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ABSTRACT
Data security is a serious concern when we migrate data to a cloud
DBMS. Database encryption, where sensitive columns are
encrypted before they are stored in the cloud, has been proposed
as a mechanism to address such data security concerns.The intu-
itive expectation is that an adversary cannot “learn” anything about
the encrypted columns, since she does not have access to the en-
cryption key. However, it turns out that the act of query processing
over encrypted data can reveal information that in the worst case
can undermine the very purpose of encryption. In this paper, we
argue that such information disclosure should not be handled in an
ad hoc manner; in particular, query processing over encrypted data
requires: 1) a precise contract (in the form of a security model) that
specifies what information is permitted to be disclosed during query
processing and 2) a query engine that is carefully engineered to
meet the contract efficiently. We believe these are important build-
ing blocks in designing a “secure” database-as-a-service paradigm.
In this paper, we develop a security model for query processing
over encrypted data and take the first steps in understanding the
space of secure query processing.

1. INTRODUCTION
There has been an increasing commercial [3, 22] and research

[10] interest in the database-as-a-service paradigm over the cloud
(Cloud DBMS). One of the barriers to adoption of cloud DBMSes
is data security and privacy. Data is a valuable asset to most orga-
nizations and there exist realistic threats to security of data stored
in the cloud [9, 14, 19, 27]. For instance, an external adversary
can gain access to sensitive data by exploiting software vulnerabil-
ities in cloud servers; insider attacks could range from a curious
system or database administrator “browsing” the database to more
sophisticated attacks (e.g., snooping the memory contents for any
plain-text data) by someone having physical access to servers [14].

One important mechanism to address data security concerns [16,
23, 24, 2, 5, 15, 25] is data encryption, where a client encrypts any
sensitive columns in the data before storing it in the cloud. Ideally,
an adversary cannot “learn” anything about the encrypted columns
without the encryption key which is known only to the client.

Encryption, however, makes it difficult to perform computations
(in particular, query processing) over data. Standard encryption
schemes are designed to hide data being encrypted, while, infor-
mally, we need to“see” the data to perform computations on it. We
note that the straightforward approach of temporarily decrypting
the data (in the cloud) to perform computations is not secure: The
cloud service now needs to store the encryption key, which could
find its way to the adversary; further, the adversary might be able
to read plain-text data, e.g., by performing a memory scan during
the time the data is decrypted. Recently, there has been theoretical
work on homomorphic encryption schemes [11] that are designed
to allow arbitrary computation over encrypted data. However, cur-
rent homomorphic encryption schemes are prohibitively expensive
both in space and time [5].

Prior Work: A simple strategy to deal with computational chal-
lenges introduced by encryption is to use the cloud just for storage
and perform all computations on the client [20]. A generalization
of this approach is based on the observation that many columns in
a database are not sensitive. Such columns (that could include ad-
ditional “computed columns”) are stored in plain-text, and part of
the query processing involving the plain-text columns is performed
in the cloud and the remainder, in the client [15]. Another strategy
relies on encryption schemes such as deterministic [6] and order-
preserving [2, 8] that reveal some information about data being en-
crypted. For example, a deterministic encryption scheme encrypts
all occurrences of the same value identically and therefore allows
equality operations such as equi-joins and point lookups over en-
crypted data [25]. However, deterministic encryption potentially
allows an adversary to learn plain-text values using frequency in-
formation of encrypted values (e.g., in Gender column)1. Simi-
larly, order-preserving encryption allows range predicates over en-
crypted data. We note that these “weaker” encryption schemes do
not cover all database operations and thus require either settling for
a subset of SQL [25] or require non-trivial computation in the client
(including potentially large data transfers) which negates some of
the advantages of the cloud setting.

A different approach [5] to query processing uses a trusted hard-
ware module such as a secure co-processor in the cloud server.
Such trusted module is designed to be tamper-proof and inaccessi-
ble even to an adversary with physical access to the machine. The
trusted module stores the client’s encryption key and any encrypted
data is securely decrypted and processed within the module. The
idea of using trusted hardware for security has a long history in
systems [17, 26] that is now being applied to data processing [5, 7].

1In contrast, more secure (e.g., CPA-secure) encryption schemes
would encrypt different instances of the same value differently and
hide its frequency.
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Figure 1: Secure-hardware based query processing architec-
ture. Data and computation within dotted rectangle are visible
to adversary.

1.1 Security and Query Processing
All of the approaches to database encryption reviewed above are

concerned with security of data-at-rest. They ensure that an adver-
sary getting access to the encrypted database (e.g., as stored in the
disk) does not “learn” anything about the encrypted columns.

In this paper, we argue that query processing over encrypted data
can itself leak information about the underlying plain-text data and
can potentially undermine the overall security of the system. As a
simple but somewhat obvious example, communicating the result
of a query reveals information about the size of the query output;
we shortly present examples where the degree and subtlety of in-
formation leakage is greater.

The fact that query processing leaks information is not very sur-
prising: It is well-known that just the sequence of memory loca-
tions accessed by a program (e.g., merge-sort algorithm) can reveal
information about its input such as the permutation of the input
sequence [13]. Similarly, the related area of work in private in-
formation retrieval [28] is based on the observation that the access
patterns for search queries (on non-encrypted data) can potentially
reveal information about the query. However, we believe that infor-
mation leakage in general database query processing and mecha-
nisms to formalize and address this leakage have been largely un-
studied and form the central focus of this paper.

We illustrate information leakage in the context of a trusted hard-
ware based architecture for query processing, shown in Figure 1.
We use a simple abstraction to discuss our examples of information
leakage—we assume that the cloud server includes a DBMS that
runs in the untrusted module (UM) which contains CPU, memory,
and disk. The trusted module (TM) is a secure hardware that has
CPU and a small amount of persistent storage to store the client
key—any decryption of data encrypted by client happens within
TM. Specific operators within the DBMS invoke TM for secure
computations; e.g., a filter operator could send an encrypted record
to TM which decrypts the record, evaluates the filter, and returns
the result (true/false). The adversary, who we refer to as Eve (eaves-
dropping adversary) can observe data and computation in the UM
and communication between UM, TM, and client. We assume that
Eve has access to the query plan that runs in the UM. We note that
this architecture is different from that of TrustedDB [5], which runs
another DBMS within TM. We pick this architecture mostly for
presentational simplicity and our general observations and results
extend to alternate setups such as those of TrustedDB.

EXAMPLE 1.1. Figure 2 shows a health care database instance
with two tables. The client encrypts the Disease column of each
Ailment record using a CPA-secure probabilistic encryption
scheme; the same value AIDS is encrypted differently in differ-

Name Disease

Alice !@#$xyz

Bob @%ˆabc

Chen *&#pqr

Dana (p#z˜94

Name City Gender

Alice Seattle 2xU%b

Bob Madison Ry!<4&

Chen Palo Alto Ry!<4&

Dana New York 2xU%b

Ailment (Encrypted) Patient (Encrypted)

Name Disease

Alice AIDS

Bob Flu

Chen AIDS

Dana Diabetes

Name City Gender

Alice Seattle Female

Bob Madison Male

Chen Palo Alto Male

Dana New York Female

Ailment (Original) Patient (Original)

Figure 2: Sample database encrypted stored in a cloud DBMS
and its original
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Figure 3: Query plan 1 of Example 1.1

ent records. The Gender column in each Patient record is en-
crypted using a deterministic encryption scheme. The other columns
are stored in clear-text. Consider the following query that finds the
names and cities of patients with AIDS:

select Name, Disease, City
from Patient join Ailment on Name
where Disease = ’AIDS’

Consider Plan 1 for the query shown in Figure 3. Plan 1 applies the
filter on Disease column before joining the two tables. Consider
an implementation (Filter1) of the filter operator that sends each
Ailment record to TM, which decrypts the Disease column and
returns true if its value is AIDS and false otherwise (we assume
that the return value is in plain-text). Records that satisfy the filter
are forwarded to the join operator. Plan 1 uses a traditional join
operator in UM to perform join on the plain-text column Name.

