants as used in [30].

• f(Ac1 , Ac2): Alternatively, one can compare Ac1 and Ac2 .
From Freebase, each category is associated with a single re-
lational table, from which we can obtain a set of attributes.
However, for Probase, we can collect many table instances
describing entities of the given category. We thus use the vec-
tor space model used for representing text documents, to rep-
resent each category as a frequency vector of a universe of
attribute names used, normalized by the number of table in-
stances. For instance, a Probase class album is frequently rep-
resented by attributes {genre, artist, producer}, represented
by an attribute frequency vector {0.9253, 0.8431, 0.8301}.
Meanwhile, an attribute frequency vector for the Freebase cat-
egory will have binary values. The similarity f(Ac1 , Ac2) is
generally computed using cosine similarity or KL-divergence.

Using Ac complements Ec in the following two ways: First,
when using Ec similarity alone, two entities with the same name
cannot be distinguished. For example, electronics is both an indus-
try and a genre. When comparing two categories of small size, such
a false match may lead to the overestimation of the concept simi-
larity. In our dataset, two unrelated categories /broadcast/genre
and manufacturing companies of size 306 and 108 have a few false
matches, such as electronics and automotive, which generates a
high Jaccard similarity score 0.0147. (Check Table 7 to see this

is significant). Meanwhile, if considering Ac similarity as well,
we can distinguish electronics the industry and the genre, as at-
tributes describing the two would be different. Second, the size
of Ec varies by orders of magnitude over categories and sources,
e.g., two identical categories albums (from Probase) /music/album
(from Freebase) have 1900 and 526,038 entities respectively. A se-
vere imbalance in the size of Ec, though we attempt normalization,
negatively affects the reliability of metrics, while Ac sizes are more
balanced.

Accurate computation of both metrics requires us to resolve en-
tities and attributes, as treating the entities Bill Gates and William
Gates, or the attributes author and writer, as unmatched would un-
derestimate the score. However, as we are computing these metrics
for the goal of entity resolution, it is unrealistic to assume entities
and attributes are resolved a priori. We thus consider only exact
matches for both entity and attribute similarity, as a lower bound-
ing estimate, to reduce the graph size. Once we compute graph
cuts, we can apply our finding, e.g., Bill Gates ∼ William Gates, to
recompute f(Ec1 , Ec2) so as to refine the score into a tighter lower
bound. From this refinement, we can identify some unrelated cate-
gories, which were identified as matching, and we can drop entity
resolution results obtained from such category pairs.

5.4 Class Matching Algorithm
For deciding threshold t defining matching Ec or Ac, we model

both Ec and Ac as frequency vectors and estimate the distribution
of dot product similarity, as it is the common numerator in both
Jaccard similarity and cosine similarity. For each Freebase c1, the
distribution of its dot product similarity to all Probase classes, ac-
cording to the observation in [28], can be modeled as inverse nor-
mal distribution and its mean and variance can be estimated from
the mean and variance obtained from Probase distribution. This
distribution is characterized by a mass of probability close to zero,
corresponding to the pairs unmatched, with the minority long tail
with high score, corresponding to matching pairs. We can identify
t with drastic probability change as threshold.

Once t is identified, a naive solution for finding a matching class
with the highest cosine similarity score would be all-pair compu-
tation, for 12.7 thousand × 2 million class pairs. Though a naive
all-pair class comparison may be feasible for this specific case with
a small number of categories in Freebase, it cannot scale for joining
two large-scale ontologies, each with millions of categories (or, for
self-joining Probase).

For more scalable computation of f(Ac1 , Ac2), we can build in-
verted indices that map each attribute to a list of Probase classes
(sorted in the order of probability), to efficiently locate the match-
ing class and minimize computation of the similarity score. Such
an index enables us to locate the matching Probase class with sub-
linear scan for each Freebase class and thus significantly reduce
pairwise computation.

For f(Ec1 , Ec2), we can view the problem as a set similarity
join by the overlap of two sets X and Y . Many efficient algorithms
have been proposed [37, 12, 5], which order all sets based on the
same ordering. Once ordered, two sets with high enough similarity
would share a prefix, and the length of the shared prefix can be
used to safely prune out class pairs with short length. Using this
principle, these algorithms drastically reduce the candidate pairs
and are readily applicable to our problem to achieve scalability.