Recall that Eve has access to the plan and thus can infer that
there is an equality predicate on the Disease column (we assume
that the query constants are encrypted and thus Eve does not know
the specific disease being queried for). By observing the output
of the plan, Eve can infer that Alice and Chen have a common
disease, something that could not have been learned from the en-
crypted (data-at-rest) tables in Figure 2. This is a potential se-
curity breach: e.g., if Eve has external knowledge that Chen has
AIDS, she learns that Alice too has AIDS. Further, (in absence of
the above external knowledge), the only thing stopping Eve from
learning that Alice and Chen have AIDS is the secrecy of the query



Patient

Join

Ailment

(Disease = ‘AIDS’)
Filter2

^$&*)

%3(9g

Dy$5xy

G*xc20

3nHw3

*rGqzP

Name Disease City

Figure 4: Query plan 2 of Example 1.2

text. Depending on the application, this may constitute a security
weakness: Many applications invoke a small set of stored proce-
dures whose templates might be public knowledge. Even otherwise,
Eve can learn the query template if the plan is materialized in UM.
Once Eve learns the query template, she might be able to guess
the constant AIDS from her knowledge of query result size and the
general prevalence of various diseases.

EXAMPLE 1.2. Consider an alternate plan for the query of Ex-
ample 1.1 shown in Figure 4. This plan first performs a join of the
two tables in UM and then applies the filter on Disease. The
implementation (Filter2) of the filter is slightly different: Filter2
sends each join record ri to TM. TM decrypts the Disease col-
umn of ri and if it is equal to AIDS, re-encrypts (using the client’s
key) each column of ri using a probabilistic (CPA-secure) encryp-
tion scheme and returns the resulting encrypted record ro; if it is
not equal to AIDS nothing is returned. Note that the encryption of
Disease column in ro and ri would very likely be different since
the encryption scheme is probabilistic. Unlike Plan 1, note that Eve
can no longer infer that Alice and Chen have the same disease from
observing the output of the query.

Surprisingly, Plan 2 as described leaks exactly the same infor-
mation as Plan 1! Recall that Eve can monitor the traffic be-
tween the UM and the TM. Given the knowledge of the query plan
(and which operators are pipelined), Eve observes that TM pro-
duces some (encrypted) output for certain inputs (in particular,
join records corresponding to Alice and Chen) and infers that their
records appear in the output. We can address the above problem by
modifying Filter2 to buffer its output tuples until the whole input is
read. However, this is not a general purpose solution since the TM
is assumed to have limited memory.

We note that the above examples assume that Eve has access to
the query plan. It might seem that we can hide the query plan by
running operators within TM. In Section 4 we argue why hiding the
query plan from Eve might be difficult. We use the examples above
to make the following observations:

1. Query processing can leak information about data being pro-
cessed, and encrypting data-at-rest and performing decryption un-
observed by the adversary does not preclude this.

2. The security of some query processing strategies might rely on
the secrecy of the query text or the query plan. This reliance is a
potential security weakness for some applications.

3. Certain amount of information leakage may be unavoidable
for practical reasons. For instance, Plan 2 reveals the final output
cardinality—while this disclosure can also be avoided by padding
the output with fake tuples to be constant independent of the join
selectivity, it results in a significant performance penalty.

In this paper, we do not take a position that information leakage
during query processing should be avoided at all costs; in fact, a
client might settle for lesser security for better performance. But
we argue that information disclosure should not be handled in an
ad hoc manner. Therefore, query processing over encrypted data
requires: 1) a precise contract in the form of a security model that
specifies what information is permitted to be disclosed during query
processing and 2) a query engine that is carefully engineered to
meet the contract efficiently. We believe these are important build-
ing blocks in designing a “secure” database-as-a-service paradigm.

1.2 Our Contributions
Security Model: Our main contribution is a security model (Sec-
tion 3) that formalizes information leakage during query process-
ing over encrypted data. A client can suitably instantiate the secu-
rity model to precisely specify what information can and cannot be
leaked during query processing.

An instantiation of our security model is parameterized using
a permit function, which bounds what information can leak dur-
ing query processing; revealing any information not covered by the
permit function violates security. To formalize information leak-
age, we adapt the classic cryptographic notion of semantic secu-
rity. Informally, a query processing strategy is semantically secure
(and does not leak information) if no polynomial time adversary
can compute any function over the original plain-text database, dis-
counting for what is allowed by the permit function. We show the
robustness of this definition by showing its equivalence to database
indistinguishability, an adaptation of another classic cryptographic
notion of message indistinguishability.

Our security model assumes an adversary who has full access
to the clear-text of the queries being executed, ensuring that over-
all security does not rely on secrecy of query text; as discussed in
Example 1.1, relying on secrecy of query text could constitute a
security weakness.

We highlight the following aspects of our security model: (1) It is
orthogonal to base data encryption. It can be used to provide query
processing security for any configuration of base data encryption
that might combine plain-text, deterministic, order-preserving and
strong CPA-secure encryption schemes. (2) The security model
makes minimal assumptions about the query processing architec-
ture and is applicable to architectures that perform secure compu-
tations in the client, in trusted hardware, or a hybrid of the two.

Query Processing Architecture: The second contribution of the
paper is to discuss the challenges involved in building a secure
query processing system based on our security model. We focus
on the trusted hardware architecture. Our goal is to support the full
complexity of SQL independent of how the data is encrypted. We
argue that the strongest permit function for which we can meet the
above goal requires every relational operator to reveal nothing but
its output size (Section 4). We review prior work and find that they
are either incomplete in the subset of SQL supported or insecure
(based on the above permit function).

We then discuss a blue-print of a secure query processing archi-
tecture (Section 5). We address the following challenges: (1) We
develop secure operators that can be used to address arbitrary SQL.
As the examples in this section indicate, designing secure operators
is not merely a matter of ensuring that decryption happens only in



TM; we have to suitably re-encrypt the operator output and also
hide access patterns. We can incorporate the above techniques in
a DBMS by adding new physical operators that are secure. (2) We
design a secure B-Tree index over encrypted columns. We show
that a straightforward adaptation of standard B-Tree indexes is inse-
cure and propose a secure B-Tree that uses Oblivious RAM (ORAM)
technology to make data access look (statistically) random to an
adversary. One feature of the index design is that it minimally im-
pacts the index code. Rather the changes are to the storage sub-
system to add ORAM. In this way, we are able to support point
and range lookups over columns that can be encrypted using the
strongest CPA-secure encryption. (3) We show that a query opti-
mizer can reason about the security of a plan on a per-operator basis
by checking if each operator is secure.

We also discuss the performance of our blue-print. The good
news is that our modifications do not impose a significant overhead
for scan-based query plans, plans in which leaf nodes are scan oper-
ators (such plans are commonly used for decision support queries).
In fact, we show that our secure query processing has the same data
and time complexity as traditional query processing. However, the
bad news is the fact that for queries that require the use of index-
ing either for point predicates or range predicates, the system can
impose significant overheads. This is mainly because our reliance
on ORAM technology leads to a loss of spatial and temporal lo-
cality of reference. Even though our architecture tries to minimize
the reliance on ORAM technology, we show these overheads are
unavoidable for supporting a “secure” version of indexing.

We believe these are important building blocks in designing a
“secure” general-purpose database-as-a-service paradigm, which is
an interesting research goal. Finally, we note that our description of
our query processing architecture is at a conceptual level. Needless
to say, designing and implementing a system based on this con-
ceptual description would introduce many interesting engineering
challenges beyond the scope of this paper. We defer such an imple-
mentation and its evaluation to future work.

2. PRELIMINARIES
We now review encryption of data-at-rest and associated security

guarantees. We also present an abstraction for query processing
over encrypted data that we use in our security model.

2.1 Encrypting “Data At Rest”
Classic cryptography focuses on encryption of messages mod-

eled as strings. An (message) encryption scheme consists of an
encryption and decryption function. The encryption function takes
as input a secret key and a clear-text string and returns an encrypted
cipher-text string. The decryption function given the secret key and
cipher-text, returns the clear-text. In this paper, we use symmetric
encryption schemes where the same secret key is shared between
the encryption and decryption functions (in contrast, public-key en-
cryption uses separate keys for encryption and decryption.)

A database encryption scheme builds on message encryption to
encrypt databases. A natural approach would be to treat the entire
database as a single string for the purpose of encryption. Alter-
nately, we could break the database into blocks and encrypt each
block separately. However, if we wish to perform query processing
directly over encrypted data, we need to be able to “look inside”
encryption. Accordingly, prior work has considered column-level
encryption where we associate one message encryption scheme and
key with each column. The database is encrypted cell by cell using
the corresponding column-level encryption function and key. The
formalism we introduce below for data encryption does not stipu-
late which of the above ways the database is encrypted. However,

unless mentioned otherwise, we assume column-level encryptions
in the rest of the paper.

DEFINITION 2.1. A (symmetric-key) database encryption
scheme is a pair of polynomial time algorithms (Enc,Dec) where
Enc is probabilistic and Dec is deterministic such that for every
key-length k, for every K ∈ {0, 1}k and database instance D,
Pr [Dec(k,K,Enc(k,K,D)) = D] = 1. Here, the probability is
taken over random coins of Enc. Given a database instance D, we
refer to its encryption under key K as DE

K .

Definition 2.1 uses a single encryption key. To get column-level
keys we can, for example, encrypt the concatenation of table and
column name using the master encryption key and use the encrypted
value as the key for that column [25].

In the cloud DBMS setting, the client stores an encrypted database
at the cloud DBMS. The encryption uses a secret key known only
to the client and not the cloud DBMS. When using trusted hard-
ware the client key is securely shared with the trusted hardware;
this sharing requires the use of Public Key Infrastructure, e.g., as
discussed in [5]. Further, for presentation in our examples, we as-
sume that only data is stored encrypted and schema is in clear-text.
In practice, schema could be anonymized using opaque identifiers
for table and column names.

In practice, not all columns in a database require the same level
of security. The column-level encryption allows the client to pick
and choose encryption schemes with different security levels for
different columns, including leaving some columns in clear-text,
as illustrated in Figure 2. The ability to support an arbitrary con-
figuration of column-level encryption is an important design con-
sideration for cloud DBMSes supporting encryption since this pro-
vides the client a mechanism to tradeoff security for performance.
Both our security model and secure query processing techniques
are designed to work for an arbitrary configuration of data-at-rest
encryption.

2.2 Security Guarantee
There exists a rich body of work in cryptography formalizing

security of encryption schemes. We provide a brief and infor-
mal overview here; more details can be found in [18]. Two clas-
sic notions of security are indistinguishability and semantic secu-
rity. A message encryption scheme is indistinguishable (for an
eavesdropping adversary) if an adversary given a ciphertext c, can-
not determine if c = Enck(m1) or c = Enck(m2) (c is guar-
anteed to be one of the two). A stronger security notion is Cho-
sen Plaintext Attack (CPA)-indistinguishability where an adversary
has more power in the form of oracle access to Enck(). There
exist encryption schemes with a deterministic encryption function
that is indistinguishable for an eavesdropping adversary. For CPA-
indistinguishability, the encryption function has to be non-
deterministic (probabilistic), and there exist well-known construc-
tions based on block ciphers such as AES (the Advanced Encryp-
tion Standard) [1]. An encryption scheme is semantically secure if
an adversary cannot compute any function f(m) given just Enck(m).
A classic result in cryptography proves the equivalence of indistin-
guishability and semantic security.

We adapt semantic security to database encryption schemes. As
before, a database encryption scheme E is semantically secure if
Eve cannot learn any information about clear-text databaseD given
its encryptions DE

K . The information Eve seeks is modeled as a
goal function f that maps databases to binary strings. For exam-
ple, in Figure 2, Eve learns from the encrypted database that there
are equal number of male and female patients, so the encryption



scheme is not semantically secure. The fact that Eve cannot com-
pute f is formalized by introducing a simulator that learns f with
the same success probability, but without access to DE

K .
We can show that any database encryption that is semantically

secure in the strictest sense needs to use a non-deterministic en-
cryption scheme for each column2. However, as discussed in Sec-
tion 2.1, it is important for us to consider weaker configurations of
column-level encryptions, and any configuration with even one col-
umn using deterministic encryption fails to be semantically secure.
We therefore introduce a generalization of semantic security that
lets us characterize security of database encryption schemes with
less secure column-level encryptions.

The informal description of semantic security so far implicitly
assumed that clear-text database D can be drawn from an arbitrary
distribution of databases. Our generalization of semantic security
involves restricting the space of database distributions. In particu-
lar, we introduce a permit function ∆ that maps database instances
to binary strings. A distribution D over databases is said to be
permitted by ∆, denoted D |= ∆, if every database D in the dis-
tribution agrees on the value of ∆, i.e., have the same ∆(D) value.
Our generalized definition of semantic security is parameterized by
∆ and considers only distributions permitted by ∆. In the follow-
ing definition, a function n(k) is negligible if for every polynomial
p(k), for all sufficiently large k, n(k) < 1

p(k)
; e.g., 1/2k is negli-

gible, while 1/k3 is not.

DEFINITION 2.2. A database encryption scheme E is semanti-
cally secure up to function ∆ if for all distributionsD |= ∆, for all
goal functions f (independent of complexity), for all polynomial-
time adversaries Adv , there is a polynomial-time simulator Sim∆

such that the following function (of k) is negligible:

|Pr [Adv(DE
K , 1

k) = f(D)]− Pr [Sim∆(1k) = f(D)]|

Here, the probability is taken over the choice of D,K and the in-
ternal coins of the database encryption scheme, Adv and Sim , and
k = |K| is the key length.

In the above definition, we can think of ∆ as information we are
willing to reveal. The simulator implicitly has access to this in-
formation since the input distribution is constrained using ∆. If
∆ returns column lengths and table cardinalities, then we reduce
to classic semantic security. However, by making ∆ return more
information, we uniformly model the weaker encryption schemes.
As an example consider a database consisting of just the Ailment
table of Figure 2. The encryption scheme used is not semantically
secure in an absolute sense since the Name column is in plaintext.
However, it is semantically secure for ∆ = πName(Ailment).

2.3 Abstraction for QP over Encrypted Data
For the purposes of our security model, we consider an abstrac-

tion for query processing over encrypted database models both client-
server and trusted hardware-based architectures discussed in Sec-
tion 1. Our abstraction is shown in Figure 5. It consists of an
untrusted (database) system that stores the encrypted database and
a trusted component that stores the encryption key and interacts
with the untrusted system to execute queries. In general, the trusted
component can call the untrusted server multiple times to evaluate a
query. The trusted component could be the client itself or a trusted
hardware module.