6. EXPERIMENTS
In this section, we evaluate our greedy Monte Carlo approach

for entity resolution. We compare our method with three baseline
algorithms in precision and recall. We also show the scalability of
our method in comparison with the reasonably fast baseline.



6.1 Experiment Setting
We conduct comprehensive experiments in integrating Probase

and Freebase. We build a distributed entity resolution system (as
Figure 3 shows) that contains three servers running 64-bit Microsoft
Windows Server 2003 Enterpriser SP2 OS, with 16 core 2.53 GHz
Intel Xeon E5540 processors and 32 GB of memory. Each of the
servers runs 10 instance mapping clients. All together, we run 30
instance mapping clients in parallel.
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Figure 3: The Flowchart of the System.

We use Freebase data dump for 2010-10-14 [20]. The total num-
ber of topical instances in Freebase is 13,491,742. Non-topical in-
stances are instances that do not represent real world entities, for
example, data types that are used internally in Freebase, and we do
not include them in our experiments. The number of non-empty
topical categories in Freebase is 12,719.

In terms of Probase, instances are classified into a very diverse
set of categories. In the version of Probase we use for the experi-
ments, the total number of instances is 16,423,710, the total num-
ber of categories is 2,026,806, and the total number of attributes is
1,727,580.

6.2 Evidence
We extract positive and negative evidence from Wikipedia and

Freebase. Table 3 and Table 4 show the numbers of different types
of evidence and their sources. Note that we also use Freebase as a
source of negative evidence, as Freebase is handcrafted, so it satis-
fies the ‘Clean data has no duplicates’ principle.

Table 3: Positive Evidence.
Wiki Source # of Pairs
Links 12,662,226
Redirect 4,260,412
Disambiguation 223,171

Table 4: Negative Evidence.
Source # of Bags
Wikipedia List 122,615
Wikipedia Table 102,731
Freebase 12,719

6.3 Baseline Algorithms
We compare our method with three other entity resolution tech-

niques. Assume (X,Y ) is a pair of categories.

• Baseline #1 (Positive Evidence Based Method): This method
maps x ∈ X to y ∈ Y if (x, y) has the strongest positive ev-
idence (e.g., it has the largest number of x ∼ y evidence
pieces). This method takes advantage of positive evidence,
which is used in several recent works [14, 10].

• Baseline #2 (String Similarity Based Method): This method
maps x ∈ X to y ∈ Y if the string similarity between
(x, y) measured by the Jaro-Winkler distance [35] is above
a threshold δ. This method is a traditional approach to solve
the entity resolution problem, and is usually used for name
matching tasks [38]. In our experiment, we set a high thresh-
old δ, as smaller thresholds produce too many false positives.

• Baseline #3 (Markov Clustering Based Method): Among
12 graph clustering based algorithms discussed for entity res-
olution [22], we find five algorithms (marked as ‘highly scal-
able’ in the paper) to be applicable to web-scale taxonomy.
Among these, we use Markov clustering [31] as a baseline,
as it has shown the highest accuracy. Specifically, we employ
the latest C implementation of MCL1.

6.4 Instance Mapping
We match Freebase and Probase categories based on similar-

ity in their attributes and elements. We find 763,000 matchings.
Here, we look into some selected pairs, including: i) Probase politi-
cian and Freebase /government/politician; ii) Probase format and
Freebase /computer/file format; iii) Probase system and Freebase
/computer/operating system; iv) Probase airline and Freebase /avi-
ation/airline.

We measure precision, recall and output size for each case. Pre-
cision and recall are well defined. However, in large-scale instance
mapping, sometimes it is not easy to obtain the exact recall. We use
output size [2] as an additional factor in our evaluation. When exact
recall is not available, the output size can also give us a feeling of
how effective the method is in finding all qualified matches.