Formally, a query processing abstraction consists of two interact-
ing randomized polynomial-time algorithms—a trusted algorithm
2A encryption scheme with multi-message indistinguishability (a
slightly weaker notion of security than CPA-indistinguishability).

Untrusted 
Server

Trusted Component
(Key)

Encrypted 
Database

Client

ResultQuery

Figure 5: Abstraction for QP over Encrypted Database

QP t(K,Q, communication) running in the trusted component
which is the initiator of the interaction, and an untrusted algorithm
QPu(communication, D) running in the untrusted system. The
trusted algorithm QP t has inputs the secret key K, a query Q, and
the communication from QPu. The untrusted algorithm QPu has
inputs the communication from QP t and encrypted database DE

K .
Given inputs a query Q, a key K and database DE

K , the query pro-
cessing system produces its output through the following r-round
interaction between the above algorithms.

O1 = QP t(K,Q)

O2 = QPu(DE
K , O1)

. . .

O2r = QPu(DE
K , O1, . . . , O2r−1)

O2r+1 = QP t(K,Q,O1, . . . , O2r−1, O2r)

The number of rounds is required to be polynomial in the input size.
The output of query processing for query Q, key K and database
DE
K is denoted 〈QP t,QPu〉(K,Q,DE

K). A query processing sys-
tem is correct if ∀K∀Q∀D Pr[〈QP t,QPu〉(K,Q,DE

K) = Q(D)]
= 1. The above definition of query evaluation is stated for a read-
only query. It is straightforward to extend the above definition to
handle updates. The only difference between queries and updates is
that updates leave the original database modified. We require that
updates honor the encryption scheme; therefore, if the database in-
stance D is converted to instance D′, then the output of the update
is some valid D′EK . Henceforth, in the rest of this paper, we treat
queries and updates uniformly and refer to them as queries.

EXAMPLE 2.3. Consider the query σCity=NewYork∧Gender=Male

(Patient) over the encrypted database of Figure 2. One query
processing strategy in terms of our abstraction is the following:
the trusted component on receiving the query sends the plaintext
query σCity=NewYork (Patient) to the untrusted system. The un-
trusted system evaluates the query over encrypted database, which
it can since City column is stored in clear-text. The result of this
query is communicated to the trusted component, which decrypts
the Gender field, applies the second filter, and communicates the
final result to the client. This query processing strategy incurs a
single round of communication. In contrast, the plans described in
Examples 1.1 and 1.2 involve multiple rounds of communication.

3. SECURITY MODEL
In this section, we introduce the security model for formalizing

information leakage during query processing that forms the basis



for specifying a security contract between the cloud DBMS and
the client. We state our model in terms of the query processing
abstraction of Figure 5. Overall, our model has the following pa-
rameters: (1) the database available to adversary Eve in encrypted
form, (2) the notion of a query trace that formalizes what an adver-
sary can observe as part of the query execution and (3) the notion of
a permit function that specifies what information the query process-
ing system is allowed to reveal. The goal of the security model is to
stipulate that by accessing the query trace, the adversary Eve gains
no more information than what can be learned from the encrypted
data, except for the permit function.

3.1 Query Trace
A query trace formalizes information made available to adver-

sary Eve through query processing. As noted above, our formalism
is developed with reference to the query processing abstraction of
Figure 5. We assume that Eve has administrative privileges to the
untrusted component and can monitor the communication to and
from the trusted component. Formally, the query trace includes the
following events happening inside the untrusted component: the se-
quence of instructions executed, the sequence of memory accesses
(at every level of the memory hierarchy including disk), and all
communication to and from the trusted component.

EXAMPLE 3.1. Consider the execution of the plan in Figure 3.
Its trace includes information about the skeleton of the plan, in
what sequence the records were fetched from the disk and for a
particular Ailment record, the fact that the record was sent to
TM and the response of the TM for the record. It includes similar
information about the other operators.

We note that a variety of timing related side-channel attacks are
possible. For example, string functions could reveal information
about input string lengths from the time they take to process their
inputs. By not explicitly modeling time as part of the query trace,
we are not covering such attacks in our security model. A compre-
hensive treatment of such attacks is future work.

3.2 Permit Function
Ideally, a query processing system reveals no information about

the clear-text database. However, as we will argue in Section 4.1, it
is difficult to design an efficient query processing system over that
handles arbitrary SQL over large databases and yet does not reveal
any information about clear-text. Therefore, for our security model,
we introduce the notion of a permit function χ(Q,D) that takes as
input a clear-text queryQ and a clear-text database instanceD, and
returns a binary string encoding all information about D that we
are willing to reveal to Eve when evaluatingQ. Intuitively, a permit
function that reveals less information guarantees more security. We
illustrate several examples of the permit function.

• The strongest permit function is one that returns the empty
string for all Q and D (and reveals nothing).

• In order to allow the query processing system to communi-
cate the query result to the client, we could modify the permit
function to return the output size.

• In section 4.1, we discuss what is the strongest permit func-
tion that feasibly allows execution of arbitrary SQL queries
over large data. We argue that a permit function that allows
each operator in an execution plan for a query to reveal noth-
ing but its output size is a good candidate.

3.3 Semantic Security of Query Processing
We now discuss the formal security model for query processing

over encrypted data. For ease of exposition, we introduce the model
for read-only queries and discuss extensions to handle updates later.
As before, the goal of the adversary Eve is to learn some informa-
tion about the clear-text database. Eve has access to the encrypted
database. Since a mix of strong and weak encryption schemes can
be used to encrypt the data, some information is revealed by the en-
crypted database itself. When we add query processing to the mix,
Eve gets additional access to the query trace. Our formalism stip-
ulates that independent of how the base data is encrypted, no extra
information is revealed other than what is allowed by the permit
function.

The formalism is simulation-based as in Definition 2.2. We would
like to stipulate that whatever an adversary learns about the data
through the execution trace can be learned by a simulator with ac-
cess only to the permit function and the information revealed by
the encrypted data, but not the trace. As in Definition 2.2, we
grant access to the simulator to the information revealed by the
encrypted data and to the permit function by constraining the space
of database distributions. Given a query Q, a distribution D over
databases is permitted by the permit function χ, denoted D |= χ if
all D ∈ D, χ(Q,D) is the same. The formal definition is below.

DEFINITION 3.2. A query processing system is semantically se-
cure upto χ if for all database encryption schemes (Enc,Dec) that
are secure up to function ∆, for any query Q, for all distributions
D over databases such that D |= ∆ and D |= χ, for all goal
functions f (independent of complexity), for all polynomial-time
adversaries Adv , there is a polynomial-time simulator Sim such
that the following function of k is negligible:

|Pr [Adv(DE
K ,Tr(Q,D), 1k) = f(D)]−Pr [Sim(1k) = f(D)]|

Here, the probability is taken over the choice of D,Q,K and the
internal coins of the database encryption scheme, the query pro-
cessing system, Adv , and Sim , and k = |K| is the key length.

We illustrate different aspects of the security model using a few
examples:

EXAMPLE 3.3. Any query processing over a clear-text database
is trivially secure. Both adversary and simulator can evaluate any
function f(D) over database D since they both have access to
D = DE

K .

EXAMPLE 3.4. Consider the query and query processing strat-
egy described in Example 2.3. This query processing strategy does
not reveal any information (i.e., secure for an empty permit func-
tion). The simulator can reproduce the query processing trace hap-
pening at the untrusted system (since it is a plaintext computation)
using her access to encrypted database and can therefore compute
any function the adversary can.

EXAMPLE 3.5. Consider the query from Examples 2.3 and 3.4
but a different query processing strategy. Here the untrusted sys-
tem evaluates the query σCity=NewYork∧Gender=Ry!<4&(Patient)
and communicates the (empty) output to the trusted system, and
note that Ry!<4& is the (deterministic) encryption of the query
constant Male. The trusted system then forwards the result to the
client. Surprisingly, this query processing is not secure even for the
permit function that reveals the query output size. Eve, who has
access to the plaintext query learns that there are no male patients
from New York, which the simulator cannot. Recall from Section 1
that the rationale for assuming an adversary with plaintext access
is not to rely on query secrecy for overall security.



EXAMPLE 3.6. Consider the security discussion in Examples 1.1
and 1.2. We note that the notion of security formalized in our se-
curity model (for intermediate result sizes permit function) aligns
with the informal discussion of security in these examples.

We note that the above formulation makes no assumptions re-
garding the encryption of the query text. Even if Eve has access to
the query text, the query processing system is required to reveal no
extra information other than the permit function. However, this is
not to suggest that the query text need not be encrypted. Encrypting
the query text is an essential part of the security of the overall sys-
tem. Otherwise, for instance if database inserts statements are left
in clear-text, the security of the database is seriously compromised.
In fact, Definition 3.2 does not require the query processing system
to encrypt its queries. We present the full model that compels the
query processing system to also encrypt queries in the full version
of the paper.

3.4 Database Indistinguishability
In this section, we first adapt the notion of message indistin-

guishability to database indistinguishability to provide another for-
malism for security of query processing over encrypted databases.
We then establish that in the query processing setting also, seman-
tic security and indistinguishability are equivalent. This shows the
robustness of our security model. Our notion of a secure operator
and the proofs of security of various operators rely on the notion of
database indistinguishability.

The intuition behind our adaptation is similar to classic mes-
sage indistinguishability. We stipulate that for a given query Q, the
query execution trace produced by any two databases are indistin-
guishable by a polynomially bounded adversary. We accommodate
the permit functions ∆ and χ by using them to constrain the two
pairs.

DEFINITION 3.7. A query processing system is database indis-
tinguishable upto χ if for all data encryption schemes (Enc,Dec)
that are secure up to function ∆, for any two databases D1, D2

and any query Q such that ∀i ∈ {1, 2}Di |= ∆ ∧ Di |= χ, for
all polynomial-time adversaries Adv , the following function is a
negligible function of k:

|Pr [Adv(DE
1K
,Tr(Q,D1)) = 1]−Pr [Adv(DE

2K
,Tr(Q,D2)) = 1]|

Here, the probability is taken over the choice ofQ,K and the inter-
nal coins of the database encryption scheme, the query processing
system and Adv , and k = |K| is the key length.

We establish the equivalence of the above definition to semantic
security.

THEOREM 3.8. A query processing system is database indistin-
guishable upto χ if and only if it is semantically secure upto χ.

3.5 Extension For Updates
Since updates change the state of the database, we have to mod-

ify Definitions 3.2 and 3.7 to refer to the state of the database before
and after the update. Recall that an update is required to honor the
data encryption policy. We therefore modify the above definitions
by requiring the state of the database after the update to also be per-
mitted by function ∆. The formal details are presented in the full
version of the paper.

3.6 Compositionality and Multiple Queries
We note that in the above discussion, the security model is pre-

sented for a single query. In general, multiple queries are run on

the system. The question arises what the overall security guarantee
is. We show that the security guarantee “composes” under our se-
curity model if the underlying query processing system guarantees
security under chosen-plaintext attacks. We state a more general
version of compositionality where the permit function for different
queries is not necessarily the same. The following result models
query processing as an operation over a vector of records, which is
how physical execution takes place even though a database is intu-
itively a set of records. While the result below is stated for queries,
it extends to handle updates in a straightforward manner.

THEOREM 3.9. (Informal) Suppose the evaluation of queries
Qi, i ∈ {1, 2} over database D is CPA-secure for permit functions
χi(Q,D). Then, the execution ofQ1 followed byQ2 is CPA-secure
for permit function χ1(Q1, D)◦χ2(Q2, D) where ◦ denotes string
concatenation.

The above result has implications even for a single query. Since re-
lational operators are special cases of queries, it lets us decompose
the execution of a single query into operators. Thus, if we design
the fixed set of operators that are CPA-secure—we refer to them
as secure operators, then we can compose them to run arbitrary
queries. We will use the above observation in Section 5.

4. SECURE QUERY PROCESSING
In this section, we explore the challenges involved in building a

secure DBMS that supports an instantiation of the security model
described in Section 3. While solutions that work for a subset
of SQL might be acceptable for several scenarios, our goal is to
handle the full complexity of SQL independent of how the data
is encrypted. Given the above requirement, we study what is the
strongest permit function we can plausibly support. There are two
considerations that govern feasibility. One is performance—while
we do expect strong security to come with some overhead, how
significant is the overhead? The other consideration is software en-
gineering. Since database systems are complex pieces of software,
we have to be concerned about the development cost of incorpo-
rating strong security. We therefore restrict ourselves to traditional
operator-centric query processing architectures, so query process-
ing proceeds by first generating a plan composed from relational
operators and then evaluating the plan. We don’t know of other
query processing architectures that handle full SQL.

4.1 Choosing A Permit Function
The strongest permit function is one that reveals no information.

Consider a query evaluation strategy, exemplified in Example 3.4,
where the server treats the encrypted columns as a blob on which no
querying is performed [21]. Query evaluation involves evaluating
part of the query over plaintext columns in the server, transferring
intermediate results to the client, which completes the “remainder”
of the query processing. As we argued in Example 3.4, the above
strategy reveals no information. There are many applications where
the data transfer can be limited, e.g., OLTP applications where data
is queried and updated mostly through key lookups. However, in
the worst case, the amount of data transferred is unlimited. To il-
lustrate, consider the query used in Example 1.1. The above strat-
egy has to execute a variant of the plan in Figure 4 where the re-
sult of the full join between Ailment and Patient is fetched to
the client to evaluate the predicate on Disease. The communi-
cation cost of transferring large amounts of data to the client can
be prohibitive. As we have discussed in Section 1, while weaker
encryption schemes can reduce the need to ship data in important
special cases, they do not completely eliminate the possibility of



transferring large amounts of data (e.g., if we have predicates that
are neither equality nor range predicates.)

In order to guarantee completeness, we explore the use of trusted
hardware (Figure 1) to ensure that all the query processing happens
in the cloud server, thereby avoiding the need to ship large amounts
of data to the client (other than possibly the query output). In this
setting, a permit function that reveals nothing, not even the query
output size, intuitively requires the output size to all queries to be
equalized by suitable padding. Clearly, such a system would incur
a huge performance overhead.

It is not hard to see that any system that seeks to hide information
correlated with the query execution time faces similar performance
overhead. We could consider intuitively permitting the execution
time of queries to be revealed. We can formalize the above intu-
ition by setting the permit function to be a logical model of query
execution time such as the total number of intermediate results over
all operators in an optimized plan using a standard DBMS3.

Can we hide individual intermediate result sizes (operator in-
put/output sizes) in a plan? While we do not have a formal proof,
we believe the answer is “no” in an engineering sense. Many stan-
dard operators are blocking and materialize intermediate state to
disk (which is in UM, visible to Eve), and the size of this interme-
diate state typically reveals the sizes of the operator’s inputs. As
a concrete example, for a sort-merge join the sum of sizes of the
sorted runs reveals the size of the input to the join operator, which
is the intermediate result size of the downstream operator. In tra-
ditional DBMSes this intermediate state is written contiguously on
disk to minimize random seeks. We can argue that hiding the size
of the intermediate state would require writing it non-contiguously
and therefore incur a significant performance penalty.