We manually label instance pairs as ‘Match’ or ‘Non-match.’ We
cannot simply use extracted positive evidence for automatic preci-
sion evaluation, because, first, it may contain noise; second, it may
not contain all variations of possible mappings. Specifically, for a
matching category pair, we randomly sample some Freebase enti-
ties, then label all Probase entities that map to the Freebase entities
as ‘Match,’ and the rest as ‘Non-match.’ Currently, our algorithm
maps each Probase entity to one Freebase entity. In our evaluation,
for ambiguous instances such as ‘Bush,’ we consider both map-
pings to ‘George W. Bush’ and ‘George H. W. Bush’ correct. With
regard to Baseline #3, as our final goal is instance mapping, we
need to transform the resultant clusters to mappings from a Probase
entity to a Freebase entity. Within a resultant cluster C of Baseline
#3, if there is only one Freebase entity y in C, the rest of the entities
in C, which are all from Probase, are mapped to y, and if there is
more than one Freebase entity in C, we randomly choose one as y
and the rest of Probase entities in C are mapped to y.

Table 5 shows the result for the 4 selected category pairs. We
label 214, 134, 76, 201 Freebase entities for each case, and obtain
1,687 positive mapping pairs (408, 406, 384 and 489 for each cate-
gory pair, respectively). For our method, we set different values for
the threshold θ: 0, 0.05 and 0.10.

For popular and stable categories such as politician or airline
company, we have more high quality positive evidence. There-
fore, Baseline #1 shows high precision for the pair ‘politician’ and
‘/government/politician,’ because it is based on strong positive ev-
idence. However, Baseline #1 does not take string similarity into
consideration. As there are misspelled instances, and variations
in surface forms, the recall and the output size of Baseline #1 are
smaller than ours. Although Baseline #2 is good for matching
names with misspellings, it gives relatively low score to pairs such
as (‘Barack Obama’, ‘Obama’), and produces many false positives
such as (‘George H. W. Bush’, ‘George W. Bush’), (‘Hillary Clin-

1http://micans.org/mcl/



Table 5: Precision and Recall for Selected Category Pairs. (P.: Precision, R.: Recall, S.: Output Size).
Probase Class Name politicians formats systems airline
Freebase Type ID /government/politician /computer/file format /computer/operating system /aviation/airline
Method P. R. S. P. R. S. P. R. S. P. R. S.
Baseline #1 0.9952 0.6603 603 0.9024 0.2517 1160 0.9040 0.3767 1110 0.9231 0.6326 712
Baseline #2 (δ=0.9) 0.9792 0.3110 451 0.7922 0.2743 1209 0.5965 0.2696 1420 0.9623 0.4788 743
Baseline #3 0.8860 0.6342 678 0.8228 0.4871 1561 0.8839 0.5210 1236 0.9696 0.5484 829
Our method (θ=0.00) 0.9815 0.8413 685 0.9370 0.8605 2222 0.9180 0.5967 5913 1.0000 0.7087 787
Our method (θ=0.05) 0.9851 0.8413 684 0.9654 0.7585 1766 0.9415 0.5367 1981 1.0000 0.7087 782
Our method (θ=0.10) 0.9924 0.8254 677 0.9951 0.6837 1581 0.9568 0.4433 1607 1.0000 0.7087 770

Table 6: Probase instances mapped to Freebase entities. 1) barack obama, barrack obama, senator barack obama, president barack obama,
us president barack obama, and mr obama mapped to Ricardo Mangue Obama Nfubea. 2) windows vista, windows vista sp2, windows vista
service pack 2 mapped to Windows Vista Enterpriser.

Freebase Entity Baseline #1 Baseline #2 (δ=0.90) Baseline #3 Our Method (θ=0.10)
Barack Obama barack obama, barrack

obama, senator barack
obama, president
barack obama

barack obama, barrack
obama

None1) barack obama, barrack obama,
senator barack obama, presi-
dent barack obama, us presi-
dent barack obama, mr obama

George W. Bush george w. bush, pres-
ident george w. bush,
dubya, mr. bush

george w. bush george w. bush, pres-
ident george w. bush,
george h. w. bush,
george bush sr., dubya

george w. bush, president
george w. bush, dubya, mr.
bush, former president george
w. bush

John Kerry john kerry, senator john
kerry, sen. john kerry,
senator kerry

john kerry john kerry, senator john
kerry, senator kerry

john kerry, senator john kerry,
sen. john kerry, senator kerry,
massachusetts sen. john kerry,
sen. john kerry of mas-
sachusetts