We similarly argue that it is difficult to hide the plan for a query,
even if all the operators are run inside the TM. Since TM has lim-
ited resources (and in particular no disk) the input and output of
many operators goes through UM which reveals information about
the plan. For example, if TM scans two base tables, then the plan
most likely involves a join of the two tables.

Based on the above discussion, we argue that the strongest permit
function that we can possibly hope to support consists of the set of
intermediate (and final) result sizes in a query plan. We note that
the above permit function essentially requires every operator to be
optimally secure in that it reveals only its output size. We next
review prior work that uses trusted hardware to study if they meet
the above permit function.

4.2 Prior Work
We first discuss Transparent Data Encryption (TDE) that is im-

plemented commercially [24, 23]. The idea behind TDE is to en-
crypt all the data on disk including intermediate results. Query
processing is performed on clear-text by decrypting data as it en-
ters the system from disk. TDE as commercially supported does
not rely on trusted hardware. However, the encryption key is stored
as part of the system which is a potential vulnerability. We discuss
a modification to TDE where the encryption key is stored securely
in TM. Data from the disk is decrypted by going to TM. We can
secure the communication between UM and TM using channel en-
cryption that is separate from data encryption. The above system
guards against adversaries who monitor the disk and the communi-
cation between UM and TM but not against adversaries who access

3A subtlety here is that permit functions are defined over a clear-
text databaseD and queryQ. We are therefore referring to the total
intermediate result size in a clear-text database. We also note that
the plan selected for Q is a “function” of Q and D defined by the
optimizer.

the contents of main memory. In terms of our model, this corre-
sponds to restricting the query trace to exclude main memory ac-
cesses. Even with the above restriction on the trace, some informa-
tion is revealed such as the disk IOs caused by spilling intermediate
results. Furthermore, TDE also reveals disk access patterns.

We next discuss TrustedDB [5] that is the state of the art system
based on trusted hardware. In TrustedDB, columns are stored either
in clear-text or using semantically strong encryption. The TM runs
a light-weight DBMS that communicates with the DBMS running
in the UM by pulling data directly from the buffer pool of the UM.
Predicates on clear-text are run in the UM and on encrypted data
are run in TM. The authors of TrustedDB acknowledge that their
system reveals data access patterns. Example 1.2 discusses infor-
mation disclosure that happens via access patterns. We can see that
in order to meet the above permit function in the context of Exam-
ple 1.2, the filter operator needs to reveal only its output size which
requires it to not reveal access patterns.

In summary, prior work using trusted hardware fails to meet the
permit function introduced above. We next discuss an architecture
that meets the above permit function and discuss its performance
implications.

5. SECURE QUERY PROCESSING ARCHI-
TECTURE

We now present an end-to-end conceptual design of a secure
query processing system that does not reveal any information out-
side of intermediate cardinalities. For ease of exposition, we do
not consider weaker encryption schemes. Hence, like TrustedDB,
every column is either in clear-text or encrypted using CPA-secure
encryption. Since we use an operator-centric architecture, our goal
is to describe operators that reveal no information other than their
output size. As part of this section, we first discuss how we can sup-
port relational operators over encrypted columns. Owing to lack of
space, we focus on the following operators — filter, sort, foreign-
key joins and grouping-aggregation. It is straightforward to extend
the operators below to cover other operators such as anti-join and
updates. It is well-known that the above operators together can be
used to address all of SQL using scan-based plans. We will see that
intuitive implementations of the above operators are insecure. The
secure operators we present are not free; they increase the num-
ber of passes over the data and sometimes rely on the data being
randomly permuted. However, the surprising result is that the over-
head of securing them is not significant; in fact, their data complex-
ity is the same as that of the original operators. Furthermore, they
are based on simple primitives such as random permutations and
oblivious sorting that are not difficult to incorporate in a DBMS.

We then discuss indexing where again we show that a straight-
forward adaptation of B-Tree indexing is insecure. In order to
hide access patterns, we leverage prior work on oblivious storage.
Throughout, we design our operators such that they use the larger
resources available in UM as much as possible.

Finally, we discuss the combination of clear-text and encrypted
columns. While we can process standard operators over clear-text
as usual securely when the query treats the encrypted columns as
a blob, supporting queries that mix and match clear-text and en-
crypted columns has implications for the physical design of the
database which we discuss.

5.1 Scan-Based Operators
We now present our scan-based operators. We use the following

convention when presenting operator details: if r denotes a record,
then we use r to denote the encryption of r. Also recall that UM



Algorithm 1 Secure filter over a randomly permuted stream T =
r1, . . . , rn; P is the filter predicate with selectivity 1

α
and Mt is

available memory in TM
1: procedure SECUREFILTER(T, P, α,Mt)
2: OutQueue ← φ
3: for i = 1 to n do
4: ri = Dec(ri)
5: if ri satisfies filter predicate P then
6: r′i ← Enc(ri) . Re-encrypt ri
7: OutQueue.Enqueue(r′i)
8: end if
9: if i ≥ αMt

2
and α|i then

10: Output OutQueue.Dequeue()
11: end if
12: endfor
13: Output remaining records in OutQueue
14: end procedure

refers to untrusted module and TM to trusted module in our archi-
tecture.

5.1.1 Filter
A filter operator evaluates a filter σP (T ) over an input stream

of records T and outputs those that satisfy the filter predicate P .
Recall that Example 1.2 illustrates why a standard pipelined filter
that invokes TM to evaluate a filter and re-encrypts results is in-
secure since it reveals access patterns. In order to hide patterns,
we build upon two intuitive ideas. One is to randomly permute
the input. The other is to ensure that the TM produces a filtered
record at a fixed rate that is a function only of the output size, i.e.,
the selectivity. In order to guarantee a fixed rate of output, the TM
buffers records (recall that we had alluded to the buffering idea in
Example 1.2). The algorithm ensures that the buffer size which is
limited by the memory of TM is not exceeded. A similar idea is
used in [28] in filtering step for ORAM simulations.

For simplicity, we assume that the selectivity of the filter is known.
A simple way to get the selectivity is to make an additional pass
over T ; in the full version we show how this additional pass can be
avoided. Further, we assume for simplicity that selectivity is of the
form 1

α
for some integer α.

The secure filter begins by randomly permuting the records in T .
This random permutation can be performed in UM and Eve can get
full knowledge of the permutation and this does not affect security.
We discuss the random permutation step in the full version of the
paper. The secure filter iteratively feeds the randomly permuted
records to TM. The secure filter logic within TM is shown in Algo-
rithm 1. For any record ri that satisfies the filter, we re-encrypt the
record (using the same client key) and buffer the resulting record
r′i. After an initialization phase that lasts αMt

2
input records, the

buffered records are output from TM at a fixed rate of one record
for every α input records. After all the input records have been
processed, all remaining buffered records are output from TM. (We
can show that there will be exactly Mt

2
− 1 such buffered records.)

The records output from TM comprise the final output of the filter.
The security of the operator follows from the observation that the

input and output pattern of records to and from TM depend only on
n and α and α can be revealed to Eve since it is simply the ratio
of n and the filter output size. Also, since we re-encrypt output
records, Eve cannot determine the correspondence between output
and input records.

The secure filter of Algorithm 1 fails if OutQueue is empty
when we try dequeueing in Step 10 and OutQueue uses up all
Mt memory when we try enqueueing in Step 7. For example, if
all the records passing the filter occur towards the end, OutQueue

would be empty when i = αMt
2

. The purpose of the random per-
mutation is to ensure that records that satisfy the filter are evenly
spread out and make such failure unlikely. We can show that with
even moderately large Mt the probability of failure is vanishingly
small:

THEOREM 5.1. If Mt ≥ 4·c
α

√
2n lnn, Algorithm 1 succeeds

with probability at least (1− 1/nc).

When Algorithm 1 fails, we fall back to a less efficient sort-based
implementation of the filter described in the full version.

As an engineering optimization, we could consider storing the
base table tuples randomly permuted and avoid random permuta-
tion for filters over base tables.

5.1.2 Sort
The sort operator sorts an input stream of records based on some

binary comparison function defined over records. A sort operator is
used to implement the ORDER BY clause in SQL and also as a sub-
primitive in join and group by. A standard sort that is extended to
work with TM is insecure — it is well-known that the sequence of
memory locations accessed by merge-sort can reveal information
about its input such as the permutation of the input sequence [13].

To get a secure sort operator, we run the external memory obliv-
ious sorting algorithm of [13]; an important detail is that when
records are written out of TM, they are re-encrypted to hide cor-
respondence between records that enter and those that emerge out
of TM. An oblivious sorting algorithm by definition has the prop-
erty that its data access patterns are independent of data values; this
property, combined with CPA-secure encryption, ensures that the
resulting sort operator is secure. The oblivious sorting algorithm
of [13] has the same complexity as regular disk-based sort-merge
join.

5.1.3 Joins
We first observe that the standard sort-merge and hash join oper-

ators are insecure. A sort-merge join algorithm is insecure for the
same reason that a standard sort is insecure. Similarly, a standard
hash join is insecure since it reveals the join graph (for each record
in the probe side, how many records it joins with in the build side.)

The intuition behind the secure join operator we present is as
follows. We could consider merely replace the sort step in a sort-
merge join with a secure sort. However, the merge step still leaks
the join graph. In order to address this issue, we securely sort the
union of the two inputs while remembering for each tuple what
relation it came from. Since the result of the above sort places
joining records together, the TM can with some buffering return
the joined records (re-encrypted.)

The algorithm between tables R and S is shown in Algorithm 2,
assumingR is the table with the key. Steps 2-8 computes a standard
union. For each tuple, the table from which it came is remembered
using column Id. Bit 0 corresponds to R tuples and a bit 1 to
S. If R and S tuples have different lengths, we use padding to
ensure tuples in U have the same length. Next, we secure-sort U on
〈A, Id〉 (Step 9); by using Id in the sort attribute list, we ensure that
if an R tuple and an S tuple agree on their A value, the (unique)
R tuple occurs before in the sort ordering. Next, we implement
the “merge” step by iterating over the tuples in U . We can show
that any S tuple 〈s, 1〉 in U joins with the most recent R tuple in
U (stored in lastR) or does not join with any R tuple. We use this
property to generate 〈r, s〉 tuples in the join output (Step 17). To
hide access patterns, we produce dummy output tuples when we
read an R tuple (Step 14) or an S tuple that does not produce a join
output (Step 19). The dummy tuples are removed using a secure
filter (Step 23).



Algorithm 2 Secure foreign key join of R = r1, . . . , rn and S =
s1, . . . , sm on attribute A.
1: procedure SECUREJOIN(R,S,A)
2: U ← φ . Intermediate union stream
3: for all ri in R do
4: Append 〈ri, 0〉 to U .
5: endfor
6: for all si in S do
7: Append 〈si, 1〉 to U .
8: endfor
9: Secure sort U on 〈A, Id〉

10: Jd ← φ . Intermediate join stream
11: lastR ← null
12: for all u in U do
13: if u = 〈r, 0〉 then
14: lastR ← r; Append 〈dummy〉 to Jd
15: else . Assert: u = 〈s, 1〉
16: if lastR[A] = s[A] then
17: Append 〈r, s〉 to Jd
18: else
19: Append 〈dummy〉 to Jd
20: end if
21: end if
22: endfor
23: Output Jd with 〈dummy〉 removed (secure-filter).
24: end procedure

Algorithm 3 Grouping and COUNT(*) aggregation of R =
r1, . . . , rn with a single grouping attribute A.
1: procedure SECUREGROUPAGGR(R,A)
2: Rsort ← secure sort of R on A
3: curA← null
4: curCount ← 0
5: Gi ← φ . Output with dummy records
6: for all r in Rsort do
7: if r[A] = curA then
8: curCount ← curCount + 1
9: Append 〈dummy〉 to Gi

10: else
11: Append 〈curA, curCount〉 to Gi
12: curA← r[A]
13: curCount ← 0
14: end if
15: endfor
16: Output Gi with 〈dummy〉 removed (secure filter)
17: end procedure

For the security of the join operator note that the input and output
patterns of the union, secure sort, and the merge step do not depend
on data values in R and S. Further, encryption ensures that at the
end of the sort step, Eve cannot find the correspondence between
tuples in U and the input tuples in R and S. Combining both ob-
servations, we can prove security of the operator. Note that at the
end of the union step, Eve can determine which tuples in U came
from R and which, from S. Given this, we can improve the effi-
ciency of the overall join operator by computing union in UM and
slightly modifying the sort step to encrypt Id column and perform
padding.

Overall, the secure join has the same time and data complexity as
traditional sort-merge join. The algorithms for general (natural and
theta) joins are quite involved and outside the scope of this paper.
They are presented in [4] with full empirical evaluation.

5.1.4 Grouping and Aggregation
We present a secure group by and aggregation operator for the

special case of a single grouping attribute and COUNT(*) aggre-

Algorithm 4 B-Tree Point Lookup procedure with key a. The in-
dex T is over R.A
1: procedure BTREELOOKUP(T, a)
2: bid ← Enc(T.Root) . Encr. Block Id of Root
3: curBlock ← Readoss(bid)
4: for level = 1 to T.Height − 1 do
5: bid ←SEARCH(curBlock , a) . Encr. child block id
6: curBlock ← Readoss(bid)
7: endfor
8: R← φ . Buffered output
9: curBlock ← Dec(curBlock)

10: while curBlock .First ≤ a do
11: R← R∪ {Enc(r) : r ∈ curBlock ∧ r[A] = a}
12: bid ← Enc(curBlock .Next)

13: curBlock ← Readoss(bid)
14: end while
15: OutputR
16: end procedure

gate. Our algorithm can be generalized to handle more general
grouping and other standard aggregation functions including MIN,
MAX, COUNT, AVG, SUM, and MEDIAN. Our algorithm can also be
adapted to get a secure duplicate elimination operator.

Traditional sort-based grouping and aggregation with the sort
step replaced with a secure sort step is not secure since it reveals
the size of each group. Our implementation is a slight modifica-
tion and is shown in Algorithm 3. We begin by securely sorting
input stream R on grouping attribute A (Step 2). As in traditional
aggregation, we scan the sorted stream and compute the counts of
each group. The traditional aggregation produces one output tuple
per group after the last input tuple belonging to the group has been
processed (Step 11). Our modification is to produce dummy out-
put tuples for the other input tuples of a group as well (Step 9). A
secure filter is used to remove dummy tuples and get the final out-
put (Step 16). The security of the operator follows since the input
output pattern of the operator is independent of the contents of R,
and the overall time and data complexity is the same as traditional
group by aggregation.

5.2 Indexing Encrypted Columns
We now discuss building a secure B-tree index on attribute A of

table R. We focus on the lookup operation and defer a discussion
of updates and index construction, which is quite intricate, to the
full version of the paper. For simplicity, we assume the height of
the B-tree is public knowledge; this is not a serious information
leak since the height can be determined to within an additive error
of 1 solely from the cardinality of R and the order of the B-tree.