MP3 mp3, mp3s, mp3 files,
mp3 format

mp3, mp3s mp3, mp3 files, mp3
format

mp3, mp3s, mp3 files, mp3
format, high-quality mp3, mp3
songs

XLS xls, microsoft excel xls, xlsx xls, excel file, excel
documents, excel text

xls, microsoft excel, excel file,
excel documents

Windows VISTA windows vista, win-
dows vista sp2, win-
dows vista service pack
2

windows vista, win-
dows vista sp2

None2) windows vista, windows vista
sp2, windows vista service pack
2, microsofts windows vista

American Airlines american airlines,
american airline, aa,
hawaiian airlines

american airlines,
american airline

american airlines,
american airline, aa,
north american airlines

american airlines, american air-
line, aa

ton’, ‘Bill Clinton’). As a high threshold of .9 is used in Baseline
#2 to boost precision, both the recall and the output size of Baseline
#2 are smaller than ours, or even Baseline #1’s. Baseline #3 shows
higher recall than other baselines in general as it allows transitivity
partially by clustering. However, it gives low precision because the
clustering algorithm is based only on the similarity and connectiv-
ity of nodes (entities), so it is prone to produce error, due to false
transitivity, especially for entities with similar names. On the other
hand, the recall of our methods is higher than the baseline methods
while the precision is still competitive.

For relatively new and less well-defined categories such as file
format or operating system, using only positive evidence extracted
from Wikipedia is not enough for entity resolution. Therefore, both
the precision and recall of Baseline #1 is low. Meanwhile, Baseline
#2 produced a large number of false positives because the string
length is short (for file format), or the discriminative part in the
string is small (e.g., ‘Windows 95’ and ‘Windows 7’). Baseline #3
shows lower precision than Baseline #1, as in the case of ‘politi-
cians’. Our method outperforms the baselines in precision, recall,
and output size.

In Table 6, we show a list of Probase entities that are mapped to
Freebase instances such as ‘Barack Obama,’ ‘American Airlines,’
and ‘XLS.’ Take the mapping between ‘barack obama’ and ‘us
president barack obama’ for example. Baseline #1 failed because
it lacks positive evidence from Wikipedia saying ‘barack obama’
is ‘us president barack obama,’ and Baseline #2 failed because the
similarity between the two is less than the threshold of .9. Baseline
#3 failed because there is no general way to find the best cluster size
so as not to merge two clusters representing two different entities.
Moreover, this baseline also maps ‘George W. Bush’ to ‘george h.
w. bush’ because of false transitivity. Our method worked because
the positive evidence from string similarity was not disrupted by
any negative evidence. As another example, for ‘American Air-
lines,’ a Wikipedia Disambiguation page provides a wrong piece
of positive evidence: ‘Hawaiian airlines’ ∼ ‘American Airlines.’
Baseline #1 failed because of this, but our method was able to over-
come the noisy evidence with negative evidence found in Wikipedia
List (using the ‘Clean data has no duplicates’ principle). As yet an-
other example, we have strong positive evidence that ‘Microsoft
Excel File’ is ‘XLS,’ weak positive evidence that ‘Microsoft .wav



Table 7: Similarities of Class Pairs. λ = 0.2.
Freebase Type Probase Class |Ec1 ∩ Ec2 | f(Ec1 , Ec2) f(Ac1 , Ac2) sim(c1, c2)

Written Work Novels 755 0.0004 0.0275 0.0220
Places 4902 0.0023 0.0002 0.0006

Musical Album Albums 1095 0.0026 0.0638 0.0516
Words 1550 0.0036 0.0007 0.0013

Breed Origin Country 82 0.0826 0.0000 0.0165
Musical Instrument Percussion 95 0.0565 0.0035 0.0141

Table 8: Size of Each Task Set.∑
|C1 × C2|

Task Set 1 24,377,292,299
Task Set 2 23,323,215,795
Task Set 3 24,923,006,886
Task Set 4 22,313,005,928

File’ is ‘Microsoft Excel File,’ and through transitivity even weaker
positive evidence that ‘Microsoft .wav File’ is ‘XLS.’ Without neg-
ative evidence, we might draw the wrong conclusion. However,
since the positive evidence is very weak (because the matches are
on words Microsoft and File, which have high frequency and hence
a low score), such mistakes can be filtered out by a threshold as low
as 0.005.

In Table 10, we show another five selected category pairs. Against
these pairs, we just evaluate their precision, recall and output size
in the same way, which are shown in Figure 6.