5.2.1 Insecurity Of Standard Lookup
We first show that the standard B-Tree lookup adapted to using

TM is not secure. This procedure is shown in Algorithm 4. This
is a standard B-tree lookup algorithm except that the binary search
within a non-leaf block to identify the next block to visit is done
within TM. Also, the scan of the chained leaf blocks to identify
output records happens within TM. (All the blocks of the B-tree
are stored encrypted.) Although Eve observes only encrypted bits
entering and leaving TM, the lookup operation as described is not
secure as illustrated in the following example:

EXAMPLE 5.2. Consider a B-tree over Employee.Age. The
first lookup involves (Age = 34) and this touches three leaf blocks.
Let the block ids of these blocks be bid1, bid2 and bid3. Since the
disk is in UM, Eve knows these ids. The second lookup involves
(Age = 36) and this touches two blocks with ids bid3 and bid4.
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From this, Eve infers that any record with Age = 35 is stored in
a single disk block with id bid3; so she learns an upper bound (=
order of the B-tree) on the number of records with Age = 35.

5.2.2 Secure Index
To get a secure B-tree lookup procedure, we use the same pro-

cedure but rely on a special storage system layer called oblivious
storage system (OSS). We next describe OSS functionality and dis-
cuss how we get secure B-tree index lookups with this functionality.
The implementation of OSS is discussed in Section 5.2.3.

Oblivious Storage System (OSS) functionality: The traditional
storage subsystem in a DBMS consists of a buffer manager which
provides indexed read/write access to blocks on the disk, with some
main memory buffer pool caching; given a block id bid , it reads/writes
contents of the block identified by bid (see Figure 6). The OSS
layer sits on top of buffer manager. It provides the same functional-
ity except that the input blocks ids are encrypted using CPA-secure
encryption (so Eve does not learn the block ids requested). Fur-
ther, for each block access, OSS layer makes randomized block
read/write requests to the buffer manager such that the distribu-
tion of read/write requests is the same, independent of the block
accessed. The OSS itself is implemented within TM (see Sec-
tion 5.2.3) and Eve does not get any information about the sequence
of block id accesses to OSS by observing the physical block ac-
cesses.

In Algorithm 4, the subscript oss in Readoss emphasizes that
index block reads go through OSS. With this modification any se-
quence of index block accesses results in physical block accesses
that appears “random” to Eve, implying security of the lookup pro-
cedure. In particular, the attack described in Example 5.2 does not
work since Eve does not know that the common block bid3 was ac-
cessed for the two lookup operations. In terms of OSS accesses, the
complexity of index lookup is identical to traditional B-tree lookup.
But the OSS itself imposes a performance cost as discussed in Sec-
tion 5.2.3.

5.2.3 Oblivious Storage (OSS)
The OSS functionality described above is isomorphic to well-

studied Oblivious RAM (ORAM) functionality, so we can use any
known solution of ORAM to implement OSS. Briefly, these solu-
tions involve shuffling physical blocks around and making addi-
tional “spurious” disk accesses to hide the actual access pattern.
Note that above strategy implies that the block ids that exist above
OSS layer are now virtual and the block corresponding to a given
id is stored in different physical locations at different times.

5.2.4 Overheads
OSS functionality comes at a cost. The current best solution

results in an overhead of O(logM log logM) [29] physical block

accesses for each block access using OSS; here M is the number
of blocks being managed by OSS. Also, under some reasonable
assumptions Ω(logM) [12] is a lower-bound.

However, relying on OSS leads to a loss of spatial and tempo-
ral locality of reference, except for the important special case of
full scans which can bypass OSS. For example, in a traditional
DBMS, we get the benefits of sequential scans not only for full
scans but also for large range and point scans. However, lookups of
large ranges that go through OSS result in a large number of ran-
dom seeks since every base record access becomes a random seek.
Since large range scans are common in several database workloads,
secure indexing does carry a significant cost in the worst case. Sim-
ilarly, the effectiveness of the buffer pool is reduced. We note that
there exists a fundamental connection between secure indexing and
ORAM since we can implement ORAM using a secure index. This
implies that a more efficient end-to-end secure indexing solution
would imply a better algorithm for ORAM.

5.2.5 Engineering Optimizations
There exist a few database specific engineering optimizations

that can be used to reduce the costs associated with OSS. The intu-
ition is to have OSS managed smaller collections of blocks called
namespaces such that access patterns need to be hidden only within
a namespace and not across.

The above optimization yields two benefits. One is that the num-
ber of physical block accesses for each block access using OSS is a
function ofM , the number of blocks managed by OSS. In this con-
text, a natural candidate for namespaces are blocks corresponding
to the same level in a B-tree, since revealing that block corresponds
to a particular level in the B-tree does not violate security. In par-
ticular, the root block of a B-tree can be in a namespace by itself,
implying that we do not need to incur OSS overheads to access
it. Second, the data within a namespace can be fully sequentially
scanned thereby reducing the loss of spatial locality.

5.3 Clear-Text + Encrypted Columns
Above, we have described operators over encrypted columns. As

noted in Section 3, if we treat the encrypted columns as a blob, then
traditional operators over clear-text are secure. We now discuss
the issues that arise when combining processing over clear-text and
encrypted columns. We note that the secure operators described
above encrypt their results even if parts of the input are in clear-
text. For example, in the database shown in Figure 2, a secure
filter over Ailment with a predicate on Disease encrypts the
Name field in its output. Therefore, if we modify the plan shown in
Figure 3 to replace a filter with a secure filter, the subsequent join
has to operate over encrypted names.

In fact, the above issue has implications for the physical design
of the database, which we illustrate through two examples. First,
suppose we have an index on the Name column of the Patient
table. Since Name is in clear-text, we can use a standard B-Tree
index. However, the above index cannot be used for the above join
between Ailment and Patient. In order to perform an index-
nested loops join, we would need to keep a separate copy of the
Patient table where all fields are encrypted and build a B-Tree
going through OSS as described above.

In general, whenever we build an index on an encrypted column
and the base table has clear-text columns, if we access the clear-
text columns directly, we reveal information. Therefore, indexing
encrypted columns requires us to store a separate copy of the data
fully encrypted. However, one such encrypted copy of the data
suffices for all indexes.



5.4 Query Optimization
We now briefly discuss the implications of the operators pre-

sented above on query optimization. The goal of query optimiza-
tion is to find the optimal secure plan. Based on our security model
and Theorem 3.9, a plan is secure if it is composed of secure oper-
ators. Checking whether a physical operator is secure is a function
solely of the encryption of the operator and its input encryption. If
the operator operates over encrypted columns, the physical opera-
tor has to be one of the operators introduced earlier in this section.
Otherwise, we can use a standard relational operator. The details
of costing secure plans and building statistics securely are beyond
the scope of this paper and subject for future work.

6. CONCLUSIONS
Encryption is an important part of supporting database as a ser-

vice. In this paper, we study the security of querying encrypted
data. We show that securing the data-at-rest is insufficient — we
need a principled way to handle information leakage during query
processing. We address two important aspects to this problem: 1)
a security model to precisely specify what information is permitted
to be disclosed and 2) the design of a query engine catered towards
the above model for a strict permit function that only allows the in-
termediate cardinalities of a query plan to be disclosed. The main
takeaway is the fact that secure query processing is feasible (with-
out extensive changes to an existing query engine) but comes at a
price — in particular, the cost of secure indexing can be non-trivial.

Several important issues remain to be addressed. In addition
to carefully engineering the secure operators, it is important to
augment the current design of a secure query engine with mech-
anisms for navigating the security-performance tradeoff — explor-
ing such mechanisms as well as other interesting permit functions
for a query engine are interesting avenues of future work. Finally,
we note that there are other important dimensions to security such
as the security of transaction processing and application security
that also remain to be addressed in future work.
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