6.5 Finding Candidate Category Pairs
We demonstrate how Eq 1 implements the BoF principle in find-

ing candidate category pairs. First, Table 7 shows that Jaccard simi-
larity alone does not work well for two reasons: i) The two sets have
a big difference in size; and ii) Instances have ambiguous names.
More specifically,

• A large Jaccard similarity threshold will exclude related pairs
such as (Written Work, Novels) because although the cate-
gories are heavily related, they may not have enough similar-
ity due to a large size difference.

• A small Jaccard similarity threshold will fail to exclude false
positives such as (Places, Written Work). This is because
there are instances of Written Work, or Musical Album that
are titled China, Canada, etc.

Second, as the first 4 rows in Table 7 show, attribute similar-
ity fares better than entity similarity in distinguishing ambiguous
category pairs, allowing us to obtain (Novels, Written Work) and
(Albums, Musical Albums), and reject (Places, Written Work) and
(Words, Musical Album). However, since Freebase has only a few
attributes, using attribute similarity alone may also cause problems.

Overall, a linear combination of entity similarity and attribute
similarity works well. Besides using similarity measures only, we
can also use the hierarchy of Probase and a few handcrafted rules
to improve the precision and recall in matching.

6.6 Scalability
We now compare the scalability of our method with the winner

baseline, Baseline #3 (MCL) [22]. In this comparison, we do not
consider graph construction time because both algorithms require
the same graph construction. We also note MCL is implemented in
C, while ours in C#, which is a favorable setting for MCL.

In Figure 4, we can see, even in an unfavorable setting, our
method significantly outperforms MCL in all categories. The gap
is clearer in larger categories, e.g., ours 12 times faster than MCL
in books, as MCL is sensitive to the size of largest component and
ours is not. (Table 9).

We now evaluate the scalability of our method on a larger scale.
For this experiment, we selected four sets of category pairs of roughly
equal size (shown in Table 8), i.e.,

∑
|C1×C2| ≈ 23 billion, where

(C1, C2) is a pair of categories .

Table 9: The number of nodes in the largest connected sub-
graph. V1 is the set of nodes in the largest connected subgraph
of a graph G = (V,E).

Category |V1| |V | |E|
companies 39,820 662,029 110,313
locations 53,694 964,665 118,405
persons 60,979 1,847,907 81,464
books 94,414 2,443,573 205,513
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We now scale the pair size up to 100 billion, using Task Set 1,
Task Set 1+2, 1+2+3, and 1+2+3+4 as input. As we process in-
stance mapping in parallel, we measure the running time of each
process and then compute their maximum, minimum, and average.
Figure 5 shows the result. We see that the average running time
is about 2 minutes to process 48 billion instance pairs, and almost
linearly scales over the input size. The reason why the maximum
running time of an instance mapping client is much longer than
the average is that the size of category pairs has a very biased dis-
tribution: The Book (books, /book/book), Person (persons, /peo-
ple/person), and Location (locations, /location/location) category
pairs contain 2.4 million, 1.8 million, and 0.9 million instances re-
spectively whereas other pairs may contain far fewer instances.
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Figure 6: Precision, Recall and Output Size.

Table 10: Category Pair Name and Its Probase Class Name and Freebase Type ID.
Category Pair Name Probase Class Name Freebase Type ID
Fruit fruits /food/ingredient
Crime crimes /base/fight/crime type
Color colors /visual art/color
Opera operas /opera/opera
Symptom symptoms /medicine/symptom



7. CONCLUSION
Entity resolution for data integration is a challenging task. In this

paper, we have studied the problem of matching millions of entities
in two web scale taxonomies. Unlike integrating two relational ta-
bles, taxonomies may not contain much information about each en-
tity. But it is exactly this reason that makes the task of integrating
two taxonomies important, as integration serves as an indispens-
able mechansim for taxonomies to enrich themselves by “borrow-
ing” content from other taxonomies. We develop a framework that
relies on the interconnections of the data in the taxonomies as well
as in external data sources for entity resolution. We collect a large
number of positive and negative evidence, and formulate the task
of entity resolution as a multi-way graph cut problem. Our experi-
ments show that our method scales up to millions of categories and
entities, and produces very high quality resolutions.
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